Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2021 Volume 48 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2021 Volume 48 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

Clinical and genetic heterogeneity of primary ciliopathies (Review)

  • Authors:
    • Ina Ofelia Focșa
    • Magdalena Budișteanu
    • Mihaela Bălgrădean
  • View Affiliations / Copyright

    Affiliations: Department of Medical Genetics, University of Medicine and Pharmacy ‘Carol Davila’, 021901 Bucharest, Romania, Department of Pediatric Neurology, ‘Prof. Dr. Alexandru Obregia’ Clinical Hospital of Psychiatry, 041914 Bucharest, Romania, Department of Pediatrics and Pediatric Nephrology, Emergency Clinical Hospital for Children ‘Maria Skłodowska Curie’, 077120 Bucharest, Romania
    Copyright: © Focșa et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 176
    |
    Published online on: July 15, 2021
       https://doi.org/10.3892/ijmm.2021.5009
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ciliopathies comprise a group of complex disorders, with involvement of the majority of organs and systems. In total, >180 causal genes have been identified and, in addition to Mendelian inheritance, oligogenicity, genetic modifications, epistatic interactions and retrotransposon insertions have all been described when defining the ciliopathic phenotype. It is remarkable how the structural and functional impairment of a single, minuscule organelle may lead to the pathogenesis of highly pleiotropic diseases. Thus, combined efforts have been made to identify the genetic substratum and to determine the pathophysiological mechanism underlying the clinical presentation, in order to diagnose and classify ciliopathies. Yet, predicting the phenotype, given the intricacy of the genetic cause and overlapping clinical characteristics, represents a major challenge. In the future, advances in proteomics, cell biology and model organisms may provide new insights that could remodel the field of ciliopathies.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Badano JL, Mitsuma N, Beales PL and Katsanis N: The ciliopathies: An emerging class of human genetic disorders. Annu Rev Genomics Hum Genet. 7:125–148. 2006. View Article : Google Scholar

2 

Waters AM and Beales PL: Ciliopathies: An expanding disease spectrum. Pediatr Nephrol. 26:1039–1056. 2011. View Article : Google Scholar

3 

Moore A, Escudier E, Roger G, Tamalet A, Pelosse B, Marlin S, Clément A, Geremek M, Delaisi B, Bridoux AM, et al: RPGR is mutated in patients with a complex X linked phenotype combining primary ciliary dyskinesia and retinitis pigmentosa. J Med Genet. 43:326–333. 2006. View Article : Google Scholar

4 

Budny B, Chen W, Omran H, Fliegauf M, Tzschach A, Wisniewska M, Jensen LR, Raynaud M, Shoichet SA, Badura M, et al: A novel X-linked recessive mental retardation syndrome comprising macrocephaly and ciliary dysfunction is allelic to oral-facial-digital type I syndrome. Hum Genet. 120:171–178. 2006. View Article : Google Scholar

5 

Moalem S, Keating S, Shannon P, Thompson M, Millar K, Nykamp K, Forster A, Noor A and Chitayat D: Broadening the ciliopathy spectrum: Motile cilia dyskinesia, and nephronophthisis associated with a previously unreported homozygous mutation in the INVS/NPHP2 gene. Am J Med Genet A. 161A:1792–1796. 2013. View Article : Google Scholar

6 

Shapiro AJ, Zariwala MA, Ferkol T, Davis SD, Sagel SD, Dell SD, Rosenfeld M, Olivier KN, Milla C, Daniel SJ, et al: Diagnosis, monitoring, and treatment of primary ciliary dyskinesia: PCD foundation consensus recommendations based on state of the art review. Pediatr Pulmonol. 51:115–132. 2016. View Article : Google Scholar

7 

Tobin JL and Beales PL: The nonmotile ciliopathies. Genet Med. 11:386–402. 2009. View Article : Google Scholar

8 

Leeuwenhoek AV: Observations, communicated to the publisher by Mr. Antony van Leewenhoeck, in a dutch letter of the 9th Octob. 1676. Here English'd: Concerning little animals by him observed in rain-well-seaand snow water; as also in water wherein pepper had lain infused. Philosophical Transactions. 12:821–831. 1677. View Article : Google Scholar

9 

Lee L: Mechanisms of mammalian ciliary motility: Insights from primary ciliary dyskinesia genetics. Gene. 473:57–66. 2011. View Article : Google Scholar

10 

Guo J, Higginbotham H, Li J, Nichols J, Hirt J, Ghukasyan V and Anton ES: Developmental disruptions underlying brain abnormalities in ciliopathies. Nat Commun. 6:78572015. View Article : Google Scholar

11 

Chang CF, Schock EN, Attia AC, Stottmann RW and Brugmann SA: The ciliary baton: Orchestrating neural crest cell development. Curr Top Dev Biol. 111:97–134. 2015. View Article : Google Scholar

12 

Mirvis M, Stearns T and James Nelson W: Cilium structure, assembly, and disassembly regulated by the cytoskeleton. Biochem J. 475. pp. 2329–2353. 2018, View Article : Google Scholar

13 

Marshall WF and Nonaka S: Cilia: Tuning in to the cell's antenna. Curr Biol. 16:R604–R614. 2006. View Article : Google Scholar

14 

Roberts AJ, Kon T, Knight PJ, Sutoh K and Burgess SA: Functions and mechanics of dynein motor proteins. Nat Rev Mol Cell Biol. 14:713–726. 2013. View Article : Google Scholar

15 

Linck R, Fu X, Lin J, Ouch C, Schefter A, Steffen W, Warren P and Nicastro D: Insights into the structure and function of ciliary and flagellar doublet microtubules: Tektins, Ca2+-binding proteins, and stable protofilaments. J Biol Chem. 289:17427–17444. 2014. View Article : Google Scholar

16 

Reiter JF, Blacque OE and Leroux MR: The base of the cilium: Roles for transition fibres and the transition zone in ciliary formation, maintenance and compartmentalization. EMBO Rep. 13:608–618. 2012. View Article : Google Scholar

17 

Vertii A, Hung HF, Hehnly H and Doxsey S: Human basal body basics. Cilia. 5:132016. View Article : Google Scholar

18 

Satir P and Christensen ST: Overview of structure and function of mammalian cilia. Annu Rev Physiol. 69:377–400. 2007. View Article : Google Scholar

19 

Hu Q, Milenkovic L, Jin H, Scott MP, Nachury MV, Spiliotis ET and Nelson WJ: A septin diffusion barrier at the base of the primary cilium maintains ciliary membrane protein distribution. Science. 329. pp. 436–439. 2010, View Article : Google Scholar

20 

Fisch C and Dupuis-Williams P: Ultrastructure of cilia and flagella-back to the future! Biol Cell. 103:249–270. 2011. View Article : Google Scholar

21 

Czarnecki PG and Shah JV: The ciliary transition zone: From morphology and molecules to medicine. Trends Cell Biol. 22:201–210. 2012. View Article : Google Scholar

22 

Nonaka S, Tanaka Y, Okada Y, Takeda S, Harada A, Kanai Y, Kido M and Hirokawa N: Randomization of left-right asymmetry due to loss of nodal cilia generating leftward flow of extraembryonic fluid in mice lacking KIF3B motor protein. Cell. 95:829–837. 1998. View Article : Google Scholar

23 

Afzelius BA: Cilia-related diseases. J Pathol. 204:470–477. 2004. View Article : Google Scholar

24 

Dabdoub A and Kelley MW: Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. J Neurobiol. 64:446–457. 2005. View Article : Google Scholar

25 

Hirokawa N, Tanaka Y, Okada Y and Takeda S: Nodal flow and the generation of left-right asymmetry. Cell. 125:33–45. 2006. View Article : Google Scholar

26 

Hamada H: Roles of motile and immotile cilia in left-right symmetry breaking. Etiology and Morphogenesis of Congenital Heart Disease: From Gene Function and Cellular Interaction to Morphology. Nakanishi T, Markwald RR, Baldwin HS, Keller BB, Srivastava D and Yamagishi H: Springer; Tokyo: pp. 57–65. 2016, View Article : Google Scholar

27 

Bloodgood RA: From central to rudimentary to primary: The history of an underappreciated organelle whose time has come. The primary cilium. Methods Cell Biol. 94:3–52. 2009.

