|
1
|
Moskow JJ, Bullrich F, Huebner K, Daar IO
and Buchberg AM: Meis1, a PBX1-related homeobox gene involved in
myeloid leukemia in BXH-2 mice. Mol Cell Biol. 15:5434–5443. 1995.
View Article : Google Scholar
|
|
2
|
Smith JE, Bollekens JA, Inghirami G and
Takeshita K: Cloning and mapping of the MEIS1 gene, the human
homolog of a murine leukemogenic gene. Genomics. 43:99–103. 1997.
View Article : Google Scholar
|
|
3
|
Nakamura T, Largaespada DA, Shaughnessy JD
Jr, Jenkins NA and Copeland NG: Cooperative activation of hoxa and
Pbx1-related genes in murine myeloid leukaemias. Nat Genet.
12:149–153. 1996. View Article : Google Scholar
|
|
4
|
Steelman S, Moskow JJ, Muzynski K, North
C, Druck T, Montgomery JC, Huebner K, Daar IO and Buchberg AM:
Identification of a conserved family of Meis1-related homeobox
genes. Genome Res. 7:142–156. 1997. View Article : Google Scholar
|
|
5
|
Jiang M, Xu S, Bai M and Zhang A: The
emerging role of MEIS1 in cell proliferation and differentiation.
Am J Physiol Cell Physiol. 320:C264–C269. 2021. View Article : Google Scholar
|
|
6
|
Torres-Flores J and Jave-Suárez L: MEIS1
(Meis homeobox 1). Atlas Genet Cytogenet Oncol Haematol:. 424–429.
2013.
|
|
7
|
Su ZH, Si WX, Li L, Zhou BS, Li XC, Xu Y,
Xu CQ, Jia HB and Wang QK: MiR-144 regulates hematopoiesis and
vascular development by targeting meis1 during zebrafish
development. Int J Biochem Cell Biol. 49:53–63. 2014. View Article : Google Scholar
|
|
8
|
Knoepfler PS, Calvo KR, Chen H,
Antonarakis SE and Kamps MP: Meis1 and pKnox1 bind DNA
cooperatively with Pbx1 utilizing an interaction surface disrupted
in oncoprotein E2a-Pbx1. Proc Natl Acad Sci USA. 94:14553–14558.
1997. View Article : Google Scholar
|
|
9
|
Crist RC, Roth JJ, Waldman SA and Buchberg
AM: A conserved tissue-specific homeodomain-less isoform of MEIS1
is downregulated in colorectal cancer. PLoS One. 6:e236652011.
View Article : Google Scholar
|
|
10
|
Aksoz M, Turan RD, Albayrak E and Kocabas
F: Emerging roles of Meis1 in cardiac regeneration, stem cells and
cancer. Curr Drug Targets. 19:181–190. 2018. View Article : Google Scholar
|
|
11
|
Mamo A, Krosl J, Kroon E, Bijl J, Thompson
A, Mayotte N, Girard S, Bisaillon R, Beslu N, Featherstone M and
Sauvageau G: Molecular dissection of Meis1 reveals 2 domains
required for leukemia induction and a key role for hoxa gene
activation. Blood. 108:622–629. 2006. View Article : Google Scholar
|
|
12
|
Dintilhac A, Bihan R, Guerrier D,
Deschamps S, Bougerie H, Watrin T, Bonnec G and Pellerin I: PBX1
intracellular localization is independent of Meis1 in epithelial
cells of the developing female genital tract. Int J Dev Biol.
49:851–858. 2005. View Article : Google Scholar
|
|
13
|
Crijns APG, de Graeff P, Geerts D, Hoora
KAT, Hollemac H, van der Sluis T, Hofstrad RMW, de Bock GH, de Jong
S, van der Zeea AGJ and de Vries EGE: MEIS and PBX homeobox
proteins in ovarian cancer. Eur J Cancer. 43:2495–2505. 2007.
