Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2021 Volume 48 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2021 Volume 48 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway

  • Authors:
    • Wenjian Yao
    • Lei Xu
    • Xiangbo Jia
    • Saisai Li
    • Li Wei
  • View Affiliations / Copyright

    Affiliations: Department of Thoracic Surgery, Henan Provincial People's Hospital, People's Hospital of Zhengzhou University, School of Clinical Medicine, Henan University, Zhengzhou, Henan 450003, P.R. China
    Copyright: © Yao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 139
    |
    Published online on: May 28, 2021
       https://doi.org/10.3892/ijmm.2021.4972
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Excessive inflammatory response and apoptosis play key roles in the pathogenic mechanisms of sepsis‑induced acute lung injury (ALI); however, the molecular pathways linked to ALI pathogenesis remain unclear. Recently, microRNAs (miRNAs/miRs) have emerged as important regulators of inflammation and apoptosis in sepsis‑induced ALI; however, the exact regulatory mechanisms of miRNAs remain poorly understood. In the present study, the gene microarray dataset GSE133733 obtained from the Gene Expression Omnibus database was analyzed and a total of 38 differentially regulated miRNAs were identified, including 17 upregulated miRNAs and 21 downregulated miRNAs, in mice with lipopolysaccharide (LPS)‑induced ALI, in comparison to the normal control mice. miR‑129 was found to be the most significant miRNA, among the identified miRNAs. The upregulation of miR‑129 markedly alleviated LPS‑induced lung injury, as indicated by the decrease in lung permeability in and the wet‑to‑dry lung weight ratio, as well as the improved survival rate of mice with ALI administered miR‑129 mimic. Moreover, the upregulation of miR‑129 reduced pulmonary inflammation and apoptosis in mice with ALI. Of note, transforming growth factor activated kinase‑1 (TAK1), a well‑known regulator of the nuclear factor‑κB (NF‑κB) pathway, was directly targeted by miR‑129 in RAW 264.7 cells. More importantly, miR‑129 upregulation impeded the LPS‑induced activation of the TAK1/NF‑κB signaling pathway, as illustrated by the suppression of the nuclear phosphorylated‑p65, p‑IκB‑α and p‑IKKβ expression levels. Collectively, the findings of the present study indicate that miR‑129 protects mice against sepsis‑induced ALI by suppressing pulmonary inflammation and apoptosis through the regulation of the TAK1/NF‑κB signaling pathway. This introduces the basis for future research concerning the application of miR‑129 and its targets for the treatment of ALI.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Hoesel LM, Neff TA, Neff SB, Younger JG, Olle EW, Gao H, Pianko MJ, Bernacki KD, Sarma JV and Ward PA: Harmful and protective roles of neutrophils in sepsis. Shock. 24:40–47. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Villar J, Blanco J, Añón JM, Santos-Bouza A, Blanch L, Ambrós A, Gandía F, Carriedo D, Mosteiro F, Basaldúa S, et al: The ALIEN study: Incidence and outcome of acute respiratory distress syndrome in the era of lung protective ventilation. Intensive Care Med. 37:1932–1941. 2011. View Article : Google Scholar : PubMed/NCBI

3 

Gill SE, Taneja R, Rohan M, Wang L and Mehta S: Pulmonary microvascular albumin leak is associated with endothelial cell death in murine sepsis-induced lung injury in vivo. PLoS One. 9:e885012014. View Article : Google Scholar : PubMed/NCBI

4 

Jiang C, Ting AT and Seed B: PPAR-gamma agonists inhibit production of monocyte inflammatory cytokines. Nature. 391:82–86. 1998. View Article : Google Scholar : PubMed/NCBI

5 

Strieter RM, Belperio JA and Keane MP: Cytokines in innate host defense in the lung. J Clin Invest. 109:699–705. 2002. View Article : Google Scholar : PubMed/NCBI

6 

Hoesel B and Schmid JA: The complexity of NF-κB signaling in inflammation and cancer. Mol Cancer. 12:862013. View Article : Google Scholar

7 

Jiang T, Tian F, Zheng H, Whitman SA, Lin Y, Zhang Z, Zhang N and Zhang DD: Nrf2 suppresses lupus nephritis through inhibition of oxidative injury and the NF-κB-mediated inflammatory response. Kidney Int. 85:333–343. 2014. View Article : Google Scholar

