Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2021 Volume 48 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2021 Volume 48 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Molecular and cellular mechanisms of spastin in neural development and disease (Review)

  • Authors:
    • Qiuling Liu
    • Guowei Zhang
    • Zhisheng Ji
    • Hongsheng Lin
  • View Affiliations / Copyright

    Affiliations: Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China, Department of Orthopedics, The First Affiliated Hospital of Jinan University, Guangzhou, Guangdong 510630, P.R. China
    Copyright: © Liu et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 218
    |
    Published online on: October 19, 2021
       https://doi.org/10.3892/ijmm.2021.5051
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Spastin is a microtubule (MT)‑severing enzyme identified from mutations of hereditary spastic paraplegia in 1999 and extensive studies indicate its vital role in various cellular activities. In the past two decades, efforts have been made to understand the underlying molecular mechanisms of how spastin is linked to neural development and disease. Recent studies on spastin have unraveled the mechanistic processes of its MT‑severing activity and revealed that spastin acts as an MT amplifier to mediate its remodeling, thus providing valuable insight into the molecular roles of spastin under physiological conditions. In addition, recent research has revealed multiple novel molecular mechanisms of spastin in cellular biological pathways, including endoplasmic reticulum shaping, calcium trafficking, fatty acid trafficking, as well as endosomal fission and trafficking. These processes are closely involved in axonal and dendritic development and maintenance. The current review presents recent biological advances regarding the molecular mechanisms of spastin at the cellular level and provides insight into how it affects neural development and disease.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Shribman S, Reid E, Crosby AH, Houlden H and Warner TT: Hereditary spastic paraplegia: From diagnosis to emerging therapeutic approaches. Lancet Neurol. 18:1136–1146. 2019. View Article : Google Scholar : PubMed/NCBI

2 

Schüle R, Wiethoff S, Martus P, Karle KN, Otto S, Klebe S, Klimpe S, Gallenmüller C, Kurzwelly D, Henkel D, et al: Hereditary spastic paraplegia: Clinicogenetic lessons from 608 patients. Ann Neurol. 79:646–658. 2016. View Article : Google Scholar

3 

Solowska JM and Baas PW: Hereditary spastic paraplegia SPG4: What is known and not known about the disease. Brain. 138:2471–2484. 2015. View Article : Google Scholar : PubMed/NCBI

4 

Fink JK: Hereditary spastic paraplegia: Clinico-pathologic features and emerging molecular mechanisms. Acta Neuropathol. 126:307–328. 2013. View Article : Google Scholar

5 

Salinas S, Carazo-Salas RE, Proukakis C, Schiavo G and Warner TT: Spastin and microtubules: Functions in health and disease. J Neurosci Res. 85:2778–2782. 2007. View Article : Google Scholar : PubMed/NCBI

6 

Solowska JM, Morfini G, Falnikar A, Himes BT, Brady ST, Huang D and Baas PW: Quantitative and functional analyses of spastin in the nervous system: Implications for hereditary spastic paraplegia. J Neurosci. 28:2147–2157. 2008. View Article : Google Scholar : PubMed/NCBI

7 

Deluca GC, Ebers GC and Esiri MM: The extent of axonal loss in the long tracts in hereditary spastic paraplegia. Neuropathol Appl Neurobiol. 30:576–584. 2004. View Article : Google Scholar

8 

Lumb JH, Connell JW, Allison R and Reid E: The AAA ATPase spastin links microtubule severing to membrane modelling. Biochim Biophys Acta. 1823:192–197. 2012. View Article : Google Scholar

9 

Schickel J, Pamminger T, Ehrsam A, Münch S, Huang X, Klopstock T, Kurlemann G, Hemmerich P, Dubiel W, Deufel T and Beetz C: Isoform-specific increase of spastin stability by N-terminal missense variants including intragenic modifiers of SPG4 hereditary spastic paraplegia. Eur J Neurol. 14:1322–1328. 2007. View Article : Google Scholar

10 

Havlicek S, Kohl Z, Mishra HK, Prots I, Eberhardt E, Denguir N, Wend H, Plötz S, Boyer L, Marchetto MC, et al: Gene dosage-dependent rescue of HSP neurite defects in SPG4 patients' neurons. Hum Mol Genet. 23:2527–2541. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Arribat Y, Grepper D, Lagarrigue S, Qi T, Cohen S and Amati F: Spastin mutations impair coordination between lipid droplet dispersion and reticulum. PLoS Genet. 16:e10086652020. View Article : Google Scholar :

12 

Park SH, Zhu PP, Parker RL and Blackstone C: Hereditary spastic paraplegia proteins REEP1, spastin, and atlastin-1 coordinate microtubule interactions with the tubular ER network. J Clin Invest. 120:1097–1110. 2010. View Article : Google Scholar

13 

Chang CL, Weigel AV, Ioannou MS, Pasolli HA, Xu CS, Peale DR, Shtengel G, Freeman M, Hess HF, Blackstone C, et al: Spastin tethers lipid droplets to peroxisomes and directs fatty acid trafficking through ESCRT-III. J Cell Biol. 218:2583–2599. 2019. View Article : Google Scholar : PubMed/NCBI

14 

Vietri M, Radulovic M and Stenmark H: The many functions of ESCRTs. Nat Rev Mol Cell Biol. 21:25–42. 2020. View Article : Google Scholar

15 

Guo EZ and Xu Z: Distinct mechanisms of recognizing endosomal sorting complex required for transport III (ESCRT-III) protein IST1 by different microtubule interacting and trafficking (MIT) domains. J Biol Chem. 290:8396–8408. 2015. View Article : Google Scholar : PubMed/NCBI

16 

Connell JW, Allison RJ, Rodger CE, Pearson G, Zlamalova E and Reid E: ESCRT-III-associated proteins and spastin inhibit protrudin-dependent polarised membrane traffic. Cell Mol Life Sci. 77:2641–2658. 2020. View Article : Google Scholar

17 

Allison R, Lumb JH, Fassier C, Connell JW, