Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2021 Volume 47 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2021 Volume 47 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review)

  • Authors:
    • Weixuan Wang
    • Xin Zhong
    • Jiao Guo
  • View Affiliations / Copyright

    Affiliations: Guangdong Metabolic Diseases Research Center of Integrated Chinese and Western Medicine, Guangdong Pharmaceutical University, Guangzhou, Guangdong 510006, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 114
    |
    Published online on: April 26, 2021
       https://doi.org/10.3892/ijmm.2021.4947
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Nowadays, metabolic syndromes are emerging as global epidemics, whose incidence are increasing annually. However, the efficacy of therapy does not increase proportionately with the increased morbidity. Type 2 diabetes mellitus (T2DM) and non‑alcoholic fatty liver disease (NAFLD) are two common metabolic syndromes that are closely associated. The pathogenic mechanisms of T2DM and NAFLD have been studied, and it was revealed that insulin resistance, hyperglycemia, hepatic lipid accumulation and inflammation markedly contribute to the development of these two diseases. The 2‑series prostaglandins (PGs), a subgroup of eicosanoids, including PGD2, PGE2, PGF2α and PGI2, are converted from arachidonic acid catalyzed by the rate‑limiting enzymes cyclooxygenases (COXs). Considering their wide distribution in almost every tissue, 2‑series PG pathways exert complex and interlinked effects in mediating pancreatic β‑cell function and proliferation, insulin sensitivity, fat accumulation and lipolysis, as well as inflammatory processes. Previous studies have revealed that metabolic disturbances, such as hyperglycemia and hyperlipidemia, can be improved by treatment with COX inhibitors. At present, an accumulating number of studies have focused on the roles of 2‑series PGs and their metabolites in the pathogenesis of metabolic syndromes, particularly T2DM and NAFLD. In the present review, the role of 2‑series PGs in the highly intertwined pathogenic mechanisms of T2DM and NAFLD was discussed, and important therapeutic strategies based on targeting 2‑series PG pathways in T2DM and NAFLD treatment were provided.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

International Diabetes Federation(IDF): IDF diabetes atlas. 9th edition. IDF; Brussels: 2019

2 

Younossi ZM, Koenig AB, Abdelatif D, Fazel Y, Henry L and Wymer M: Global epidemiology of nonalcoholic fatty liver disease-meta-analytic assessment of prevalence, incidence, and outcomes. Hepatology. 64:73–84. 2016. View Article : Google Scholar

3 

Chatterjee S, Khunti K and Davies MJ: Type 2 diabetes. Lancet. 389:2239–2251. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J and Bugianesi E: Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 15:11–20. 2018. View Article : Google Scholar

5 

Zhou F, Zhou J, Wang W, Zhang XJ, Ji YX, Zhang P, She ZG, Zhu L, Cai J and Li H: Unexpected rapid increase in the burden of NAFLD in China from 2008 to 2018: A systematic review and meta-analysis. Hepatology. 70:1119–1133. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Younossi ZM, Golabi P, de Avila L, Paik JM, Srishord M, Fukui N, Qiu Y, Burns L, Afendy A and Nader F: The global epidemiology of NAFLD and NASH in patients with type 2 diabetes: A systematic review and meta-analysis. J Hepatol. 71:793–801. 2019. View Article : Google Scholar : PubMed/NCBI

7 

Sung KC, Jeong WS, Wild SH and Byrne CD: Combined influence of insulin resistance, overweight/obesity, and fatty liver as risk factors for type 2 diabetes. Diabetes Care. 35:717–722. 2012. View Article : Google Scholar : PubMed/NCBI

8 

Wild SH, Morling JR, McAllister DA, Kerssens J, Fischbacher C, Parkes J, Roderick PJ, Sattar N and Byrne CD; Scottish and Southampton Diabetes and Liver Disease Group: Scottish Diabetes Research Network Epidemiology Group: Type 2 diabetes and risk of hospital admission or death for chronic liver diseases. J Hepatol. 64:1358–1364. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Leite NC, Villela-Nogueira CA, Pannain VL, Bottino AC, Rezende GF, Cardoso CR and Salles GF: Histopathological stages of nonalcoholic fatty liver disease in type 2 diabetes: Prevalences and correlated factors. Liver Int. 31:700–706. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Prashanth M, Ganesh HK, Vima MV, John M, Bandgar T, Joshi SR, Shah SR, Rathi PM, Joshi AS, Thakkar H, et al: Prevalence of nonalcoholic fatty liver disease in patients with type 2 diabetes mellitus. J Assoc Physicians India. 57:205–210. 2009.PubMed/NCBI

11 

Dam-Larsen S, Franzmann M, Andersen IB, Christoffersen P, Jensen LB, Sørensen TI, Becker U and Bendtsen F: Long term prognosis of fatty liver: Risk of chronic liver disease and death. Gut. 53:750–755. 2004. View Article : Google Scholar : PubMed/NCBI

12 

Ratziu V, Bonyhay L, Di Martino V, Charlotte F, Cavallaro L, Sayegh-Tainturier MH, Giral P, Grimaldi A, Opolon P and Poynard T: Survival, liver failure, and hepatocellular carcinoma in obesity-related cryptogenic cirrhosis. Hepatology. 35:1485–1493. 2002. View Article : Google Scholar : PubMed/NCBI

13 

Ekstedt M, Franzén LE, Mathiesen UL, Thorelius L, Holmqvist M, Bodemar G and Kechagias S: Long-term follow-up of patients with NAFLD and elevated liver enzymes. Hepatology. 44:865–873. 2006. View Article : Google Scholar : PubMed/NCBI

14 

Rafiq N, Bai C, Fang Y, Srishord M, McCullough A, Gramlich T and Younossi ZM: Long-term follow-up of patients with nonalcoholic fatty liver. Clin Gastroenterol Hepatol. 7:234–238. 2009. View Article : Google Scholar

15 

Targher G, Bertolini L, Padovani R, Rodella S, Tessari R, Zenari L, Day C and Arcaro G: Prevalence of nonalcoholic fatty liver disease and its association with cardiovascular disease among type 2 diabetic patients. Diabetes Care. 30:1212–1218. 2007. View Article : Google Scholar : PubMed/NCBI

16 

Ryysy L, Häkkinen AM, Goto T, Vehkavaara S, Westerbacka J, Halavaara J and Yki-Järvinen H: Hepatic fat content and insulin action on free fatty acids and glucose metabolism rather than insulin absorption are associated with insulin requirements during insulin therapy in type 2 diabetic patients. Diabetes. 49:749–758. 2000. View Article : Google Scholar : PubMed/NCBI

17 

Lomonaco R, Bril F, Portillo-Sanchez P, Ortiz-Lopez C, Orsak B, Biernacki D, Lo M, Suman A, Weber MH and Cusi K: Metabolic impact of nonalcoholic steatohepatitis in obese patients with type 2 diabetes. Diabetes Care. 39:632–638. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Marchesini G, Brizi M, Bianchi G, Tomassetti S, Bugianesi E, Lenzi M, McCullough AJ, Natale S, Forlani G and Melchionda N: Nonalcoholic fatty liver disease: A feature of the metabolic syndrome. Diabetes. 50:1844–1850. 2001. View Article : Google Scholar : PubMed/NCBI

19 

Cai D, Yuan M, Frantz DF, Melendez PA, Hansen L, Lee J and Shoelson SE: Local and systemic insulin resistance resulting from hepatic activation of IKK-beta and NF-kappaB. Nat Med. 11:183–190. 2005. View Article : Google Scholar : PubMed/NCBI

20 

Sun G, Jackson CV, Zimmerman K, Zhang LK, Finnearty CM, Sandusky GE, Zhang G, Peterson RG and Wang YJ: The FATZO mouse, a next generation model of type 2 diabetes, develops NAFLD and NASH when fed a Western diet supplemented with fructose. BMC Gastroenterol. 19:412019. View Article : Google Scholar : PubMed/NCBI

