Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2021 Volume 48 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 48 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article

miR‑4792 regulates inflammatory responses in Cryptococcus neoformans‑infected microglia

  • Authors:
    • Guotai Yao
    • Xiaoli Wang
    • Yan Wang
    • Qing Hou
    • Rui Gao
    • Yilin Wang
    • Liang Teng
    • Wenting Lin
    • Zhongzhi Wang
    • Yi Jin
    • Jianghan Chen
  • View Affiliations / Copyright

    Affiliations: Department of Dermatology, Changzheng Hospital, Naval Medical University, Shanghai 200003, P.R. China, Department of Dermatology, Shanghai Skin Disease Hospital, Tongji University School of Medicine, Shanghai 200443, P.R. China, Department of Dermatology, Shanghai Fourth People's Hospital, School of Medicine, Tongji University, Shanghai 200434, P.R. China
  • Article Number: 198
    |
    Published online on: September 9, 2021
       https://doi.org/10.3892/ijmm.2021.5031
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Investigating the factors that influence the inflammatory response of microglial cells is crucial for understanding the pathogenesis of cryptococcal meningitis (CM). MicroRNAs (miRNAs/miRs) play an important role in inducing host defenses and activating the immune response during microbial infection; however, the regulatory mechanisms of miRNAs in cryptococcal meningitis remain poorly defined. In a previous study, the authors assessed the miRNA profiles of THP‑1 (human acute monocytic leukemia cells) cells following Cryptococcus neoformans (C. neoformans) infection. In the present study, it was found that miR‑4792 expression was downregulated in BV2 cells infected with C. neoformans, whilst that of its target gene, epidermal growth factor receptor (EGFR), was upregulated. Infected cells in which miR‑4792 was overexpressed exhibited a decreased EGFR transcript expression, reduced mitogen‑activated protein kinase (MAPK) signaling and a decreased secretion of inflammatory cytokines. In addition, following antifungal treatment in patients with cryptococcal meningitis, the levels of miR‑4792 in the cerebrospinal fluid significantly increased, whilst the expression of EGFR significantly decreased. In addition, receiver operator characteristic analysis revealed miR‑4792 (AUCROC=0.75) and EGFR (AUCROC=0.79) as potential diagnostic markers in patients with cryptococcal meningitis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Pappas PG: Cryptococcal infections in non-HIV-infected patients. Trans Am Clin Climatol Assoc. 124:61–79. 2013.PubMed/NCBI

2 

Rajasingham R, Smith RM, Park BJ, Jarvis JN, Govender NP, Chiller TM, Denning DW, Loyse A and Boulware DR: Global burden of disease of HIV-associated cryptococcal meningitis: An updated analysis. Lancet Infect Dis. 17:873–881. 2017. View Article : Google Scholar

3 

Wu B, Liu H, Huang J, Zhang W and Zhang T: Pulmonary cryptococcosis in non-AIDS patients. Clin Invest Med. 32:E70–E77. 2009. View Article : Google Scholar

4 

Kishi K, Homma S, Kurosaki A, Kohno T, Motoi N and Yoshimura K: Clinical features and high-resolution CT findings of pulmonary cryptococcosis in non-AIDS patients. Respir Med. 100:807–812. 2006. View Article : Google Scholar

5 

Chang YC, Stins MF, McCaffery MJ, Miller GF, Pare DR, Dam T, Paul-Satyaseela M, Kim KS and Kwon-Chung KJ: Cryptococcal yeast cells invade the central nervous system via transcellular penetration of the blood-brain barrier. Infect Immun. 72:4985–4995. 2004. View Article : Google Scholar

6 

Ngamskulrungroj P, Chang Y, Sionov E and Kwon-Chung KJ: The primary target organ of Cryptococcus gattii is different from that of Cryptococcus neoformans in a murine model. mBio. 3:e00103–e00112. 2012. View Article : Google Scholar

7 

Chang YC, Bien CM, Lee H, Espenshade PJ and Kwon-Chung KJ: Sre1p, a regulator of oxygen sensing and sterol homeostasis, is required for virulence in Cryptococcus neoformans. Mol Microbiol. 64:614–629. 2007. View Article : Google Scholar

