|
1
|
Shribman S, Reid E, Crosby AH, Houlden H
and Warner TT: Hereditary spastic paraplegia: From diagnosis to
emerging therapeutic approaches. Lancet Neurol. 18:1136–1146. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Schüle R, Wiethoff S, Martus P, Karle KN,
Otto S, Klebe S, Klimpe S, Gallenmüller C, Kurzwelly D, Henkel D,
et al: Hereditary spastic paraplegia: Clinicogenetic lessons from
608 patients. Ann Neurol. 79:646–658. 2016. View Article : Google Scholar
|
|
3
|
Solowska JM and Baas PW: Hereditary
spastic paraplegia SPG4: What is known and not known about the
disease. Brain. 138:2471–2484. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Fink JK: Hereditary spastic paraplegia:
Clinico-pathologic features and emerging molecular mechanisms. Acta
Neuropathol. 126:307–328. 2013. View Article : Google Scholar
|
|
5
|
Salinas S, Carazo-Salas RE, Proukakis C,
Schiavo G and Warner TT: Spastin and microtubules: Functions in
health and disease. J Neurosci Res. 85:2778–2782. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Solowska JM, Morfini G, Falnikar A, Himes
BT, Brady ST, Huang D and Baas PW: Quantitative and functional
analyses of spastin in the nervous system: Implications for
hereditary spastic paraplegia. J Neurosci. 28:2147–2157. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Deluca GC, Ebers GC and Esiri MM: The
extent of axonal loss in the long tracts in hereditary spastic
paraplegia. Neuropathol Appl Neurobiol. 30:576–584. 2004.
View Article : Google Scholar
|
|
8
|
Lumb JH, Connell JW, Allison R and Reid E:
The AAA ATPase spastin links microtubule severing to membrane
modelling. Biochim Biophys Acta. 1823:192–197. 2012. View Article : Google Scholar
|
|
9
|
Schickel J, Pamminger T, Ehrsam A, Münch
S, Huang X, Klopstock T, Kurlemann G, Hemmerich P, Dubiel W, Deufel
T and Beetz C: Isoform-specific increase of spastin stability by
N-terminal missense variants including intragenic modifiers of SPG4
hereditary spastic paraplegia. Eur J Neurol. 14:1322–1328. 2007.
View Article : Google Scholar
|
|
10
|
Havlicek S, Kohl Z, Mishra HK, Prots I,
Eberhardt E, Denguir N, Wend H, Plötz S, Boyer L, Marchetto MC, et
al: Gene dosage-dependent rescue of HSP neurite defects in SPG4
patients' neurons. Hum Mol Genet. 23:2527–2541. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Arribat Y, Grepper D, Lagarrigue S, Qi T,
Cohen S and Amati F: Spastin mutations impair coordination between
lipid droplet dispersion and reticulum. PLoS Genet.
16:e10086652020. View Article : Google Scholar :
|
|
12
|
Park SH, Zhu PP, Parker RL and Blackstone
C: Hereditary spastic paraplegia proteins REEP1, spastin, and
atlastin-1 coordinate microtubule interactions with the tubular ER
network. J Clin Invest. 120:1097–1110. 2010. View Article : Google Scholar
|
|
13
|
Chang CL, Weigel AV, Ioannou MS, Pasolli
HA, Xu CS, Peale DR, Shtengel G, Freeman M, Hess HF, Blackstone C,
et al: Spastin tethers lipid droplets to peroxisomes and directs
fatty acid trafficking through ESCRT-III. J Cell Biol.
218:2583–2599. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Vietri M, Radulovic M and Stenmark H: The
many functions of ESCRTs. Nat Rev Mol Cell Biol. 21:25–42. 2020.
View Article : Google Scholar
|
|
15
|
Guo EZ and Xu Z: Distinct mechanisms of
recognizing endosomal sorting complex required for transport III
(ESCRT-III) protein IST1 by different microtubule interacting and
trafficking (MIT) domains. J Biol Chem. 290:8396–8408. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Connell JW, Allison RJ, Rodger CE, Pearson
G, Zlamalova E and Reid E: ESCRT-III-associated proteins and
spastin inhibit protrudin-dependent polarised membrane traffic.
