Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2021 Volume 48 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2021 Volume 48 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

CircRNA: A novel potential strategy to treat thyroid cancer (Review)

  • Authors:
    • Guomao Zhu
    • Xingyu Chang
    • Yuchen Kang
    • Xinzhu Zhao
    • Xulei Tang
    • Chengxu Ma
    • Songbo Fu
  • View Affiliations / Copyright

    Affiliations: Endocrinology Department, The First Hospital of Lanzhou University, Lanzhou, Gansu 730030, P.R. China, The Second Clinical Medical College, Lanzhou University, Lanzhou, Gansu 730030, P.R. China
    Copyright: © Zhu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 201
    |
    Published online on: September 15, 2021
       https://doi.org/10.3892/ijmm.2021.5034
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Thyroid cancer (TC) is the most common type of endocrine cancer. Over the last 50 years, the global incidence of TC has been increasing. The survival rate of TC is higher than that of most other types of cancer, but it depends on numerous factors, including the specific type of TC and stage of the disease. Circular RNAs (circRNAs) are a new class of long noncoding RNA with a closed loop structure that have a critical role in the complex gene regulatory network that controls the emergence of TC. The most important function of circRNAs is their ability to specifically bind to microRNAs. In addition, the biological functions of circRNAs also include interactions with proteins, regulation of the transcription of genes and acting as translation templates. Based on the characteristics of circRNAs, they have been identified as potential biomarkers for the diagnosis of tumors. In the present review, the function and significance of circRNAs and their potential clinical implications for TC were summarized. Furthermore, possible treatment approaches involving the use of mesenchymal stem cells (MSCs) and exosomes derived from MSCs as carriers to load and transport circRNAs were discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Prete A, Borges de Souza P, Censi S, Muzza M, Nucci N and Sponziello M: Update on fundamental mechanisms of thyroid cancer. Front Endocrinol (Lausanne). 11:1022020. View Article : Google Scholar

2 

Kitahara CM and Sosa JA: The changing incidence of thyroid cancer. Nat Rev Endocrinol. 12:646–653. 2016. View Article : Google Scholar

3 

Miller KD, Fidler-Benaoudia M, Keegan TH, Hipp HS, Jemal A and Siegel RL: Cancer statistics for adolescents and young adults, 2020. CA Cancer J Clin. 70:443–459. 2020. View Article : Google Scholar

4 

ASCO Thyroid cancer: Statistics. https://www.cancer.net/cancer-types/thyroid-cancer/statistics. Accessed May 5, 2021.

5 

Massimino M, Evans DB, Podda M, Spinelli C, Collini P, Pizzi N and Bleyer A: Thyroid cancer in adolescents and young adults. Pediatr Blood Cancer. 65:e270252018. View Article : Google Scholar

6 

Fleeman N, Houten R, Bagust A, Richardson M, Beale S, Boland A, Dundar Y, Greenhalgh J, Hounsome J, Duarte R and Shenoy A: Lenvatinib and sorafenib for differentiated thyroid cancer after radioactive iodine: A systematic review and economic evaluation. Health Technol Assess. 24:1–180. 2020. View Article : Google Scholar

7 

Molinaro E, Romei C, Biagini A, Sabini E, Agate L, Mazzeo S, Materazzi G, Sellari-Franceschini S, Ribechini A, Torregrossa L, et al: Anaplastic thyroid carcinoma: From clinicopathology to genetics and advanced therapies. Nat Rev Endocrinol. 13:644–660. 2017. View Article : Google Scholar

8 

Ahn HS, Kim HJ and Welch HG: Korea's thyroid-cancer 'epidemic'-screening and overdiagnosis. N Engl J Med. 371:1765–1767. 2014. View Article : Google Scholar

9 

Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar

10 

Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar

11 

Lasda E and Parker R: Circular RNAs: Diversity of form and function. RNA. 20:1829–1842. 2014. View Article : Google Scholar

12 

Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar

13 

Suzuki H, Zuo Y, Wang J, Zhang MQ, Malhotra A and Mayeda A: Characterization of RNase R-digested cellular RNA source that consists of lariat and circular RNAs from pre-mRNA splicing. Nucleic Acids Res. 34:e632006. View Article : Google Scholar

14 

Enuka Y, Lauriola M, Feldman ME, Sas-Chen A, Ulitsky I and Yarden Y: Circular RNAs are long-lived and display only minimal early alterations in response to a growth factor. Nucleic Acids Res. 44:1370–1383. 2016. View Article : Google Scholar