8 

Ribes S, Ebert S, Regen T, Agarwal A, Tauber SC, Czesnik D, Spreer A, Bunkowski S, Eiffert H, Hanisch UK, et al: Toll-like receptor stimulation enhances phagocytosis and intracellular killing of nonencapsulated and encapsulated Streptococcus pneumoniae by murine microglia. Infect Immun. 78:865–871. 2010. View Article : Google Scholar

9 

Redlich S, Ribes S, Schütze S, Eiffert H and Nau R: Toll-like receptor stimulation increases phagocytosis of Cryptococcus neoformans by microglial cells. J Neuroinflammation. 10:712013. View Article : Google Scholar

10 

Gebert L and MacRae IJ: Regulation of microRNA function in animals. Nat Rev Mol Cell Biol. 20:21–37. 2019. View Article : Google Scholar

11 

Rupaimoole R and Frank J: Slack MicroRNA therapeutics: Towards a new era for the management of cancer and other diseases. Nat Rev Drug Discov. 16:203–222. 2017. View Article : Google Scholar

12 

Chen H, Jin Y, Chen H, Liao N, Wang Y and Chen J: MicroRNA-mediated inflammatory responses induced by Cryptococcus neoformans are dependent on the NF-κB pathway in human monocytes. Int J Mol Med. 39:1525–1532. 2017. View Article : Google Scholar

13 

De Lacorte Singulani J, De Fátima Da Silva J, Gullo FP, Costa MC, Fusco-Almeida AM, Enguita FJ and Mendes-Giannini MJS: Preliminary evaluation of circulating microRNAs as potential biomarkers in paracoccidioidomycosis. Biomed Rep. 6:353–357. 2017. View Article : Google Scholar

14 

Kumar M, Ahmad T, Sharma A, Mabalirajan U, Kulshreshtha A, Agrawal A and Ghosh B: Let-7 microRNA-mediated regulation of IL-13 and allergic airway inflammation. J Allergy Clin Immunol. 128:1077–1085. 2011. View Article : Google Scholar

15 

Essandoh K, Li Y, Huo J and Fan GC: miRNA-mediated macrophage polarization and its potential role in the regulation of inflammatory response. Shock. 46:122–131. 2016. View Article : Google Scholar

16 

Nahid MA, Yao B, Dominguez-Gutierrez PR, Kesavalu L, Satoh M and Chan EK: Regulation of TLR2-mediated tolerance and cross-tolerance through IRAK4 modulation by miR-132 and miR-212. J Immunol. 190:1250–1263. 2013. View Article : Google Scholar

17 

Testa U, Pelosi E, Castelli G and Labbaye C: miR-146 and miR-155: two key modulators of immune response and tumor development. Noncoding RNA. 3:22201.

18 

Li Y and Chen X: miR-4792 inhibits epithelial-mesenchymal transition and invasion in nasopharyngeal carcinoma by targeting FOXC1. Biochem Biophys Res Commun. 468:863–869. 2015. View Article : Google Scholar

19 

Georgieva B, Milev I, Minkov I, Dimitrova I, Bradford AP and Baev V: Characterization of the uterine leiomyoma microR-NAome by deep sequencing. Genomics. 99:275–281. 2012. View Article : Google Scholar

20 

Chickooree D, Zhu K, Ram V, Wu HJ, He ZJ and Zhang S: A preliminary microarray assay of the miRNA expression signatures in buccal mucosa of oral submucous fibrosis patients. J Oral Pathol Med. 45:691–697. 2016. View Article : Google Scholar

21 

Gabrusiewicz K, Rodriguez B, Wei J, Hashimoto Y, Healy LM, Maiti SN, Thomas G, Zhou S, Wang Q, Elakkad A, et al: Glioblastoma-infiltrated innate immune cells resemble M0 macrophage phenotype. JCI Insight. 1:e858412016. View Article : Google Scholar

22 

Li CC, Eaton SA, Young PE, Lee M, Shuttleworth R, Humphreys DT, Grau GE, Combes V, Bebawy M, Gong J, et al: Glioma microvesicles carry selectively packaged coding and non-coding RNAs which alter gene expression in recipient cells. RNA Biol. 10:1333–1344. 2013. View Article : Google Scholar