Cell Mol Life Sci. 77:2641–2658. 2020. View Article : Google Scholar
|
|
17
|
Allison R, Lumb JH, Fassier C, Connell JW,
Ten Martin D, Seaman MN, Hazan J and Reid E: An ESCRT-spastin
interaction promotes fission of recycling tubules from the
endosome. J Cell Biol. 202:527–543. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Allison R, Edgar JR, Pearson G, Rizo T,
Newton T, Günther S, Berner F, Hague J, Connell JW, Winkler J, et
al: Defects in ER-endosome contacts impact lysosome function in
hereditary spastic paraplegia. J Cell Biol. 216:1337–1355. 2017.
View Article : Google Scholar :
|
|
19
|
Leo L, Weissmann C, Burns M, Kang M, Song
Y, Qiang L, Brady ST, Baas PW and Morfini G: Mutant spastin
proteins promote deficits in axonal transport through an
isoform-specific mechanism involving casein kinase 2 activation.
Hum Mol Genet. 26:2321–2334. 2017. View Article : Google Scholar
|
|
20
|
Kasher PR, De Vos KJ, Wharton SB, Manser
C, Bennett EJ, Bingley M, Wood JD, Milner R, McDermott CJ, Miller
CC, et al: Direct evidence for axonal transport defects in a novel
mouse model of mutant spastin-induced hereditary spastic paraplegia
(HSP) and human HSP patients. J Neurochem. 110:34–44. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Jeong B, Kim TH, Kim DS, Shin WH, Lee JR,
Kim NS and Lee DY: Spastin contributes to neural development
through the regulation of microtubule dynamics in the primary cilia
of neural stem cells. Neuroscience. 411:76–85. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Goyal U, Renvoisé B, Chang J and
Blackstone C: Spastin-interacting protein NA14/SSNA1 functions in
cytokinesis and axon development. PLoS One. 9:e1124282014.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ji Z, Zhang G, Chen L, Li J, Yang Y, Cha
C, Zhang J, Lin H and Guo G: Spastin interacts with CRMP5 to
promote neurite outgrowth by controlling the microtubule dynamics.
Dev Neurobiol. 78:1191–1205. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Wood JD, Landers JA, Bingley M, McDermott
CJ, Thomas-McArthur V, Gleadall LJ, Shaw PJ and Cunliffe VT: The
microtubule-severing protein Spastin is essential for axon
outgrowth in the zebrafish embryo. Hum Mol Genet. 15:2763–2771.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Lopes AT, Hausrat TJ, Heisler FF, Gromova
KV, Lombino FL, Fischer T, Ruschkies L, Breiden P, Thies E,
Hermans-Borgmeyer I, et al: Spastin depletion increases tubulin
polyglutamylation and impairs kinesin-mediated neuronal transport,
leading to working and associative memory deficits. PLoS Biol.
18:e30008202020. View Article : Google Scholar :
|
|
26
|
Ji ZS, Liu QL, Zhang JF, Yang YH, Li J,
Zhang GW, Tan MH, Lin HS and Guo GQ: SUMOylation of spastin
promotes the internalization of GluA1 and regulates dendritic spine
morphology by targeting microtubule dynamics. Neurobiol Dis.
146:1051332020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Sherwood NT, Sun Q, Xue M, Zhang B and
Zinn K: Drosophila spastin regulates synaptic microtubule networks
and is required for normal motor function. PLoS Biol. 2:e4292004.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Roll-Mecak A and Vale RD: Structural basis
of microtubule severing by the hereditary spastic paraplegia
protein spastin. Nature. 451:363–367. 2008. View Article : Google Scholar
|
|
29
|
Kuo YW, Trottier O, Mahamdeh M and Howard
J: Spastin is a dual-function enzyme that severs microtubules and
promotes their regrowth to increase the number and mass of
microtubules. Proc Natl Acad Sci USA. 116:5533–5541. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Connell JW, Lindon C, Luzio JP and Reid E:
Spastin couples microtubule severing to membrane traffic in
completion of cytokinesis and secretion. Traffic. 10:42–56. 2009.