21 

Garcia-Jaramillo M, Spooner MH, Löhr CV, Wong CP, Zhang W and Jump DB: Lipidomic and transcriptomic analysis of western diet-induced nonalcoholic steatohepatitis (NASH) in female Ldlr-/-mice. PLoS One. 14:e02143872019. View Article : Google Scholar

22 

Verboven M, Deluyker D, Ferferieva V, Lambrichts I, Hansen D, Eijnde BO and Bito V: Western diet given to healthy rats mimics the human phenotype of diabetic cardiomyopathy. J Nutr Biochem. 61:140–146. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Hernandez-Rodas MC, Valenzuela R and Videla LA: Relevant aspects of nutritional and dietary interventions in non-alcoholic fatty liver disease. Int J Mol Sci. 16:25168–25198. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Valenzuela R and Videla LA: The importance of the long-chain polyunsaturated fatty acid n-6/n-3 ratio in development of non-alcoholic fatty liver associated with obesity. Food Funct. 2:644–648. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Taha AY, Cheon Y, Faurot KF, Macintosh B, Majchrzak-Hong SF, Mann JD, Hibbeln JR, Ringel A and Ramsden CE: Dietary omega-6 fatty acid lowering increases bioavailability of omega-3 polyunsaturated fatty acids in human plasma lipid pools. Prostaglandins Leukot Essent Fatty Acids. 90:151–157. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Wood KE, Lau A, Mantzioris E, Gibson RA, Ramsden CE and Muhlhausler BS: A low omega-6 polyunsaturated fatty acid (n-6 PUFA) diet increases omega-3 (n-3) long chain PUFA status in plasma phospholipids in humans. Prostaglandins Leukot Essent Fatty Acids. 90:133–138. 2014. View Article : Google Scholar : PubMed/NCBI

27 

Xia F, He C, Ren M, Xu FG and Wan JB: Quantitative profiling of eicosanoids derived from n-6 and n-3 polyunsaturated fatty acids by twin derivatization strategy combined with LC-MS/MS in patients with type 2 diabetes mellitus. Anal Chim Acta. 1120:24–35. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Li N, Yue H, Jia M, Liu W, Qiu B, Hou H, Huang F and Xu T: Effect of low-ratio n-6/n-3 PUFA on blood glucose: A meta-analysis. Food Funct. 10:4557–4565. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Liu HQ, Qiu Y, Mu Y, Zhang XJ, Liu L, Hou XH, Zhang L, Xu XN, Ji AL, Cao R, et al: A high ratio of dietary n-3/n-6 polyunsaturated fatty acids improves obesity-linked inflammation and insulin resistance through suppressing activation of TLR4 in SD rats. Nutr Res. 33:849–858. 2013. View Article : Google Scholar : PubMed/NCBI

30 

Shrestha N, Cuffe JSM, Holland OJ, Perkins AV, McAinch AJ and Hryciw DH: Linoleic acid increases prostaglandin E2 release and reduces mitochondrial respiration and cell viability in human trophoblast-like cells. Cell Physiol Biochem. 52:94–108. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Kliewer SA, Lenhard JM, Willson TM, Patel I, Morris DC and Lehmann JM: A prostaglandin J2 metabolite binds peroxisome proliferator-activated receptor gamma and promotes adipocyte differentiation. Cell. 83:813–819. 1995. View Article : Google Scholar : PubMed/NCBI

32 

Hennig B, Toborek M, Joshi-Barve S, Barger SW, Barve S, Mattson MP and McClain CJ: Linoleic acid activates nuclear transcription factor-kappa B (NF-kappa B) and induces NF-kappa B-dependent transcription in cultured endothelial cells. Am J Clin Nutr. 63:322–328. 1996. View Article : Google Scholar : PubMed/NCBI

33 

Seo MJ and Oh DK: Prostaglandin synthases: Molecular characterization and involvement in prostaglandin biosynthesis. Prog Lipid Res. 66:50–68. 2017. View Article : Google Scholar : PubMed/NCBI

34 

Schaid MD, Zhu Y, Richardson NE, Patibandla C, Ong IM, Fenske RJ, Neuman JC, Guthery E, Reuter A, Sandhu HK, et al: Systemic metabolic alterations correlate with islet-level prostaglandin E2 production and signaling mechanisms that predict β-cell dysfunction in a mouse model of type 2 diabetes. Metabolites. 11:582021. View Article : Google Scholar

35 

Nasrallah R, Robertson SJ, Karsh J and Hébert RL: Celecoxib modifies glomerular basement membrane, mesangium and podocytes in OVE26 mice, but ibuprofen is more detrimental. Clin Sci (Lond). 124:685–694. 2013. View Article : Google Scholar

36 

Chan PC, Hsiao FC, Chang HM, Wabitsch M and Hsieh PS: Importance of adipocyte cyclooxygenase-2 and prostaglandin E2-prostaglandin E receptor 3 signaling in the development of obesity-induced adipose tissue inflammation and insulin resistance. FASEB J. 30:2282–2297. 2016. View Article : Google Scholar : PubMed/NCBI

37 

Hsieh PS, Jin JS, Chiang CF, Chan PC, Chen CH and Shih KC: COX-2-mediated inflammation in fat is crucial for obesity-linked insulin resistance and fatty liver. Obesity (Silver Spring). 17:1150–1157. 2009. View Article : Google Scholar

38 

Szerafin T, Erdei N, Fulop T, Pasztor ET, Edes I, Koller A and Bagi Z: Increased cyclooxygenase-2 expression and prostaglandin-mediated dilation in coronary arterioles of patients with diabetes mellitus. Circ Res. 99:e12–e17. 2006. View Article : Google Scholar : PubMed/NCBI

39 

Wang T, Cai H, Zheng W, Michel A, Pawlita M, Milne G, Xiang YB, Gao YT, Li HL, Rothman N, et al: A prospective study of urinary prostaglandin E2 metabolite, helicobacter pylori antibodies, and gastric cancer risk. Clin Infect Dis. 64:1380–1386. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Na YR, Jung D, Stakenborg M, Jang H, Gu GJ, Jeong MR, Suh SY, Kim HJ, Kwon YH, Sung TS, et al: Prostaglandin E2 receptor PTGER4-expressing macrophages promote intestinal epithelial barrier regeneration upon inflammation. Gut. Feb 7–2021.Epub ahead of print. View Article : Google Scholar

41 

McCoy JM, Wicks JR and Audoly LP: The role of prostaglandin E2 receptors in the pathogenesis of rheumatoid arthritis. J Clin Invest. 110:651–658. 2002. View Article : Google Scholar : PubMed/NCBI

42 

Fajt ML, Gelhaus SL, Freeman B, Uvalle CE, Trudeau JB, Holguin F and Wenzel SE: Prostaglandin D2 pathway upregulation: Relation to asthma severity, control, and TH2 inflammation. J Allergy Clin Immunol. 131:1504–1512. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Hoshino T, Nakaya T, Homan T, Tanaka K, Sugimoto Y, Araki W, Narita M, Narumiya S, Suzuki T and Mizushima T: Involvement of prostaglandin E2 in production of amyloid-beta peptides both in vitro and in vivo. J Biol Chem. 282:32676–32688. 2007. View Article : Google Scholar : PubMed/NCBI

44 

Feingold KR, Doerrler W, Dinarello CA, Fiers W and Grunfeld C: Stimulation of lipolysis in cultured fat cells by tumor necrosis factor, interleukin-1, and the interferons is blocked by inhibition of prostaglandin synthesis. Endocrinology. 130:10–16. 1992. View Article : Google Scholar : PubMed/NCBI