23 

Liu G, Jiang C, Li D, Wang R and Wang W: MiRNA-34a inhibits EGFR-signaling-dependent MMP7 activation in gastric cancer. Tumor Biol. 35:9801–9806. 2014. View Article : Google Scholar

24 

Chen S, Zhang Z, Chen L and Zhang J: miRNA 101 3p.1 as an independent diagnostic biomarker aggravates chronic obstructive pulmonary disease via activation of the EGFR/PI3K/AKT signaling pathway. Mol Med Rep. 20:4293–4302. 2019.PubMed/NCBI

25 

Ma HP, Kong WX, Li XY, Li W, Zhang Y and Wu Y: miRNA-223 is an anticancer gene in human non-small cell lung cancer through the PI3K/AKT pathway by targeting EGFR. Oncol Rep. 41:1549–1559. 2019.PubMed/NCBI

26 

Williamson PR: The relentless march of cryptococcal meningitis. Lancet Infect Dis. 17:790–791. 2017. View Article : Google Scholar

27 

Bocchini V, Mazzolla R, Barluzzi R, Blasi E, Sick P and Kettenmann H: An immortalized cell line expresses properties of activated microglial cells. J Neurosci Res. 31:616–621. 1992. View Article : Google Scholar

28 

Sheng W, Zong Y, Mohammad A, Ajit D, Cui J, Han D, Hamilton JL, Simonyi A, Sun AY, Gu Z, et al: Pro-inflammatory cytokines and lipopolysaccharide induce changes in cell morphology, and upregulation of ERK1/2, iNOS and sPLA2-IIA expression in astrocytes and microglia. J Neuroinflammation. 8:1212011. View Article : Google Scholar

29 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

30 

Saag MS, Graybill RJ, Larsen RA, Pappas PG, Perfect JR, Powderly WG, Sobel JD and Dismukes WE: Practice guidelines for the management of cryptococcal disease. Infectious diseases society of America. Clin Infect Dis. 30:710–718. 2000. View Article : Google Scholar

31 

Jin Y, Yao G, Wang Y, Teng L, Wang Y, Chen H, Gao R, Lin W, Wang Z and Chen J: MiR-30c-5p mediates inflammatory responses and promotes microglia survival by targeting eIF2α during Cryptococcus neoformans infection. Microb Pathog. 141:1039592020. View Article : Google Scholar

32 

Wang WY, Tan MS, Yu JT and Tan L: Role of pro-inflammatory cytokines released from microglia in Alzheimer's disease. Ann Transl Med. 3:1362015.

33 

Jin X and Yamashita T: Microglia in central nervous system repair after injury. J Biochem. 159:491–496. 2016. View Article : Google Scholar

34 

Kraft AD and Harry GJ: Features of microglia and neuroinflammation relevant to environmental exposure and neurotoxicity. Int J Environ Res Public Health. 8:2980–3018. 2011. View Article : Google Scholar

35 

O'Sullivan JB, Ryan KM, Curtin NM, Harkin A and Connor TJ: Noradrenaline reuptake inhibitors limit neuroinflammation in rat cortex following a systemic inflammatory challenge: Implications for depression and neurodegeneration. Int J Neuropsychopharmacol. 12:687–699. 2009. View Article : Google Scholar

36 

Loane DJ and Byrnes KR: Role of microglia in neurotrauma. Neurotherapeutics. 7:366–377. 2010. View Article : Google Scholar

37 

Bachstetter AD, Xing B, de Almeida L, Dimayuga ER, Watterson DM and Van Eldik LJ: Microglial p38alpha MAPK is a key regulator of proinflammatory cytokine up-regulation induced by toll-like receptor (TLR) ligands or beta-amyloid (Aβ). J Neuroinflammation. 8:792011. View Article : Google Scholar

38 

Xu L, Huang Y, Yu X, Yue J, Yang N and Zuo P: The influence of p38 mitogen-activated protein kinase inhibitor on synthesis of inflammatory cytokine tumor necrosis factor alpha in spinal cord of rats with chronic constriction injury. Anesth Analg. 105:1838–1844. 2007. View Article : Google Scholar

39 

Kim SH, Smith CJ and Van Eldik LJ: Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging. 25:431–439. 2004. View Article : Google Scholar

