|
1
|
Cani PD: Human gut microbiome: Hopes,
threats and promises. Gut. 67:1716–1725. 2018. View Article : Google Scholar
|
|
2
|
Albhaisi SAM, Bajaj JS and Sanyal AJ: Role
of gut microbiota in liver disease. Am J Physiol Gastrointest Liver
Physiol. 318:G84–G98. 2020. View Article : Google Scholar
|
|
3
|
Gomaa EZ: Human gut microbiota/microbiome
in health and diseases: A review. Antonie Van Leeuwenhoek.
113:2019–2040. 2020. View Article : Google Scholar
|
|
4
|
Cox AJ, West NP and Cripps AW: Obesity,
inflammation, and the gut microbiota. Lancet Diabetes Endocrinol.
3:207–215. 2015. View Article : Google Scholar
|
|
5
|
Schriefer AE, Cliften PF, Hibberd MC,
Sawyer C, Brown-Kennerly V, Burcea L, Klotz E, Crosby SD, Gordon JI
and Head RD: A multi-amplicon 16S rRNA sequencing and analysis
method for improved taxonomic profiling of bacterial communities. J
Microbiol Methods. 154:6–13. 2018. View Article : Google Scholar
|
|
6
|
Hills RD Jr, Pontefract BA, Mishcon HR,
Black CA, Sutton SC and Theberge CR: Gut microbiome: Profound
implications for diet and disease. Nutrients. 11:16132019.
View Article : Google Scholar
|
|
7
|
Odamaki T, Kato K, Sugahara H, Hashikura
N, Takahashi S, Xiao JZ, Abe F and Osawa R: Age-related changes in
gut microbiota composition from newborn to centenarian: A
cross-sectional study. BMC Microbiol. 16:902016. View Article : Google Scholar
|
|
8
|
Bolte LA, Vich Vila A, Imhann F, Collij V,
Gacesa R, Peters V, Wijmenga C, Kurilshikov A, Campmans-Kuijpers
MJE, Fu J, et al: Long-term dietary patterns are associated with
pro-inflammatory and anti-inflammatory features of the gut
microbiome. Gut. 70:1287–1298. 2021. View Article : Google Scholar
|
|
9
|
Koliarakis I, Messaritakis I, Nikolouzakis
TK, Hamilos G, Souglakos J and Tsiaoussis J: Oral bacteria and
intestinal dysbiosis in colorectal cancer. Int J Mol Sci.
20:41462019. View Article : Google Scholar
|
|
10
|
Yang G, Wei J, Liu P, Zhang Q, Tian Y, Hou
G, Meng L, Xin Y and Jiang X: Role of the gut microbiota in type 2
diabetes and related diseases. Metabolism. 117:1547122021.
View Article : Google Scholar
|
|
11
|
El-Salhy M, Hatlebakk JG and Hausken T:
Diet in irritable bowel syndrome (IBS): Interaction with gut
microbiota and gut hormones. Nutrients. 11:18242019. View Article : Google Scholar
|
|
12
|
Li DY and Tang WHW: Gut microbiota and
atherosclerosis. Curr Atheroscler Rep. 19:392017. View Article : Google Scholar
|
|
13
|
Ahmad AF, Dwivedi G, O'Gara F,
Caparros-Martin J and Ward NC: The gut microbiome and
cardiovascular disease: Current knowledge and clinical potential.
Am J Physiol Heart Circ Physiol. 317:H923–H938. 2019. View Article : Google Scholar
|
|
14
|
McKenzie C, Tan J, Macia L and Mackay CR:
The nutrition-gut microbiome-physiology axis and allergic diseases.
Immunol Rev. 278:277–295. 2017. View Article : Google Scholar
|
|
15
|
Hughes HK, Rose D and Ashwood P: The gut
microbiota and dysbiosis in autism spectrum disorders. Curr Neurol
Neurosci Rep. 18:812018. View Article : Google Scholar
|
|
16
|
Sanchez JMS, DePaula-Silva AB, Libbey JE
and Fujinami RS: Role of diet in regulating the gut microbiota and
multiple sclerosis. Clin Immunol. 1083792020.Online ahead of print.
View Article : Google Scholar
|
|
17
|
Zindel J and Kubes P: DAMPs, PAMPs, and
LAMPs in immunity and sterile inflammation. Annu Rev Pathol.