45 

Yokota T, Meka CS, Medina KL, Igarashi H, Comp PC, Takahashi M, Nishida M, Oritani K, Miyagawa J, Funahashi T, et al: Paracrine regulation of fat cell formation in bone marrow cultures via adiponectin and prostaglandins. J Clin Invest. 109:1303–1310. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Forman BM, Tontonoz P, Chen J, Brun RP, Spiegelman BM and Evans RM: 15-Deoxy-delta 12, 14-prostaglandin J2 is a ligand for the adipocyte determination factor PPAR gamma. Cell. 83:803–812. 1995. View Article : Google Scholar : PubMed/NCBI

47 

Litherland SA, Xie XT, Hutson AD, Wasserfall C, Whittaker DS, She JX, Hofig A, Dennis MA, Fuller K, Cook R, et al: Aberrant prostaglandin synthase 2 expression defines an antigen-presenting cell defect for insulin-dependent diabetes mellitus. J Clin Invest. 104:515–523. 1999. View Article : Google Scholar : PubMed/NCBI

48 

Yasui M, Tamura Y, Minami M, Higuchi S, Fujikawa R, Ikedo T, Nagata M, Arai H, Murayama T and Yokode M: The prostaglandin E2 receptor EP4 regulates obesity-related inflammation and insulin sensitivity. PLoS One. 10:e01363042015. View Article : Google Scholar : PubMed/NCBI

49 

Edelman MJ, Wang X, Hodgson L, Cheney RT, Baggstrom MQ, Thomas SP, Gajra A, Bertino E, Reckamp KL, Molina J, et al: Phase III randomized, placebo-controlled, double-blind trial of celecoxib in addition to standard chemotherapy for advanced non-small-cell lung cancer with cyclooxygenase-2 overexpression: CALGB 30801 (Alliance). J Clin Oncol. 35:2184–2192. 2017. View Article : Google Scholar : PubMed/NCBI

50 

Pathan SA, Mitra B, Straney LD, Afzal MS, Anjum S, Shukla D, Morley K, Al Hilli SA, Al Rumaihi K, Thomas SH and Cameron PA: Delivering safe and effective analgesia for management of renal colic in the emergency department: A double-blind, multigroup, randomised controlled trial. Lancet. 387:1999–2007. 2016. View Article : Google Scholar : PubMed/NCBI

51 

Bath PM, Woodhouse LJ, Appleton JP, Beridze M, Christensen H, Dineen RA, Duley L, England TJ, Flaherty K, Havard D, et al: Antiplatelet therapy with aspirin, clopidogrel, and dipyridamole versus clopidogrel alone or aspirin and dipyridamole in patients with acute cerebral ischaemia (TARDIS): A randomised, open-label, phase 3 superiority trial. Lancet. 391:850–859. 2018. View Article : Google Scholar :

52 

Norambuena F, Mackenzie S, Bell JG, Callol A, Estévez A and Duncan N: Prostaglandin (F and E, 2- and 3-series) production and cyclooxygenase (COX-2) gene expression of wild and cultured broodstock of Senegalese sole (Solea senegalensis). Gen Comp Endocrinol. 177:256–262. 2012. View Article : Google Scholar : PubMed/NCBI

53 

Wang X, Lin H and Gu Y: Multiple roles of dihomo-γ-linolenic acid against proliferation diseases. Lipids Health Dis. 11:252012. View Article : Google Scholar

54 

Sonnweber T, Pizzini A, Nairz M, Weiss G and Tancevski I: Arachidonic acid metabolites in cardiovascular and metabolic diseases. Int J Mol Sci. 19:32852018. View Article : Google Scholar :

55 

Cheng Z, Abayasekara DR and Wathes DC: The effect of supplementation with n-6 polyunsaturated fatty acids on 1-, 2- and 3-series prostaglandin F production by ovine uterine epithelial cells. Biochim Biophys Acta. 1736:128–135. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Smith WL, Urade Y and Jakobsson PJ: Enzymes of the cyclooxygenase pathways of prostanoid biosynthesis. Chem Rev. 111:5821–5865. 2011. View Article : Google Scholar : PubMed/NCBI

57 

Seibert K, Zhang Y, Leahy K, Hauser S, Masferrer J, Perkins W, Lee L and Isakson P: Pharmacological and biochemical demonstration of the role of cyclooxygenase 2 in inflammation and pain. Proc Natl Acad Sci USA. 91:12013–12017. 1994. View Article : Google Scholar : PubMed/NCBI

58 

Kirkby NS, Zaiss AK, Urquhart P, Jiao J, Austin PJ, Al-Yamani M, Lundberg MH, MacKenzie LS, Warner TD, Nicolaou A, et al: LC-MS/MS confirms that COX-1 drives vascular prostacyclin whilst gene expression pattern reveals non-vascular sites of COX-2 expression. PLoS One. 8:e695242013. View Article : Google Scholar : PubMed/NCBI

59 

Kirkby NS, Chan MV, Zaiss AK, Garcia-Vaz E, Jiao J, Berglund LM, Verdu EF, Ahmetaj-Shala B, Wallace JL, Herschman HR, et al: Systematic study of constitutive cyclooxygenase-2 expression: Role of NF-κB and NFAT transcriptional pathways. Proc Natl Acad Sci A. 113:434–439. 2016. View Article : Google Scholar

60 

Smith WL, DeWitt DL and Garavito RM: Cyclooxygenases: Structural, cellular, and molecular biology. Annu Rev Biochem. 69:145–182. 2000. View Article : Google Scholar : PubMed/NCBI

61 

Tilg H, Moschen AR and Roden M: NAFLD and diabetes mellitus. Nat Rev Gastroenterol Hepatol. 14:32–42. 2017. View Article : Google Scholar

62 

Oakes ND, Cooney GJ, Camilleri S, Chisholm DJ and Kraegen EW: Mechanisms of liver and muscle insulin resistance induced by chronic high-fat feeding. Diabetes. 46:1768–1774. 1997. View Article : Google Scholar : PubMed/NCBI

63 

Krssak M, Brehm A, Bernroider E, Anderwald C, Nowotny P, Dalla Man C, Cobelli C, Cline GW, Shulman GI, Waldhäusl W and Roden M: Alterations in postprandial hepatic glycogen metabolism in type 2 diabetes. Diabetes. 53:3048–3056. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Smith GI, Shankaran M, Yoshino M, Schweitzer GG, Chondronikola M, Beals JW, Okunade AL, Patterson BW, Nyangau E, Field T, et al: Insulin resistance drives hepatic de novo lipogenesis in nonalcoholic fatty liver disease. J Clin Invest. 130:1453–1460. 2020. View Article : Google Scholar :

65 

McQuaid SE, Hodson L, Neville MJ, Dennis AL, Cheeseman J, Humphreys SM, Ruge T, Gilbert M, Fielding BA, Frayn KN and Karpe F: Downregulation of adipose tissue fatty acid trafficking in obesity: A driver for ectopic fat deposition? Diabetes. 60:47–55. 2011. View Article : Google Scholar :

66 

Garcia-Monzón C, Lo Iacono O, Mayoral R, González-Rodriguez A, Miquilena-Colina ME, Lozano-Rodriguez T, Garcia-Pozo L, Vargas Castrillón J, Casado M, Boscá L, et al: Hepatic insulin resistance is associated with increased apoptosis and fibrogenesis in nonalcoholic steatohepatitis and chronic hepatitis C. J Hepatol. 54:142–152. 2011. View Article : Google Scholar

67 

Weisberg SP, McCann D, Desai M, Rosenbaum M, Leibel RL and Ferrante AW Jr: Obesity is associated with macrophage accumulation in adipose tissue. J Clin Invest. 112:1796–1808. 2003. View Article : Google Scholar : PubMed/NCBI