15 

Rybak-Wolf A, Stottmeister C, Glažar P, Jens M, Pino N, Giusti S, Hanan M, Behm M, Bartok O, Ashwal-Fluss R, et al: Circular RNAs in the mammalian brain are highly abundant, conserved, and dynamically expressed. Mol Cell. 58:870–885. 2015. View Article : Google Scholar

16 

Su H, Lin F, Deng X, Shen L, Fang Y, Fei Z, Zhao L, Zhang X, Pan H, Xie D, et al: Profiling and bioinformatics analyses reveal differential circular RNA expression in radioresistant esophageal cancer cells. J Transl Med. 14:2252016. View Article : Google Scholar

17 

Zhang M and Du X: Noncoding RNAs in gastric cancer: Research progress and prospects. World J Gastroenterol. 22:6610–6618. 2016. View Article : Google Scholar

18 

Xiong W, Ai YQ and Li YF, Ye Q, Chen ZT, Qin JY, Liu QY, Wang H, Ju YH, Li WH and Li YF: Microarray analysis of circular RNA expression profile associated with 5-fluorouracil-based chemoradiation resistance in colorectal cancer cells. Biomed Res Int. 2017:84216142017. View Article : Google Scholar

19 

Yao T, Chen Q, Fu L and Guo J: Circular RNAs: Biogenesis, properties, roles, and their relationships with liver diseases. Hepatol Res. 47:497–504. 2017. View Article : Google Scholar

20 

Zheng J, Liu X, Xue Y, Gong W, Ma J, Xi Z, Que Z and Liu Y: TTBK2 circular RNA promotes glioma malignancy by regulating miR-217/HNF1β/Derlin-1 pathway. J Hematol Oncol. 10:522017. View Article : Google Scholar

21 

Zhong Z, Lv M and Chen J: Screening differential circular RNA expression profiles reveals the regulatory role of circTCF25-miR-103a-3p/miR-107-CDK6 pathway in bladder carcinoma. Sci Rep. 6:309192016. View Article : Google Scholar

22 

Guo D, Li F, Zhao X, Long B, Zhang S, Wang A, Cao D, Sun J and Li B: Circular RNA expression and association with the clinicopathological characteristics in papillary thyroid carcinoma. Oncol Rep. 44:519–532. 2020. View Article : Google Scholar

23 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar

24 

Lewis BP, Shih IH, Jones-Rhoades MW, Bartel DP and Burge CB: Prediction of mammalian microRNA targets. Cell. 115:787–798. 2003. View Article : Google Scholar

25 

Zhou X and Yang PC: MicroRNA: A small molecule with a big biological impact. Microrna. 1:12012. View Article : Google Scholar

26 

Lee KP, Shin YJ, Panda AC, Abdelmohsen K, Kim JY, Lee SM, Bahn YJ, Choi JY, Kwon ES, Baek SJ, et al: miR-431 promotes differentiation and regeneration of old skeletal muscle by targeting Smad4. Genes Dev. 29:1605–1617. 2015. View Article : Google Scholar

27 

Panda AC, Abdelmohsen K and Gorospe M: SASP regulation by noncoding RNA. Mech Ageing Dev. 168:37–43. 2017. View Article : Google Scholar

28 

Panda AC, Sahu I, Kulkarni SD, Martindale JL, Abdelmohsen K, Vindu A, Joseph J, Gorospe M and Seshadri V: miR-196b-mediated translation regulation of mouse insulin2 via the 5′UTR. PLoS One. 9:e1010842014. View Article : Google Scholar

29 

Munk R, Panda AC, Grammatikakis I, Gorospe M and Abdelmohsen K: Senescence-associated MicroRNAs. Int Rev Cell Mol Biol. 334:177–205. 2017. View Article : Google Scholar

30 

Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar

31 

Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar

32 

Pan H, Li T, Jiang Y, Pan C, Ding Y, Huang Z, Yu H and Kong D: Overexpression of sircular RNA ciRS-7 abrogates the tumor suppressive effect of miR-7 on gastric cancer via PTEN/PI3K/AKT signaling pathway. J Cell Biochem. 119:440–446. 2018. View Article : Google Scholar

33 

Yu L, Gong X, Sun L, Zhou Q, Lu B and Zhu L: The circular RNA cdr1as act as an oncogene in hepatocellular carcinoma through targeting miR-7 expression. PLoS One. 11:e01583472016. View Article : Google Scholar

34 

Liu J, Li H, Wei C, Ding J, Lu J, Pan G and Mao A: circFAT1(e2) promotes papillary thyroid cancer proliferation, migration, and invasion via the miRNA-873/ZEB1 axis. Comput Math Methods Med. 2020:14593682020. View Article : Google Scholar

35 

Conlon EG and Manley JL: RNA-binding proteins in neurodegeneration: Mechanisms in aggregate. Genes Dev. 31:1509–1528. 2017. View Article : Google Scholar

36 

Errichelli L, Dini Modigliani S, Laneve P, Colantoni A, Legnini I, Capauto D, Rosa A, De Santis R, Scarfò R, Peruzzi G, et al: FUS affects circular RNA expression in murine embryonic stem cell-derived motor neurons. Nat Commun. 8:147412017. View Article : Google Scholar

37 

Yang Q, Du WW, Wu N, Yang W, Awan FM, Fang L, Ma J, Li X, Zeng Y, Yang Z, et al: A circular RNA promotes tumorigenesis by inducing c-myc nuclear translocation. Cell Death Differ. 24:1609–1620. 2017. View Article : Google Scholar

38 

Yang ZG, Awan FM, Du WW, Zeng Y, Lyu J, Wu D, Gupta S, Yang W and Yang BB: The circular RNA interacts with STAT3, increasing its nuclear translocation and wound repair by modulating Dnmt3a and miR-17 function. Mol Ther. 25:2062–2074. 2017. View Article : Google Scholar

39 

Bi W, Huang J, Nie C, Liu B, He G, Han J, Pang R, Ding Z, Xu J and Zhang J: CircRNA circRNA_102171 promotes papillary thyroid cancer progression through modulating CTNNBIP1-dependent activation of β-catenin pathway. J Exp Clin Cancer Res. 37:2752018. View Article : Google Scholar

40 

Du WW, Yang W, Chen Y, Wu ZK, Foster FS, Yang Z, Li X and Yang BB: Foxo3 circular RNA promotes cardiac senescence by modulating multiple factors associated with stress and senescence responses. Eur Heart J. 38:1402–1412. 2017.

41 

Feng Y, Yang Y, Zhao X, Fan Y, Zhou L, Rong J and Yu Y: Circular RNA circ0005276 promotes the proliferation and migration of prostate cancer cells by interacting with FUS to transcriptionally activate XIAP. Cell Death Dis. 10:7922019. View Article : Google Scholar

42 

Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al: Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019. View Article : Google Scholar

43 

Li Z, Huang C, Bao C, Chen L, Lin M, Wang X, Zhong G, Yu B, Hu W, Dai L, et al: Exon-intron circular RNAs regulate transcription in the nucleus. Nat Struct Mol Biol. 22:256–264. 2015. View Article : Google Scholar

44 

Zhang Y, Zhang XO, Chen T, Xiang JF, Yin QF, Xing YH, Zhu S, Yang L and Chen LL: Circular intronic long noncoding RNAs. Mol Cell. 51:792–806. 2013. View Article : Google Scholar

45 

Wu N, Yuan Z, Du KY, Fang L, Lyu J, Zhang C, He A, Eshaghi E, Zeng K, Ma J, et al: Translation of yes-associated protein (YAP) was antagonized by its circular RNA via suppressing the assembly of the translation initiation machinery. Cell Death Differ. 26:2758–2773. 2019. View Article : Google Scholar

46 

Chen N, Zhao G, Yan X, Lv Z, Yin H, Zhang S, Song W, Li X, Li L, Du Z, et al: A novel FLI1 exonic circular RNA promotes metastasis in breast cancer by coordinately regulating TET1 and DNMT1. Genome Biol. 19:2182018. View Article : Google Scholar

47 

Legnini I, Di Timoteo G, Rossi F, Morlando M, Briganti F, Sthandier O, Fatica A, Santini T, Andronache A, Wade M, et al: Circ-ZNF609 is a circular RNA that can be translated and functions in myogenesis. Mol Cell. 66:22–37.e29. 2017. View Article : Google Scholar

48 

Stagsted LV, Nielsen KM, Daugaard I and Hansen TB: Noncoding AUG circRNAs constitute an abundant and conserved subclass of circles. Life Sci Alliance. 2:e2019003982019. View Article : Google Scholar

49 

Wawrzyniak O, Zarębska Ż, Kuczyński K, Gotz-Więckowska A and Rolle K: Protein-related circular RNAs in human pathologies. Cells. 9:18412020. View Article : Google Scholar

50 

Pamudurti NR, Bartok O, Jens M, Ashwal-Fluss R, Stottmeister C, Ruhe L, Hanan M, Wyler E, Perez-Hernandez D, Ramberger E, et al: Translation of circRNAs. Mol Cell. 66:9–21.e27. 2017. View Article : Google Scholar