15:493–518. 2020. View Article : Google Scholar
|
|
18
|
Puche JE, Saiman Y and Friedman SL:
Hepatic stellate cells and liver fibrosis. Compr Physiol.
3:1473–1492. 2013. View Article : Google Scholar
|
|
19
|
Barry AE, Baldeosingh R, Lamm R, Patel K,
Zhang K, Dominguez DA, Kirton KJ, Shah AP and Dang H: Hepatic
stellate cells and hepatocarcinogenesis. Front Cell Dev Biol.
8:7092020. View Article : Google Scholar
|
|
20
|
Ju C and Tacke F: Hepatic macrophages in
homeostasis and liver diseases: From pathogenesis to novel
therapeutic strategies. Cell Mol Immunol. 13:316–327. 2016.
View Article : Google Scholar
|
|
21
|
Aly AM, Adel A, El-Gendy AO, Essam TM and
Aziz RK: Gut microbiome alterations in patients with stage 4
hepatitis C. Gut Pathog. 8:422016. View Article : Google Scholar
|
|
22
|
Preveden T, Scarpellini E, Milić N, Luzza
F and Abenavoli L: Gut microbiota changes and chronic hepatitis C
virus infection. Expert Rev Gastroenterol Hepatol. 11:813–819.
2017. View Article : Google Scholar
|
|
23
|
Heidrich B, Vital M, Plumeier I, Döscher
N, Kahl S, Kirschner J, Ziegert S, Solbach P, Lenzen H, Potthoff A,
et al: Intestinal microbiota in patients with chronic hepatitis C
with and without cirrhosis compared with healthy controls. Liver
Int. 38:50–58. 2018. View Article : Google Scholar
|
|
24
|
Inoue T, Nakayama J, Moriya K, Kawaratani
H, Momoda R, Ito K, Iio E, Nojiri S, Fujiwara K, Yoneda M, et al:
Gut dysbiosis associated with hepatitis C virus infection. Clin
Infect Dis. 67:869–877. 2018. View Article : Google Scholar
|
|
25
|
Trépo C, Chan HL and Lok A: Hepatitis B
virus infection. Lancet. 384:2053–2063. 2014. View Article : Google Scholar
|
|
26
|
Batsis ID, Wasuwanich P and Karnsakul WW:
The management of hepatitis B and hepatitis C in children. Minerva
Pediatr. 71:59–75. 2019.
|
|
27
|
Yang R, Xu Y, Dai Z, Lin X and Wang H: the
immunologic role of gut microbiota in patients with chronic HBV
infection. J Immunol Res. 2018:23619632018. View Article : Google Scholar
|
|
28
|
Chou HH, Chien WH, Wu LL, Cheng CH, Chung
CH, Horng JH, Ni YH, Tseng HT, Wu D, Lu X, et al: Age-related
immune clearance of hepatitis B virus infection requires the
establishment of gut microbiota. Proc Natl Acad Sci USA.
112:2175–2180. 2015. View Article : Google Scholar
|
|
29
|
Xu M, Wang B, Fu Y, Chen Y, Yang F, Lu H,
Chen Y, Xu J and Li L: Changes of fecal Bifidobacterium species in
adult patients with hepatitis B virus-induced chronic liver
disease. Microb Ecol. 63:304–313. 2012. View Article : Google Scholar
|
|
30
|
Lu H, Wu Z, Xu W, Yang J, Chen Y and Li L:
Intestinal microbiota was assessed in cirrhotic patients with
hepatitis B virus infection. Intestinal microbiota of HBV cirrhotic
patients. Microb Ecol. 61:693–703. 2011. View Article : Google Scholar
|
|
31
|
Wei X, Yan X, Zou D, Yang Z, Wang X, Liu
W, Wang S, Li X, Han J, Huang L and Yuan J: Abnormal fecal
microbiota community and functions in patients with hepatitis B
liver cirrhosis as revealed by a metagenomic approach. BMC
Gastroenterol. 13:1752013. View Article : Google Scholar
|
|
32
|
Zeng Y, Chen S, Fu Y, Wu W, Chen T, Chen
J, Yang B and Ou Q: Gut microbiota dysbiosis in patients with
hepatitis B virus-induced chronic liver disease covering chronic
hepatitis, liver cirrhosis and hepatocellular carcinoma. J Viral
Hepat. 27:143–155. 2020. View Article : Google Scholar
|
|
33
|
Czaja AJ: Examining pathogenic concepts of
autoimmune hepatitis for cues to future investigations and
interventions. World J Gastroenterol. 25:6579–6606. 2019.