68 

Xu H, Barnes GT, Yang Q, Tan G, Yang D, Chou CJ, Sole J, Nichols A, Ross JS, Tartaglia LA and Chen H: Chronic inflammation in fat plays a crucial role in the development of obesity-related insulin resistance. J Clin Invest. 112:1821–1830. 2003. View Article : Google Scholar : PubMed/NCBI

69 

Cook JR, Langlet F, Kido Y and Accili D: Pathogenesis of selective insulin resistance in isolated hepatocytes. J Biol Chem. 290:13972–13980. 2015. View Article : Google Scholar : PubMed/NCBI

70 

Cao Z, Mulvihill MM, Mukhopadhyay P, Xu H, Erdélyi K, Hao E, Holovac E, Haskó G, Cravatt BF, Nomura DK and Pacher P: Monoacylglycerol lipase controls endocannabinoid and eicosanoid signaling and hepatic injury in mice. Gastroenterology. 144:808–817.e15. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Henkel J, Gärtner D, Dorn C, Hellerbrand C, Schanze N, Elz SR and Püschel GP: Oncostatin M produced in Kupffer cells in response to PGE2: Possible contributor to hepatic insulin resistance and steatosis. Lab Invest. 91:1107–1117. 2011. View Article : Google Scholar : PubMed/NCBI

72 

Henkel J, Neuschäfer-Rube F, Pathe-Neuschäfer-Rube A and Püschel GP: Aggravation by prostaglandin E2 of interleukin-6-dependent insulin resistance in hepatocytes. Hepatology. 50:781–790. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Bock G, Chittilapilly E, Basu R, Toffolo G, Cobelli C, Chandramouli V, Landau BR and Rizza RA: Contribution of hepatic and extrahepatic insulin resistance to the pathogenesis of impaired fasting glucose: Role of increased rates of gluconeogenesis. Diabetes. 56:1703–1711. 2007. View Article : Google Scholar : PubMed/NCBI

74 

Wang Y, Yan S, Xiao B, Zuo S, Zhang Q, Chen G, Yu Y, Chen D, Liu Q, Liu Y, et al: Prostaglandin F2α facilitates hepatic glucose production through CaMKIIγ/p38/FOXO1 signaling pathway in fasting and obesity. Diabetes. 67:1748–1760. 2018. View Article : Google Scholar : PubMed/NCBI

75 

Yan S, Zhang Q, Zhong X, Tang J, Wang Y, Yu J, Zhou Y, Zhang J, Guo F, Liu Y, et al: I prostanoid receptor-mediated inflammatory pathway promotes hepatic gluconeogenesis through activation of PKA and inhibition of AKT. Diabetes. 63:2911–2923. 2014. View Article : Google Scholar : PubMed/NCBI

76 

Francés DE, Motiño O, Agrá N, González-Rodríguez Á, Fernández-Álvarez A, Cucarella C, Mayoral R, Castro-Sánchez L, García-Casarrubios E, Boscá L, et al: Hepatic cyclooxygenase-2 expression protects against diet-induced steatosis, obesity, and insulin resistance. Diabetes. 64:1522–1531. 2015. View Article : Google Scholar

77 

Petersen KF, Dufour S, Savage DB, Bilz S, Solomon G, Yonemitsu S, Cline GW, Befroy D, Zemany L, Kahn BB, et al: The role of skeletal muscle insulin resistance in the pathogenesis of the metabolic syndrome. Proc Natl Acad Sci USA. 104:12587–12594. 2007. View Article : Google Scholar : PubMed/NCBI

78 

Banhos Danneskiold-Samsøe N, Sonne SB, Larsen JM, Hansen AN, Fjære E, Isidor MS, Petersen S, Henningsen J, Severi I, Sartini L, et al: Overexpression of cyclooxygenase-2 in adipocytes reduces fat accumulation in inguinal white adipose tissue and hepatic steatosis in high-fat fed mice. Sci Rep. 9:89792019. View Article : Google Scholar : PubMed/NCBI

79 

Ceddia RP, Lee D, Maulis MF, Carboneau BA, Threadgill DW, Poffenberger G, Milne G, Boyd KL, Powers AC, McGuinness OP, et al: The PGE2 EP3 receptor regulates dietinduced adiposity in male mice. Endocrinology. 157:220–232. 2016. View Article : Google Scholar

80 

Garcia-Alonso V, Titos E, Alcaraz-Quiles J, Rius B, Lopategi A, López-Vicario C, Jakobsson PJ, Delgado S, Lozano J and Clària J: Prostaglandin E2 exerts multiple regulatory actions on human obese adipose tissue remodeling, inflammation, adaptive thermogenesis and lipolysis. PLoS One. 11:e01537512016. View Article : Google Scholar : PubMed/NCBI

81 

Fujitani Y, Aritake K, Kanaoka Y, Goto T, Takahashi N, Fujimori K and Kawada T: Pronounced adipogenesis and increased insulin sensitivity caused by overproduction of prostaglandin D2 in vivo. FEBS J. 277:1410–1419. 2010. View Article : Google Scholar : PubMed/NCBI

82 

Virtue S, Masoodi M, de Weijer BA, van Eijk M, Mok CY, Eiden M, Dale M, Pirraco A, Serlie MJ, Griffin JL and Vidal-Puig A: Prostaglandin profiling reveals a role for haematopoietic prostaglandin D synthase in adipose tissue macrophage polarisation in mice and humans. Int J Obes (Lond). 39:1151–1160. 2015. View Article : Google Scholar

83 

Hernandez-Carretero A, Weber N, La Frano MR, Ying W, Lantero Rodriguez J, Sears DD, Wallenius V, Borgeson E, Newman JW and Osborn O: Obesity-induced changes in lipid mediators persist after weight loss. Int J Obes (Lond). 42:728–736. 2018. View Article : Google Scholar

84 

Fujimori K, Aritake K, Oishi Y, Nagata N, Maehara T, Lazarus M and Urade Y: L-PGDS-produced PGD2 in premature, but not in mature, adipocytes increases obesity and insulin resistance. Sci Rep. 9:19312019. View Article : Google Scholar :

85 

Fujimori K, Maruyama T, Kamauchi S and Urade Y: Activation of adipogenesis by lipocalin-type prostaglandin D synthase-generated Δ¹2-PGJ2 acting through PPARγ-dependent and independent pathways. Gene. 505:46–52. 2012. View Article : Google Scholar : PubMed/NCBI

86 

Wakai E, Aritake K, Urade Y and Fujimori K: Prostaglandin D2 enhances lipid accumulation through suppression of lipolysis via DP2 (CRTH2) receptors in adipocytes. Biochem Biophys Res Commun. 490:393–399. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Groop LC, Bonadonna RC, DelPrato S, Ratheiser K, Zyck K, Ferrannini E and DeFronzo RA: Glucose and free fatty acid metabolism in non-insulin-dependent diabetes mellitus. Evidence for multiple sites of insulin resistance. J Clin Invest. 84:205–213. 1989. View Article : Google Scholar : PubMed/NCBI

88 

Skurk T, Alberti-Huber C, Herder C and Hauner H: Relationship between adipocyte size and adipokine expression and secretion. J Clin Endocrinol Metab. 92:1023–1033. 2007. View Article : Google Scholar

89 

Lê KA, Mahurkar S, Alderete TL, Hasson RE, Adam TC, Kim JS, Beale E, Xie C, Greenberg AS, Allayee H and Goran MI: Subcutaneous adipose tissue macrophage infiltration is associated with hepatic and visceral fat deposition, hyperinsulinemia, and stimulation of NF-κB stress pathway. Diabetes. 60:2802–2809. 2011. View Article : Google Scholar