51 

Meyer KD, Patil DP, Zhou J, Zinoviev A, Skabkin MA, Elemento O, Pestova TV, Qian SB and Jaffrey SR: 5′ UTR m(6)a promotes cap-independent translation. Cell. 163:999–1010. 2015. View Article : Google Scholar

52 

Yang Y, Fan X, Mao M, Song X, Wu P, Zhang Y, Jin Y, Yang Y, Chen LL, Wang Y, et al: Extensive translation of circular RNAs driven by N(6)-methyladenosine. Cell Res. 27:626–641. 2017. View Article : Google Scholar

53 

Abe N, Matsumoto K, Nishihara M, Nakano Y, Shibata A, Maruyama H, Shuto S, Matsuda A, Yoshida M, Ito Y and Abe H: Rolling circle translation of circular RNA in living human cells. Sci Rep. 5:164352015. View Article : Google Scholar

54 

Liang ZX, Liu HS, Xiong L, Yang X, Wang FW, Zeng ZW, He XW, Wu XR and Lan P: A novel NF-κB regulator encoded by circ-PLCE1 inhibits colorectal carcinoma progression by promoting RPS3 ubiquitin-dependent degradation. Mol Cancer. 20:1032021. View Article : Google Scholar

55 

Lei M, Zheng G, Ning Q, Zheng J and Dong D: Translation and functional roles of circular RNAs in human cancer. Mol Cancer. 19:302020. View Article : Google Scholar

56 

Huang C, Liang D, Tatomer DC and Wilusz JE: A length-dependent evolutionarily conserved pathway controls nuclear export of circular RNAs. Genes Dev. 32:639–644. 2018. View Article : Google Scholar

57 

Natua S, Dhamdhere SG, Mutnuru SA and Shukla S: Interplay within tumor microenvironment orchestrates neoplastic RNA metabolism and transcriptome diversity. Wiley Interdiscip Rev RNA. 9:e16762021.

58 

Viralippurath Ashraf J, Sasidharan Nair V, Saleh R and Elkord E: Role of circular RNAs in colorectal tumor microenvironment. Biomed Pharmacother. 137:1113512021. View Article : Google Scholar

59 

Han XT, Jiang JQ, Li MZ and Cong QM: Circular RNA circ-ABCB10 promotes the proliferation and invasion of thyroid cancer by targeting KLF6. Eur Rev Med Pharmacol Sci. 24:97742020.

60 

DiFeo A, Martignetti JA and Narla G: The role of KLF6 and its splice variants in cancer therapy. Drug Resist Updat. 12:1–7. 2009. View Article : Google Scholar

61 

Cai X, Zhao Z, Dong J, Lv Q, Yun B, Liu J, Shen Y, Kang J and Li J: Circular RNA circBACH2 plays a role in papillary thyroid carcinoma by sponging miR-139-5p and regulating LMO4 expression. Cell Death Dis. 10:1842019. View Article : Google Scholar

62 

Racevskis J, Dill A, Sparano JA and Ruan H: Molecular cloning of LMO41, a new human LIM domain gene. Biochim Biophys Acta. 1445:148–153. 1999. View Article : Google Scholar

63 

Wu G, Zhou W, Lin X, Sun Y, Li J, Xu H, Shi P, Gao L and Tian X: circRASSF2 acts as ceRNA and promotes papillary thyroid carcinoma progression through miR-1178/TLR4 signaling pathway. Mol Ther Nucleic Acids. 19:1153–1163. 2020. View Article : Google Scholar

64 

Zhou GK, Zhang GY, Yuan ZN, Pei R and Liu DM: Has_ circ_0008274 promotes cell proliferation and invasion involving AMPK/mTOR signaling pathway in papillary thyroid carcinoma. Eur Rev Med Pharmacol Sci. 22:8772–8780. 2018.

65 

Zheng FB, Chen D, Ding YY, Wang SR, Shi DD and Zhu ZP: Circular RNA circ_0103552 promotes the invasion and migration of thyroid carcinoma cells by sponging miR-127. Eur Rev Med Pharmacol Sci. 24:2572–2578. 2020.