View Article : Google Scholar
|
|
31
|
Qiang L, Piermarini E and Baas PW: New
hypothesis for the etiology of SPAST-based hereditary spastic
paraplegia. Cytoskeleton (Hoboken). 76:289–297. 2019. View Article : Google Scholar
|
|
32
|
Sakoe K, Shioda N and Matsuura T: A newly
identified NES sequence present in spastin regulates its
subcellular localization and microtubule severing activity. Biochim
Biophys Acta Mol Cell Res. 1868:1188622021. View Article : Google Scholar
|
|
33
|
Beetz C, Brodhun M, Moutzouris K,
Kiehntopf M, Berndt A, Lehnert D, Deufel T, Bastmeyer M and
Schickel J: Identification of nuclear localisation sequences in
spastin (SPG4) using a novel Tetra-GFP reporter system. Biochem
Biophys Res Commun. 318:1079–1084. 2004. View Article : Google Scholar
|
|
34
|
Monteonofrio L, Valente D, Rinaldo C and
Soddu S: Extrachromosomal Histone H2B contributes to the formation
of the abscission site for cell division. Cells. 8:13912019.
View Article : Google Scholar
|
|
35
|
Sandate CR, Szyk A, Zehr EA, Lander GC and
Roll-Mecak A: An allosteric network in spastin couples multiple
activities required for microtubule severing. Nat Struct Mol Biol.
26:671–678. 2019. View Article : Google Scholar :
|
|
36
|
Han H, Schubert HL, McCullough J, Monroe
N, Purdy MD, Yeager M, Sundquist WI and Hill CP: Structure of
spastin bound to a glutamate-rich peptide implies a hand-over-hand
mechanism of substrate translocation. J Biol Chem. 295:435–443.
2020. View Article : Google Scholar :
|
|
37
|
White SR, Evans KJ, Lary J, Cole JL and
Lauring B: Recognition of C-terminal amino acids in tubulin by pore
loops in Spastin is important for microtubule severing. J Cell
Biol. 176:995–1005. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Vemu A, Szczesna E, Zehr EA, Spector JO,
Grigorieff N, Deaconescu AM and Roll-Mecak A: Severing enzymes
amplify microtubule arrays through lattice GTP-tubulin
incorporation. Science. 361:eaau15042018. View Article : Google Scholar
|
|
39
|
Kuo YW, Trottier O and Howard J: Predicted
effects of severing enzymes on the length distribution and total
mass of microtubules. Biophys J. 117:2066–2078. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Saltini M and Mulder BM: Critical
threshold for microtubule amplification through templated severing.
Phys Rev E. 101:0524052020. View Article : Google Scholar
|
|
41
|
Rao K, Stone MC, Weiner AT, Gheres KW,
Zhou C, Deitcher DL, Levitan ES and Rolls MM: Spastin, atlastin,
and ER relocalization are involved in axon but not dendrite
regeneration. Mol Biol Cell. 27:3245–3256. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Vajente N, Norante R, Redolfi N, Daga A,
Pizzo P and Pendin D: Microtubules stabilization by mutant spastin
affects ER morphology and Ca2+ handling. Front Physiol.
10:15442019. View Article : Google Scholar
|
|
43
|
Pendin D, McNew JA and Daga A: Balancing
ER dynamics: Shaping, bending, severing, and mending membranes.
Curr Opin Cell Biol. 23:435–442. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Farías GG, Fréal A, Tortosa E, Stucchi R,
Pan X, Portegies S, Will L, Altelaar M and Hoogenraad CC:
Feedback-driven mechanisms between microtubules and the endoplasmic
reticulum instruct neuronal polarity. Neuron. 102:184–201.e8. 2019.
View Article : Google Scholar
|
|
45
|
Liu X, Guo X, Niu L, Li X, Sun F, Hu J,
Wang X and Shen K: Atlastin-1 regulates morphology and function of
endoplasmic reticulum in dendrites. Nat Commun. 10:5682019.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hashimoto Y, Shirane M, Matsuzaki F, Saita
S, Ohnishi T and Nakayama KI: Protrudin regulates endoplasmic
reticulum morphology and function associated with the pathogenesis
of hereditary spastic paraplegia. J Biol Chem. 289:12946–12961.
2014. View Article : Google Scholar :
|
|
47
|
Chang J, Lee S and Blackstone C: Protrudin
binds atlastins and endoplasmic reticulum-shaping proteins and
regulates network formation. Proc Natl Acad Sci USA.