90 

Utriainen T, Takala T, Luotolahti M, Rönnemaa T, Laine H, Ruotsalainen U, Haaparanta M, Nuutila P and Yki-Järvinen H: Insulin resistance characterizes glucose uptake in skeletal muscle but not in the heart in NIDDM. Diabetologia. 41:555–559. 1998. View Article : Google Scholar : PubMed/NCBI

91 

Pratipanawatr W, Pratipanawatr T, Cusi K, Berria R, Adams JM, Jenkinson CP, Maezono K, DeFronzo RA and Mandarino LJ: Skeletal muscle insulin resistance in normoglycemic subjects with a strong family history of type 2 diabetes is associated with decreased insulin-stimulated insulin receptor substrate-1 tyrosine phosphorylation. Diabetes. 50:2572–2578. 2001. View Article : Google Scholar : PubMed/NCBI

92 

Weyer C, Bogardus C, Mott DM and Pratley RE: The natural history of insulin secretory dysfunction and insulin resistance in the pathogenesis of type 2 diabetes mellitus. J Clin Invest. 104:787–794. 1999. View Article : Google Scholar : PubMed/NCBI

93 

Dietze G, Wicklmayr M, Böttger I and Mayer L: Insulin action on glucose uptake into skeletal muscle: Inhibition of endogenous biosynthesis of prostaglandins. FEBS Lett. 92:294–298. 1978. View Article : Google Scholar : PubMed/NCBI

94 

Leighton B, Budohoski L, Lozeman FJ, Challiss RA and Newsholme EA: The effect of prostaglandins E1, E2 and F2 alpha and indomethacin on the sensitivity of glycolysis and glycogen synthesis to insulin in stripped soleus muscles of the rat. Biochem J. 227:337–340. 1985. View Article : Google Scholar : PubMed/NCBI

95 

Coll T, Palomer X, Blanco-Vaca F, Escolà-Gil JC, Sánchez RM, Laguna JC and Vázquez-Carrera M: Cyclooxygenase 2 inhibition exacerbates palmitate-induced inflammation and insulin resistance in skeletal muscle cells. Endocrinology. 151:537–548. 2010. View Article : Google Scholar

96 

Smith GI, Polidori DC, Yoshino M, Kearney ML, Patterson BW, Mittendorfer B and Klein S: Influence of adiposity, insulin resistance, and intrahepatic triglyceride content on insulin kinetics. J Clin Invest. 130:3305–3314. 2020. View Article : Google Scholar : PubMed/NCBI

97 

Solomon TP, Knudsen SH, Karstoft K, Winding K, Holst JJ and Pedersen BK: Examining the effects of hyperglycemia on pancreatic endocrine function in humans: Evidence for in vivo glucotoxicity. J Clin Endocrinol Metab. 97:4682–4691. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Hughan KS, Bonadonna RC, Lee S, Michaliszyn SF and Arslanian SA: β-Cell lipotoxicity after an overnight intravenous lipid challenge and free fatty acid elevation in African American versus American white overweight/obese adolescents. J Clin Endocrinol Metab. 98:2062–2069. 2013. View Article : Google Scholar : PubMed/NCBI

99 

Goodpaster BH, Thaete FL and Kelley DE: Thigh adipose tissue distribution is associated with insulin resistance in obesity and in type 2 diabetes mellitus. Am J Clin Nutr. 71:885–892. 2000. View Article : Google Scholar : PubMed/NCBI

100 

Solini A, Rossi C, Duranti E, Taddei S, Natali A and Virdis A: Saxagliptin prevents vascular remodeling and oxidative stress in db/db mice. Role of endothelial nitric oxide synthase uncoupling and cyclooxygenase. Vascul Pharmacol. 76:62–71. 2016. View Article : Google Scholar

101 

Hundal RS, Petersen KF, Mayerson AB, Randhawa PS, Inzucchi S, Shoelson SE and Shulman GI: Mechanism by which high-dose aspirin improves glucose metabolism in type 2 diabetes. J Clin Invest. 109:1321–1326. 2002. View Article : Google Scholar : PubMed/NCBI

102 

Helmersson J, Vessby B, Larsson A and Basu S: Association of type 2 diabetes with cyclooxygenase-mediated inflammation and oxidative stress in an elderly population. Circulation. 109:1729–1734. 2004. View Article : Google Scholar : PubMed/NCBI

103 

Kimple ME, Keller MP, Rabaglia MR, Pasker RL, Neuman JC, Truchan NA, Brar HK and Attie AD: Prostaglandin E2 receptor, EP3, is induced in diabetic islets and negatively regulates glucose- and hormone-stimulated insulin secretion. Diabetes. 62:1904–1912. 2013. View Article : Google Scholar : PubMed/NCBI

104 

Batchu SN, Majumder S, Bowskill BB, White KE, Advani SL, Brijmohan AS, Liu Y, Thai K, Azizi PM, Lee WL and Advani A: Prostaglandin I2 receptor agonism preserves β-cell function and attenuates albuminuria through nephrin-dependent mechanisms. Diabetes. 65:1398–1409. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Arablou T, Aryaeian N, Valizadeh M, Sharifi F, Hosseini A and Djalali M: The effect of ginger consumption on glycemic status, lipid profile and some inflammatory markers in patients with type 2 diabetes mellitus. Int J Food Sci Nutr. 65:515–520. 2014. View Article : Google Scholar : PubMed/NCBI

106 

Zhu CF, Li GZ, Peng HB, Zhang F, Chen Y and Li Y: Treatment with marine collagen peptides modulates glucose and lipid metabolism in Chinese patients with type 2 diabetes mellitus. Appl Physiol Nutr Metab. 35:797–804. 2010. View Article : Google Scholar : PubMed/NCBI

107 

Ceddia RP, Downey JD, Morrison RD, Kraemer MP, Davis SE, Wu J, Lindsley CW, Yin H, Daniels JS and Breyer RM: The effect of the EP3 antagonist DG-041 on male mice with diet-induced obesity. Prostaglandins Other Lipid Mediat. 144:1063532019. View Article : Google Scholar : PubMed/NCBI

108 

Weir GC, Gaglia J and Bonner-Weir S: Inadequate β-cell mass is essential for the pathogenesis of type 2 diabetes. Lancet Diabetes Endocrinol. 8:249–256. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Grodsky GM: A threshold distribution hypothesis for packet storage of insulin and its mathematical modeling. J Clin Invest. 51:2047–2059. 1972. View Article : Google Scholar : PubMed/NCBI

110 

Persaud SJ, Muller D, Belin VD, Kitsou-Mylona I, Asare-Anane H, Papadimitriou A, Burns CJ, Huang GC, Amiel SA and Jones PM: The role of arachidonic acid and its metabolites in insulin secretion from human islets of langerhans. Diabetes. 56:197–203. 2007. View Article : Google Scholar

111 

Tran PO, Gleason CE, Poitout V and Robertson RP: Prostaglandin E(2) mediates inhibition of insulin secretion by interleukin-1beta. J Biol Chem. 274:31245–31248. 1999. View Article : Google Scholar : PubMed/NCBI

112 

Tran PO, Gleason CE and Robertson RP: Inhibition of interleukin-1beta-induced COX-2 and EP3 gene expression by sodium salicylate enhances pancreatic islet beta-cell function. Diabetes. 51:1772–1778. 2002. View Article : Google Scholar : PubMed/NCBI

113 

Shanmugam N, Todorov IT, Nair I, Omori K, Reddy MA and Natarajan R: Increased expression of cyclooxygenase-2 in human pancreatic islets treated with high glucose or ligands of the advanced glycation endproduct-specific receptor (AGER), and in islets from diabetic mice. Diabetologia. 49:100–107. 2006. View Article : Google Scholar