66 

Ye M, Hou H, Shen M, Dong S and Zhang T: Circular RNA circFOXM1 plays a role in papillary thyroid carcinoma by sponging miR-1179 and regulating HMGB1 expression. Mol Ther Nucleic Acids. 19:741–750. 2020. View Article : Google Scholar

67 

Yao Y, Chen X, Yang H, Chen W, Qian Y, Yan Z, Liao T, Yao W, Wu W, Yu T, et al: Hsa_circ_0058124 promotes papillary thyroid cancer tumorigenesis and invasiveness through the NOTCH3/GATAD2A axis. J Exp Clin Cancer Res. 38:3182019. View Article : Google Scholar

68 

Wu G, Zhou W, Pan X, Sun Z, Sun Y, Xu H, Shi P, Li J, Gao L and Tian X: Circular RNA profiling reveals exosomal circ_0006156 as a novel biomarker in papillary thyroid cancer. Mol Ther Nucleic Acids. 19:1134–1144. 2020. View Article : Google Scholar

69 

Wang YF, Li MY, Tang YF, Jia M, Liu Z and Li HQ: Circular RNA circEIF3I promotes papillary thyroid carcinoma progression through competitively binding to miR-149 and upregulating KIF2A expression. Am J Cancer Res. 10:1130–1139. 2020.

70 

Qie S and Diehl JA: Cyclin D1, cancer progression, and opportunities in cancer treatment. J Mol Med (Berl). 94:1313–1326. 2016. View Article : Google Scholar

71 

Cui W and Xue J: Circular RNA DOCK1 downregulates microRNA-124 to induce the growth of human thyroid cancer cell lines. Biofactors. 46:591–599. 2020. View Article : Google Scholar

72 

Motoshima H, Goldstein BJ, Igata M and Araki E: AMPK and cell proliferation-AMPK as a therapeutic target for atherosclerosis and cancer. J Physiol. 574:63–71. 2006. View Article : Google Scholar

73 

Jin X, Wang Z, Pang W, Zhou J, Liang Y, Yang J, Yang L and Zhang Q: Upregulated hsa_circ_0004458 contributes to progression of papillary thyroid carcinoma by inhibition of miR-885-5p and activation of RAC1. Med Sci Monit. 24:5488–5500. 2018. View Article : Google Scholar

74 

Yan Y, Greer PM, Cao PT, Kolb RH and Cowan KH: RAC1 GTPase plays an important role in γ-irradiation induced G2/M checkpoint activation. Breast Cancer Res. 14:R602012. View Article : Google Scholar

75 

Qi Y, He J, Zhang Y, Wang L, Yu Y, Yao B and Tian Z: Circular RNA hsa_circ_0001666 sponges miR_x001E_330_x001E_5p, miR_x001E_193a_x001E_5p and miR_x001E_326, and promotes papillary thyroid carcinoma progression via upregulation of ETV4. Oncol Rep. 45:502021. View Article : Google Scholar

76 

Li Z, Huang X, Liu A, Xu J, Lai J, Guan H and Ma J: Circ_PSD3 promotes the progression of papillary thyroid carcinoma via the miR-637/HEMGN axis. Life Sci. 264:1186222021. View Article : Google Scholar

77 

Feldkoren B, Hutchinson R, Rapoport Y, Mahajan A and Margulis V: Integrin signaling potentiates transforming growth factor-beta 1 (TGF-β1) dependent down-regulation of E-Cadherin expression-important implications for epithelial to mesenchymal transition (EMT) in renal cell carcinoma. Exp Cell Res. 355:57–66. 2017. View Article : Google Scholar

78 

Nishiyama M, Tsunedomi R, Yoshimura K, Hashimoto N, Matsukuma S, Ogihara H, Kanekiyo S, Iida M, Sakamoto K, Suzuki N, et al: Metastatic ability and the epithelial-mesenchymal transition in induced cancer stem-like hepatoma cells. Cancer Sci. 109:1101–1109. 2018. View Article : Google Scholar

79 

Derynck R and Weinberg RA: EMT and cancer: More than meets the eye. Dev Cell. 49:313–316. 2019. View Article : Google Scholar

80 

Gui X, Li Y, Zhang X, Su K and Cao W: Circ_LDLR promoted the development of papillary thyroid carcinoma via regulating miR-195-5p/LIPH axis. Cancer Cell Int. 20:2412020. View Article : Google Scholar

81 

Shibue T and Weinberg RA: EMT, CSCs, and drug resistance: The mechanistic link and clinical implications. Nat Rev Clin Oncol. 14:611–629. 2017. View Article : Google Scholar

82 

Zhang W, Liu T, Li T and Zhao X: Hsa_circRNA_102002 facilitates metastasis of papillary thyroid cancer through regulating miR-488-3p/HAS2 axis. Cancer Gene Ther. 28:279–293. 2021. View Article : Google Scholar