View Article : Google Scholar
|
|
34
|
Bogdanos DP and Sakkas LI: Enterococcus
gallinarum as a component of the autoinfectome: The
gut-liver-autoimmune rheumatic disease axis is alive and kicking.
Mediterr J Rheumatol. 29:187–189. 2018. View Article : Google Scholar
|
|
35
|
Manfredo Vieira S, Hiltensperger M, Kumar
V, Zegarra-Ruiz D, Dehner C, Khan N, Costa FRC, Tiniakou E,
Greiling T, Ruff W, et al: Translocation of a gut pathobiont drives
autoimmunity in mice and humans. Science. 359:1156–1161. 2018.
View Article : Google Scholar
|
|
36
|
Wei Y, Li Y, Yan L, Sun C, Miao Q, Wang Q,
Xiao X, Lian M, Li B, Chen Y, et al: Alterations of gut microbiome
in autoimmune hepatitis. Gut. 69:569–577. 2020. View Article : Google Scholar
|
|
37
|
Liwinski T, Casar C, Ruehlemann MC, Bang
C, Sebode M, Hohenester S, Denk G, Lieb W, Lohse AW, Franke A and
Schramm C: A disease-specific decline of the relative abundance of
Bifidobacterium in patients with autoimmune hepatitis. Aliment
Pharmacol Ther. 51:1417–1428. 2020. View Article : Google Scholar
|
|
38
|
Kido M, Watanabe N, Okazaki T, Akamatsu T,
Tanaka J, Saga K, Nishio A, Honjo T and Chiba T: Fatal autoimmune
hepatitis induced by concurrent loss of naturally arising
regulatory T cells and PD-1-mediated signaling. Gastroenterology.
135:1333–1343. 2008. View Article : Google Scholar
|
|
39
|
Ikeda A, Aoki N, Kido M, Iwamoto S,
Nishiura H, Maruoka R, Chiba T and Watanabe N: Progression of
autoimmune hepatitis is mediated by IL-18-producing dendritic cells
and hepatic CXCL9 expression in mice. Hepatology. 60:224–236. 2014.
View Article : Google Scholar
|
|
40
|
Lleo A, Wang GQ, Gershwin ME and
Hirschfield GM: Primary biliary cholangitis. Lancet. 396:1915–1926.
2020. View Article : Google Scholar
|
|
41
|
Lleo A, Leung PSC, Hirschfield GM and
Gershwin EM: The pathogenesis of primary biliary cholangitis: A
comprehensive review. Semin Liver Dis. 40:34–48. 2020. View Article : Google Scholar
|
|
42
|
Gulamhusein AF and Hirschfield GM: Primary
biliary cholangitis: Pathogenesis and therapeutic opportunities.
Nat Rev Gastroenterol Hepatol. 17:93–110. 2020. View Article : Google Scholar
|
|
43
|
Harada K, Tsuneyama K, Sudo Y, Masuda S
and Nakanuma Y: Molecular identification of bacterial 16S ribosomal
RNA gene in liver tissue of primary biliary cirrhosis: Is
Propionibacterium acnes involved in granuloma formation?
Hepatology. 33:530–536. 2001. View Article : Google Scholar
|
|
44
|
Tang R, Wei Y, Li Y, Chen W, Chen H, Wang
Q, Yang F, Miao Q, Xiao X, Zhang H, et al: Gut microbial profile is
altered in primary biliary cholangitis and partially restored after
UDCA therapy. Gut. 67:534–541. 2018. View Article : Google Scholar
|
|
45
|
Furukawa M, Moriya K, Nakayama J, Inoue T,
Momoda R, Kawaratani H, Namisaki T, Sato S, Douhara A, Kaji K, et
al: Gut dysbiosis associated with clinical prognosis of patients
with primary biliary cholangitis. Hepatol Res. 50:840–852. 2020.
View Article : Google Scholar
|
|
46
|
Buchholz BM, Lykoudis PM, Ravikumar R,
Pollok JM and Fusai GK: Role of colectomy in preventing recurrent
primary sclerosing cholangitis in liver transplant recipients.