View Article : Google Scholar
|
|
14
|
Li HX, Guo XY, Xie Y, Yuan QL, Ge MX and
Zhang JY: Study of the dynamic expression of Meis1 in mice. Iran J
Reprod Med. 11:139–144. 2013.
|
|
15
|
Xu B, Geerts D, Qian K, Zhang H and Zhu G:
Myeloid ecotropic viral integration site 1 (MEIS) 1 involvement in
embryonic implantation. Hum Reprod. 23:1394–1406. 2008. View Article : Google Scholar
|
|
16
|
Quentmeier H, Dirks WG, Macleod RAF,
Reinhardt J, Zaborski M and Drexler HG: Expression of HOX genes in
acute leukemia cell lines with and without MLL translocations. Leuk
Lymphoma. 45:567–574. 2004. View Article : Google Scholar
|
|
17
|
Locatelli P, Belaich MN, López AE, Olea
FD, Vega MU, Giménez CS, Simonin JA, Bauzá MDR, Castillo MG,
Cuniberti LA, et al: Novel insights into cardiac regeneration based
on differential fetal and adult ovine heart transcriptomic
analysis. Am J Physiol Heart Circ Physiol. 318:H994–H1007. 2020.
View Article : Google Scholar
|
|
18
|
Mahmoud AI, Kocabas F, Muralidhar SA,
Kimura W, Koura AS, Thet S, Porrello ER and Sadek HA: Meis1
regulates postnatal cardiomyocyte cell cycle arrest. Nature.
497:249–253. 2013. View Article : Google Scholar
|
|
19
|
Imamura T, Morimoto A, Takanashi M, Hibi
S, Sugimoto T, Ishii E and Imashuku S: Frequent co-expression of
HoxA9 and Meis1 genes in infant acute lymphoblastic leukaemia with
MLL rearrangement. Br J Haematol. 119:119–121. 2002. View Article : Google Scholar
|
|
20
|
Kimura W, Xiao F, Canseco DC, Muralidhar
S, Thet SW, Zhang HM, Abderrahman Y, Chen R, Garcia JA, Shelton JM,
et al: Hypoxia fate mapping identifies cycling cardiomyocytes in
the adult heart. Nature. 523:226–230. 2015. View Article : Google Scholar
|
|
21
|
Yao MZ, Ge XY, Liu T, Huang N, Liu H, Chen
Y, Zhang Z and Hu CP: MEIS1 regulated proliferation and migration
of pulmonary artery smooth muscle cells in hypoxia-induced
pulmonary hypertension. Life Sci. 255:1178222020. View Article : Google Scholar
|
|
22
|
Ferreira HJ, Heyn H, Vizoso M, Moutinho C,
Vidal E, Gomez A, Martínez-Cardús A, Simó-Riudalbas L, Moran S,
Jost E and Esteller M: DNMT3A mutations mediate the epigenetic
reactivation of the leukemogenic factor MEIS1 in acute myeloid
leukemia. Oncogene. 35:3079–3082. 2016. View Article : Google Scholar
|
|
23
|
Lasa A, Carnicer MJ, Aventín A, Estivill
C, Brunet S, Sierra J and Nomdedéu JF: MEIS 1 expression is
downregulated through promoter hypermethylation in AML1-ETO acute
myeloid leukemias. Leukemia. 18:1231–1237. 2004. View Article : Google Scholar
|
|
24
|
Musialik E, Bujko M, Kober P, Grygorowicz
MA, Libura M, Przestrzelska M, Juszczynski P, Borg K, Florek I,
Jakóbczyk M and Siedlecki JA: Promoter DNA methylation and
expression levels of HOXA4, HOXA5 and MEIS1 in acute myeloid
leukemia. Mol Med Rep. 11:3948–3954. 2015. View Article : Google Scholar
|
|
25
|
Ropa J, Saha N, Chen Z, Serio J, Chen W,
Mellacheruvu D, Zhao L, Basrur V, Nesvizhskii AI and Muntean AG:
PAF1 complex interactions with SETDB1 mediate promoter H3K9
methylation and transcriptional repression of Hoxa9 and Meis1 in
acute myeloid leukemia. Oncotarget. 9:22123–22136. 2018. View Article : Google Scholar
|
|
26
|
Beukers W, Hercegovac A, Vermeij M,
Kandimalla R, Blok AC, van der Aa MMN, Zwarthoff EC and Zuiverloon
TCM: Hypermethylation of the polycomb group target gene PCDH7 in
bladder tumors from patients of all ages. J Urol. 190:311–316.