83 

Han JY, Guo S, Wei N, Xue R, Li W, Dong G, Li J, Tian X, Chen C, Qiu S, et al: ciRS-7 promotes the proliferation and migration of papillary thyroid cancer by negatively regulating the miR-7/Epidermal growth factor receptor axis. Biomed Res Int. 2020:98756362020. View Article : Google Scholar

84 

Wang H, Yan X, Zhang H and Zhan X: CircRNA circ_0067934 overexpression correlates with poor prognosis and promotes thyroid carcinoma progression. Med Sci Monit. 25:1342–1349. 2019. View Article : Google Scholar

85 

Warburg O, Wind F and Negelein E: The metabolism of tumors in the body. J Gen Physiol. 8:519–530. 1927. View Article : Google Scholar

86 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar

87 

Warburg O: On respiratory impairment in cancer cells. Science. 124:269–270. 1956.

88 

Lunt SY and Vander Heiden MG: Aerobic glycolysis: Meeting the metabolic requirements of cell proliferation. Annu Rev Cell Dev Biol. 27:441–464. 2011. View Article : Google Scholar

89 

Dang CV, Hamaker M, Sun P, Le A and Gao P: Therapeutic targeting of cancer cell metabolism. J Mol Med (Berl). 89:205–212. 2011. View Article : Google Scholar

90 

Ren H, Song Z, Chao C and Mao W: circCCDC66 promotes thyroid cancer cell proliferation, migratory and invasive abilities and glycolysis through the miR-211-5p/PDK4 axis. Oncol Lett. 21:4162021. View Article : Google Scholar

91 

Li Y, Qin J, He Z, Cui G, Zhang K and Wu B: Knockdown of circPUM1 impedes cell growth, metastasis and glycolysis of papillary thyroid cancer via enhancing MAPK1 expression by serving as the sponge of miR-21-5p. Genes Genomics. 43:141–150. 2021. View Article : Google Scholar

92 

Hu Z, Zhao P, Zhang K, Zang L, Liao H and Ma W: Hsa_ circ_0011290 regulates proliferation, apoptosis and glycolytic phenotype in papillary thyroid cancer via miR-1252/FSTL1 signal pathway. Arch Biochem Biophys. 685:1083532020. View Article : Google Scholar

93 

Longley DB and Johnston PG: Molecular mechanisms of drug resistance. J Pathol. 205:275–292. 2005. View Article : Google Scholar

94 

Shaili E: Platinum anticancer drugs and photochemotherapeutic agents: Recent advances and future developments. Sci Prog. 97:20–40. 2014. View Article : Google Scholar

95 

Hundahl SA, Fleming ID, Fremgen AM and Menck HR: A national cancer data base report on 53-856 cases of thyroid carcinoma treated in the U.S., 1985-1995[see commetns]. Cancer. 83:2638–2648. 1998. View Article : Google Scholar

96 

Kitamura Y, Shimizu K, Nagahama M, Sugino K, Ozaki O, Mimura T, Ito K, Ito K and Tanaka S: Immediate causes of death in thyroid carcinoma: Clinicopathological analysis of 161 fatal cases. J Clin Endocrinol Metab. 84:4043–4049. 1999. View Article : Google Scholar

97 

Antonelli A, Miccoli P, Derzhitski VE, Panasiuk G, Solovieva N and Baschieri L: Epidemiologic and clinical evaluation of thyroid cancer in children from the Gomel region (Belarus). World J Surg. 20:867–871. 1996. View Article : Google Scholar

98 

Zheng X, Cui D, Xu S, Brabant G and Derwahl M: Doxorubicin fails to eradicate cancer stem cells derived from anaplastic thyroid carcinoma cells: Characterization of resistant cells. Int J Oncol. 37:307–315. 2010.

99 

Liu F, Zhang J, Qin L, Yang Z, Xiong J, Zhang Y, Li R, Li S, Wang H, Yu B, et al: Circular RNA EIF6 (Hsa_circ_0060060) sponges miR-144-3p to promote the cisplatin-resistance of human thyroid carcinoma cells by autophagy regulation. Aging (Albany NY). 10:3806–3820. 2018. View Article : Google Scholar

100 

Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar

101 

Memczak S, Papavasileiou P, Peters O and Rajewsky N: Identification and characterization of circular RNAs as a new class of putative biomarkers in human blood. PLoS One. 10:e01412142015. View Article : Google Scholar

102 

Yin WB, Yan MG, Fang X, Guo JJ, Xiong W and Zhang RP: Circulating circular RNA hsa_circ_0001785 acts as a diagnostic biomarker for breast cancer detection. Clin Chim Acta. 487:363–368. 2018. View Article : Google Scholar