110:14954–14959. 2013. View Article : Google Scholar
|
|
48
|
Iworima DG, Pasqualotto BA and Rintoul GL:
Kif5 regulates mitochondrial movement, morphology, function and
neuronal survival. Mol Cell Neurosci. 72:22–33. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Matsuzaki F, Shirane M, Matsumoto M and
Nakayama KI: Protrudin serves as an adaptor molecule that connects
KIF5 and its cargoes in vesicular transport during process
formation. Mol Biol Cell. 22:4602–4620. 2011. View Article : Google Scholar :
|
|
50
|
Shirane M, Wada M, Morita K, Hayashi N,
Kunimatsu R, Matsumoto Y, Matsuzaki F, Nakatsumi H, Ohta K, Tamura
Y and Nakayama KI: Protrudin and PDZD8 contribute to neuronal
integrity by promoting lipid extraction required for endosome
maturation. Nat Commun. 11:45762020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Shirane M: Lipid transfer-dependent
endosome maturation mediated by protrudin and PDZD8 in neurons.
Front Cell Dev Biol. 8:6156002020. View Article : Google Scholar
|
|
52
|
Zhang C, Li D, Ma Y, Yan J, Yang B, Li P,
Yu A, Lu C and Ma X: Role of spastin and protrudin in neurite
outgrowth. J Cell Biochem. 113:2296–2307. 2012. View Article : Google Scholar
|
|
53
|
Olzmann JA and Carvalho P: Dynamics and
functions of lipid droplets. Nat Rev Mol Cell Biol. 20:137–155.
2019. View Article : Google Scholar :
|
|
54
|
Walther TC, Chung J and Farese RV Jr:
Lipid droplet biogenesis. Annu Rev Cell Dev Biol. 33:491–510. 2017.
View Article : Google Scholar
|
|
55
|
Welte MA and Gould AP: Lipid droplet
functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol
Lipids. 1862:1260–1272. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Velázquez AP, Tatsuta T, Ghillebert R,
Drescher I and Graef M: Lipid droplet-mediated ER homeostasis
regulates autophagy and cell survival during starvation. J Cell
Biol. 212:621–631. 2016. View Article : Google Scholar
|
|
57
|
Papadopoulos C, Orso G, Mancuso G, Herholz
M, Gumeni S, Tadepalle N, Jüngst C, Tzschichholz A, Schauss A,
Höning S, et al: Spastin binds to lipid droplets and affects lipid
metabolism. PLoS Genet. 11:e10051492015. View Article : Google Scholar :
|
|
58
|
Vietri M, Schink KO, Campsteijn C, Wegner
CS, Schultz SW, Christ L, Thoresen SB, Brech A, Raiborg C and
Stenmark H: Spastin and ESCRT-III coordinate mitotic spindle
disassembly and nuclear envelope sealing. Nature. 522:231–235.
2015. View Article : Google Scholar
|
|
59
|
Reid E, Connell J, Edwards TL, Duley S,
Brown SE and Sanderson CM: The hereditary spastic paraplegia
protein spastin interacts with the ESCRT-III complex-associated
endosomal protein CHMP1B. Hum Mol Genet. 14:19–38. 2005. View Article : Google Scholar
|
|
60
|
Christ L, Raiborg C, Wenzel EM, Campsteijn
C and Stenmark H: Cellular functions and molecular mechanisms of
the ESCRT membrane-scission machinery. Trends Biochem Sci.
42:42–56. 2017. View Article : Google Scholar
|
|
61
|
Henne WM, Buchkovich NJ and Emr SD: The
ESCRT pathway. Dev Cell. 21:77–91. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Pisciottani A, Biancolillo L, Ferrara M,
Valente D, Sardina F, Monteonofrio L, Camerini S, Crescenzi M,
Soddu S and Rinaldo C: HIPK2 phosphorylates the
microtubule-severing enzyme spastin at S268 for abscission. Cells.
8:6842019. View Article : Google Scholar :
|
|
63
|
Scott CC, Vacca F and Gruenberg J:
Endosome maturation, transport and functions. Semin Cell Dev Biol.
31:2–10. 2014. View Article : Google Scholar
|
|
64
|
Tu Y, Zhao L, Billadeau DD and Jia D:
Endosome-to-TGN trafficking: Organelle-vesicle and
organelle-organelle interactions. Front Cell Dev Biol. 8:1632020.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Wang J, Fedoseienko A, Chen B, Burstein E,
Jia D and Billadeau DD: Endosomal receptor trafficking: Retromer
and beyond. Traffic. 19:578–590. 2018. View Article : Google Scholar :
|
|
66
|
Vagnozzi AN and Praticò D: Endosomal
sorting and trafficking, the retromer complex and
neurodegeneration. Mol Psychiatry. 24:857–868. 2019. View Article : Google Scholar :
|
|
67
|
Allison R, Edgar JR and Reid E: Spastin
MIT Domain Disease-Associated mutations disrupt lysosomal function.