114 

Persaud SJ, Burns CJ, Belin VD and Jones PM: Glucose-induced regulation of COX-2 expression in human islets of langerhans. Diabetes. 53(Suppl 1): S190–S192. 2004. View Article : Google Scholar : PubMed/NCBI

115 

Shridas P, Zahoor L, Forrest KJ, Layne JD and Webb NR: Group X secretory phospholipase A2 regulates insulin secretion through a cyclooxygenase-2-dependent mechanism. J Biol Chem. 289:27410–27417. 2014. View Article : Google Scholar : PubMed/NCBI

116 

Seaquist ER, Walseth TF, Nelson DM and Robertson RP: Pertussis toxin-sensitive G protein mediation of PGE2 inhibition of cAMP metabolism and phasic glucose-induced insulin secretion in HIT cells. Diabetes. 38:1439–1445. 1989. View Article : Google Scholar : PubMed/NCBI

117 

Carboneau BA, Allan JA, Townsend SE, Kimple ME, Breyer RM and Gannon M: Opposing effects of prostaglandin E2 receptors EP3 and EP4 on mouse and human β-cell survival and proliferation. Mol Metab. 6:548–559. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Meng ZX, Sun JX, Ling JJ, Lv JH, Zhu DY, Chen Q, Sun YJ and Han X: Prostaglandin E2 regulates Foxo activity via the Akt pathway: Implications for pancreatic islet beta cell dysfunction. Diabetologia. 49:2959–2968. 2006. View Article : Google Scholar : PubMed/NCBI

119 

Anderson SL, Trujillo JM, McDermott M and Saseen JJ: Determining predictors of response to exenatide in type 2 diabetes. J Am Pharm Assoc (2003). 52. pp. 466–471. 2012, View Article : Google Scholar

120 

Kimple ME, Moss JB, Brar HK, Rosa TC, Truchan NA, Pasker RL, Newgard CB and Casey PJ: Deletion of GαZ protein protects against diet-induced glucose intolerance via expansion of β-cell mass. J Biol Chem. 287:20344–20355. 2012. View Article : Google Scholar : PubMed/NCBI

121 

Zawalich WS, Zawalich KC and Yamazaki H: Divergent effects of epinephrine and prostaglandin E2 on glucose-induced insulin secretion from perifused rat islets. Metabolism. 56:12–18. 2007. View Article : Google Scholar

122 

Igoillo-Esteve M, Marselli L, Cunha DA, Ladrière L, Ortis F, Grieco FA, Dotta F, Weir GC, Marchetti P, Eizirik DL and Cnop M: Palmitate induces a pro-inflammatory response in human pancreatic islets that mimics CCL2 expression by beta cells in type 2 diabetes. Diabetologia. 53:1395–1405. 2010. View Article : Google Scholar : PubMed/NCBI

123 

Gokulakrishnan K, Mohanavalli KT, Monickaraj F, Mohan V and Balasubramanyam M: Subclinical inflammation/oxidation as revealed by altered gene expression profiles in subjects with impaired glucose tolerance and Type 2 diabetes patients. Mol Cell Biochem. 324:173–181. 2009. View Article : Google Scholar : PubMed/NCBI

124 

Wang G, Liang R, Liu T, Wang L, Zou J, Liu N, Liu Y, Cai X, Liu Y, Ding X, et al: Opposing effects of IL-1β/COX-2/PGE2 pathway loop on islets in type 2 diabetes mellitus. Endocr J. 66:691–699. 2019. View Article : Google Scholar : PubMed/NCBI

125 

Pradhan AD, Manson JE, Rifai N, Buring JE and Ridker PM: C-reactive protein, interleukin 6, and risk of developing type 2 diabetes mellitus. JAMA. 286:327–334. 2001. View Article : Google Scholar : PubMed/NCBI

126 

Abou-Shousha S, Abd El-Megeed MH and Sultan HK: Interleukin-8, ferritin and soluble transferrin receptors in type II diabetes mellitus. Egypt J Immunol. 13:19–25. 2006.

127 

Cai W, Qiu C, Zhang H, Chen X, Zhang X, Meng Q and Wei J: Detection of circulating natural antibodies to inflammatory cytokines in type-2 diabetes and clinical significance. J Inflamm (Lond). 14:242017. View Article : Google Scholar

128 

Rahier J, Guiot Y, Goebbels RM, Sempoux C and Henquin JC: Pancreatic beta-cell mass in European subjects with type 2 diabetes. Diabetes Obes Metab. 10(Suppl 4): S32–S42. 2008. View Article : Google Scholar

129 

Butler AE, Janson J, Bonner-Weir S, Ritzel R, Rizza RA and Butler PC: Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52:102–110. 2003. View Article : Google Scholar

130 

Oshima H, Taketo MM and Oshima M: Destruction of pancreatic beta-cells by transgenic induction of prostaglandin E2 in the islets. J Biol Chem. 281:29330–29336. 2006. View Article : Google Scholar : PubMed/NCBI

131 

Kimple ME, Nixon AB, Kelly P, Bailey CL, Young KH, Fields TA and Casey PJ: A role for G(z) in pancreatic islet beta-cell biology. J Biol Chem. 280:31708–31713. 2005. View Article : Google Scholar : PubMed/NCBI

132 

Amior L, Srivastava R, Nano R, Bertuzzi F and Melloul D: The role of Cox-2 and prostaglandin E2 receptor EP3 in pancreatic β-cell death. FASEB J. 33:4975–4986. 2019. View Article : Google Scholar : PubMed/NCBI

133 

Lewis B, Mancini M, Mattock M, Chait A and Fraser TR: Plasma triglyceride and fatty acid metabolism in diabetes mellitus. Eur J Clin Invest. 2:445–453. 1972. View Article : Google Scholar : PubMed/NCBI

134 

Diraison F, Moulin P and Beylot M: Contribution of hepatic de novo lipogenesis and reesterification of plasma non esterified fatty acids to plasma triglyceride synthesis during non-alcoholic fatty liver disease. Diabetes Metab. 29:478–485. 2003. View Article : Google Scholar : PubMed/NCBI

135 

Tirosh A, Shai I, Bitzur R, Kochba I, Tekes-Manova D, Israeli E, Shochat T and Rudich A: Changes in triglyceride levels over time and risk of type 2 diabetes in young men. Diabetes Care. 31:2032–2037. 2008. View Article : Google Scholar : PubMed/NCBI

136 

Kashyap S, Belfort R, Gastaldelli A, Pratipanawatr T, Berria R, Pratipanawatr W, Bajaj M, Mandarino L, DeFronzo R and Cusi K: A sustained increase in plasma free fatty acids impairs insulin secretion in nondiabetic subjects genetically predisposed to develop type 2 diabetes. Diabetes. 52:2461–2474. 2003. View Article : Google Scholar : PubMed/NCBI

137 

Sakurai M, Takamura T, Ota T, Ando H, Akahori H, Kaji K, Sasaki M, Nakanuma Y, Miura K and Kaneko S: Liver steatosis, but not fibrosis, is associated with insulin resistance in nonalcoholic fatty liver disease. J Gastroenterol. 42:312–317. 2007. View Article : Google Scholar : PubMed/NCBI

138 

Svegliati-Baroni G, Saccomanno S, Rychlicki C, Agostinelli L, De Minicis S, Candelaresi C, Faraci G, Pacetti D, Vivarelli M, Nicolini D, et al: Glucagon-like peptide-1 receptor activation stimulates hepatic lipid oxidation and restores hepatic signalling alteration induced by a high-fat diet in nonalcoholic steatohepatitis. Liver Int. 31:1285–1297. 2011. View Article : Google Scholar : PubMed/NCBI

139 

Arkan MC, Hevener AL, Greten FR, Maeda S, Li ZW, Long JM, Wynshaw-Boris A, Poli G, Olefsky J and Karin M: IKK-beta links inflammation to obesity-induced insulin resistance. Nat Med. 11:191–198. 2005. View Article : Google Scholar : PubMed/NCBI