2013. View Article : Google Scholar
|
|
27
|
Dihal AA, Boot A, van Roon EH, Schrumpf M,
Fariña-Sarasqueta A, Fiocco M, Zeestraten CM, Peter JK, Kuppen PJK,
Morreau H, et al: The homeobox gene Meis1 is methylated in BRAF
(V600E) mutated colon tumors. PLoS One. 8:e798982013. View Article : Google Scholar
|
|
28
|
Soltani N, Karimiani EG, Farzanehfar M,
Mashkani B, Jafarian A, Ashraf H, Rezyat AA and Soukhtanloo M:
Evaluation of the methylation status of the MEIS1 promoter gene in
colorectal cancer. Middle East J Cancer. 7:203–207. 2016.
|
|
29
|
Popovic D, Vucic D and Dikic I:
Ubiquitination in disease pathogenesis and treatment. Nat Med.
20:1242–1253. 2014. View Article : Google Scholar
|
|
30
|
Liu X, Zhang F, Zhang Y, Li X, Chen C,
Zhou M, Zhuo Yu, Liu Y, Zhao Y, Hao X, et al: PPM1K regulates
hematopoiesis and leukemogenesis through CDC20-mediated
ubiquitination of MEIS1 and p21. Cell Rep. 23:1461–1475. 2018.
View Article : Google Scholar
|
|
31
|
Garcia-Cuellar MP, Steger J, Füller E,
Hetzner K and Slany RK: Pbx3 and Meis1 cooperate through multiple
mechanisms to support hox-induced murine leukemia. Haematologica.
100:905–913. 2015. View Article : Google Scholar
|
|
32
|
Lawrence HJ, Rozenfeld S, Cruz C,
Matsukuma K, Kwong A, Kömüves L, Buchberg AM and Largman C:
Frequent co-expression of the HOXA9 and MEIS1 homeobox genes in
human myeloid leukemias. Leukemia. 13:1993–1999. 1999. View Article : Google Scholar
|
|
33
|
Shen WF, Montgomery JC, Rozenfeld S,
Moskow JJ, Lawrence HJ, Buchberg AM and Largman C: AbdB-like hox
proteins stabilize DNA binding by the Meis1 homeodomain proteins.
Mol Cell Biol. 17:6448–6458. 1997. View Article : Google Scholar
|
|
34
|
Williams TM, Williams ME and Innis JW:
Range of HOX/TALE superclass associations and protein domain
requirements for HOXA13: MEIS interaction. Dev Biol. 277:457–471.
2005. View Article : Google Scholar
|
|
35
|
Wermuth PJ and Buchberg AM: Meis1-mediated
apoptosis is caspase dependent and can be suppressed by
coexpression of HoxA9 in murine and human cell lines. Blood.
105:1222–1230. 2005. View Article : Google Scholar
|
|
36
|
Shen WF, Rozenfeld S, Kwong A, Köm ves LG,
Lawrence HJ and Largman C: HOXA9 forms triple complexes with PBX2
and MEIS1 in myeloid cells. Mol Cell Biol. 19:3051–3061. 1999.