Front Neurosci. 13:11792019. View Article : Google Scholar :
|
|
68
|
Skjeldal FM, Strunze S, Bergeland T,
Walseng E, Gregers TF and Bakke O: The fusion of early endosomes
induces molecular-motor-driven tubule formation and fission. J Cell
Sci. 125:1910–1919. 2012.
|
|
69
|
Hoyer MJ, Chitwood PJ, Ebmeier CC,
Striepen JF, Qi RZ, Old WM and Voeltz GK: A novel class of ER
membrane proteins regulates ER-associated endosome fission. Cell.
175:254–265.e14. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Raiborg C, Wenzel EM, Pedersen NM, Olsvik
H, Schink KO, Schultz SW, Vietri M, Nisi V, Bucci C, Brech A, et
al: Repeated ER-endosome contacts promote endosome translocation
and neurite outgrowth. Nature. 520:234–238. 2015. View Article : Google Scholar
|
|
71
|
Elbaz-Alon Y, Guo Y, Segev N, Harel M,
Quinnell DE, Geiger T, Avinoam O, Li D and Nunnari J: PDZD8
interacts with Protrudin and Rab7 at ER-late endosome membrane
contact sites associated with mitochondria. Nat Commun.
11:36452020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Joshi AS, Nebenfuehr B, Choudhary V,
Satpute-Krishnan P, Levine TP, Golden A and Prinz WA: Lipid droplet
and peroxisome biogenesis occur at the same ER subdomains. Nat
Commun. 9:29402018. View Article : Google Scholar :
|
|
73
|
Joshi AS and Cohen S: Lipid droplet and
peroxisome biogenesis: Do they go hand-in-hand? Front Cell Dev
Biol. 7:922019. View Article : Google Scholar
|
|
74
|
Walker CL, Pomatto LCD, Tripathi DN and
Davies KJA: Redox regulation of homeostasis and proteostasis in
peroxisomes. Physiol Rev. 98:89–115. 2018. View Article : Google Scholar
|
|
75
|
Islinger M, Voelkl A, Fahimi HD and
Schrader M: The peroxisome: An update on mysteries 2.0. Histochem
Cell Biol. 150:443–471. 2018. View Article : Google Scholar :
|
|
76
|
Henne WM: Spastin joins LDs and
peroxisomes in the interorganelle contact ballet. J Cell Biol.
218:2439–2441. 2019. View Article : Google Scholar :
|
|
77
|
Riano E, Martignoni M, Mancuso G, Cartelli
D, Crippa F, Toldo I, Siciliano G, Di Bella D, Taroni F, Bassi MT,
et al: Pleiotropic effects of spastin on neurite growth depending
on expression levels. J Neurochem. 108:1277–1288. 2009. View Article : Google Scholar
|
|
78
|
Denton KR, Lei L, Grenier J, Rodionov V,
Blackstone C and Li XJ: Loss of spastin function results in
disease-specific axonal defects in human pluripotent stem
cell-based models of hereditary spastic paraplegia. Stem Cells.
32:414–423. 2014. View Article : Google Scholar
|
|
79
|
Henson BJ, Zhu W, Hardaway K, Wetzel JL,
Stefan M, Albers KM and Nicholls RD: Transcriptional and
post-transcriptional regulation of SPAST, the gene most frequently
mutated in hereditary spastic paraplegia. PLoS One. 7:e365052012.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Jiang T, Cai Z, Ji Z, Zou J, Liang Z,
Zhang G, Liang Y, Lin H and Tan M: The lncRNA MALAT1/miR-30/Spastin
axis regulates hippocampal neurite outgrowth. Front Cell Neurosci.
14:5557472020. View Article : Google Scholar
|
|
81
|
Nakazeki F, Tsuge I, Horie T, Imamura K,
Tsukita K, Hotta A, Baba O, Kuwabara Y, Nishino T, Nakao T, et al:
MiR-33a is a therapeutic target in SPG4-related hereditary spastic
paraplegia human neurons. Clin Sci (Lond). 133:583–595. 2019.
View Article : Google Scholar
|
|
82
|
Sardina F, Pisciottani A, Ferrara M,
Valente D, Casella M, Crescenzi M, Peschiaroli A, Casali C, Soddu
S, Grierson AJ and Rinaldo C: Spastin recovery in hereditary
spastic paraplegia by preventing neddylation-dependent degradation.