140 

Henkel J, Frede K, Schanze N, Vogel H, Schürmann A, Spruss A, Bergheim I and Püschel GP: Stimulation of fat accumulation in hepatocytes by PGE2-dependent repression of hepatic lipolysis, β-oxidation and VLDL-synthesis. Lab Invest. 92:1597–1606. 2012. View Article : Google Scholar : PubMed/NCBI

141 

Pérez S, Aspichueta P, Ochoa B and Chico Y: The 2-series prostaglandins suppress VLDL secretion in an inflammatory condition-dependent manner in primary rat hepatocytes. Biochim Biophys Acta. 1761:160–171. 2006. View Article : Google Scholar : PubMed/NCBI

142 

Chung MY, Mah E, Masterjohn C, Noh SK, Park HJ, Clark RM, Park YK, Lee JY and Bruno RS: Green tea lowers hepatic COX-2 and prostaglandin E2 in rats with dietary fat-induced nonalcoholic steatohepatitis. J Med Food. 18:648–655. 2015. View Article : Google Scholar

143 

Nassir F, Adewole OL, Brunt EM and Abumrad NA: CD36 deletion reduces VLDL secretion, modulates liver prostaglandins, and exacerbates hepatic steatosis in ob/ob mice. J Lipid Res. 54:2988–2997. 2013. View Article : Google Scholar : PubMed/NCBI

144 

Sato N, Kaneko M, Tamura M and Kurumatani H: The prostacyclin analog beraprost sodium ameliorates characteristics of metabolic syndrome in obese Zucker (fatty) rats. Diabetes. 59:1092–1100. 2010. View Article : Google Scholar : PubMed/NCBI

145 

Duncan BB, Schmidt MI, Pankow JS, Ballantyne CM, Couper D, Vigo A, Hoogeveen R, Folsom AR and Heiss G; Atherosclerosis Risk in Communities Study: Low-grade systemic inflammation and the development of type 2 diabetes: The atherosclerosis risk in communities study. Diabetes. 52:1799–1805. 2003. View Article : Google Scholar : PubMed/NCBI

146 

Haukeland JW, Damås JK, Konopski Z, Løberg EM, Haaland T, Goverud I, Torjesen PA, Birkeland K, Bjøro K and Aukrust P: Systemic inflammation in nonalcoholic fatty liver disease is characterized by elevated levels of CCL2. J Hepatol. 44:1167–1174. 2006. View Article : Google Scholar : PubMed/NCBI

147 

Kamari Y, Shaish A, Vax E, Shemesh S, Kandel-Kfir M, Arbel Y, Olteanu S, Barshack I, Dotan S, Voronov E, et al: Lack of interleukin-1α or interleukin-1β inhibits transformation of steatosis to steatohepatitis and liver fibrosis in hypercholesterolemic mice. J Hepatol. 55:1086–1094. 2011. View Article : Google Scholar : PubMed/NCBI

148 

Masters SL, Dunne A, Subramanian SL, Hull RL, Tannahill GM, Sharp FA, Becker C, Franchi L, Yoshihara E, Chen Z, et al: Activation of the NLRP3 inflammasome by islet amyloid polypeptide provides a mechanism for enhanced IL-1β in type 2 diabetes. Nat Immunol. 11:897–904. 2010. View Article : Google Scholar : PubMed/NCBI

149 

Chitturi S, Abeygunasekera S, Farrell GC, Holmes-Walker J, Hui JM, Fung C, Karim R, Lin R, Samarasinghe D, Liddle C, et al: NASH and insulin resistance: Insulin hypersecretion and specific association with the insulin resistance syndrome. Hepatology. 35:373–379. 2002. View Article : Google Scholar : PubMed/NCBI

150 

Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML and Clore JN: Nonalcoholic steatohepatitis: Association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 120:1183–1192. 2001. View Article : Google Scholar : PubMed/NCBI

151 

Yang ZH, Miyahara H, Takeo J and Katayama M: Diet high in fat and sucrose induces rapid onset of obesity-related metabolic syndrome partly through rapid response of genes involved in lipogenesis, insulin signalling and inflammation in mice. Diabetol Metab Syndr. 4:322012. View Article : Google Scholar : PubMed/NCBI

152 

Ren LP, Chan SM, Zeng XY, Laybutt DR, Iseli TJ, Sun RQ, Kraegen EW, Cooney GJ, Turner N and Ye JM: Differing endoplasmic reticulum stress response to excess lipogenesis versus lipid oversupply in relation to hepatic steatosis and insulin resistance. PLoS One. 7:e308162012. View Article : Google Scholar : PubMed/NCBI

153 

Brunt EM, Kleiner DE, Wilson LA, Unalp A, Behling CE and Lavine JE: Portal chronic inflammation in nonalcoholic fatty liver disease (NAFLD): A histologic marker of advanced NAFLD-clinicopathologic correlations from the nonalcoholic steatohepatitis clinical research network. Hepatology. 49:809–820. 2009. View Article : Google Scholar : PubMed/NCBI

154 

Angulo P, Keach JC, Batts KP and Lindor KD: Independent predictors of liver fibrosis in patients with nonalcoholic steatohepatitis. Hepatology. 30:1356–1362. 1999. View Article : Google Scholar : PubMed/NCBI

155 

Hossain N, Afendy A, Stepanova M, Nader F, Srishord M, Rafiq N, Goodman Z and Younossi Z: Independent predictors of fibrosis in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 7:1224–1229. 1229.e1–e2. 2009. View Article : Google Scholar : PubMed/NCBI

156 

Zeyda M, Farmer D, Todoric J, Aszmann O, Speiser M, Györi G, Zlabinger GJ and Stulnig TM: Human adipose tissue macrophages are of an anti-inflammatory phenotype but capable of excessive pro-inflammatory mediator production. Int J Obes (Lond). 31:1420–1428. 2007. View Article : Google Scholar

157 

Itani SI, Ruderman NB, Schmieder F and Boden G: Lipid-induced insulin resistance in human muscle is associated with changes in diacylglycerol, protein kinase C, and IkappaB-alpha. Diabetes. 51:2005–2011. 2002. View Article : Google Scholar : PubMed/NCBI

158 

Hotamisligil GS, Arner P, Caro JF, Atkinson RL and Spiegelman BM: Increased adipose tissue expression of tumor necrosis factor-alpha in human obesity and insulin resistance. J Clin Invest. 95:2409–2415. 1995. View Article : Google Scholar : PubMed/NCBI

159 

du Plessis J, van Pelt J, Korf H, Mathieu C, van der Schueren B, Lannoo M, Oyen T, Topal B, Fetter G, Nayler S, et al: Association of adipose tissue inflammation with histologic severity of nonalcoholic fatty liver disease. Gastroenterology. 149:635–648.e14. 2015. View Article : Google Scholar : PubMed/NCBI

160 

Paradis V, Perlemuter G, Bonvoust F, Dargere D, Parfait B, Vidaud M, Conti M, Huet S, Ba N, Buffet C and Bedossa P: High glucose and hyperinsulinemia stimulate connective tissue growth factor expression: A potential mechanism involved in progression to fibrosis in nonalcoholic steatohepatitis. Hepatology. 34:738–744. 2001. View Article : Google Scholar : PubMed/NCBI

161 

Ota T, Takamura T, Kurita S, Matsuzawa N, Kita Y, Uno M, Akahori H, Misu H, Sakurai M, Zen Y, et al: Insulin resistance accelerates a dietary rat model of nonalcoholic steatohepatitis. Gastroenterology. 132:282–293. 2007. View Article : Google Scholar : PubMed/NCBI