28 

Webber WA and Lee J: Fine structure of mammalian renal cilia. Anat Rec. 182:339–343. 1975. View Article : Google Scholar

29 

Pazour GJ, Dickert BL, Vucica Y, Seeley ES, Rosenbaum JL, Witman GB and Cole DG: Chlamydomonas IFT88 and its mouse homologue, polycystic kidney disease gene tg737, are required for assembly of cilia and flagella. J Cell Biol. 151:709–718. 2000. View Article : Google Scholar

30 

Pazour GJ, San Agustin JT, Follit JA, Rosenbaum JL and Witman GB: Polycystin-2 localizes to kidney cilia and the ciliary level is elevated in orpk mice with polycystic kidney disease. Curr Biol. 12:R378–R380. 2002. View Article : Google Scholar

31 

Gradilone SA, Masyuk AI, Splinter PL, Banales JM, Huang BQ, Tietz PS, Masyuk TV and Larusso NF: Cholangiocyte cilia express TRPV4 and detect changes in luminal tonicity inducing bicarbonate secretion. Proc Natl Acad Sci USA. 104:19138–19143. 2007. View Article : Google Scholar

32 

Mansini AP, Peixoto E, Jin S, Richard S and Gradilone SA: The chemosensory function of primary cilia regulates cholangiocyte migration, invasion, and tumor growth. Hepatology. 69:1582–1598. 2019. View Article : Google Scholar

33 

Masyuk AI, Gradilone SA, Banales JM, Huang BQ, Masyuk TV, Lee SO, Splinter PL, Stroope AJ and Larusso NF: Cholangiocyte primary cilia are chemosensory organelles that detect biliary nucleotides via P2Y12 purinergic receptors. Am J Physiol Gastrointest Liver Physiol. 295:G725–G734. 2008. View Article : Google Scholar

34 

Praetorius HA and Spring KR: Bending the MDCK cell primary cilium increases intracellular calcium. J Membr Biol. 184:71–79. 2001. View Article : Google Scholar

35 

Hou Y and Witman GB: Dynein and intraflagellar transport. Exp Cell Res. 334:26–34. 2015. View Article : Google Scholar

36 

Pedersen LB and Rosenbaum JL: Intraflagellar transport (IFT) role in ciliary assembly, resorption and signalling. Curr Top Dev Biol. 85:23–61. 2008. View Article : Google Scholar

37 

Christensen ST, Clement CA, Satir P and Pedersen LB: Primary cilia and coordination of receptor tyrosine kinase (RTK) signalling. J Pathol. 226:172–184. 2012. View Article : Google Scholar

38 

Wheway G, Nazlamova L and Hancock JT: Signaling through the primary cilium. Front Cell Dev Biol. 6:82018. View Article : Google Scholar

39 

Veland IR, Awan A, Pedersen LB, Yoder BK and Christensen ST: Primary cilia and signaling pathways in mammalian development, health and disease. Nephron Physiol. 111:39–53. 2009. View Article : Google Scholar

40 

Cardenas-Rodriguez M and Badano JL: Ciliary biology: Understanding the cellular and genetic basis of human ciliopathies. Am J Med Genet C Semin Med Genet. 151C:263–280. 2009. View Article : Google Scholar

41 

Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar

42 

Grigoryan T, Wend P, Klaus A and Birchmeier W: Deciphering the function of canonical Wnt signals in development and disease: Conditional loss- and gain-of-function mutations of beta-catenin in mice. Genes Dev. 22:2308–2341. 2008. View Article : Google Scholar

43 

Reya T, Duncan AW, Ailles L, Domen J, Scherer DC, Willert K, Hintz L, Nusse R and Weissman IL: A role for Wnt signalling in self-renewal of haematopoietic stem cells. Nature. 423:409–414. 2003. View Article : Google Scholar

44 

Komiya Y and Habas R: Wnt signal transduction pathways. Organogenesis. 4:68–75. 2008. View Article : Google Scholar

45 

Abdelhamed ZA, Wheway G, Szymanska K, Natarajan S, Toomes C, Inglehearn C and Johnson CA: Variable expressivity of ciliopathy neurological phenotypes that encompass Meckel-Gruber syndrome and Joubert syndrome is caused by complex de-regulated ciliogenesis, Shh and Wnt signalling defects. Hum Mol Genet. 22:1358–1372. 2013. View Article : Google Scholar

46 

Wheway G, Abdelhamed Z, Natarajan S, Toomes C, Inglehearn C and Johnson CA: Aberrant Wnt signalling and cellular over-proliferation in a novel mouse model of Meckel-Gruber syndrome. Dev Biol. 377:55–66. 2013. View Article : Google Scholar

47 

Lin F, Hiesberger T, Cordes K, Sinclair AM, Goldstein LS, Somlo S and Igarashi P: Kidney-specific inactivation of the KIF3A subunit of kinesin-II inhibits renal ciliogenesis and produces polycystic kidney disease. Proc Natl Acad Sci USA. 100:5286–5291. 2003. View Article : Google Scholar

48 

Anvarian Z, Mykytyn K, Mukhopadhyay S, Pedersen LB and Christensen ST: Cellular signalling by primary cilia in development, organ function and disease. Nat Rev Nephrol. 15:199–219. 2019. View Article : Google Scholar

49 

von Maltzahn J, Chang NC, Bentzinger CF and Rudnicki MA: Wnt signaling in myogenesis. Trends Cell Biol. 22:602–609. 2012. View Article : Google Scholar

50 

Salinas PC: Wnt signaling in the vertebrate central nervous system: From axon guidance to synaptic function. Cold Spring Harb Perspect Biol. 4:a0080032012. View Article : Google Scholar

51 

Eggenschwiler JT and Anderson KV: Cilia and developmental signaling. Annu Rev Cell Dev Biol. 23:345–373. 2007. View Article : Google Scholar

52 

Varjosalo M and Taipale J: Hedgehog: Functions and mechanisms. Genes Dev. 22:2454–2472. 2008. View Article : Google Scholar

53 

Schneider L, Clement CA, Teilmann SC, Pazour GJ, Hoffmann EK, Satir P and Christensen ST: PDGFRalphaalpha signaling is regulated through the primary cilium in fibroblasts. Curr Biol. 15:1861–1866. 2005. View Article : Google Scholar

54 

Clement DL, Mally S, Stock C, Lethan M, Satir P, Schwab A, Pedersen SF and Christensen ST: PDGFRα signaling in the primary cilium regulates NHE1-dependent fibroblast migration via coordinated differential activity of MEK1/2-ERK1/2-p90RSK and AKT signaling pathways. J Cell Sci. 126:953–965. 2013.