8 

Gross CM, Kellner M, Wang T, Lu Q, Sun X, Zemskov EA, Noonepalle S, Kangath A, Kumar S, Gonzalez-Garay M, et al: LPS-induced acute lung injury involves NF-κB-mediated down- regulation of SOX18. Am J Respir Cell Mol Biol. 58:614–624. 2018. View Article : Google Scholar :

9 

Yang H, Lv H, Li H, Ci X and Peng L: Oridonin protects LPS-induced acute lung injury by modulating Nrf2-mediated oxidative stress and Nrf2-independent NLRP3 and NF-κB pathways. Cell Commun Signal. 17:622019. View Article : Google Scholar

10 

Yang KY, Arcaroli JJ and Abraham E: Early alterations in neutrophil activation are associated with outcome in acute lung injury. Am J Respir Crit Care Med. 167:1567–1574. 2003. View Article : Google Scholar : PubMed/NCBI

11 

Schwartz MD, Moore EE, Moore FA, Shenkar R, Moine P, Haenel JB and Abraham E: Nuclear factor-kappa B is activated in alveolar macrophages from patients with acute respiratory distress syndrome. Crit Care Med. 24:1285–1292. 1996. View Article : Google Scholar : PubMed/NCBI

12 

Yang S, Yu Z, Yuan T, Wang L, Wang X, Yang H, Sun L, Wang Y and Du G: Therapeutic effect of methyl salicylate 2-O-β-d-lactoside on LPS-induced acute lung injury by inhibiting TAK1/NF-kappaB phosphorylation and NLRP3 expression. Int Immunopharmacol. 40:219–228. 2016. View Article : Google Scholar : PubMed/NCBI

13 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Guo Z, Gu Y, Wang C, Zhang J, Shan S, Gu X, Wang K, Han Y and Ren T: Enforced expression of miR-125b attenuates LPS-induced acute lung injury. Immunol Lett. 162:18–26. 2014. View Article : Google Scholar : PubMed/NCBI

15 

Zhang Y, Xie Y, Zhang L and Zhao H: MicroRNA-155 participates in smoke-inhalation-induced acute lung injury through inhibition of SOCS-1. Molecules. 25:10222020. View Article : Google Scholar :

16 

Wan G, An Y, Tao J, Wang Y, Zhou Q, Yang R and Liang Q: MicroRNA-129-5p alleviates spinal cord injury in mice via suppressing the apoptosis and inflammatory response through HMGB1/TLR4/NF-κB pathway. Biosci Rep. 40:BSR201933152020. View Article : Google Scholar

17 

Li XQ, Chen FS, Tan WF, Fang B, Zhang ZL and Ma H: Elevated microRNA-129-5p level ameliorates neuroinflammation and blood-spinal cord barrier damage after ischemia-reperfusion by inhibiting HMGB1 and the TLR3-cytokine pathway. J Neuroinflammation. 14:2052017. View Article : Google Scholar : PubMed/NCBI

18 

Zeng Z, Liu Y, Zheng W, Liu L, Yin H, Zhang S, Bai H, Hua L, Wang S, Wang Z, et al: MicroRNA-129-5p alleviates nerve injury and inflammatory response of Alzheimer's disease via downregulating SOX6. Cell cycle. 18:3095–3110. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Chen ZX, He D, Mo QW, Xie LP, Liang JR, Liu L and Fu WJ: MiR-129-5p protects against myocardial ischemia-reperfusion injury via targeting HMGB1. Eur Rev Med Pharmacol Sci. 24:4440–4450. 2020.PubMed/NCBI

20 

Xu Z, Zhang C, Cheng L, Hu M, Tao H and Song L: The microRNA miR-17 regulates lung FoxA1 expression during lipopolysaccharide-induced acute lung injury. Biochem Biophys Res Commun. 445:48–53. 2014. View Article : Google Scholar : PubMed/NCBI

21 

Carbone L, Carbone ET, Yi EM, Bauer DB, Lindstrom KA, Parker JM, Austin JA, Seo Y, Gandhi AD and Wilkerson JD: Assessing cervical dislocation as a humane euthanasia method in mice. J Am Assoc Lab Anim Sci. 51:352–356. 2012.PubMed/NCBI

22 

Li C, Yang D, Cao X, Wang F, Jiang H, Guo H, Du L, Guo Q and Yin X: LFG-500, a newly synthesized flavonoid, attenuates lipopolysaccharide-induced acute lung injury and inflammation in mice. Biochem Pharmacol. 113:57–69. 2016. View Article : Google Scholar : PubMed/NCBI

