|
1
|
Fatoye F, Gebrye T and Odeyemi I:
Real-world incidence and prevalence of low back pain using
routinely collected data. Rheumatol Int. 39:619–626. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
GBD 2017 Disease and Injury Incidence and
Prevalence Collaborators: Global, regional, and national incidence,
prevalence, and years lived with disability for 354 diseases and
injuries for 195 countries and territories, 1990-2017: A systematic
analysis for the Global Burden of Disease Study 2017. Lancet.
392:1789–1858. 2018. View Article : Google Scholar
|
|
3
|
Kleinman N, Patel AA, Benson C, Macario A,
Kim M and Biondi DM: Economic burden of back and neck pain: Effect
of a neuropathic component. Popul Health Manag. 17:224–232. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Neidlinger-Wilke C, Galbusera F, Pratsinis
H, Mavrogonatou E, Mietsch A, Kletsas D and Wilke HJ: Mechanical
loading of the intervertebral disc: From the macroscopic to the
cellular level. Eur Spine J. 23(Suppl 3): S333–S343. 2014.
View Article : Google Scholar
|
|
5
|
Setton LA and Chen J: Mechanobiology of
the intervertebral disc and relevance to disc degeneration. J Bone
Joint Surg Am. 88(Suppl 2): S52–S57. 2006.
|
|
6
|
Pengb Y and Lv FJ: Fibrosis in
intervertebral disc degeneration: Knowledge and gaps. Austin J
Orthopade Rheumatol. 1:32014.
|
|
7
|
Yee A, Lam MP, Tam V, Chan WC, Chu IK,
Cheah KS, Cheung KM and Chan D: Fibrotic-like changes in degenerate
human intervertebral discs revealed by quantitative proteomic
analysis. Osteoarthritis Cartilage. 24:503–513. 2016. View Article : Google Scholar
|
|
8
|
Nanthakumar CB, Hatley RJ, Lemma S,
Gauldie J, Marshall RP and Macdonald SJ: Dissecting fibrosis:
Therapeutic insights from the small-molecule toolbox. Nat Rev Drug
Discov. 14:693–720. 2015. View
Article : Google Scholar : PubMed/NCBI
|
|
9
|
Olson EN and Nordheim A: Linking actin
dynamics and gene transcription to drive cellular motile functions.
Nat Rev Mol Cell Biol. 11:353–365. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Marinissen MJ, Chiariello M, Tanos T,
Bernard O, Narumiya S and Gutkind JS: The small GTP-binding protein
RhoA regulates c-jun by a ROCK-JNK signaling axis. Mol Cell.
14:29–41. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Liu F, Mih JD, Shea BS, Kho AT, Sharif AS,
Tager AM and Tschumperlin DJ: Feedback amplification of fibrosis
through matrix stiffening and COX-2 suppression. J Cell Biol.
190:693–706. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Shimizu Y, Dobashi K, Iizuka K, Horie T,
Suzuki K, Tukagoshi H, Nakazawa T, Nakazato Y and Mori M:
Contribution of small GTPase Rho and its target protein rock in a
murine model of lung fibrosis. Am J Respir Crit Care Med.
163:210–217. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Satoh S, Ueda Y, Koyanagi M, Kadokami T,
Sugano M, Yoshikawa Y and Makino N: Chronic inhibition of Rho
kinase blunts the process of left ventricular hypertrophy leading
to cardiac contractile dysfunction in hypertension-induced heart
failure. J Mol Cell Cardiol. 35:59–70. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bei Y, Hua-Huy T, Nicco C, Duong-Quy S,
Le-Dong NN, Tiev KP, Chéreau C, Batteux F and Dinh-Xuan AT:
RhoA/Rho-kinase activation promotes lung fibrosis in an animal
model of systemic sclerosis. Exp Lung Res. 42:44–55. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Okumura N, Koizumi N, Ueno M, Sakamoto Y,
Takahashi H, Hirata K, Torii R, Hamuro J and Kinoshita S:
Enhancement of corneal endothelium wound healing by Rho-associated
kinase (ROCK) inhibitor eye drops. Br J Ophthalmol. 95:1006–1009.