World J Gastroenterol. 24:3171–3180. 2018. View Article : Google Scholar
|
|
47
|
Shah A, Crawford D, Burger D, Martin N,
Walker M, Talley NJ, Tallis C, Jones M, Stuart K, Keely S, et al:
Effects of antibiotic therapy in primary sclerosing cholangitis
with and without inflammatory bowel disease: A systematic review
and meta-analysis. Semin Liver Dis. 39:432–441. 2019. View Article : Google Scholar
|
|
48
|
Little R, Wine E, Kamath BM, Griffiths AM
and Ricciuto A: Gut microbiome in primary sclerosing cholangitis: A
review. World J Gastroenterol. 26:2768–2780. 2020. View Article : Google Scholar
|
|
49
|
Prokopič M and Beuers U: Management of
primary sclerosing cholangitis and its complications: An
algorithmic approach. Hepatol Int. 15:6–20. 2021. View Article : Google Scholar
|
|
50
|
Nakamoto N, Sasaki N, Aoki R, Miyamoto K,
Suda W, Teratani T, Suzuki T, Koda Y, Chu PS, Taniki N, et al: Gut
pathobionts underlie intestinal barrier dysfunction and liver T
helper 17 cell immune response in primary sclerosing cholangitis.
Nat Microbiol. 4:492–503. 2019. View Article : Google Scholar
|
|
51
|
Yasuda K, Takeuchi Y and Hirota K: The
pathogenicity of Th17 cells in autoimmune diseases. Semin
Immunopathol. 41:283–297. 2019. View Article : Google Scholar
|
|
52
|
Bajaj JS: Alcohol, liver disease and the
gut microbiota. Nat Rev Gastroenterol Hepatol. 16:235–246. 2019.
View Article : Google Scholar
|
|
53
|
Kobayashi M, Asai A, Ito I, Suzuki S,
Higuchi K and Suzuki F: Short-term alcohol abstinence improves
antibacterial defenses of chronic alcohol-consuming mice against
gut bacteria-associated sepsis caused by Enterococcus faecalis oral
infection. Am J Pathol. 187:1998–2007. 2017. View Article : Google Scholar
|
|
54
|
Hartmann P, Seebauer CT and Schnabl B:
Alcoholic liver disease: The gut microbiome and liver cross talk.
Alcohol Clin Exp Res. 39:763–775. 2015. View Article : Google Scholar
|
|
55
|
Elamin EE, Masclee AA, Dekker J and
Jonkers DM: Ethanol metabolism and its effects on the intestinal
epithelial barrier. Nutr Rev. 71:483–499. 2013. View Article : Google Scholar
|
|
56
|
Dubinkina VB, Tyakht AV, Odintsova VY,
Yarygin KS, Kovarsky BA, Pavlenko AV, Ischenko DS, Popenko AS,
Alexeev DG, Taraskina AY, et al: Links of gut microbiota
composition with alcohol dependence syndrome and alcoholic liver
disease. Microbiome. 5:1412017. View Article : Google Scholar
|
|
57
|
Szabo G: Gut-liver axis in alcoholic liver
disease. Gastroenterology. 148:30–36. 2014. View Article : Google Scholar
|
|
58
|
Xie G, Zhong W, Zheng X, Li Q, Qiu Y, Li
H, Chen H, Zhou Z and Jia W: Chronic ethanol consumption alters
mammalian gastrointestinal content metabolites. J Proteome Res.
12:3297–3306. 2013. View Article : Google Scholar
|
|
59
|
Adachi Y, Moore LE, Bradford BU, Gao W and
Thurman RG: Antibiotics prevent liver injury in rats following
long-term exposure to ethanol. Gastroenterology. 108:218–224. 1995.
View Article : Google Scholar
|
|
60
|
Younossi ZM, Marchesini G, Pinto-Cortez H
and Petta S: Epidemiology of nonalcoholic fatty liver disease and
nonalcoholic steatohepatitis: Implications for liver
transplantation. Transplantation. 103:22–27. 2019. View Article : Google Scholar
|
|
61
|
Younossi Z, Anstee QM, Marietti M, Hardy
T, Henry L, Eslam M, George J and Bugianesi E: Global burden of
NAFLD and NASH: trends, predictions, risk factors and prevention.