103 

Chen Y, Wei S, Wang X, Zhu X and Han S: Progress in research on the role of circular RNAs in lung cancer. World J Surg Oncol. 16:2152018. View Article : Google Scholar

104 

Wei J, Wei W, Xu H, Wang Z, Gao W, Wang T, Zheng Q, Shu Y and De W: Circular RNA hsa_circRNA_102958 may serve as a diagnostic marker for gastric cancer. Cancer Biomark. 27:139–145. 2020. View Article : Google Scholar

105 

Lan X, Cao J, Xu J, Chen C, Zheng C, Wang J, Zhu X, Zhu X and Ge M: Decreased expression of hsa_circ_0137287 predicts aggressive clinicopathologic characteristics in papillary thyroid carcinoma. J Clin Lab Anal. 32:e225732018. View Article : Google Scholar

106 

Ren H, Liu Z, Liu S, Zhou X, Wang H, Xu J, Wang D and Yuan G: Profile and clinical implication of circular RNAs in human papillary thyroid carcinoma. PeerJ. 6:e53632018. View Article : Google Scholar

107 

Shi E, Ye J, Zhang R, Ye S, Zhang S, Wang Y, Cao Y and Dai W: A combination of circRNAs as a diagnostic tool for discrimination of papillary thyroid cancer. Onco Targets Ther. 13:4365–4372. 2020. View Article : Google Scholar

108 

Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019. View Article : Google Scholar

109 

van der Pol E, Böing AN, Harrison P, Sturk A and Nieuwland R: Classification, functions, and clinical relevance of extracellular vesicles. Pharmacol Rev. 64:676–705. 2012. View Article : Google Scholar

110 

Yang C, Wei Y, Yu L and Xiao Y: Identification of altered circular RNA expression in serum exosomes from patients with papillary thyroid carcinoma by high-throughput sequencing. Med Sci Monit. 25:2785–2791. 2019. View Article : Google Scholar

111 

Hsiao KY, Lin YC, Gupta SK, Chang N, Yen L, Sun HS and Tsai SJ: Noncoding effects of circular RNA CCDC66 promote colon cancer growth and metastasis. Cancer Res. 77:2339–2350. 2017. View Article : Google Scholar

112 

Chen D, Ma W, Ke Z and Xie F: CircRNA hsa_circ_100395 regulates miR-1228/TCF21 pathway to inhibit lung cancer progression. Cell Cycle. 17:2080–2090. 2018. View Article : Google Scholar

113 

Zeng K, He B, Yang BB, Xu T, Chen X, Xu M, Liu X, Sun H, Pan Y and Wang S: The pro-metastasis effect of circANKS1B in breast cancer. Mol Cancer. 17:1602018. View Article : Google Scholar

114 

Sun JW, Qiu S, Yang JY, Chen X and Li HX: Hsa_circ_0124055 and hsa_circ_0101622 regulate proliferation and apoptosis in thyroid cancer and serve as prognostic and diagnostic indicators. Eur Rev Med Pharmacol Sci. 24:4348–4360. 2020.

115 

Rüster B, Göttig S, Ludwig RJ, Bistrian R, Müller S, Seifried E, Gille J and Henschler R: Mesenchymal stem cells display coordinated rolling and adhesion behavior on endothelial cells. Blood. 108:3938–3944. 2006. View Article : Google Scholar

116 

De Becker A and Riet IV: Homing and migration of mesenchymal stromal cells: How to improve the efficacy of cell therapy? World J Stem Cells. 8:73–87. 2016. View Article : Google Scholar

117 

Nitzsche F, Müller C, Lukomska B, Jolkkonen J, Deten A and Boltze J: Concise review: MSC adhesion cascade-insights into homing and transendothelial migration. Stem Cells. 35:1446–1460. 2017. View Article : Google Scholar

118 

Toh WS, Lai RC, Zhang B and Lim SK: MSC exosome works through a protein-based mechanism of action. Biochem Soc Trans. 46:843–853. 2018. View Article : Google Scholar

119 

Keshtkar S, Azarpira N and Ghahremani MH: Mesenchymal stem cell-derived extracellular vesicles: Novel frontiers in regenerative medicine. Stem Cell Res Ther. 9:632018. View Article : Google Scholar

120 

Kalimuthu S, Oh JM, Gangadaran P, Zhu L, Lee HW, Jeon YH, Jeong SY, Lee SW, Lee J and Ahn BC: Genetically engineered suicide gene in mesenchymal stem cells using a Tet-On system for anaplastic thyroid cancer. PLoS One. 12:e01813182017. View Article : Google Scholar