2011. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Miralles F, Posern G, Zaromytidou AI and
Treisman R: Actin dynamics control SRF activity by regulation of
its coactivator MAL. Cell. 113:329–342. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Hayashi K, Watanabe B, Nakagawa Y, Minami
S and Morita T: RPEL proteins are the molecular targets for
CCG-1423, an inhibitor of Rho signaling. PLoS One. 9:e890162014.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Hiyama A, Arai F, Sakai D, Yokoyama K and
Mochida J: The effects of oxygen tension and antiaging factor
Klotho on Wnt signaling in nucleus pulposus cells. Arthritis Res
Ther. 14:R1052012. View
Article : Google Scholar : PubMed/NCBI
|
|
19
|
Pelham RJ Jr and Wang Yl: Cell locomotion
and focal adhesions are regulated by substrate flexibility. Proc
Natl Acad Sci USA. 94:13661–13665. 1997. View Article : Google Scholar
|
|
20
|
Tse JR and Engler AJ: Preparation of
hydrogel substrates with tunable mechanical properties. Curr Protoc
Cell Biol. 10:Unit 10.16. 2010.PubMed/NCBI
|
|
21
|
Gilchrist CL, Darling EM, Chen J and
Setton LA: Extracellular matrix ligand and stiffness modulate
immature nucleus pulposus cell-cell interactions. PLoS One.
6:e271702011. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Wallace MA, Della Gatta PA, Ahmad Mir B,
Kowalski GM, Kloehn J, McConville MJ, Russell AP and Lamon S:
Overexpression of striated muscle activator of Rho signaling
(STARS) increases C2C12 skeletal muscle cell differentiation. Front
Physiol. 7:72016. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Esnault C, Stewart A, Gualdrini F, East P,
Horswell S, Matthews N and Treisman R: Rho-actin signaling to the
MRTF coactivators dominates the immediate transcriptional response
to serum in fibroblasts. Genes Dev. 28:943–958. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Xiao J, Qiu GX, Wu ZH, Xu J, Wang T, Wang
YP and Weng XS: An improved operation approach for bipedal rat
model construction. Zhonghua Yi Xue Za Zhi. 86:2781–2785. 2006.In
Chinese.
|
|
25
|
Liang X, Shen H, Shi WD, Ren S, Jiang W,
Liu H, Yang P, Sun ZY, Lin J and Yang HL: Effect of axial vertical
vibration on degeneration of lumbar intervertebral discs in
modified bipedal rats: An in-vivo study. Asian Pac J Trop Med.
10:714–717. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Thompson JP, Pearce RH, Schechter MT,
Adams ME, Tsang IK and Bishop PB: Preliminary evaluation of a
scheme for grading the gross morphology of the human intervertebral
disc. Spine (Phila Pa 1976). 15:411–415. 1990. View Article : Google Scholar
|
|
27
|
Ge J, Cheng X, Yuan C, Qian J, Wu C, Cao
C, Yang H, Zhou F and Zou J: Syndecan-4 is a novel therapeutic
target for intervertebral disc degeneration via suppressing JNK/p53
pathway. Int J Biol Sci. 16:766–776. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yang F, Leung VY, Luk KD, Chan D and
Cheung KM: Injury-induced sequential transformation of notochordal
nucleus pulposus to chondrogenic and fibrocartilaginous phenotype
in the mouse. J Pathol. 218:113–121. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Tam V, Chan WCW, Leung VYL, Cheah KSE,
Cheung KMC, Sakai D, McCann MR, Bedore J, Séguin CA and Chan D:
Histological and reference system for the analysis of mouse
intervertebral disc. J Orthop Res. 36:233–243. 2018.
|
|
30
|
Manohar M, Kandikattu HK, Verma AK and
Mishra A: IL-15 regulates fibrosis and inflammation in a mouse
model of chronic pancreatitis. Am J Physiol Gastrointest Liver
Physiol. 315:G954–G965. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Cui L, Wei H, Li ZM, Dong XB and Wang PY:
TGF-β1 aggravates degenerative nucleus pulposus cells inflammation
and fibrosis through the upregulation of angiopoietin-like protein
2 expression. Eur Rev Med Pharmacol Sci. 24:12025–12033.