Nat Rev Gastroenterol Hepatol. 15:11–20. 2018. View Article : Google Scholar
|
|
62
|
Nishikawa H and Osaki Y: Non-B, non-C
hepatocellular carcinoma (Review). Int J Oncol. 43:1333–1342. 2013.
View Article : Google Scholar
|
|
63
|
Chakraborti CK: New-found link between
microbiota and obesity. World J Gastrointest Pathophysiol.
6:110–119. 2015. View Article : Google Scholar
|
|
64
|
Leung C, Rivera L, Furness JB and Angus
PW: The role of the gut microbiota in NAFLD. Nat Rev Gastroenterol
Hepatol. 13:412–425. 2016. View Article : Google Scholar
|
|
65
|
Tomita K, Tamiya G, Ando S, Ohsumi K,
Chiyo T, Mizutani A, Kitamura N, Toda K, Kaneko T, Horie Y, et al:
Tumour necrosis factor alpha signalling through activation of
Kupffer cells plays an essential role in liver fibrosis of
non-alcoholic steatohepatitis in mice. Gut. 55:415–424. 2006.
View Article : Google Scholar
|
|
66
|
Rivera CA, Adegboyega P, van Rooijen N,
Tagalicud A, Allman M and Wallace M: Toll-like receptor-4 signaling
and Kupffer cells play pivotal roles in the pathogenesis of
non-alcoholic steatohepatitis. J Hepatol. 47:571–579. 2007.
View Article : Google Scholar
|
|
67
|
Friedman J: The long road to leptin. J
Clin Invest. 126:4727–4734. 2016. View Article : Google Scholar
|
|
68
|
Imajo K, Fujita K, Yoneda M, Nozaki Y,
Ogawa Y, Shinohara Y, Kato S, Mawatari H, Shibata W, Kitani H, et
al: Hyperresponsivity to low-dose endotoxin during progression to
nonalcoholic steatohepatitis is regulated by leptin-mediated
signaling. Cell Metab. 16:44–54. 2012. View Article : Google Scholar
|
|
69
|
Zhu L, Baker SS, Gill C, Liu W, Alkhouri
R, Baker RD and Gill SR: Characterization of gut microbiomes in
nonalcoholic steatohepatitis (NASH) patients: A connection between
endogenous alcohol and NASH. Hepatology. 57:601–609. 2013.
View Article : Google Scholar
|
|
70
|
Seki E, De Minicis S, Osterreicher CH,
Kluwe J, Osawa Y, Brenner DA and Schwabe RF: TLR4 enhances TGF-beta
signaling and hepatic fibrosis. Nat Med. 13:1324–1332. 2007.
View Article : Google Scholar
|
|
71
|
Tomita K, Teratani T, Suzuki T, Shimizu M,
Sato H, Narimatsu K, Okada Y, Kurihara C, Irie R, Yokoyama H, et
al: Free cholesterol accumulation in hepatic stellate cells:
Mechanism of liver fibrosis aggravation in nonalcoholic
steatohepatitis in mice. Hepatology. 59:154–169. 2014. View Article : Google Scholar
|
|
72
|
Gäbele E, Dostert K, Hofmann C, Wiest R,
Schölmerich J, Hellerbrand C and Obermeier F: DSS induced colitis
increases portal LPS levels and enhances hepatic inflammation and
fibrogenesis in experimental NASH. J Hepatol. 55:1391–1399. 2011.
View Article : Google Scholar
|
|
73
|
Kakiyama G, Pandak WM, Gillevet PM,
Hylemon PB, Heuman DM, Daita K, Takei H, Muto A, Nittono H, Ridlon
JM, et al: Modulation of the fecal bile acid profile by gut
microbiota in cirrhosis. J Hepatol. 58:949–955. 2013. View Article : Google Scholar
|
|
74
|
Nakanishi K, Kaji K, Kitade M, Kubo T,
Furukawa M, Saikawa S, Shimozato N, Sato S, Seki K, Kawaratani H,
et al: Exogenous administration of low-dose lipopolysaccharide
potentiates liver fibrosis in a choline-deficient
l-amino-acid-defined diet-induced murine steatohepatitis model. Int
J Mol Sci. 20:27242019. View Article : Google Scholar
|
|
75
|
Dapito DH, Mencin A, Gwak GY, Pradere JP,
Jang MK, Mederacke I, Caviglia JM, Khiabanian H, Adeyemi A,
Bataller R, et al: Promotion of hepatocellular carcinoma by the
intestinal microbiota and TLR4. Cancer Cell. 21:504–516. 2012.