Life Sci Alliance. 3:e2020007992020. View Article : Google Scholar :
|
|
83
|
Tan R, Lam AJ, Tan T, Han J, Nowakowski
DW, Vershinin M, Simó S, Ori-McKenney KM and McKenney RJ:
Microtubules gate tau condensation to spatially regulate
microtubule functions. Nat Cell Biol. 21:1078–1085. 2019.
View Article : Google Scholar :
|
|
84
|
Jin Z, Shou HF, Liu JW, Jiang SS, Shen Y,
Cheng WY and Gao LL: Spastin interacts with CRMP5 to promote
spindle organization in mouse oocytes by severing microtubules.
Zygote. 1–12. 2021. View Article : Google Scholar
|
|
85
|
Newton T, Allison R, Edgar JR, Lumb JH,
Rodger CE, Manna PT, Rizo T, Kohl Z, Nygren AOH, Arning L, et al:
Mechanistic basis of an epistatic interaction reducing age at onset
in hereditary spastic paraplegia. Brain. 141:1286–1299. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Kapitein LC and Hoogenraad CC: Building
the neuronal microtubule cytoskeleton. Neuron. 87:492–506. 2015.
View Article : Google Scholar
|
|
87
|
Kelliher MT, Saunders HA and Wildonger J:
Microtubule control of functional architecture in neurons. Curr
Opin Neurobiol. 57:39–45. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Bond AM, Ming GL and Song H: Adult
mammalian neural stem cells and neurogenesis: Five decades later.
Cell Stem Cell. 17:385–395. 2015. View Article : Google Scholar :
|
|
89
|
Katsimpardi L and Lledo PM: Regulation of
neurogenesis in the adult and aging brain. Curr Opin Neurobiol.
53:131–138. 2018. View Article : Google Scholar
|
|
90
|
McNally FJ and Roll-Mecak A:
Microtubule-severing enzymes: From cellular functions to molecular
mechanism. J Cell Biol. 217:4057–4069. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Kahn OI and Baas PW: Microtubules and
growth cones: Motors drive the turn. Trends Neurosci. 39:433–440.
2016. View Article : Google Scholar :
|
|
92
|
Dent EW and Gertler FB: Cytoskeletal
dynamics and transport in growth cone motility and axon guidance.
Neuron. 40:209–227. 2003. View Article : Google Scholar
|
|
93
|
Lowery LA and Van Vactor D: The trip of
the tip: Understanding the growth cone machinery. Nat Rev Mol Cell
Biol. 10:332–343. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Dent EW, Gupton SL and Gertler FB: The
growth cone cytoskeleton in axon outgrowth and guidance. Cold
Spring Harb Perspect Biol. 3:a0018002011. View Article : Google Scholar
|
|
95
|
Rao AN and Baas PW: Polarity sorting of
microtubules in the axon. Trends Neurosci. 41:77–88. 2018.
View Article : Google Scholar
|
|
96
|
Tas RP, Chazeau A, Cloin BMC, Lambers MLA,
Hoogenraad CC and Kapitein LC: Differentiation between oppositely
oriented microtubules controls polarized neuronal transport.
Neuron. 96:1264–1271.e5. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Claudiani P, Riano E, Errico A, Andolfi G
and Rugarli EI: Spastin subcellular localization is regulated
through usage of different translation start sites and active
export from the nucleus. Exp Cell Res. 309:358–369. 2005.
View Article : Google Scholar
|
|
98
|
Butler R, Wood JD, Landers JA and Cunliffe
VT: Genetic and chemical modulation of spastin-dependent axon
outgrowth in zebrafish embryos indicates a role for impaired
microtubule dynamics in hereditary spastic paraplegia. Dis Model
Mech. 3:743–751. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Karabay A, Yu W, Solowska JM, Baird DH and
Baas PW: Axonal growth is sensitive to the levels of katanin, a
protein that severs microtubules. J Neurosci. 24:5778–5788. 2004.
View Article : Google Scholar
|
|
100
|
Yu W, Qiang L, Solowska JM, Karabay A,
Korulu S and Baas PW: The microtubule-severing proteins spastin and
katanin participate differently in the formation of axonal
branches. Mol Biol Cell. 19:1485–1498. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Conde C and Cáceres A: Microtubule
assembly, organization and dynamics in axons and dendrites. Nat Rev
Neurosci. 10:319–332. 2009. View Article : Google Scholar
|
|
102
|
Herms J and Dorostkar MM: Dendritic spine
pathology in neurodegenerative diseases. Annu Rev Pathol.