55 

Pala R, Alomari N and Nauli SM: Primary cilium-dependent signaling mechanisms. Int J Mol Sci. 18:22722017. View Article : Google Scholar

56 

Heldin CH: Targeting the PDGF signaling pathway in the treatment of non-malignant diseases. J Neuroimmune Pharmacol. 9:69–79. 2014. View Article : Google Scholar

57 

Nishimura Y, Kasahara K, Shiromizu T, Watanabe M and Inagaki M: Primary cilia as signaling hubs in health and disease. Adv Sci (Weinh). 6:18011382018. View Article : Google Scholar

58 

Schou KB, Pedersen LB and Christensen ST: Ins and outs of GPCR signaling in primary cilia. EMBO Rep. 16:1099–1113. 2015. View Article : Google Scholar

59 

Hilgendorf KI, Johnson CT and Jackson PK: The primary cilium as a cellular receiver: Organizing ciliary GPCR signaling. Curr Opin Cell Biol. 39:84–92. 2016. View Article : Google Scholar

60 

Ezratty EJ, Stokes N, Chai S, Shah AS, Williams SE and Fuchs E: A role for the primary cilium in Notch signaling and epidermal differentiation during skin development. Cell. 145:1129–1141. 2011. View Article : Google Scholar

61 

Clement CA, Ajbro KD, Koefoed K, Vestergaard ML, Veland IR, Henriques de Jesus MP, Pedersen LB, Benmerah A, Andersen CY, Larsen LA and Christensen ST: TGF-β signaling is associated with endocytosis at the pocket region of the primary cilium. Cell Rep. 3:1806–1814. 2013. View Article : Google Scholar

62 

Vestergaard ML, Awan A, Warzecha CB, Christensen ST and Andersen CY: Immunofluorescence microscopy and mRNA analysis of human embryonic stem cells (hESCs) including primary cilia associated signaling pathways. Methods Mol Biol. 1307:123–140. 2016. View Article : Google Scholar

63 

Basten SG and Giles RH: Functional aspects of primary cilia in signaling, cell cycle and tumorigenesis. Cilia. 2:62013. View Article : Google Scholar

64 

Zhong M, Zhao X, Li J, Yuan W, Yan G, Tong M, Guo S, Zhu Y and Jiang Y, Liu Y and Jiang Y: Tumor suppressor folliculin regulates mTORC1 through primary Cilia. J Biol Chem. 291:11689–11697. 2016. View Article : Google Scholar

65 

Boehlke C, Kotsis F, Patel V, Braeg S, Voelker H, Bredt S, Beyer T, Janusch H, Hamann C, Gödel M, et al: Primary cilia regulate mTORC1 activity and cell size through Lkb1. Nat Cell Biol. 12:1115–1122. 2010. View Article : Google Scholar

66 

Leitch CC and Zaghloul NA: BBS4 is necessary for ciliary localization of TrkB receptor and activation by BDNF. PLoS One. 9:e986872014. View Article : Google Scholar

67 

Lee JE and Gleeson JG: A systems-biology approach to understanding the ciliopathy disorders. Genome Med. 3:592011. View Article : Google Scholar

68 

Ansley SJ, Badano JL, Blacque OE, Hill J, Hoskins BE, Leitch CC, Kim JC, Ross AJ, Eichers ER, Teslovich TM, et al: Basal body dysfunction is a likely cause of pleiotropic Bardet-Biedl syndrome. Nature. 425:628–633. 2003. View Article : Google Scholar

69 

Laurence JZ and Moon RC: Four cases of 'retinitis pigmentosa' occurring in the same family, and accompanied by general imperfections of development. 1866. Obes Res. 3:400–403. 1995. View Article : Google Scholar

70 

Moore SJ, Green JS, Fan Y, Bhogal AK, Dicks E, Fernandez BA, Stefanelli M, Murphy C, Cramer BC, Dean JC, et al: Clinical and genetic epidemiology of Bardet-Biedl syndrome in Newfoundland: a 22-year prospective, population-based, cohort study. Am J Med Genet A. 132A:352–360. 2005. View Article : Google Scholar

71 

Mitchison HM and Valente EM: Motile and non-motile cilia in human pathology: From function to phenotypes. J Pathol. 241:294–309. 2017. View Article : Google Scholar

72 

Hildebrandt F and Zhou W: Nephronophthisis-associated ciliopathies. J Am Soc Nephrol. 18:1855–1871. 2007. View Article : Google Scholar

73 

Bergmann C: Early and severe polycystic kidney disease and related ciliopathies: An emerging field of interest. Nephron. 141:50–60. 2019. View Article : Google Scholar

74 

Srivastava S, Molinari E, Raman S and Sayer JA: Many Genes-One disease? Genetics of nephronophthisis (NPHP) and NPHP-Associated disorders. Front Pediatr. 5:2872018. View Article : Google Scholar

75 

Bergmann C: Genetics of autosomal recessive polycystic kidney disease and its differential diagnoses. Front Pediatr. 5:2212018. View Article : Google Scholar

76 

Salomon R, Saunier S and Niaudet P: Nephronophthisis. Pediatr Nephrol. 24:2333–2344. 2009. View Article : Google Scholar

77 

Srivastava S and Sayer JA: Nephronophthisis. J Pediatr Genet. 3:103–114. 2014. View Article : Google Scholar

78 

Jenkins D and Beales PL: Genes and mechanisms in human ciliopathies. Emery and Rimoin's Principles and Practice of Medical Genetics. Rimoin D, Pyeritz R and Korf B: Academic Press; Oxford; pp. 1–36. 2013

79 

Gunay-Aygun M: Liver and kidney disease in ciliopathies. Am J Med Genet C Semin Med Genet. 151C:296–306. 2009. View Article : Google Scholar

80 

Brancati F, Iannicelli M, Travaglini L, Mazzotta A, Bertini E, Boltshauser E, D'Arrigo S, Emma F, Fazzi E, Gallizzi R, et al: MKS3/TMEM67 mutations are a major cause of COACH Syndrome, a Joubert Syndrome related disorder with liver involvement. Hum Mutat. 30:E432–E442. 2009. View Article : Google Scholar

81 

Doherty D, Parisi MA, Finn LS, Gunay-Aygun M, Al-Mateen M, Bates D, Clericuzio C, Demir H, Dorschner M, van Essen AJ, et al: Mutations in 3 genes (MKS3, CC2D2A and RPGRIP1L) cause COACH syndrome (Joubert syndrome with congenital hepatic fibrosis). J Med Genet. 47:8–21. 2010. View Article : Google Scholar

82 

Parisi MA: Clinical and molecular features of Joubert syndrome and related disorders. Am J Med Genet C Semin Med Genet. 151C:326–340. 2009. View Article : Google Scholar

83 

Brancati F, Dallapiccola B and Valente EM: Joubert Syndrome and related disorders. Orphanet J Rare Dis. 5:202010. View Article : Google Scholar

84 

Berger W, Kloeckener-Gruissem B and Neidhardt J: The molecular basis of human retinal and vitreoretinal diseases. Prog Retin Eye Res. 29:335–375. 2010. View Article : Google Scholar

85 

Chung DC and Traboulsi EI: Leber congenital amaurosis: Clinical correlations with genotypes, gene therapy trials update, and future directions. J AAPOS. 13:587–592. 2009. View Article : Google Scholar

86 

Wente S, Schroder S, Buckard J, Büttel HM, von Deimling F, Diener W, Häussler M, Hübschle S, Kinder S, Kurlemann G, et al: Nosological delineation of congenital ocular motor apraxia type Cogan: An observational study. Orphanet J Rare Dis. 11:1042016. View Article : Google Scholar

87 

Valente EM, Dallapiccola B and Bertini E: Joubert syndrome and related disorders. Handb Clin Neurol. 113:1879–1888. 2013. View Article : Google Scholar