View Article : Google Scholar
|
|
76
|
Riese DJ II and Cullum RL: Epiregulin:
Roles in normal physiology and cancer. Semin Cell Dev Biol.
28:49–56. 2014. View Article : Google Scholar
|
|
77
|
Qin N, Yang F, Li A, Prifti E, Chen Y,
Shao L, Guo J, Le Chatelier E, Yao J, Wu L, et al: Alterations of
the human gut microbiome in liver cirrhosis. Nature. 513:59–64.
2014. View Article : Google Scholar
|
|
78
|
U-King-Im JM, Yu E, Bartlett E, Soobrah R
and Kucharczyk W: Acute hyperammonemic encephalopathy in adults:
Imaging findings. Am J Neuroradiol. 32:413–418. 2011. View Article : Google Scholar
|
|
79
|
Bjerring PN, Eefsen M, Hansen BA and
Larsen FS: The brain in acute liver failure. A tortuous path from
hyperammonemia to cerebral edema. Metab Brain Dis. 24:5–14. 2009.
View Article : Google Scholar
|
|
80
|
Nishikawa H, Enomoto H, Ishii A, Iwata Y,
Miyamoto Y, Ishii N, Yuri Y, Hasegawa K, Nakano C, Nishimura T, et
al: Elevated serum myostatin level is associated with worse
survival in patients with liver cirrhosis. J Cachexia Sarcopenia
Muscle. 8:915–925. 2017. View Article : Google Scholar
|
|
81
|
Nishikawa H, Enomoto H, Nishiguchi S and
Iijima H: Liver cirrhosis and sarcopenia from the viewpoint of
dysbiosis. Int J Mol Sci. 21:52542020. View Article : Google Scholar
|
|
82
|
Nishikawa H, Shiraki M, Hiramatsu A,
Moriya K, Hino K and Nishiguchi S: Japan society of hepatology
guidelines for sarcopenia in liver disease (1st edition):
Recommendation from the working group for creation of sarcopenia
assessment criteria. Hepatol Res. 46:951–963. 2016. View Article : Google Scholar
|
|
83
|
Jayakumar AR, Tong XY, Curtis KM,
Ruiz-Cordero R, Abreu MT and Norenberg MD: Increased toll-like
receptor 4 in cerebral endothelial cells contributes to the
astrocyte swelling and brain edema in acute hepatic encephalopathy.
J Neurochem. 128:890–903. 2014. View Article : Google Scholar
|
|
84
|
Jayakumar AR, Rama Rao KV and Norenberg
MD: Neuroinflammation in hepatic encephalopathy: Mechanistic
aspects. J Clin Exp Hepatol. 5(Suppl 1): S21–S28. 2015. View Article : Google Scholar
|
|
85
|
Kang DJ, Betrapally NS, Ghosh SA, Sartor
RB, Hylemon PB, Gillevet PM, Sanyal AJ, Heuman DM, Carl D, Zhou H,
et al: Gut microbiota drive the development of neuroinflammatory
response in cirrhosis in mice. Hepatology. 64:1232–1248. 2016.
View Article : Google Scholar
|
|
86
|
Steib CJ, Hartmann AC, v Hesler C, Benesic
A, Hennenberg M, Bilzer M and Gerbes AL: Intraperitoneal LPS
amplifies portal hypertension in rat liver fibrosis. Lab Invest.
90:1024–1032. 2010. View Article : Google Scholar
|
|
87
|
Wiest R, Lawson M and Geuking M:
Pathological bacterial translocation in liver cirrhosis. J Hepatol.
60:197–209. 2014. View Article : Google Scholar
|
|
88
|
Labenz C, Huber Y, Kalliga E, Nagel M,
Ruckes C, Straub BK, Galle PR, Wörns MA, Anstee QM, Schuppan D and
Schattenberg JM: Predictors of advanced fibrosis in non-cirrhotic
non-alcoholic fatty liver disease in Germany. Aliment Pharmacol
Ther. 48:1109–1116. 2018. View Article : Google Scholar
|
|
89
|
Loo TM, Kamachi F, Watanabe Y, Yoshimoto
S, Kanda H, Arai Y, Nakajima-Takagi Y, Iwama A, Koga T, Sugimoto Y,
et al: Gut microbiota promotes obesity-associated liver cancer
through PGE2-mediated suppression of antitumor immunity.