View Article : Google Scholar
|
|
37
|
Sarno JL, Kliman HJ and Taylor HS: HOXA10,
Pbx2, and Meis1 protein expression in the human endometrium:
Formation of multimeric complexes on HOXA10 target genes. J Clin
Endocrinol Metab. 90:522–528. 2005. View Article : Google Scholar
|
|
38
|
Toresson H, Parmar M and Campbell K:
Expression of Meis and Pbx genes and their protein products in the
developing telencephalon: Implications for regional
differentiation. Mech Dev. 94:183–187. 2000. View Article : Google Scholar
|
|
39
|
Chang CP, Jacobs Y, Nakamura T, Jenkins
NA, Copeland NG and Cleary ML: Meis proteins are major in vivo DNA
binding partners for wild-type but not chimeric Pbx proteins. Mol
Cell Biol. 17:5679–5687. 1997. View Article : Google Scholar
|
|
40
|
Bischof LJ, Kagawa N, Moskow JJ, Takahashi
Y, Iwamatsu A, Buchberg AM and Waterman MR: Members of the Meis1
and pbx homeodomain protein families cooperatively bind a
cAMP-responsive sequence (CRS1) from bovine CYP17. J Biol Chem.
273:7941–7948. 1998. View Article : Google Scholar
|
|
41
|
Mojsin M and Stevanovic M: PBX1 and MEIS1
up-regulate SOX3 gene expression by direct interaction with a
consensus binding site within the basal promoter region. Biochem J.
425:107–116. 2009. View Article : Google Scholar
|
|
42
|
Dardaei L, Longobardi E and Blasi F: Prep1
and Meis1 competition for Pbx1 binding regulates protein stability
and tumorigenesis. Proc Natl Acad Sci USA. 111:E896–E905. 2014.
View Article : Google Scholar
|
|
43
|
Thorne RMW and Milne TA: Dangerous
liaisons: Cooperation between Pbx3, Meis1 and Hoxa9 in leukemia.
Haematologica. 100:850–853. 2015. View Article : Google Scholar
|
|
44
|
Okada Y, Nagai R, Sato T, Matsuura E,
Minami T, Morita I and Doi T: Homeodomain proteins MEIS1 and PBXs
regulate the lineage-specific transcription of the platelet factor
4 gene. Blood. 101:4748–4756. 2003. View Article : Google Scholar
|
|
45
|
Rosales-Aviña JA, Torres-Flores J,
Aguilar-Lemarroy A, Gurrola-Díaz C, Hernández-Flores G,
Ortiz-Lazareno PC, Lerma-Díaz JM, de Celis R, González-Ramella Ó,
Barrera-Chaires E, et al: MEIS1, PREP1, and PBX4 are differentially
expressed in acute lymphoblastic leukemia: Association of MEIS1
expression with higher proliferation and chemotherapy resistance. J
Exp Clin Cancer Res. 30:1122011. View Article : Google Scholar
|
|
46
|
Rad A, Farshchian M, Forghanifard MM,
Matin MM, Bahrami AR, Geerts D, A'rabi A, Memar B and Abbaszadegan
MR: Predicting the molecular role of MEIS1 in esophageal squamous
cell carcinoma. Tumour Biol. 37:1715–1725. 2016. View Article : Google Scholar
|
|
47
|
Patel AV, Chaney KE, Choi K, Largaespada
DA, Kumar AR and Ratner N: An shRNA screen identifies MEIS1 as a
driver of malignant peripheral nerve sheath tumors. EBioMedicine.
9:110–119. 2016. View Article : Google Scholar
|
|
48
|
Lin LH, Huang ML, Shi XP, Mayakonda A, Hu
KS, Jiang YY, Guo X, Chen L, Pang B, Doan N, et al:
Super-enhancer-associated MEIS1 promotes transcriptional
dysregulation in ewing sarcoma in co-operation with EWS-FLI1.
Nucleic Acids Res. 47:1255–1267. 2019. View Article : Google Scholar
|
|
49
|
Cui L, Li M, Feng F, Yang Y, Hang X, Cui J
and Gao J: MEIS1 functions as a potential AR negative regulator.