40 

Qu WS, Tian DS, Guo ZB, Fang J, Zhang Q, Yu ZY, Xie MJ, Zhang HQ, Lü JG and Wang W: Inhibition of EGFR/MAPK signaling reduces microglial inflammatory response and the associated secondary damage in rats after spinal cord injury. J Neuroinflammation. 9:1782012. View Article : Google Scholar

41 

Yamauchi T, Ueki K, Tobe K, Tamemoto H, Sekine N, Wada M, Honjo M, Takahashi M, Takahashi T, Hirai H, et al: Growth hormone-induced tyrosine phosphorylation of EGF receptor as an essential element leading to MAP kinase activation and gene expression. Endocr J. 45(Suppl): S27–S31. 1998. View Article : Google Scholar

42 

Goel S, Hidalgo M and Perez-Soler R: EGFR inhibitor-mediated apoptosis in solid tumors. J Exp Ther Oncol. 6:305–320. 2007.PubMed/NCBI

43 

Pinheiro SB, Sousa ES, Cortez ACA, da Silva Rocha DF, Menescal LSF, Chagas VS, Gómez ASP, Cruz KS, Santos LO, Alves MJ, et al: Cryptococcal meningitis in non-HIV patients in the State of Amazonas, Northern Brazil. J Microbiol. 52:279–288. 2021.

44 

Martinez-Nunez RT, Louafi F and Sanchez-Elsner T: The interleukin 13 (IL-13) pathway in human macrophages is modulated by microRNA-155 via direct targeting of interleukin 13 receptor alpha1 (IL13Ralpha1). J Biol Chem. 286:1786–1794. 2011. View Article : Google Scholar

45 

Roy S: miRNA in macrophage development and function. Antioxid Redox Signal. 25:795–804. 2016. View Article : Google Scholar

46 

Sabiiti W, Robertson E, Beale MA, Johnston SA, Brouwer AE, Loyse A, Jarvis JN, Gilbert AS, Fisher MC, Harrison TS, et al: Efficient phagocytosis and laccase activity affect the outcome of HIV-associated cryptococcosis. J Clin Invest. 124:2000–2008. 2014. View Article : Google Scholar

47 

Alanio A, Desnos-Ollivier M and Dromer F: Dynamics of Cryptococcus neoformans-macrophage interactions reveal that fungal background influences outcome during cryptococcal meningoencephalitis in humans. mBio. 2:e00158–e00111. 2011. View Article : Google Scholar

48 

Ji RR, Nackley A, Huh Y, Terrando N and Maixner W: Neuroinflammation and central sensitization in chronic and widespread pain. Anesthesiology. 129:343–366. 2018. View Article : Google Scholar

49 

Lyman M, Lloyd DG, Ji X, Vizcaychipi MP and Ma D: Neuroinflammation: The role and consequences. Neurosci Res. 79:1–12. 2014. View Article : Google Scholar

50 

Kim YK, Na KS, Myint AM and Leonard BE: The role of pro-inflammatory cytokines in neuroinflammation, neurogenesis and the neuroendocrine system in major depression. Prog Neuropsychopharmacol Biol Psychiatry. 64:277–284. 2016. View Article : Google Scholar

51 

Henn A, Lund S, Hedtjärn M, Schrattenholz A, Pörzgen P and Leist M: The suitability of BV2 cells as alternative model system for primary microglia cultures or for animal experiments examining brain inflammation. ALTEX. 26:83–94. 2009. View Article : Google Scholar

52 

Stansley B, Post J and Hensley K: A comparative review of cell culture systems for the study of microglial biology in Alzheimer's disease. J Neuroinflammation. 9:1152012. View Article : Google Scholar

53 

Kofler J and Wiley CA: Microglia: Key innate immune cells of the brain. Toxicol Pathol. 39:103–114. 2011. View Article : Google Scholar

54 

Rock RB, Gekker G, Hu S, Sheng WS, Cheeran M, Lokensgard JR and Peterson PK: Role of microglia in central nervous system infections. Clin Microbiol Rev. 17:942–964. 2004. View Article : Google Scholar

55 

Barluzzi R, Brozzetti A, Delfino D, Bistoni F and Blasi E: Role of the capsule in microglial cell-Cryptococcus neoformans interaction: Impairment of antifungal activity but not of secretory functions. Med Mycol. 36:189–197. 1998.