Cancer Discov. 7:522–538. 2017. View Article : Google Scholar
|
|
90
|
Yoshimoto S, Loo TM, Atarashi K, Kanda H,
Sato S, Oyadomari S, Iwakura Y, Oshima K, Morita H, Hattori M, et
al: Obesity-induced gut microbial metabolite promotes liver cancer
through senescence secretome. Nature. 499:97–101. 2013. View Article : Google Scholar
|
|
91
|
He S and Sharpless NE: Senescence in
health and disease. Cell. 169:1000–1011. 2017. View Article : Google Scholar
|
|
92
|
Vernot JP: Senescence-associated
pro-inflammatory cytokines and tumor cell plasticity. Front Mol
Biosci. 7:632020. View Article : Google Scholar
|
|
93
|
Puri P, Daita K, Joyce A, Mirshahi F,
Santhekadur PK, Cazanave S, Luketic VA, Siddiqui MS, Boyett S, Min
HK, et al: The presence and severity of nonalcoholic
steatohepatitis is associated with specific changes in circulating
bile acids. Hepatology. 67:534–548. 2018. View Article : Google Scholar
|
|
94
|
Yamada S, Takashina Y, Watanabe M,
Nagamine R, Saito Y, Kamada N and Saito H: Bile acid metabolism
regulated by the gut microbiota promotes non-alcoholic
steatohepatitis-associated hepatocellular carcinoma in mice.
Oncotarget. 9:9925–9939. 2018. View Article : Google Scholar
|
|
95
|
Sajjad A, Mottershead M, Syn WK, Jones R,
Smith S and Nwokolo CU: Ciprofloxacin suppresses bacterial
overgrowth, increases fasting insulin but does not correct low
acylated ghrelin concentration in non-alcoholic steatohepatitis.
Aliment Pharmacol Ther. 22:291–299. 2005. View Article : Google Scholar
|
|
96
|
Kitagawa R, Kon K, Uchiyama A, Arai K,
Yamashina S, Kuwahara-Arai K, Kirikae T, Ueno T and Ikejima K:
Rifaximin prevents ethanol-induced liver injury in obese
KK-Ay mice through modulation of small intestinal
microbiota signature. Am J Physiol Gastrointest Liver Physiol.
317:G707–G715. 2019. View Article : Google Scholar
|
|
97
|
Kim SS, Eun JW, Cho HJ, Song DS, Kim CW,
Kim YS, Lee SW, Kim YK, Yang J, Choi J, et al: Microbiome as a
potential diagnostic and predictive biomarker in severe alcoholic
hepatitis. Aliment Pharmacol Ther. 53:540–551. 2021.
|
|
98
|
Jørgensen SF, Macpherson ME, Bjørnetrø T,
Holm K, Kummen M, Rashidi A, Michelsen AE, Lekva T, Halvorsen B,
Trøseid M, et al: Rifaximin alters gut microbiota profile, but does
not affect systemic inflammation-a randomized controlled trial in
common variable immunodeficiency. Sci Rep. 9:1672019. View Article : Google Scholar
|
|
99
|
Kaji K, Takaya H, Saikawa S, Furukawa M,
Sato S, Kawaratani H, Kitade M, Moriya K, Namisaki T, Akahane T, et
al: Rifaximin ameliorates hepatic encephalopathy and endotoxemia
without affecting the gut microbiome diversity. World J
Gastroenterol. 23:8355–8366. 2017. View Article : Google Scholar
|
|
100
|
Hijová E, Bertková I and Štofilová J:
Dietary fibre as prebiotics in nutrition. Cent Eur J Public Health.
27:251–255. 2019. View Article : Google Scholar
|
|
101
|
Ferrere G, Wrzosek L, Cailleux F, Turpin
W, Puchois V, Spatz M, Ciocan D, Rainteau D, Humbert L, Hugot C, et
al: Fecal micro-biota manipulation prevents dysbiosis and
alcohol-induced liver injury in mice. J Hepatol. 66:806–815. 2017.