23 

Lei C, Jiao Y, He B, Wang G, Wang Q and Wang J: RIP140 down-regulation alleviates acute lung injury via the inhibition of LPS-induced PPARγ promoter methylation. Pulm Pharmacol Ther. 37:57–64. 2016. View Article : Google Scholar : PubMed/NCBI

24 

Ayaz G, Halici Z, Albayrak A, Karakus E and Cadirci E: Evaluation of 5-HT7 receptor trafficking on in vivo and in vitro model of lipopolysaccharide (LPS)-induced inflammatory cell injury in rats and LPS-treated A549 cells. Biochem Genet. 55:34–47. 2017. View Article : Google Scholar

25 

Shao L, Meng D, Yang F, Song H and Tang D: Irisin-mediated protective effect on LPS-induced acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem Biophys Res Commun. 487:194–200. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Wang Z, Yan J, Yang F, Wang D, Lu Y and Liu L: MicroRNA-326 prevents sepsis-induced acute lung injury via targeting TLR4. Free Radic Res. 54:408–418. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Bian B, Yu XF, Wang GQ and Teng TM: Role of miRNA-1 in regulating connexin 43 in ischemia-reperfusion heart injury: A rat model. Cardiovasc Pathol. 27:37–42. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

29 

Moitra J, Sammani S and Garcia JG: Re-evaluation of evans blue dye as a marker of albumin clearance in murine models of acute lung injury. Transl Res. 150:253–265. 2007. View Article : Google Scholar : PubMed/NCBI

30 

Villar J, Cabrera-Benitez NE, Valladares F, García-Hernández S, Ramos-Nuez Á, Martín-Barrasa JL, Muros M, Kacmarek RM and Slutsky AS: Tryptase is involved in the development of early ventilator-induced pulmonary fibrosis in sepsis-induced lung injury. Crit Care. 19:1382015. View Article : Google Scholar : PubMed/NCBI

31 

Varghese F, Bukhari AB, Malhotra R and De A: IHC Profiler: An open source plugin for the quantitative evaluation and automated scoring of immunohistochemistry images of human tissue samples. PLoS One. 9:e968012014. View Article : Google Scholar : PubMed/NCBI

32 

Wu G, Li X, Li M and Zhang Z: Long non-coding RNA MALAT1 promotes the proliferation and migration of Schwann cells by elevating BDNF through sponging miR-129-5p. Exp Cell Res. 390:1119372020. View Article : Google Scholar : PubMed/NCBI

33 

Ju M, Liu B, He H, Gu Z, Liu Y, Su Y, Zhu D, Cang J and Luo Z: MicroRNA-27a alleviates LPS-induced acute lung injury in mice via inhibiting inflammation and apoptosis through modulating TLR4/MyD88/NF-κB pathway. Cell Cycle. 17:2001–2018. 2018. View Article : Google Scholar :

34 

Li P, Yao Y, Ma Y and Chen Y: MiR-150 attenuates LPS-induced acute lung injury via targeting AKT3. Int Immunopharmacol. 75:1057942019. View Article : Google Scholar : PubMed/NCBI

35 

Xie W, Lu Q, Wang K, Lu J, Gu X, Zhu D, Liu F and Guo Z: miR-34b-5p inhibition attenuates lung inflammation and apoptosis in an LPS-induced acute lung injury mouse model by targeting progranulin. J Cell Physiol. 233:6615–6631. 2018. View Article : Google Scholar :

36 

Yan Y, Lou Y and Kong J: MiR-155 expressed in bone marrow-derived lymphocytes promoted lipopolysaccharide-induced acute lung injury through Ang-2-Tie-2 pathway. Biochem Biophys Res Commun. 510:352–357. 2019. View Article : Google Scholar : PubMed/NCBI

37 

Vaporidi K, Vergadi E, Kaniaris E, Hatziapostolou M, Lagoudaki E, Georgopoulos D, Zapol WM, Bloch KD and Iliopoulos D: Pulmonary microRNA profiling in a mouse model of ventilator-induced lung injury. Am J Physiol Lung Cell Mol Physiol. 303:L199–L207. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Ma R, Chen X, Ma Y, Bai G and Li DS: MiR-129-5p alleviates myocardial injury by targeting suppressor of cytokine signaling 2 after ischemia/reperfusion. Kaohsiung J Med Sci. 36:599–606. 2020. View Article : Google Scholar : PubMed/NCBI

39 

Huang X, Hou X, Chuan L, Wei S, Wang J, Yang X and Ru J: miR-129-5p alleviates LPS-induced acute kidney injury via targeting HMGB1/TLRs/NF-kappaB pathway. Int Immunopharmacol. 89:1070162020. View Article : Google Scholar : PubMed/NCBI

40 

Fang Y, Gao F, Hao J and Liu Z: microRNA-1246 mediates lipopolysaccharide-induced pulmonary endothelial cell apoptosis and acute lung injury by targeting angiotensin-converting enzyme 2. Am J Transl Res. 9:1287–1296. 2017.PubMed/NCBI

41 

Tianzhu Z and Shumin W: Esculin inhibits the inflammation of LPS-induced acute lung injury in mice via regulation of TLR/NF-κB pathways. Inflammation. 38:1529–1536. 2015. View Article : Google Scholar : PubMed/NCBI

42 

Mei SH, McCarter SD, Deng Y, Parker CH, Liles WC and Stewart DJ: Prevention of LPS-induced acute lung injury in mice by mesenchymal stem cells overexpressing angiopoietin 1. PLoS Med. 4:e2692007. View Article : Google Scholar : PubMed/NCBI

43 

Cheng KT, Xiong S, Ye Z, Hong Z, Di A, Tsang KM, Gao X, An S, Mittal M, Vogel SM, et al: Caspase-11-mediated endothelial pyroptosis underlies endotoxemia-induced lung injury. J Clin Invest. 127:4124–4135. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Liu H, Lin Z and Ma Y: Suppression of Fpr2 expression protects against endotoxin-induced acute lung injury by interacting with Nrf2-regulated TAK1 activation. Biomed Pharmacother. 125:1099432020. View Article : Google Scholar : PubMed/NCBI

45 

Gao D, Wang R, Li B, Yang Y, Zhai Z and Chen DY: WDR34 is a novel TAK1-associated suppressor of the IL-1R/TLR3/TLR4-induced NF-kappaB activation pathway. Cell Mol Life Sci. 66:2573–2584. 2009. View Article : Google Scholar : PubMed/NCBI

46 

Chen Q, Wu S, Wu Y, Chen L and Pang Q: MiR-149 suppresses the inflammatory response of chondrocytes in osteoarthritis by down-regulating the activation of TAK1/NF-κB. Biomed Pharmacother. 101:763–768. 2018. View Article : Google Scholar : PubMed/NCBI

47 

Nan CC, Zhang N, Cheung KCP, Zhang HD, Li W, Hong CY, Chen HS, Liu XY, Li N and Cheng L: Knockdown of lncRNA MALAT1 alleviates LPS-induced acute lung injury via inhibiting apoptosis through the miR-194-5p/FOXP2 axis. Front Cell Dev Biol. 8:5868692020. View Article : Google Scholar : PubMed/NCBI

48 

Zhang J, Ding C, Shao Q, Liu F, Zeng Z, Nie C and Qian K: The protective effects of transfected microRNA-146a on mice with sepsis-induced acute lung injury in vivo. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 27:591–594. 2015.In Chinese. PubMed/NCBI

49 

Cao X, Zhang C, Zhang X, Chen Y and Zhang H: MiR-145 negatively regulates TGFBR2 signaling responsible for sepsis-induced acute lung injury. Biomed Pharmacother. 111:852–858. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Li L, Wu W, Huang W, Hu G, Yuan W and Li W: NF-κB RNAi decreases the Bax/Bcl-2 ratio and inhibits TNF-α-induced apoptosis in human alveolar epithelial cells. Inflamm Res. 62:387–397. 2013. View Article : Google Scholar : PubMed/NCBI

51 

Gong Y, Lan H, Yu Z, Wang M, Wang S, Chen Y, Rao H, Li J, Sheng Z and Shao J: Blockage of glycolysis by targeting PFKFB3 alleviates sepsis-related acute lung injury via suppressing inflammation and apoptosis of alveolar epithelial cells. Biochem Biophys Res Commun. 491:522–529. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Albertine KH, Soulier MF, Wang Z, Ishizaka A, Hashimoto S, Zimmerman GA, Matthay MA and Ware LB: Fas and fas ligand are up-regulated in pulmonary edema fluid and lung tissue of patients with acute lung injury and the acute respiratory distress syndrome. Am J Pathol. 161:1783–1796. 2002. View Article : Google Scholar : PubMed/NCBI