Exp Cell Res. 328:58–68. 2014. View Article : Google Scholar
|
|
50
|
Yokoyama T, Nakatake M, Kuwata T, Couzinet
A, Goitsuka R, Tsutsumi S, Aburatani H, Valk PJM, Delwel R and
Nakamura T: MEIS1-mediated transactivation of synaptotagmin-like 1
promotes CXCL12/CXCR4 signaling and leukemogenesis. J Clin Invest.
126:1664–1678. 2016. View Article : Google Scholar
|
|
51
|
Argiropoulos B, Yung E, Xiang P, Lo C,
Kuchenbauer F, Palmqvist L, Reindl C, Heuser M, Sekulovic S, Rosten
P, et al: Linkage of the potent leukemogenic activity of Meis1 to
cell-cycle entry and transcriptional regulation of cyclin D3.
Blood. 115:4071–4082. 2010. View Article : Google Scholar
|
|
52
|
Mohr S, Doebele C, Comoglio F, Berg T,
Beck J, Bohnenberger H, Alexe G, Corso J, Ströbel P, Wachter A, et
al: Hoxa9 and Meis1 cooperatively induce addiction to syk signaling
by suppressing miR-146a in acute myeloid leukemia. Cancer Cell.
31:549–562. 2017. View Article : Google Scholar
|
|
53
|
Thorsteinsdottir U, Kroon E, Jerome L,
Blasi F and Sauvageau G: Defining roles for HOX and MEIS1 genes in
induction of acute myeloid leukemia. Mol Cell Biol. 21:224–234.
2001. View Article : Google Scholar
|
|
54
|
Calvo KR, Knoepfler PS, Sykes DB, Pasillas
MP and Kamps MP: Meis1a suppresses differentiation by G-CSF and
promotes proliferation by SCF: Potential mechanisms of
cooperativity with Hoxa9 in myeloid leukemia. Proc Natl Acad Sci
USA. 98:13120–13125. 2001. View Article : Google Scholar
|
|
55
|
Wang GG, Pasillas MP and Kamps MP:
Persistent transactivation by Meis1 replaces hox function in
myeloid leukemogenesis models: Evidence for co-occupancy of
Meis1-pbx and hox-pbx complexes on promoters of leukemia-associated
genes. Mol Cell Biol. 26:3902–3916. 2006. View Article : Google Scholar
|
|
56
|
Kiyoi H, Kawashima N and Ishikawa Y: FLT3
mutations in acute myeloid leukemia: Therapeutic paradigm beyond
inhibitor development. Cancer Sci. 111:312–322. 2020. View Article : Google Scholar
|
|
57
|
Jin G, Yamazaki Y, Takuwa M, Takahara T,
Kaneko K, Kuwata T, Miyata S and Nakamura T: Trib1 and evi1
cooperate with Hoxa and Meis1 in myeloid leukemogenesis. Blood.
109:3998–4005. 2007. View Article : Google Scholar
|
|
58
|
Arabanian LS, Johansson P, Staffas A,
Nilsson T, Rouhi A, Fogelstrand L and Palmqvist L: The endothelin
receptor type A is a downstream target of Hoxa9 and Meis1 in acute
myeloid leukemia. Leuk Res. 75:61–68. 2018. View Article : Google Scholar
|
|
59
|
Pineault N, Buske C, Feuring-Buske M,
Abramovich C, Rosten P, Hogge DE, Aplan PD and Humphries RK:
Induction of acute myeloid leukemia in mice by the human
leukemia-specific fusion gene NUP98-HOXD13 in concert with Meis1.
Blood. 101:4529–4538. 2003. View Article : Google Scholar
|
|
60
|
Wang GG, Pasillas MP and Kamps MP: Meis1
programs transcription of FLT3 and cancer stem cell character,
using a mechanism that requires interaction with Pbx and a novel
function of the Meis1 C-terminus. Blood. 106:254–264. 2005.
View Article : Google Scholar
|
|
61
|
Li ZJ, Chen P, Su R, Hu C, Li Y, Elkahloun
AG, Zuo Z, Gurbuxani S, Arnovitz S, Weng H, et al: PBX3 and MEIS1
cooperate in hematopoietic cells to drive acute myeloid leukemias
characterized by a core transcriptome of the MLL-rearranged
disease. Cancer Res. 76:619–629. 2016. View Article : Google Scholar
|
|
62
|
Wong P, Iwasaki M, Somervaille TCP, So
CWE, So CWE and Cleary ML: Meis1 is an essential and rate-limiting
regulator of MLL leukemia stem cell potential. Genes Dev.
21:2762–2774. 2007. View Article : Google Scholar
|
|
63
|
Orlovsky K, Kalinkovich A, Rozovskaia T,
Shezen E, Itkin T, Alder H, Ozer HG, Carramusa L, Avigdor A,
Volinia S, et al: Down-regulation of homeobox genes MEIS1 and HOXA
in MLL-rearranged acute leukemia impairs engraftment and reduces
proliferation. Proc Natl Acad Sci USA. 108:7956–7961. 2011.
View Article : Google Scholar
|
|
64
|
Whitlock NC, Trostel SY, Wilkinson S,
Terrigino NT, Hennigan ST, Lake R, Carrabba NV, Atway R, Walton ED,
Gryder BE, et al: MEIS1 down-regulation by MYC mediates prostate
cancer development through elevated HOXB13 expression and AR
activity. Oncogene. 39:5663–5674. 2020. View Article : Google Scholar
|
|
65
|
Johng D, Torga G, Ewing CM, Jin K, Norris
JD, McDonnell DP and Isaacs WB: HOXB13 interaction with MEIS1
modifies proliferation and gene expression in prostate cancer.
Prostate. 79:414–424. 2019. View Article : Google Scholar
|
|
66
|
VanOpstall C, Perike S, Brechka H, Gillard
M, Lamperis S, Zhu BZ, Brown R, Bhanvadia R and Griend DJ:
MEIS-mediated suppression of human prostate cancer growth and
metastasis through HOXB13-dependent regulation of proteoglycans.
ELife. 9:e536002020. View Article : Google Scholar
|
|
67
|
Li W, Huang K, Guo H and Cui G: Meis1
regulates proliferation of non-small-cell lung cancer cells. J
Thorac Dis. 6:850–855. 2014.
|
|
68
|
Song F, Wang H and Wang Y: Myeloid
ecotropic viral integration site 1 inhibits cell proliferation,
invasion or migration in human gastric cancer. Oncotarget.
8:90050–90060. 2017. View Article : Google Scholar
|
|
69
|
Zhu J, Cui L, Xu A, Yin X, Li F and Gao J:
MEIS1 inhibits clear cell renal cell carcinoma cells proliferation
and in vitro invasion or migration. BMC cancer. 17:1762017.
View Article : Google Scholar
|
|
70
|
Mahmoudian RA, Bahadori B, Rad A,
Abbaszadegan MR and Forghanifard MM: MEIS1 knockdown may promote
differentiation of esophageal squamous carcinoma cell line KYSE-30.
Mol Genet Genomic Med. 7:e007462019. View Article : Google Scholar
|
|
71
|
Grembecka J, He S, Shi A, Purohit T,
Muntean AG, Sorenson RJ, Showalter HD, Murai MJ, Belcher AM,
Hartley T, et al: Menin-MLL inhibitors reverse oncogenic activity
of MLL fusion proteins in leukemia. Nat Chem Biol. 8:277–284. 2012.
View Article : Google Scholar
|
|
72
|
Borkin D, He S, Miao H, Kempinska K,
Pollock J, Chase J, Purohit T, Malik B, Zhao T, Wang J, et al:
Pharmacologic inhibition of the Menin-MLL interaction blocks
progression of MLL leukemia in vivo. Cancer Cell. 27:589–602. 2015.