56 

Neal LM, Xing E, Xu J, Kolbe JL, Osterholzer JJ, Segal BM, Williamson PR and Olszewski MA: CD4+T cells orchestrate lethal immune pathology despite fungal clearance during Cryptococcus neoformans meningoencephalitis. mBio. 11:e01415–e01417. 2017.

57 

Adami C, Sorci G, Blasi E, Agneletti AL, Bistoni F and Donato R: S100B expression in and effects on microglia. Glia. 33:131–142. 2001. View Article : Google Scholar

58 

Song X, Tanaka S, Cox D and Lee SC: Fc gamma receptor signaling in primary human microglia: Differential roles of PI-3K and Ras/ERK MAPK pathways in phagocytosis and chemokine induction. J Leukoc Biol. 75:1147–1155. 2004. View Article : Google Scholar

59 

Preissler J, Grosche A, Lede V, Le Duc D, Krügel K, Matyash V, Szulzewsky F, Kallendrusch S, Immig K, Kettenmann H, et al: Altered microglial phagocytosis in GPR34-deficient mice. Glia. 63:206–215. 2015. View Article : Google Scholar

60 

Lee SC, Kress Y, Dickson DW and Casadevall A: Human microglia mediate anti-Cryptococcus neoformans activity in the presence of specific antibody. J Neuroimmunol. 62:43–52. 1995. View Article : Google Scholar

61 

Lee SC, Kress Y, Zhao ML, Dickson DW and Casadevall A: Cryptococcus neoformans survive and replicate in human microglia. Lab Invest. 73:871–879. 1995.PubMed/NCBI

62 

Popovich PG, Guan Z, Wei P, Huitinga I, van Rooijen N and Stokes BT: Depletion of hematogenous macrophages promotes partial hindlimb recovery and neuroanatomical repair after experimental spinal cord injury. Exp Neurol. 158:351–365. 1999. View Article : Google Scholar

63 

Stirling DP, Khodarahmi K, Liu J, McPhail LT, McBride CB, Steeves JD, Ramer MS and Tetzlaff W: Minocycline treatment reduces delayed oligodendrocyte death, attenuates axonal dieback, and improves functional outcome after spinal cord injury. J Neurosci. 24:2182–2190. 2004. View Article : Google Scholar

64 

Tian DS, Xie MJ, Yu ZY, Zhang Q, Wang YH, Chen B, Chen C and Wang W: Cell cycle inhibition attenuates microglia induced inflammatory response and alleviates neuronal cell death after spinal cord injury in rats. Brain Res. 1135:177–185. 2007. View Article : Google Scholar

65 

Gomez-Pinilla F, Knauer DJ and Nieto-Sampedro M: Epidermal growth factor receptor immunoreactivity in rat brain. Development and cellular localization. Brain Res. 438:385–390. 1988. View Article : Google Scholar

66 

Erschbamer M, Pernold K and Olson L: Inhibiting epidermal growth factor receptor improves structural, locomotor, sensory, and bladder recovery from experimental spinal cord injury. J Neurosci. 27:6428–6435. 2007. View Article : Google Scholar

67 

Jung HW, Son HY, Minh CV, Kim YH and Park YK: Methanol extract of ficus leaf inhibits the production of nitric oxide and proinflammatory cytokines in LPS-stimulated microglia via the MAPK pathway. Phytother Res. 22:1064–1069. 2008. View Article : Google Scholar

68 

Correia I, Prieto D, Román E, Wilson D, Hube B, Alonso-Monge R and Pla J: Cooperative role of MAPK pathways in the interaction of Candida albicans with the host epithelium. Microorganisms. 25:482019. View Article : Google Scholar

69 

Uenotsuchi T, Takeuchi S, Matsuda T, Urabe K, Koga T, Uchi H, Nakahara T, Fukagawa S, Kawasaki M, Kajiwara H, et al: Differential induction of Th1-prone immunity by human dendritic cells activated with sporothrix schenckii of cutaneous and visceral origins to determine their different virulence. Int Immunol. 18:1637–1646. 2006. View Article : Google Scholar