53 

Kawasaki M, Kuwano K, Hagimoto N, Matsuba T, Kunitake R, Tanaka T, Maeyama T and Hara N: Protection from lethal apoptosis in lipopolysaccharide-induced acute lung injury in mice by a caspase inhibitor. Am J Pathol. 157:597–603. 2000. View Article : Google Scholar : PubMed/NCBI

54 

Yang R, Cai X, Li J, Liu F and Sun T: Protective effects of MiR-129-5p on acute spinal cord injury rats. Med Sci Monit. 25:8281–8288. 2019. View Article : Google Scholar : PubMed/NCBI

55 

Du X, Tian D, Wei J, Yan C, Hu P, Wu X and Yang W: MEG3 alleviated LPS-induced intestinal injury in sepsis by modulating miR-129-5p and surfactant protein D. Mediators Inflamm. 2020:82327342020. View Article : Google Scholar : PubMed/NCBI

56 

Chen Z, Zhang D, Li M and Wang B: Costunolide ameliorates lipoteichoic acid-induced acute lung injury via attenuating MAPK signaling pathway. Int Immunopharmacol. 61:283–289. 2018. View Article : Google Scholar : PubMed/NCBI

57 

Fan C, Wu LH, Zhang GF, Xu F, Zhang S, Zhang X, Sun L, Yu Y, Zhang Y and Ye RD: 4′-Hydroxywogonin suppresses lipopolysaccharide-induced inflammatory responses in RAW 264.7 macrophages and acute lung injury mice. PLoS One. 12:e01811912017. View Article : Google Scholar

58 

Cai PC, Shi L, Liu VW, Tang HW, Liu IJ, Leung TH, Chan KK, Yam JW, Yao KM, Ngan HY and Chan DW: Elevated TAK1 augments tumor growth and metastatic capacities of ovarian cancer cells through activation of NF-κB signaling. Oncotarget. 5:7549–7562. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Meng Q, Wu W, Pei T, Xue J, Xiao P, Sun L, Li L and Liang D: miRNA-129/FBW7/NF-κB, a novel regulatory pathway in inflammatory bowel disease. Mol Ther Nucleic Acids. 19:731–740. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Liu AH, Wu YT and Wang YP: MicroRNA-129-5p inhibits the development of autoimmune encephalomyelitis-related epilepsy by targeting HMGB1 through the TLR4/NF-kB signaling pathway. Brain Res Bull. 132:139–149. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yao W, Xu L, Jia X, Li S and Wei L: MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway. Int J Mol Med 48: 139, 2021.
APA
Yao, W., Xu, L., Jia, X., Li, S., & Wei, L. (2021). MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway. International Journal of Molecular Medicine, 48, 139. https://doi.org/10.3892/ijmm.2021.4972
MLA
Yao, W., Xu, L., Jia, X., Li, S., Wei, L."MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway". International Journal of Molecular Medicine 48.1 (2021): 139.
Chicago
Yao, W., Xu, L., Jia, X., Li, S., Wei, L."MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway". International Journal of Molecular Medicine 48, no. 1 (2021): 139. https://doi.org/10.3892/ijmm.2021.4972
Copy and paste a formatted citation
x
Spandidos Publications style
Yao W, Xu L, Jia X, Li S and Wei L: MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway. Int J Mol Med 48: 139, 2021.
APA
Yao, W., Xu, L., Jia, X., Li, S., & Wei, L. (2021). MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway. International Journal of Molecular Medicine, 48, 139. https://doi.org/10.3892/ijmm.2021.4972
MLA
Yao, W., Xu, L., Jia, X., Li, S., Wei, L."MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway". International Journal of Molecular Medicine 48.1 (2021): 139.
Chicago
Yao, W., Xu, L., Jia, X., Li, S., Wei, L."MicroRNA‑129 plays a protective role in sepsis‑induced acute lung injury through the suppression of pulmonary inflammation via the modulation of the TAK1/NF‑κB pathway". International Journal of Molecular Medicine 48, no. 1 (2021): 139. https://doi.org/10.3892/ijmm.2021.4972
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team