View Article : Google Scholar
|
|
73
|
Kühn MWM, Song E, Feng Z, Sinha A, Chen
CW, Deshpande AJ, Cusan M, Farnoud N, Mupo A, Grove C, et al:
Targeting chromatin regulators inhibits leukemogenic gene
expression in NPM1 mutant leukemia. Cancer Discov. 6:1166–1181.
2016. View Article : Google Scholar
|
|
74
|
Klossowski S, Miao H, Kempinska K, Wu T,
Purohit T, Kim E, Linhares BM, Chen D, Jih G, Perkey E, et al:
Menin inhibitor MI-3454 induces remission in MLL1-rearranged and
NPM1-mutated models of leukemia. J Clin Invest. 130:981–997. 2020.
View Article : Google Scholar
|
|
75
|
Krivtsov AV, Evans K, Gadrey JY, Eschle
BK, Hatton C, Uckelmann HJ, Ross KN, Perner F, Olsen SN, Pritchard
T, et al: A menin-MLL inhibitor induces specific chromatin changes
and eradicates disease in models of MLL-rearranged leukemia. Cancer
Cell. 36:660–673. 2019. View Article : Google Scholar
|
|
76
|
Gundry MC, Goodell MA and Brunetti L: It's
all about MEis: Menin-MLL inhibition eradicates NPM1-mutated and
MLL-rearranged acute leukemias in mice. Cancer Cell. 37:267–269.
2020. View Article : Google Scholar
|
|
77
|
Uckelmann HJ, Kim SM, Wong EM, Hatton C,
Giovinazzo H, Gadrey JY, Krivtsov AV, Rücker FG, Döhner K, McGeehan
GM, et al: Therapeutic targeting of preleukemia cells in a mouse
model of NPM1 mutant acute myeloid leukemia. Science. 367:586–590.
2020. View Article : Google Scholar
|
|
78
|
Xu S, Aguilar A, Xu T, Zheng K, Huang L,
Stuckey J, Chinnaswamy K, Bernard D, Fernández-Salas E, Liu L, et
al: Design of the first-in-class, highly potent irreversible
inhibitor targeting the Menin-MLL protein-protein interaction.
Angew Chem Int Ed Engl. 57:1601–1605. 2018. View Article : Google Scholar
|
|
79
|
Chen WL, Li DD, Chen X, Wang YZ, Xu JJ,
Jiang ZY, You QD and Guo XK: Proton pump inhibitors selectively
suppress MLL rearranged leukemia cells via disrupting MLL1-WDR5
protein-protein interaction. Eur J Med Chem. 188:1120272020.
View Article : Google Scholar
|
|
80
|
Zhang L, Chen Y, Liu N, Li L, Xiao S, Li
X, Chen K, Luo C, Chen S and Chen H: Design, synthesis and anti
leukemia cells proliferation activities of pyrimidylaminoquinoline
derivatives as DOT1L inhibitors. Bioorg Chem. 80:649–654. 2018.
View Article : Google Scholar
|
|
81
|
Somers K, Chudakova DA, Middlemiss SMC,
Wen VW, Clifton M, Kwek A, Liu B, Mayoh C, Bongers A, Karsa M, et
al: CCI-007, a novel small molecule with cytotoxic activity against
infant leukemia with MLL rearrangements. Oncotarget. 7:46067–46087.
2016. View Article : Google Scholar
|
|
82
|
Turan RD, Albayrak E, Uslu M, Siyah P,
Alyazici LY, Kalkan BM, Aslan GS, Yuce DC, Aksoz M, Tuysuz EC, et
al: Development of small molecule MEIS inhibitors that modulate HSC
activity. Sci Rep. 10:79942020. View Article : Google Scholar
|
|
83
|
Vander Heiden MG, Cantley LC and Thompson
CB: Understanding the warburg effect: The metabolic requirements of
cell proliferation. Science. 324:1029–1033. 2009. View Article : Google Scholar
|