70 

Liu P, Pu J, Zhang J, Chen Z, Wei K and Shi L: Bioinformatic analysis of mir-4792 regulates Radix Tetrastigma hemsleyani flavone to inhibit proliferation, invasion, and induce apoptosis of a549 cells. Onco Targets Ther. 12:1401–1412. 2019. View Article : Google Scholar

71 

Lindell DM, Ballinger MN, McDonald RA, Toews GB and Huffnagle GB: Immunologic homeostasis during infection: coexistence of strong pulmonary cell-mediated immunity to secondary Cryptococcus neoformans infection while the primary infection still persists at low levels in the lungs. J Immunol. 177:4652–4661. 2006. View Article : Google Scholar

72 

Lindell DM, Ballinger MN, McDonald RA, Toews GB and Huffnagle GB: Diversity of the T-cell response to pulmonary Cryptococcus neoformans infection. Infect Immun. 74:4538–4548. 2006. View Article : Google Scholar

73 

Eastman AJ, Osterholzer JJ and Olszewski MA: Role of dendritic cell-pathogen interactions in the immune response to pulmonary cryptococcal infection. Future Microbiol. 10:1837–1857. 2015. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yao G, Wang X, Wang Y, Hou Q, Gao R, Wang Y, Teng L, Lin W, Wang Z, Jin Y, Jin Y, et al: miR‑4792 regulates inflammatory responses in <em>Cryptococcus neoformans</em>‑infected microglia. Int J Mol Med 48: 198, 2021.
APA
Yao, G., Wang, X., Wang, Y., Hou, Q., Gao, R., Wang, Y. ... Chen, J. (2021). miR‑4792 regulates inflammatory responses in <em>Cryptococcus neoformans</em>‑infected microglia. International Journal of Molecular Medicine, 48, 198. https://doi.org/10.3892/ijmm.2021.5031
MLA
Yao, G., Wang, X., Wang, Y., Hou, Q., Gao, R., Wang, Y., Teng, L., Lin, W., Wang, Z., Jin, Y., Chen, J."miR‑4792 regulates inflammatory responses in <em>Cryptococcus neoformans</em>‑infected microglia". International Journal of Molecular Medicine 48.5 (2021): 198.
Chicago
Yao, G., Wang, X., Wang, Y., Hou, Q., Gao, R., Wang, Y., Teng, L., Lin, W., Wang, Z., Jin, Y., Chen, J."miR‑4792 regulates inflammatory responses in <em>Cryptococcus neoformans</em>‑infected microglia". International Journal of Molecular Medicine 48, no. 5 (2021): 198. https://doi.org/10.3892/ijmm.2021.5031
Copy and paste a formatted citation
x
Spandidos Publications style
Yao G, Wang X, Wang Y, Hou Q, Gao R, Wang Y, Teng L, Lin W, Wang Z, Jin Y, Jin Y, et al: miR‑4792 regulates inflammatory responses in <em>Cryptococcus neoformans</em>‑infected microglia. Int J Mol Med 48: 198, 2021.
APA
Yao, G., Wang, X., Wang, Y., Hou, Q., Gao, R., Wang, Y. ... Chen, J. (2021). miR‑4792 regulates inflammatory responses in <em>Cryptococcus neoformans</em>‑infected microglia. International Journal of Molecular Medicine, 48, 198. https://doi.org/10.3892/ijmm.2021.5031
MLA
Yao, G., Wang, X., Wang, Y., Hou, Q., Gao, R., Wang, Y., Teng, L., Lin, W., Wang, Z., Jin, Y., Chen, J."miR‑4792 regulates inflammatory responses in <em>Cryptococcus neoformans</em>‑infected microglia". International Journal of Molecular Medicine 48.5 (2021): 198.
Chicago
Yao, G., Wang, X., Wang, Y., Hou, Q., Gao, R., Wang, Y., Teng, L., Lin, W., Wang, Z., Jin, Y., Chen, J."miR‑4792 regulates inflammatory responses in <em>Cryptococcus neoformans</em>‑infected microglia". International Journal of Molecular Medicine 48, no. 5 (2021): 198. https://doi.org/10.3892/ijmm.2021.5031
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team