11:221–250. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Stein IS and Zito K: Dendritic spine
elimination: Molecular mechanisms and implications. Neuroscientist.
25:27–47. 2019. View Article : Google Scholar
|
|
104
|
Park M: AMPA receptor trafficking for
postsynaptic potentiation. Front Cell Neurosci. 12:3612018.
|
|
105
|
Chater TE and Goda Y: The role of AMPA
receptors in postsynaptic mechanisms of synaptic plasticity. Front
Cell Neurosci. 8:4012014. View Article : Google Scholar
|
|
106
|
Hanley JG: AMPA receptor trafficking
pathways and links to dendritic spine morphogenesis. Cell Adh Migr.
2:276–282. 2008. View Article : Google Scholar
|
|
107
|
Dong H, O'Brien RJ, Fung ET, Lanahan AA,
Worley PF and Huganir RL: GRIP: A synaptic PDZ domain-containing
protein that interacts with AMPA receptors. Nature. 386:279–284.
1997. View Article : Google Scholar
|
|
108
|
Nakajima K, Yin X, Takei Y, Seog DH, Homma
N and Hirokawa N: Molecular motor KIF5A is essential for GABA(A)
receptor transport, and KIF5A deletion causes epilepsy. Neuron.
76:945–961. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Jaworski J, Kapitein LC, Gouveia SM,
Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA, Di
Stefano P, Demmers J, et al: Dynamic microtubules regulate
dendritic spine morphology and synaptic plasticity. Neuron.
61:85–100. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Okabe S and Hirokawa N: Axonal transport.
Curr Opin Cell Biol. 1:91–97. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Millecamps S and Julien JP: Axonal
transport deficits and neurodegenerative diseases. Nat Rev
Neurosci. 14:161–176. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Gibbs KL, Greensmith L and Schiavo G:
Regulation of axonal transport by protein kinases. Trends Biochem
Sci. 40:597–610. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Guedes-Dias P and Holzbaur ELF: Axonal
transport: Driving synaptic function. Science. 366:eaaw99972019.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Cyr JL and Brady ST: Molecular motors in
axonal transport. Cellular and molecular biology of kinesin Mol
Neurobiol. 6:137–155. 1992.
|
|
115
|
Fuerst JC, Henkel AW, Stroebel A, Welzel
O, Groemer TW, Kornhuber J and Bönsch D: Distinct intracellular
vesicle transport mechanisms are selectively modified by spastin
and spastin mutations. J Cell Physiol. 226:362–368. 2011.
View Article : Google Scholar
|
|
116
|
McDermott CJ, Grierson AJ, Wood JD,
Bingley M, Wharton SB, Bushby KM and Shaw PJ: Hereditary spastic
paraparesis: Disrupted intracellular transport associated with
spastin mutation. Ann Neurol. 54:748–759. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Wali G, Sutharsan R, Fan Y, Stewart R,
Tello Velasquez J, Sue CM, Crane DI and Mackay-Sim A: Mechanism of
impaired microtubule-dependent peroxisome trafficking and oxidative
stress in SPAST-mutated cells from patients with Hereditary Spastic
Paraplegia. Sci Rep. 6:270042016. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Wali G, Liyanage E, Blair NF, Sutharsan R,
Park JS, Mackay-Sim A and Sue CM: Oxidative stress-induced axon
fragmentation is a consequence of reduced axonal transport in
hereditary spastic paraplegia SPAST patient neurons. Front
Neurosci. 14:4012020. View Article : Google Scholar :
|
|
119
|
Plaud C, Joshi V, Marinello M, Pastré D,
Galli T, Curmi PA and Burgo A: Spastin regulates VAMP7-containing
vesicles trafficking in cortical neurons. Biochim Biophys Acta Mol
Basis Dis. 1863:1666–1677. 2017. View Article : Google Scholar
|
|
120
|
Jardin N, Giudicelli F, Ten Martín D,
Vitrac A, De Gois S, Allison R, Houart C, Reid E, Hazan J and
Fassier C: BMP- and neuropilin 1-mediated motor axon navigation
relies on spastin alternative translation. Development.