88 

Poretti A, Snow J, Summers AC, Tekes A, Huisman TAGM, Aygun N, Carson KA, Doherty D, Parisi MA, Toro C, et al: Joubert syndrome: Neuroimaging findings in 110 patients in correlation with cognitive function and genetic cause. J Med Genet. 54:521–529. 2017. View Article : Google Scholar

89 

Romani M, Micalizzi A and Valente EM: Joubert syndrome: Congenital cerebellar ataxia with the molar tooth. Lancet Neurol. 12:894–905. 2013. View Article : Google Scholar

90 

Poretti A, Boltshauser E, Loenneker T, Valente EM, Brancati F, Il'yasov K and Huisman TA: Diffusion tensor imaging in Joubert syndrome. AJNR Am J Neuroradiol. 28:1929–1933. 2007. View Article : Google Scholar

91 

Valente EM, Brancati F and Dallapiccola B: Genotypes and phenotypes of Joubert syndrome and related disorders. Eur J Med Genet. 51:1–23. 2008. View Article : Google Scholar

92 

Akizu N, Silhavy JL, Rosti RO, Scott E, Fenstermaker AG, Schroth J, Zaki MS, Sanchez H, Gupta N, Kabra M, et al: Mutations in CSPP1 lead to classical Joubert syndrome. Am J Hum Genet. 94:80–86. 2014. View Article : Google Scholar

93 

Khan S, Lin S, Harlalka GV, Ullah A, Shah K, Khalid S, Mehmood S, Hassan MJ, Ahmad W, Self JE, et al: BBS5 and INPP5E mutations associated with ciliopathy disorders in families from Pakistan. Ann Hum Genet. 83:477–482. 2019. View Article : Google Scholar

94 

Srour M, Schwartzentruber J, Hamdan FF, Ospina LH, Patry L, Labuda D, Massicotte C, Dobrzeniecka S, Capo-Chichi JM, Papillon-Cavanagh S, et al: Mutations in C5ORF42 cause Joubert syndrome in the French Canadian population. Am J Hum Genet. 90:693–700. 2012. View Article : Google Scholar

95 

Verma PK and El-Harouni AA: Review of literature: Genes related to postaxial polydactyly. Front Pediatr. 3:82015. View Article : Google Scholar

96 

Marion V, Stutzmann F, Gerard M, De Melo C, Schaefer E, Claussmann A, Hellé S, Delague V, Souied E, Barrey C, et al: Exome sequencing identifies mutations in LZTFL1, a BBSome and smoothened trafficking regulator, in a family with Bardet--Biedl syndrome with situs inversus and insertional polydactyly. J Med Genet. 49:317–321. 2012. View Article : Google Scholar

97 

Figuera LE, Rivas F and Cantu JM: Oral-facial-digital syndrome with fibular aplasia: A new variant. Clin Genet. 44:190–192. 1993. View Article : Google Scholar

98 

Kannu P, McFarlane JH, Savarirayan R and Aftimos S: An unclassifiable short rib-polydactyly syndrome with acromesomelic hypomineralization and campomelia in siblings. Am J Med Genet A. 143A:2607–2611. 2007. View Article : Google Scholar

99 

Schmidts M and Mitchison HM: Severe skeletal abnormalities caused by defects in retrograde intraflagellar transport dyneins. King SM: Academic Press; pp. 356–401. 2018

100 

Schmidts M: Clinical genetics and pathobiology of ciliary chondrodysplasias. J Pediatr Genet. 3:46–94. 2014.

101 

Hartill V, Szymanska K, Sharif SM, Wheway G and Johnson CA: Meckel-Gruber syndrome: An update on diagnosis, clinical management, and research advances. Front Pediatr. 5:2442017. View Article : Google Scholar

102 

Doherty D, Glass IA, Siebert JR, Strouse PJ, Parisi MA, Shaw DW, Chance PF, Barr M Jr and Nyberg D: Prenatal diagnosis in pregnancies at risk for Joubert syndrome by ultrasound and MRI. Prenat Diagn. 25:442–447. 2005. View Article : Google Scholar

103 

Sepulveda W, Sebire NJ, Souka A, Snijders RJ and Nicolaides KH: Diagnosis of the Meckel-Gruber syndrome at eleven to fourteen weeks' gestation. Am J Obstet Gynecol. 176:316–319. 1997. View Article : Google Scholar

104 

Reece EA and Goldstein I: Early prenatal diagnosis of hydrocephalus. Am J Perinatol. 14:69–73. 1997. View Article : Google Scholar

105 

den Hollander NS, Robben SG, Hoogeboom AJ, Niermeijer MF and Wladimiroff JW: Early prenatal sonographic diagnosis and follow-up of Jeune syndrome. Ultrasound Obstet Gynecol. 18:378–383. 2001. View Article : Google Scholar

106 

Poretti A, Brehmer U, Scheer I, Bernet V and Boltshauser E: Prenatal and neonatal MR imaging findings in oral-facial-digital syndrome type VI. AJNR Am J Neuroradiol. 29:1090–1091. 2008. View Article : Google Scholar

107 

Beales PL and Kenny TD: Towards the diagnosis of a ciliopathy. Ciliopathies: A Reference for Clinicians. Oxford University Press; Oxford; pp. 1–7. 2013

108 

Katsanis N, Beales PL, Woods MO, Lewis RA, Green JS, Parfrey PS, Ansley SJ, Davidson WS and Lupski JR: Mutations in MKKS cause obesity, retinal dystrophy and renal malformations associated with Bardet-Biedl syndrome. Nat Genet. 26. pp. 67–70. 2000, View Article : Google Scholar

109 

Slavotinek AM, Stone EM, Mykytyn K, Heckenlively JR, Green JS, Heon E, Musarella MA, Parfrey PS, Sheffield VC and Biesecker LG: Mutations in MKKS cause Bardet-Biedl syndrome. Nat Genet. 26. pp. 15–16. 2000, View Article : Google Scholar

110 

Reiter JF and Leroux MR: Genes and molecular pathways underpinning ciliopathies. Nat Rev Mol Cell Biol. 18:533–547. 2017. View Article : Google Scholar

111 

Shaheen R, Szymanska K, Basu B, Patel N, Ewida N, Faqeih E, Al Hashem A, Derar N, Alsharif H, Aldahmesh MA, et al: Characterizing the morbid genome of ciliopathies. Genome Biol. 17:2422016. View Article : Google Scholar

112 

Lindstrand A, Davis EE, Carvalho CM, Pehlivan D, Willer JR, Tsai IC, Ramanathan S, Zuppan C, Sabo A, Muzny D, et al: Recurrent CNVs and SNVs at the NPHP1 locus contribute pathogenic alleles to Bardet-Biedl syndrome. Am J Hum Genet. 94:745–754. 2014. View Article : Google Scholar

113 

Lindstrand A, Frangakis S, Carvalho CM, Richardson EB, McFadden KA, Willer JR, Pehlivan D, Liu P, Pediaditakis IL, Sabo A, et al: Copy-Number variation contributes to the mutational load of Bardet-Biedl syndrome. Am J Hum Genet. 99:318–336. 2016. View Article : Google Scholar

114 

Fauser S, Munz M and Besch D: Further support for digenic inheritance in Bardet-Biedl syndrome. J Med Genet. 40:e1042003. View Article : Google Scholar

115 

Katsanis N: The oligogenic properties of Bardet-Biedl syndrome. Hum Mol Genet. 13(Spec No 1): R65–R71. 2004. View Article : Google Scholar

116 

Katsanis N, Ansley SJ, Badano JL, Eichers ER, Lewis RA, Hoskins BE, Scambler PJ, Davidson WS, Beales PL and Lupski JR: Triallelic inheritance in Bardet-Biedl syndrome, a Mendelian recessive disorder. Science. 293. pp. 2256–2259. 2001, View Article : Google Scholar

117 

Katsanis N, Eichers ER, Ansley SJ, Lewis RA, Kayserili H, Hoskins BE, Scambler PJ, Beales PL and Lupski JR: BBS4 is a minor contributor to Bardet-Biedl syndrome and may also participate in triallelic inheritance. Am J Hum Genet. 71. pp. 22–29. 2002, View Article : Google Scholar

118 

Beales PL, Badano JL, Ross AJ, Ansley SJ, Hoskins BE, Kirsten B, Mein CA, Froguel P, Scambler PJ, Lewis RA, et al: Genetic interaction of BBS1 mutations with alleles at other BBS loci can result in non-Mendelian Bardet-Biedl syndrome. Am J Hum Genet. 72:1187–1199. 2003. View Article : Google Scholar

119 

Abu-Safieh L, Al-Anazi S, Al-Abdi L, Hashem M, Alkuraya H, Alamr M, Sirelkhatim MO, Al-Hassnan Z, Alkuraya B, Mohamed JY, et al: In search of triallelism in Bardet-Biedl syndrome. Eur J Hum Genet. 20:420–427. 2012. View Article : Google Scholar

120 

Delvallée C, Nicaise S, Antin M, Leuvrey AS, Nourisson E, Leitch CC, Kellaris G, Stoetzel C, Geoffroy V, Scheidecker S, et al: A BBS1 SVA F retrotransposon insertion is a frequent cause of Bardet-Biedl syndrome. Clin Genet. 99:318–324. 2021. View Article : Google Scholar

121 

Davis EE and Katsanis N: The ciliopathies: A transitional model into systems biology of human genetic disease. Curr Opin Genet Dev. 22:290–303. 2012. View Article : Google Scholar

122 

Badano JL, Kim JC, Hoskins BE, Lewis RA, Ansley SJ, Cutler DJ, Castellan C, Beales PL, Leroux MR and Katsanis N: Heterozygous mutations in BBS1, BBS2 and BBS6 have a potential epistatic effect on Bardet-Biedl patients with two mutations at a second BBS locus. Hum Mol Genet. 12. pp. 1651–1659. 2003, View Article : Google Scholar

123 

Badano JL, Leitch CC, Ansley SJ, May-Simera H, Lawson S, Lewis RA, Beales PL, Dietz HC, Fisher S and Katsanis N: Dissection of epistasis in oligogenic Bardet-Biedl syndrome. Nature. 439. pp. 326–330. 2006, View Article : Google Scholar

124 

Slavotinek A and Biesecker LG: Genetic modifiers in human development and malformation syndromes, including chaperone proteins. Hum Mol Genet. 12(Spec No 1): R45–R50. 2003. View Article : Google Scholar

125 

Hildebrandt F, Benzing T and Katsanis N: Ciliopathies. N Engl J Med. 364:1533–1543. 2011. View Article : Google Scholar

126 

Novarino G, Akizu N and Gleeson JG: Modeling human disease in humans: The ciliopathies. Cell. 147:70–79. 2011. View Article : Google Scholar

127 

Zaki MS, Sattar S, Massoudi RA and Gleeson JG: Co-occurrence of distinct ciliopathy diseases in single families suggests genetic modifiers. Am J Med Genet A. 155A:3042–3049. 2011. View Article : Google Scholar

128 

Khanna H, Davis EE, Murga-Zamalloa CA, Estrada-Cuzcano A, Lopez I, den Hollander AI, Zonneveld MN, Othman MI, Waseem N, Chakarova CF, et al: A common allele in RPGRIP1L is a modifier of retinal degeneration in ciliopathies. Nat Genet. 41:739–745. 2009. View Article : Google Scholar

129 

Bujakowska KM, Liu Q and Pierce EA: Photoreceptor cilia and retinal ciliopathies. Cold Spring Harb Perspect Biol. 9:a0282742017. View Article : Google Scholar

130 

Goldberg AF, Moritz OL and Williams DS: Molecular basis for photoreceptor outer segment architecture. Prog Retin Eye Res. 55:52–81. 2016. View Article : Google Scholar

131 

Estrada-Cuzcano A, Roepman R, Cremers FP, den Hollander AI and Mans DA: Non-syndromic retinal ciliopathies: Translating gene discovery into therapy. Hum Mol Genet. 21:R111–R124. 2012. View Article : Google Scholar

132 

den Hollander AI, Roepman R, Koenekoop RK and Cremers FP: Leber congenital amaurosis: Genes, proteins and disease mechanisms. Prog Retin Eye Res. 27:391–419. 2008. View Article : Google Scholar

133 

Adams NA, Awadein A and Toma HS: The retinal ciliopathies. Ophthalmic Genet. 28:113–125. 2007. View Article : Google Scholar

134 

Marshall JD, Muller J, Collin GB, Milan G, Kingsmore SF, Dinwiddie D, Farrow EG, Miller NA, Favaretto F, Maffei P, et al: Alstrom syndrome: Mutation spectrum of ALMS1. Hum Mutat. 36:660–668. 2015. View Article : Google Scholar

135 

Ronquillo CC, Bernstein PS and Baehr W: Senior-Loken syndrome: A syndromic form of retinal dystrophy associated with nephronophthisis. Vision Res. 75:88–97. 2012. View Article : Google Scholar

136 

Braun DA and Hildebrandt F: Ciliopathies. Cold Spring Harb Perspect Biol. 9:a0281912017. View Article : Google Scholar

137 

Saigusa T and Bell PD: Molecular pathways and therapies in autosomal-dominant polycystic kidney disease. Physiology (Bethesda). 30:195–207. 2015.

138 

Bergmann C: ARPKD and early manifestations of ADPKD: The original polycystic kidney disease and phenocopies. Pediatr Nephrol. 30:15–30. 2015. View Article : Google Scholar

139 

Chebib FT and Torres VE: Autosomal dominant polycystic kidney disease: Core Curriculum 2016. Am J Kidney Dis. 67:792–810. 2016. View Article : Google Scholar

140 

Wolf MT and Hildebrandt F: Nephronophthisis. Pediatr Nephrol. 26:181–194. 2011. View Article : Google Scholar

141 

Konig J, Kranz B, Konig S, Schlingmann KP, Titieni A, Tönshoff B, Habbig S, Pape L, Häffner K, Hansen M, et al: Phenotypic spectrum of children with nephronophthisis and related ciliopathies. Clin J Am Soc Nephrol. 12:1974–1983. 2017. View Article : Google Scholar

142 

Zaghloul NA and Katsanis N: Mechanistic insights into Bardet-Biedl syndrome, a model ciliopathy. J Clin Invest. 119:428–437. 2009. View Article : Google Scholar

143 

Forsythe E and Beales PL: Bardet-Biedl syndrome. Eur J Hum Genet. 21:8–13. 2013. View Article : Google Scholar

144 

Forsythe R and Gunay-Aygun M: Bardet-Biedl syndrome overview. Adam MP, Ardinger HH, Pagon RA, et al: GeneReviews® [Internet]. University of Washington; Seattle, WA: 2003, updated July 23, 2020.

145 

Bujakowska KM, Zhang Q, Siemiatkowska AM, Liu Q, Place E, Falk MJ, Consugar M, Lancelot ME, Antonio A, Lonjou C, et al: Mutations in IFT172 cause isolated retinal degeneration and Bardet-Biedl syndrome. Hum Mol Genet. 24:230–242. 2015. View Article : Google Scholar

146 

Alazami AM, Alshammari MJ, Salih MA, Alzahrani F, Hijazi H, Seidahmed MZ, Abu Safieh L, Aldosary M, Khan AO and Alkuraya FS: Molecular characterization of Joubert syndrome in Saudi Arabia. Hum Mutat. 33:1423–1428. 2012. View Article : Google Scholar

147 

Stephen J, Vilboux T, Mian L, Kuptanon C, Sinclair CM, Yildirimli D, Maynard DM, Bryant J, Fischer R, Vemulapalli M, et al: Mutations in KIAA0753 cause Joubert syndrome associated with growth hormone deficiency. Hum Genet. 136:399–408. 2017. View Article : Google Scholar

148 

Shaheen R, Jiang N, Alzahrani F, Ewida N, Al-Sheddi T, Alobeid E, Musaev D, Stanley V, Hashem M, Ibrahim N, et al: Bi-allelic Mutations in FAM149B1 cause abnormal primary cilium and a range of ciliopathy phenotypes in humans. Am J Hum Genet. 104:731–737. 2019. View Article : Google Scholar

149 

Radha Rama Devi A, Naushad SM and Lingappa L: Clinical and molecular diagnosis of joubert syndrome and related disorders. Pediatr Neurol. 106:43–49. 2020. View Article : Google Scholar

150 

Oka M, Shimojima K, Yamamoto T, Hanaoka Y, Sato S, Yasuhara T, Yoshinaga H and Kobayashi K: A novel HYLS1 homozygous mutation in living siblings with Joubert syndrome. Clin Genet. 89:739–743. 2016. View Article : Google Scholar

151 

Beck BB, Phillips JB, Bartram MP, Wegner J, Thoenes M, Pannes A, Sampson J, Heller R, Göbel H, Koerber F, et al: Mutation of POC1B in a severe syndromic retinal ciliopathy. Hum Mutat. 35:1153–1162. 2014. View Article : Google Scholar

152 

Bachmann-Gagescu R, Dempsey JC, Phelps IG, O'Roak BJ, Knutzen DM, Rue TC, Ishak GE, Isabella CR, Gorden N, Adkins J, et al: Joubert syndrome: A model for untangling recessive disorders with extreme genetic heterogeneity. J Med Genet. 52:514–522. 2015. View Article : Google Scholar

153 

Schmidts M: Jeune syndrome and the ciliary chondrodysplasias. Ciliopathies. Oxford University Press; Oxford; pp. 30–63. 2013, View Article : Google Scholar

154 

Haycraft CJ, Zhang Q, Song B, Jackson WS, Detloff PJ, Serra R and Yoder BK: Intraflagellar transport is essential for endochondral bone formation. Development. 134:307–316. 2007. View Article : Google Scholar

155 

St-Jacques B, Hammerschmidt M and McMahon AP: Indian hedgehog signaling regulates proliferation and differentiation of chondrocytes and is essential for bone formation. Genes Dev. 13:2072–2086. 1999. View Article : Google Scholar

156 

Schmidts M, Hou Y, Cortes CR, Mans DA, Huber C, Boldt K, Patel M, van Reeuwijk J, Plaza JM, van Beersum SE, et al: TCTEX1D2 mutations underlie Jeune asphyxiating thoracic dystrophy with impaired retrograde intraflagellar transport. Nat Commun. 6:70742015. View Article : Google Scholar

157 

Zhang W, Taylor SP, Ennis HA, Forlenza KN, Duran I, Li B, Sanchez JAO, Nevarez L, Nickerson DA and Bamshad M: Expanding the genetic architecture and phenotypic spectrum in the skeletal ciliopathies. Hum Mutat. 39:152–166. 2018. View Article : Google Scholar

158 

Ellis RW and van Creveld S: A syndrome characterized by ectodermal dysplasia, polydactyly, Chondro-Dysplasia and congenital Morbus Cordis: Report of three cases. Arch Dis Child. 15:65–84. 1940. View Article : Google Scholar

159 

McKusick VA, Eldridge R, Hostetler JA and Egeland JA: Dwarfism in the Amish. Trans Assoc Am Physicians. 77:151–168. 1964.

160 

Ruiz-Perez VL and Goodship JA: Ellis-van Creveld syndrome and Weyers acrodental dysostosis are caused by cilia-mediated diminished response to hedgehog ligands. Am J Med Genet C Semin Med Genet. 151C:341–351. 2009. View Article : Google Scholar

161 

Howard TD, Guttmacher AE, McKinnon W, Sharma M, McKusick VA and Jabs EW: Autosomal dominant postaxial polydactyly, nail dystrophy, and dental abnormalities map to chromosome 4p16, in the region containing the Ellis-van Creveld syndrome locus. Am J Hum Genet. 61:1405–1412. 1997. View Article : Google Scholar

162 

Levin LS, Perrin JC, Ose L, Dorst JP, Miller JD and McKusick VA: A heritable syndrome of craniosynostosis, short thin hair, dental abnormalities, and short limbs: Cranioectodermal dysplasia. J Pediatr. 90:55–61. 1977. View Article : Google Scholar

163 

Lin AE, Traum AZ, Sahai I, Keppler-Noreuil K, Kukolich MK, Adam MP, Westra SJ and Arts HH: Sensenbrenner syndrome (Cranioectodermal dysplasia): Clinical and molecular analyses of 39 patients including two new patients. Am Med Genet A. 161A:2762–2776. 2013. View Article : Google Scholar

164 

Arts HH, Bongers EM, Mans DA, van Beersum SE, Oud MM, Bolat E, Spruijt L, Cornelissen EA, Schuurs-Hoeijmakers JH, de Leeuw N, et al: C14ORF179 encoding IFT43 is mutated in Sensenbrenner syndrome. J Med Genet. 48:390–395. 2011. View Article : Google Scholar

165 

Huber C and Cormier-Daire V: Ciliary disorder of the skeleton. Am J Med Genet C Semin Med Genet. 160C:165–174. 2012. View Article : Google Scholar

166 

Mainzer F, Saldino RM, Ozonoff MB and Minagi H: Familial nephropathy associatdd with retinitis pigmentosa, cerebellar ataxia and skeletal abnormalities. Am J Med. 49:556–562. 1970. View Article : Google Scholar

167 

Perrault I, Saunier S, Hanein S, Filhol E, Bizet AA, Collins F, Salih MA, Gerber S, Delphin N, Bigot K, et al: Mainzer-Saldino syndrome is a ciliopathy caused by IFT140 mutations. Am J Hum Genet. 90:864–870. 2012. View Article : Google Scholar

168 

Beales PL, Bland E, Tobin JL, Bacchelli C, Tuysuz B, Hill J, Rix S, Pearson CG, Kai M, Hartley J, et al: IFT80, which encodes a conserved intraflagellar transport protein, is mutated in Jeune asphyxiating thoracic dystrophy. Nat Genet. 39:727–729. 2007. View Article : Google Scholar

169 

Tuysuz B, Baris S, Aksoy F, Madazli R, Ungur S and Sever L: Clinical variability of asphyxiating thoracic dystrophy (Jeune) syndrome: Evaluation and classification of 13 patients. Am J Med Genet A. 149A:1727–1733. 2009. View Article : Google Scholar

170 

Zhang W, Taylor SP, Nevarez L, Lachman RS, Nickerson DA and Bamshad M: IFT52 mutations destabilize anterograde complex assembly, disrupt ciliogenesis and result in short rib polydactyly syndrome. Hum Mol Genet. 25:4012–4020. 2016. View Article : Google Scholar