2020.PubMed/NCBI
|
|
32
|
Meng X, Zhuang L, Wang J, Liu Z, Wang Y,
Xiao D and Zhang X: Hypoxia-inducible factor (HIF)-1alpha knockout
accelerates intervertebral disc degeneration in mice. Int J Clin
Exp Pathol. 11:548–557. 2018.PubMed/NCBI
|
|
33
|
Eckes B, Nischt R and Krieg T: Cell-matrix
interactions in dermal repair and scarring. Fibrogenesis Tissue
Repair. 3:42010. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Hinz B: The myofibroblast: Paradigm for a
mechanically active cell. J Biomech. 43:146–155. 2010. View Article : Google Scholar
|
|
35
|
Amano M, Nakayama M and Kaibuchi K:
Rho-kinase/ROCK: A key regulator of the cytoskeleton and cell
polarity. Cytoskeleton (Hoboken). 67:545–554. 2010. View Article : Google Scholar
|
|
36
|
Bond JE, Kokosis G, Ren L, Selim MA,
Bergeron A and Levinson H: Wound contraction is attenuated by
fasudil inhibition of Rho-associated kinase. Plast Reconstr Surg.
128:438e–450e. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Brown JH, Del Re DP and Sussman MA: The
Rac and Rho hall of fame: A decade of hypertrophic signaling hits.
Circ Res. 98:730–742. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Holle AW and Engler AJ: More than a
feeling: Discovering, understanding, and influencing mechanosensing
pathways. Curr Opin Biotechnol. 22:648–654. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Geneste O, Copeland JW and Treisman R: LIM
kinase and Diaphanous cooperate to regulate serum response factor
and actin dynamics. J Cell Biol. 157:831–838. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Leask A, Parapuram SK, Shi-Wen X and
Abraham DJ: Connective tissue growth factor (CTGF, CCN2) gene
regulation: A potent clinical bio-marker of fibroproliferative
disease? J Cell Commun Signal. 3:89–94. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Blomme B, Deroanne C, Hulin A, Lambert C,
Defraigne JO, Nusgens B, Radermecker M and Colige A: Mechanical
strain induces a pro-fibrotic phenotype in human mitral valvular
interstitial cells through RhoC/ROCK/MRTF-A and Erk1/2 signaling
pathways. J Mol Cell Cardiol. 135:149–159. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Johnson LA, Rodansky ES, Haak AJ, Larsen
SD, Neubig RR and Higgins PD: Novel Rho/MRTF/SRF inhibitors block
matrix-stiffness and TGF-β-induced fibrogenesis in human colonic
myofibroblasts. Inflamm Bowel Dis. 20:154–165. 2014. View Article : Google Scholar
|
|
43
|
Shiwen X, Stratton R, Nikitorowicz-Buniak
J, Ahmed-Abdi B, Ponticos M, Denton C, Abraham D, Takahashi A, Suki
B, Layne MD, et al: A role of myocardin related transcription
factor-A (MRTF-A) in scleroderma related fibrosis. PLoS One.
10:e01260152015. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Shao J, Xu H, Wu X and Xu Y: Epigenetic
activation of CTGF transcription by high glucose in renal tubular
epithelial cells is mediated by myocardin-related transcription
factor A. Cell Tissue Res. 379:549–559. 2020. View Article : Google Scholar
|
|
45
|
Arthur WT, Noren NK and Burridge K:
Regulation of Rho family GTPases by cell-cell and cell-matrix
adhesion. Biol Res. 35:239–246. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Kim JG, Islam R, Cho JY, Jeong H, Cap KC,
Park Y, Hossain AJ and Park JB: Regulation of RhoA GTPase and
various transcription factors in the RhoA pathway. J Cell Physiol.
233:6381–6392. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Takahara A, Sugiyama A, Satoh Y, Yoneyama
M and Hashimoto K: Cardiovascular effects of Y-27632, a selective
Rho-associated kinase inhibitor, assessed in the
halothane-anesthetized canine model. Eur J Pharmacol. 460:51–57.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Hinson JS, Medlin MD, Lockman K, Taylor JM
and Mack CP: Smooth muscle cell-specific transcription is regulated
by nuclear localization of the myocardin-related transcription
factors. Am J Physiol Heart Circ Physiol. 292:H1170–1180. 2007.