View Article : Google Scholar
|
|
102
|
Kondo S, Xiao JZ, Satoh T, Odamaki T,
Takahashi S, Sugahara H, Yaeshima T, Iwatsuki K, Kamei A and Abe K:
Antiobesity effects of Bifidobacterium breve strain B-3
supplementation in a mouse model with high-fat diet-induced
obesity. Biosci Biotechnol Biochem. 74:1656–1661. 2010. View Article : Google Scholar
|
|
103
|
Minami J, Kondo S, Yanagisawa N, Odamaki
T, Xiao JZ, Abe F, Nakajima S, Hamamoto Y, Saitoh S and Shimoda T:
Oral administration of Bifidobacterium breve B-3 modifies metabolic
functions in adults with obese tendencies in a randomised
controlled trial. J Nutr Sci. 4:e172015. View Article : Google Scholar
|
|
104
|
Kondo S, Kamei A, Xiao JZ, Iwatsuki K and
Abe K: Bifidobacterium breve B-3 exerts metabolic
syndrome-suppressing effects in the liver of diet-induced obese
mice: A DNA microarray analysis. Benef Microbes. 4:247–251. 2013.
View Article : Google Scholar
|
|
105
|
Armstrong LE and Guo GL: Role of FXR in
liver inflammation during nonalcoholic steatohepatitis. Curr
Pharmacol Rep. 3:92–100. 2017. View Article : Google Scholar
|
|
106
|
Fang S, Suh JM, Reilly SM, Yu E, Osborn O,
Lackey D, Yoshihara E, Perino A, Jacinto S, Lukasheva Y, et al:
Intestinal FXR agonism promotes adipose tissue browning and reduces
obesity and insulin resistance. Nat Med. 21:159–165. 2015.
View Article : Google Scholar
|
|
107
|
Jiang C, Xie C, Lv Y, Li J, Krausz KW, Shi
J, Brocker CN, Desai D, Amin SG, Bisson WH, et al:
Intestine-selective farnesoid X receptor inhibition improves
obesity-related metabolic dysfunction. Nat Commun. 6:101662015.
View Article : Google Scholar
|
|
108
|
Kumar M, Verma V, Nagpal R, Kumar A,
Gautam SK, Behare PV, Grover CR and Aggarwal PK: Effect of
probiotic fermented milk and chlorophyllin on gene expressions and
genotoxicity during AFB1-induced hepatocellular carcinoma. Gene.
490:54–59. 2011. View Article : Google Scholar
|
|
109
|
van Nood E, Vrieze A, Nieuwdorp M, Fuentes
S, Zoetendal EG, de Vos WM, Visser CE, Kuijper EJ, Bartelsman JF,
Tijssen JG, et al: Duodenal infusion of donor feces for recurrent
Clostridium difficile. N Engl J Med. 368:407–415. 2013. View Article : Google Scholar
|
|
110
|
Cammarota G, Ianiro G and Gasbarrini A:
Fecal microbiota transplantation for the treatment of Clostridium
difficile infection: A systematic review. J Clin Gastroenterol.
48:693–702. 2014. View Article : Google Scholar
|
|
111
|
Kelly CR, Khoruts A, Staley C, Sadowsky
MJ, Abd M, Alani M, Bakow B, Curran P, McKenney J, Tisch A, et al:
Effect of fecal microbiota transplantation on recurrence in
multiply recurrent Clostridium difficile infection: A randomized
trial. Ann Intern Med. 165:609–616. 2016. View Article : Google Scholar
|
|
112
|
Liu R, Kang JD, Sartor RB, Sikaroodi M,
Fagan A, Gavis EA, Zhou H, Hylemon PB, Herzog JW, Li X, et al:
Neuroinflammation in murine cirrhosis is dependent on the gut
microbiome and is attenuated by fecal transplant. Hepatology.
71:611–626. 2020. View Article : Google Scholar
|
|
113
|
Bajaj JS, Kassam Z, Fagan A, Gavis EA, Liu
E, Cox IJ, Kheradman R, Heuman D, Wang J, Gurry T, et al: Fecal
micro-biota transplant from a rational stool donor improves hepatic
encephalopathy: A randomized clinical trial. Hepatology.
66:1727–1738. 2017. View Article : Google Scholar
|