145:dev1627012018. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Plaud C, Joshi V, Kajevu N, Poüs C, Curmi
PA and Burgo A: Functional differences of short and long isoforms
of spastin harboring missense mutation. Dis Model Mech.
11:dmm0337042018. View Article : Google Scholar
|
|
122
|
Öztürk Z, O'Kane CJ and Pérez-Moreno JJ:
Axonal endoplasmic reticulum dynamics and its roles in
neurodegeneration. Front Neurosci. 14:482020. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Henne WM, Liou J and Emr SD: Molecular
mechanisms of inter-organelle ER-PM contact sites. Curr Opin Cell
Biol. 35:123–130. 2015. View Article : Google Scholar
|
|
124
|
Phillips MJ and Voeltz GK: Structure and
function of ER membrane contact sites with other organelles. Nat
Rev Mol Cell Biol. 17:69–82. 2016. View Article : Google Scholar
|
|
125
|
Chung WY, Jha A, Ahuja M and Muallem S:
Ca2+ influx at the ER/PM junctions. Cell Calcium.
63:29–32. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Friel D: Interplay between ER
Ca2+ uptake and release fluxes in neurons and its impact
on [Ca2+] dynamics. Biol Res. 37:665–674. 2004.
View Article : Google Scholar
|
|
127
|
Rehbach K, Kesavan J, Hauser S,
Ritzenhofen S, Jungverdorben J, Schüle R, Schöls L, Peitz M and
Brüstle O: Multiparametric rapid screening of neuronal process
pathology for drug target identification in HSP patient-specific
neurons. Sci Rep. 9:96152019. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Julien C, Lissouba A, Madabattula S,
Fardghassemi Y, Rosenfelt C, Androschuk A, Strautman J, Wong C,
Bysice A, O'sullivan J, et al: Conserved pharmacological rescue of
hereditary spastic paraplegia-related phenotypes across model
organisms. Hum Mol Genet. 25:1088–1099. 2016. View Article : Google Scholar :
|
|
129
|
Connell JW, Allison R and Reid E:
Quantitative gait analysis using a motorized treadmill system
sensitively detects motor abnormalities in mice expressing ATPase
defective spastin. PLoS One. 11:e01524132016. View Article : Google Scholar :
|
|
130
|
Qiang L, Piermarini E, Muralidharan H, Yu
W, Leo L, Hennessy LE, Fernandes S, Connors T, Yates PL, Swift M,
et al: Hereditary spastic paraplegia: Gain-of-function mechanisms
revealed by new transgenic mouse. Hum Mol Genet. 28:1136–1152.
2019. View Article : Google Scholar
|
|
131
|
Solowska JM, D'Rozario M, Jean DC,
Davidson MW, Marenda DR and Baas PW: Pathogenic mutation of spastin
has gain-of-function effects on microtubule dynamics. J Neurosci.
34:1856–1867. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Yip AG, Dürr A, Marchuk DA, Ashley-Koch A,
Hentati A, Rubinsztein DC and Reid E: Meta-analysis of age at onset
in spastin-associated hereditary spastic paraplegia provides no
evidence for a correlation with mutational class. J Med Genet.
40:e1062003. View Article : Google Scholar
|
|
133
|
Wu F, Qiu J, Fan Y, Zhang Q, Cheng B, Wu Y
and Bai B: Apelin-13 attenuates ER stress-mediated neuronal
apoptosis by activating Gαi/Gαq-CK2 signaling
in ischemic stroke. Exp Neurol. 302:136–144. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Manni S, Brancalion A, Tubi LQ, Colpo A,
Pavan L, Cabrelle A, Ave E, Zaffino F, Di Maira G, Ruzzene M, et
al: Protein kinase CK2 protects multiple myeloma cells from ER
stress-induced apoptosis and from the cytotoxic effect of HSP90
inhibition through regulation of the unfolded protein response.
Clin Cancer Res. 18:1888–1900. 2012. View Article : Google Scholar
|
|
135
|
Hessenauer A, Schneider CC, Götz C and
Montenarh M: CK2 inhibition induces apoptosis via the ER stress
response. Cell Signal. 23:145–151. 2011. View Article : Google Scholar
|
|
136
|
Fassier C, Tarrade A, Peris L, Courageot
S, Mailly P, Dalard C, Delga S, Roblot N, Lefèvre J, Job D, et al:
Microtubule-targeting drugs rescue axonal swellings in cortical
neurons from spastin knockout mice. Dis Model Mech. 6:72–83.
2013.
|