View Article : Google Scholar
|
|
49
|
Pawłowski R, Rajakylä EK, Vartiainen MK
and Treisman R: An actin-regulated importin α/β-dependent extended
bipartite NLS directs nuclear import of MRTF-A. EMBO J.
29:3448–3458. 2010. View Article : Google Scholar
|
|
50
|
Dai J, Qin L, Chen Y, Wang H, Lin G, Li X,
Liao H and Fang H: Matrix stiffness regulates
epithelial-mesenchymal transition via cytoskeletal remodeling and
MRTF-A translocation in osteosarcoma cells. J Mech Behav Biomed
Mater. 90:226–238. 2019. View Article : Google Scholar
|
|
51
|
Hahmann C and Schroeter T: Rho-kinase
inhibitors as therapeutics: From pan inhibition to isoform
selectivity. Cell Mol Life Sci. 67:171–177. 2010. View Article : Google Scholar
|
|
52
|
Nakamura S, Hayashi K, Iwasaki K, Fujioka
T, Egusa H, Yatani H and Sobue K: Nuclear import mechanism for
myocardin family members and their correlation with vascular smooth
muscle cell phenotype. J Biol Chem. 285:37314–37323. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zhang YH, Zhao CQ, Jiang LS and Dai LY:
Substrate stiffness regulates apoptosis and the mRNA expression of
extracellular matrix regulatory genes in the rat annular cells.
Matrix Biol. 30:135–144. 2011. View Article : Google Scholar
|
|
54
|
Hoffman BD, Grashoff C and Schwartz MA:
Dynamic molecular processes mediate cellular mechanotransduction.
Nature. 475:316–323. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Waxenbaum JA, Reddy V and Futterman B:
Anatomy, Back, Intervertebral Discs. StatPearls. StatPearls
Publishing. Copyright© 2020, StatPearls Publishing LLC; Treasure
Island, FL: 2020
|
|
56
|
Sivan SS, Roberts S, Urban JP, Menage J,
Bramhill J, Campbell D, Franklin VJ, Lydon F, Merkher Y, Maroudas A
and Tighe BJ: Injectable hydrogels with high fixed charge density
and swelling pressure for nucleus pulposus repair: Biomimetic
glycosaminoglycan analogues. Acta Biomater. 10:1124–1133. 2014.
View Article : Google Scholar
|
|
57
|
Chelberg MK, Banks GM, Geiger DF and
Oegema TR Jr: Identification of heterogeneous cell populations in
normal human intervertebral disc. J Anat. 186:43–53.
1995.PubMed/NCBI
|
|
58
|
Zhang YG, Sun ZM, Liu JT, Wang SJ, Ren FL
and Guo X: Features of intervertebral disc degeneration in rat's
aging process. J Zhejiang Univ Sci B. 10:522–527. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Huang X, Yang N, Fiore VF, Barker TH, Sun
Y, Morris SW, Ding Q, Thannickal VJ and Zhou Y: Matrix
stiffness-induced myofibroblast differentiation is mediated by
intrinsic mechanotransduction. Am J Respir Cell Mol Biol.
47:340–348. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Zhao XH, Laschinger C, Arora P, Szászi K,
Kapus A and McCulloch CA: Force activates smooth muscle alpha-actin
promoter activity through the Rho signaling pathway. Cell Sci.
120:1801–1809. 2007. View Article : Google Scholar
|
|
61
|
Johnson LA, Rodansky ES, Sauder KL,
Horowitz JC, Mih JD, Tschumperlin DJ and Higgins PD: Matrix
stiffness corresponding to strictured bowel induces a fibrogenic
response in human colonic fibroblasts. Inflamm Bowel Dis.
19:891–903. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zheng L, Qin J, Sun L, Gui L, Zhang C,
Huang Y, Deng W, Huang A, Sun D and Luo M: Intrahepatic
upregulation of MRTF-A signaling contributes to increased hepatic
vascular resistance in cirrhotic rats with portal hypertension.
Clin Res Hepatol Gastroenterol. 41:303–310. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Hyväri L, Vanhatupa S, Halonen HT,
Kääriäinen M and Miettinen S: Myocardin-related transcription
factor A (MRTF-A) regulates the balance between adipogenesis and
osteogenesis of human adipose stem cells. Stem Cells Int.
2020:88535412020. View Article : Google Scholar : PubMed/NCBI
|