171 

Duran I, Taylor SP, Zhang W, Martin J, Qureshi F, Jacques SM, Wallerstein R, Lachman RS, Nickerson DA, Bamshad M, et al: Mutations in IFT-A satellite core component genes IFT43 and IFT121 produce short rib polydactyly syndrome with distinctive campomelia. Cilia. 6:72017. View Article : Google Scholar

172 

Roosing S, Romani M, Isrie M, Rosti RO, Micalizzi A, Musaev D, Mazza T, Al-Gazali L, Altunoglu U, Boltshauser E, et al: Mutations in CEP120 cause Joubert syndrome as well as complex ciliopathy phenotypes. J Med Genet. 53:608–615. 2016. View Article : Google Scholar

173 

Bruel AL, Franco B, Duffourd Y, Thevenon J, Jego L, Lopez E, Deleuze JF, Doummar D, Giles RH, Johnson CA, et al: Fifteen years of research on oral-facial-digital syndromes: From 1 to 16 causal genes. J Med Genet. 54:371–380. 2017. View Article : Google Scholar

174 

Li C, Jensen VL, Park K, Kennedy J, Garcia-Gonzalo FR, Romani M, De Mori R, Bruel AL, Gaillard D, Doray B, et al: MKS5 and CEP290 dependent assembly pathway of the ciliary transition zone. PLoS Biol. 14:e10024162016. View Article : Google Scholar

175 

Al-Qattan MM, Shaheen R and Alkuraya FS: Expanding the allelic disorders linked to TCTN1 to include Varadi syndrome (Orofaciodigital syndrome type VI). Am J Med Genet A. 173:2439–2441. 2017. View Article : Google Scholar

176 

Franco B and Thauvin-Robinet C: Update on oral-facial-digital syndromes (OFDS). Cilia. 5:122016. View Article : Google Scholar

177 

Toriello HV: Are the oral-facial-digital syndromes ciliopathies? Am J Med Genet A. 149A:1089–1095. 2009. View Article : Google Scholar

178 

Toriello HV, Franco B, Bruel AL and Thauvin-Robinet C: Oral-Facial-Digital Syndrome Type I. GeneReviews((R)). Adam MP, Ardinger HH and Pagon RA: University of Washington; Seattle, WA: 1993

179 

Shamseldin HE, Rajab A, Alhashem A, Shaheen R, Al-Shidi T, Alamro R, Al Harassi S and Alkuraya FS: Mutations in DDX59 implicate RNA helicase in the pathogenesis of orofaciodigital syndrome. Am J Hum Genet. 93:555–560. 2013. View Article : Google Scholar

180 

Toriyama M, Lee C, Taylor SP, Duran I, Cohn DH, Bruel AL, Tabler JM, Drew K, Kelly MR, Kim S, et al: The ciliopathy-associated CPLANE proteins direct basal body recruitment of intraflagellar transport machinery. Nat Genet. 48:648–656. 2016. View Article : Google Scholar

181 

Saari J, Lovell MA, Yu HC and Bellus GA: Compound heterozygosity for a frame shift mutation and a likely pathogenic sequence variant in the planar cell polarity-ciliogenesis gene WDPCP in a girl with polysyndactyly, coarctation of the aorta, and tongue hamartomas. Am J Med Genet A. 167A:421–427. 2015. View Article : Google Scholar

182 

Thevenon J, Duplomb L, Phadke S, Eguether T, Saunier A, Avila M, Carmignac V, Bruel AL, St-Onge J, Duffourd Y, et al: Autosomal recessive IFT57 hypomorphic mutation cause ciliary transport defect in unclassified oral-facial-digital syndrome with short stature and brachymesophalangia. Clin Genet. 90:509–517. 2016. View Article : Google Scholar

183 

Baker K and Beales PL: Making sense of cilia in disease: The human ciliopathies. Am J Med Genet C Semin Med Genet. 151C:281–295. 2009. View Article : Google Scholar

184 

Laquerriere A, Maluenda J, Camus A, Fontenas L, Dieterich K, Nolent F, Zhou J, Monnier N, Latour P, Gentil D, et al: Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with axoglial defects. Hum Mol Genet. 23:2279–2289. 2014. View Article : Google Scholar

185 

Filges I, Bruder E, Brandal K, Meier S, Undlien DE, Waage TR, Hoesli I, Schubach M, de Beer T, Sheng Y, et al: Stromme syndrome is a ciliary disorder caused by mutations in CENPF. Hum Mutat. 37:359–363. 2016. View Article : Google Scholar

186 

Waters AM, Asfahani R, Carroll P, Bicknell L, Lescai F, Bright A, Chanudet E, Brooks A, Christou-Savina S, Osman G, et al: The kinetochore protein, CENPF, is mutated in human ciliopathy and microcephaly phenotypes. J Med Genet. 52. pp. 147–156. 2015, View Article : Google Scholar

187 

Luijten MN, Basten SG, Claessens T, Vernooij M, Scott CL, Janssen R, Easton JA, Kamps MA, Vreeburg M, Broers JL, et al: Birt-Hogg-Dube syndrome is a novel ciliopathy. Hum Mol Genet. 22:4383–4397. 2013. View Article : Google Scholar

188 

Jenkins D, Seelow D, Jehee FS, Perlyn CA, Alonso LG, Bueno DF, Donnai D, Josifova D, Mathijssen IM, Morton JE, et al: RAB23 mutations in Carpenter syndrome imply an unexpected role for hedgehog signaling in cranial-suture development and obesity. Am J Hum Genet. 80:1162–1170. 2007. View Article : Google Scholar

189 

Symoens S, Barnes AM, Gistelinck C, Malfait F, Guillemyn B, Steyaert W, Syx D, D'hondt S, Biervliet M, De Backer J, et al: Genetic defects in TAPT1 disrupt ciliogenesis and cause a complex lethal osteochondrodysplasia. Am J Hum Genet. 97:521–534. 2015. View Article : Google Scholar

190 

Reijnders MR, Zachariadis V, Latour B, Jolly L, Mancini GM, Pfundt R, Wu KM, van Ravenswaaij-Arts CM, Veenstra-Knol HE, Anderlid BM, et al: De Novo Loss-of-Function mutations in USP9X cause a Female-Specific recognizable syndrome with developmental delay and congenital malformations. Am J Hum Genet. 98:373–381. 2016. View Article : Google Scholar

191 

Twigg SRF, Hufnagel RB, Miller KA, Zhou Y, McGowan SJ, Taylor J, Craft J, Taylor JC, Santoro SL, Huang T, et al: A recurrent Mosaic Mutation in SMO, encoding the Hedgehog signal transducer smoothened, is the major cause of Curry-Jones syndrome. Am J Hum Genet. 98:1256–1265. 2016. View Article : Google Scholar

192 

Ali BR, Silhavy JL, Akawi NA, Gleeson JG and Al-Gazali L: A mutation in KIF7 is responsible for the autosomal recessive syndrome of macrocephaly, multiple epiphyseal dysplasia and distinctive facial appearance. Orphanet J Rare Dis. 7:272012. View Article : Google Scholar

193 

Putoux A, Thomas S, Coene KL, Davis EE, Alanay Y, Ogur G, Uz E, Buzas D, Gomes C, Patrier S, et al: KIF7 mutations cause fetal hydrolethalus and acrocallosal syndromes. Nat Genet. 43:601–606. 2011. View Article : Google Scholar

194 

Dammermann A, Pemble H, Mitchell BJ, McLeod I, Yates JR III, Kintner C, Desai AB and Oegema K: The hydrolethalus syndrome protein HYLS-1 links core centriole structure to cilia formation. Genes Dev. 23:2046–2059. 2009. View Article : Google Scholar