162 

Henkel J, Coleman CD, Schraplau A, Jöhrens K, Weiss TS, Jonas W, Schürmann A and Püschel GP: Augmented liver inflammation in a microsomal prostaglandin E synthase 1 (mPGES-1)-deficient diet-induced mouse NASH model. Sci Rep. 8:161272018. View Article : Google Scholar : PubMed/NCBI

163 

Loomba R, Quehenberger O, Armando A and Dennis EA: Polyunsaturated fatty acid metabolites as novel lipidomic biomarkers for noninvasive diagnosis of nonalcoholic steatohepatitis. J Lipid Res. 56:185–192. 2015. View Article : Google Scholar :

164 

Motiño O, Agra N, Brea Contreras R, Dominguez-Moreno M, Garcia-Monzón C, Vargas-Castrillón J, Carnovale CE, Boscá L, Casado M, Mayoral R, et al: Cyclooxygenase-2 expression in hepatocytes attenuates non-alcoholic steatohepatitis and liver fibrosis in mice. Biochim Biophys Acta. 1862:1710–1723. 2016. View Article : Google Scholar : PubMed/NCBI

165 

Kumar S, Srivastava A, Palaia T, Hall C, Lee J, Stevenson M, Zhao CL and Ragolia L: Lipocalin-type prostaglandin D2 synthase deletion induces dyslipidemia and non-alcoholic fatty liver disease. Prostaglandins Other Lipid Mediat. 149:1064292020. View Article : Google Scholar

166 

Kumei S, Yuhki KI, Kojima F, Kashiwagi H, Imamichi Y, Okumura T, Narumiya S and Ushikubi F: Prostaglandin I2 suppresses the development of diet-induced nonalcoholic steatohepatitis in mice. FASEB J. 32:2354–2365. 2018. View Article : Google Scholar

167 

Meng F, Wang K, Aoyama T, Grivennikov SI, Paik Y, Scholten D, Cong M, Iwaisako K, Liu X, Zhang M, et al: Interleukin-17 signaling in inflammatory, Kupffer cells, and hepatic stellate cells exacerbates liver fibrosis in mice. Gastroenterology. 143:765–776.e3. 2012. View Article : Google Scholar : PubMed/NCBI

168 

Ikejima K, Takei Y, Honda H, Hirose M, Yoshikawa M, Zhang YJ, Lang T, Fukuda T, Yamashina S, Kitamura T and Sato N: Leptin receptor-mediated signaling regulates hepatic fibrogenesis and remodeling of extracellular matrix in the rat. Gastroenterology. 122:1399–1410. 2002. View Article : Google Scholar : PubMed/NCBI

169 

Kim SM, Park KC, Kim HG and Han SJ: Effect of selective cyclooxygenase-2 inhibitor meloxicam on liver fibrosis in rats with ligated common bile ducts. Hepatol Res. 38:800–809. 2008. View Article : Google Scholar : PubMed/NCBI

170 

Yu J, Ip E, Dela Peña A, Hou JY, Sesha J, Pera N, Hall P, Kirsch R, Leclercq I and Farrell GC: COX-2 induction in mice with experimental nutritional steatohepatitis: Role as pro-inflammatory mediator. Hepatology. 43:826–836. 2006. View Article : Google Scholar : PubMed/NCBI

171 

Paik YH, Kim JK, Lee JI, Kang SH, Kim DY, An SH, Lee SJ, Lee DK, Han KH, Chon CY, et al: Celecoxib induces hepatic stellate cell apoptosis through inhibition of Akt activation and suppresses hepatic fibrosis in rats. Gut. 58:1517–1527. 2009. View Article : Google Scholar : PubMed/NCBI

172 

Simon TG, Henson J, Osganian S, Masia R, Chan AT, Chung RT and Corey KE: Daily aspirin use associated with reduced risk for fibrosis progression in patients with nonalcoholic fatty liver disease. Clin Gastroenterol Hepatol. 17:2776–2784.e4. 2019. View Article : Google Scholar : PubMed/NCBI

173 

Vilar-Gomez E and Chalasani N: Daily aspirin use reduces risk of fibrosis progression in patients with nonalcoholic fatty liver disease, providing new uses for an old drug. Clin Gastroenterol Hepatol. 17:2651–2653. 2019. View Article : Google Scholar : PubMed/NCBI

174 

Sui G, Cheng G, Yuan J, Hou X, Kong X and Niu H: Interleukin (IL)-13, Prostaglandin E2 (PGE2), and Prostacyclin 2 (PGI2) Activate Hepatic Stellate Cells via Protein kinase C (PKC) pathway in hepatic fibrosis. Med Sci Monit. 24:2134–2141. 2018. View Article : Google Scholar : PubMed/NCBI

175 

Hanson A, Wilhelmsen D and DiStefano JK: The role of long non-coding RNAs (lncRNAs) in the development and progression of fibrosis associated with nonalcoholic fatty liver disease (NAFLD). Noncoding RNA. 4:182018.

176 

Kamada Y, Mori K, Matsumoto H, Kiso S, Yoshida Y, Shinzaki S, Hiramatsu N, Ishii M, Moriwaki K, Kawada N, et al: N-Acetylglucosaminyltransferase V regulates TGF-β response in hepatic stellate cells and the progression of steatohepatitis. Glycobiology. 22:778–787. 2012. View Article : Google Scholar : PubMed/NCBI

177 

Hui AY, Leung WK, Chan HL, Chan FK, Go MY, Chan KK, Tang BD, Chu ES and Sung JJ: Effect of celecoxib on experimental liver fibrosis in rat. Liver Int. 26:125–136. 2006. View Article : Google Scholar : PubMed/NCBI

178 

Brea R, Motiño O, Francés D, García-Monzón C, Vargas J, Fernández-Velasco M, Boscá L, Casado M, Martín-Sanz P and Agra N: PGE2 induces apoptosis of hepatic stellate cells and attenuates liver fibrosis in mice by downregulating miR-3a-5p and miR-28a-5p. Biochim Biophys Acta Mol Basis Dis. 1864:325–337. 2018. View Article : Google Scholar

179 

Hui AY, Dannenberg AJ, Sung JJ, Subbaramaiah K, Du B, Olinga P and Friedman SL: Prostaglandin E2 inhibits transforming growth factor beta 1-mediated induction of collagen alpha 1(I) in hepatic stellate cells. J Hepatol. 41:251–258. 2004. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang W, Zhong X and Guo J: Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review). Int J Mol Med 47: 114, 2021.
APA
Wang, W., Zhong, X., & Guo, J. (2021). Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review). International Journal of Molecular Medicine, 47, 114. https://doi.org/10.3892/ijmm.2021.4947
MLA
Wang, W., Zhong, X., Guo, J."Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review)". International Journal of Molecular Medicine 47.6 (2021): 114.
Chicago
Wang, W., Zhong, X., Guo, J."Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review)". International Journal of Molecular Medicine 47, no. 6 (2021): 114. https://doi.org/10.3892/ijmm.2021.4947
Copy and paste a formatted citation
x
Spandidos Publications style
Wang W, Zhong X and Guo J: Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review). Int J Mol Med 47: 114, 2021.
APA
Wang, W., Zhong, X., & Guo, J. (2021). Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review). International Journal of Molecular Medicine, 47, 114. https://doi.org/10.3892/ijmm.2021.4947
MLA
Wang, W., Zhong, X., Guo, J."Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review)". International Journal of Molecular Medicine 47.6 (2021): 114.
Chicago
Wang, W., Zhong, X., Guo, J."Role of 2‑series prostaglandins in the pathogenesis of type 2 diabetes mellitus and non‑alcoholic fatty liver disease (Review)". International Journal of Molecular Medicine 47, no. 6 (2021): 114. https://doi.org/10.3892/ijmm.2021.4947
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team