121 

Milane L, Singh A, Mattheolabakis G, Suresh M and Amiji MM: Exosome mediated communication within the tumor microenvironment. J Control Release. 219:278–294. 2015. View Article : Google Scholar

122 

Tang M, Wang Q, Wang K and Wang F: Mesenchymal stem cells-originated exosomal microRNA-152 impairs proliferation, invasion and migration of thyroid carcinoma cells by interacting with DPP4. J Endocrinol Invest. 43:1787–1796. 2020. View Article : Google Scholar

123 

Zhang C, Cao J, Lv W and Mou H: CircRNA_100395 carried by exosomes from adipose-derived mesenchymal stem cells inhibits the malignant transformation of non-small cell lung carcinoma through the miR-141-3p-LATS2 axis. Front Cell Dev Biol. 9:6631472021. View Article : Google Scholar

124 

Yan B, Zhang Y, Liang C, Liu B, Ding F, Wang Y, Zhu B, Zhao R, Yu XY and Li Y: Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/FOXO3a pathway. Theranostics. 10:6728–6742. 2020. View Article : Google Scholar

125 

Zhu M, Liu X, Li W and Wang L: Exosomes derived from mmu_circ_0000623-modified ADSCs prevent liver fibrosis via activating autophagy. Hum Exp Toxicol. 39:1619–1627. 2020. View Article : Google Scholar

126 

Kamerkar S, LeBleu VS, Sugimoto H, Yang S, Ruivo CF, Melo SA, Lee JJ and Kalluri R: Exosomes facilitate therapeutic targeting of oncogenic KRAS in pancreatic cancer. Nature. 546:498–503. 2017. View Article : Google Scholar

127 

Zarovni N, Corrado A, Guazzi P, Zocco D, Lari E, Radano G, Muhhina J, Fondelli C, Gavrilova J and Chiesi A: Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods. 87:46–58. 2015. View Article : Google Scholar

128 

Yu LL, Zhu J, Liu JX, Jiang F, Ni WK, Qu LS, Ni RZ, Lu CH and Xiao MB: A comparison of traditional and novel methods for the separation of exosomes from human samples. Biomed Res Int. 2018:36345632018. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C and Fu S: CircRNA: A novel potential strategy to treat thyroid cancer (Review). Int J Mol Med 48: 201, 2021.
APA
Zhu, G., Chang, X., Kang, Y., Zhao, X., Tang, X., Ma, C., & Fu, S. (2021). CircRNA: A novel potential strategy to treat thyroid cancer (Review). International Journal of Molecular Medicine, 48, 201. https://doi.org/10.3892/ijmm.2021.5034
MLA
Zhu, G., Chang, X., Kang, Y., Zhao, X., Tang, X., Ma, C., Fu, S."CircRNA: A novel potential strategy to treat thyroid cancer (Review)". International Journal of Molecular Medicine 48.5 (2021): 201.
Chicago
Zhu, G., Chang, X., Kang, Y., Zhao, X., Tang, X., Ma, C., Fu, S."CircRNA: A novel potential strategy to treat thyroid cancer (Review)". International Journal of Molecular Medicine 48, no. 5 (2021): 201. https://doi.org/10.3892/ijmm.2021.5034
Copy and paste a formatted citation
x
Spandidos Publications style
Zhu G, Chang X, Kang Y, Zhao X, Tang X, Ma C and Fu S: CircRNA: A novel potential strategy to treat thyroid cancer (Review). Int J Mol Med 48: 201, 2021.
APA
Zhu, G., Chang, X., Kang, Y., Zhao, X., Tang, X., Ma, C., & Fu, S. (2021). CircRNA: A novel potential strategy to treat thyroid cancer (Review). International Journal of Molecular Medicine, 48, 201. https://doi.org/10.3892/ijmm.2021.5034
MLA
Zhu, G., Chang, X., Kang, Y., Zhao, X., Tang, X., Ma, C., Fu, S."CircRNA: A novel potential strategy to treat thyroid cancer (Review)". International Journal of Molecular Medicine 48.5 (2021): 201.
Chicago
Zhu, G., Chang, X., Kang, Y., Zhao, X., Tang, X., Ma, C., Fu, S."CircRNA: A novel potential strategy to treat thyroid cancer (Review)". International Journal of Molecular Medicine 48, no. 5 (2021): 201. https://doi.org/10.3892/ijmm.2021.5034
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team