195 

Alby C, Piquand K, Huber C, Megarbané A, Ichkou A, Legendre M, Pelluard F, Encha-Ravazi F, Abi-Tayeh G, Bessières B, et al: Mutations in KIAA0586 cause lethal ciliopathies ranging from a hydrolethalus phenotype to Short-Rib Polydactyly syndrome. Am J Hum Genet. 97:311–318. 2015. View Article : Google Scholar

196 

Demurger F, Ichkou A, Mougou-Zerelli S, Le Merrer M, Goudefroye G, Delezoide AL, Quélin C, Manouvrier S, Baujat G, Fradin M, et al: New insights into genotype-phenotype correlation for GLI3 mutations. Eur J Hum Genet. 23:92–102. 2015. View Article : Google Scholar

197 

Oud MM, Bonnard C, Mans DA, Altunoglu U, Tohari S, Ng AYJ, Eskin A, Lee H, Rupar CA, de Wagenaar NP, et al: A novel ICK mutation causes ciliary disruption and lethal endocrine-cerebro-osteodysplasia syndrome. Cilia. 5:82016. View Article : Google Scholar

198 

Karaca E, Buyukkaya R, Pehlivan D, Charng WL, Yaykasli KO, Bayram Y, Gambin T, Withers M, Atik MM, Arslanoglu I, et al: Whole-exome sequencing identifies homozygous GPR161 mutation in a family with pituitary stalk interruption syndrome. J Clin Endocrinol Metab. 100:E140–147. 2015. View Article : Google Scholar

199 

Guen VJ, Gamble C, Perez DE, Bourassa S, Zappel H, Gärtner J, Lees JA and Colas P: STAR syndrome-associated CDK10/Cyclin M regulates actin network architecture and ciliogenesis. Cell Cycle. 15:678–688. 2016. View Article : Google Scholar

200 

Alessandri JL, Dagoneau N, Laville JM, Baruteau J, Hébert JC and Cormier-Daire V: RAB23 mutation in a large family from Comoros Islands with Carpenter syndrome. Am J Med Genet A. 152A:982–986. 2010. View Article : Google Scholar

201 

Jenkins D, Baynam G, De Catte L, Elcioglu N, Gabbett MT, Hudgins L, Hurst JA, Jehee FS, Oley C and Wilkie AO: Carpenter syndrome: Extended RAB23 mutation spectrum and analysis of nonsense-mediated mRNA decay. Hum Mutat. 32:E2069–E2078. 2011. View Article : Google Scholar

202 

Lefroy H, Hurst JA and Shears DJ: STAR syndrome: A further case and the first report of maternal mosaicism. Clin Dysmorphol. 26:157–160. 2017. View Article : Google Scholar

203 

Ng SB, Bigham AW, Buckingham KJ, Hannibal MC, McMillin MJ, Gildersleeve HI, Beck AE, Tabor HK, Cooper GM, Mefford HC, et al: Exome sequencing identifies MLL2 mutations as a cause of Kabuki syndrome. Nat Genet. 42:790–793. 2010. View Article : Google Scholar

204 

Miyake N, Koshimizu E, Okamoto N, Mizuno S, Ogata T, Nagai T, Kosho T, Ohashi H, Kato M, Sasaki G, et al: MLL2 and KDM6A mutations in patients with Kabuki syndrome. Am J Med Genet A. 161A:2234–2243. 2013. View Article : Google Scholar

205 

Shaheen R, Rahbeeni Z, Alhashem A, Faqeih E, Zhao Q, Xiong Y, Almoisheer A, Al-Qattan SM, Almadani HA, Al-Onazi N, et al: Neu-Laxova syndrome, an inborn error of serine metabolism, is caused by mutations in PHGDH. Am J Hum Genet. 94:898–904. 2014. View Article : Google Scholar

206 

Acuna-Hidalgo R, Schanze D, Kariminejad A, Nordgren A, Kariminejad MH, Conner P, Grigelioniene G, Nilsson D, Nordenskjöld M, Wedell A, et al: Neu-Laxova syndrome is a heterogeneous metabolic disorder caused by defects in enzymes of the L-serine biosynthesis pathway. Am J Hum Genet. 95:285–293. 2014. View Article : Google Scholar

207 

Duplomb L, Duvet S, Picot D, Jego G, El Chehadeh-Djebbar S, Marle N, Gigot N, Aral B, Carmignac V, Thevenon J, et al: Cohen syndrome is associated with major glycosylation defects. Hum Mol Genet. 23:2391–2399. 2014. View Article : Google Scholar

208 

El Chehadeh S, Aral B, Gigot N, Thauvin-Robinet C, Donzel A, Delrue MA, Lacombe D, David A, Burglen L, Philip N, et al: Search for the best indicators for the presence of a VPS13B gene mutation and confirmation of diagnostic criteria in a series of 34 patients genotyped for suspected Cohen syndrome. J Med Genet. 47:549–553. 2010. View Article : Google Scholar

209 

Emery NJ, Seed AM, von Bayern AM and Clayton NS: Cognitive adaptations of social bonding in birds. Philos Trans R Soc Lond B Biol Sci. 362:489–505. 2007. View Article : Google Scholar

210 

Bozal-Basterra L, Martin-Ruiz I, Pirone L, Liang Y, Sigurðsson JO, Gonzalez-Santamarta M, Giordano I, Gabicagogeascoa E, de Luca A, Rodríguez JA, et al: Truncated SALL1 impedes primary cilia function in townes-brocks syndrome. Am J Hum Genet. 102:249–265. 2018. View Article : Google Scholar

211 

Devlin LA and Sayer JA: Renal ciliopathies. Curr Opin Genet Dev. 56:49–60. 2019. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Focșa IO, Budișteanu M and Bălgrădean M: Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 48: 176, 2021.
APA
Focșa, I.O., Budișteanu, M., & Bălgrădean, M. (2021). Clinical and genetic heterogeneity of primary ciliopathies (Review). International Journal of Molecular Medicine, 48, 176. https://doi.org/10.3892/ijmm.2021.5009
MLA
Focșa, I. O., Budișteanu, M., Bălgrădean, M."Clinical and genetic heterogeneity of primary ciliopathies (Review)". International Journal of Molecular Medicine 48.3 (2021): 176.
Chicago
Focșa, I. O., Budișteanu, M., Bălgrădean, M."Clinical and genetic heterogeneity of primary ciliopathies (Review)". International Journal of Molecular Medicine 48, no. 3 (2021): 176. https://doi.org/10.3892/ijmm.2021.5009
Copy and paste a formatted citation
x
Spandidos Publications style
Focșa IO, Budișteanu M and Bălgrădean M: Clinical and genetic heterogeneity of primary ciliopathies (Review). Int J Mol Med 48: 176, 2021.
APA
Focșa, I.O., Budișteanu, M., & Bălgrădean, M. (2021). Clinical and genetic heterogeneity of primary ciliopathies (Review). International Journal of Molecular Medicine, 48, 176. https://doi.org/10.3892/ijmm.2021.5009
MLA
Focșa, I. O., Budișteanu, M., Bălgrădean, M."Clinical and genetic heterogeneity of primary ciliopathies (Review)". International Journal of Molecular Medicine 48.3 (2021): 176.
Chicago
Focșa, I. O., Budișteanu, M., Bălgrădean, M."Clinical and genetic heterogeneity of primary ciliopathies (Review)". International Journal of Molecular Medicine 48, no. 3 (2021): 176. https://doi.org/10.3892/ijmm.2021.5009
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team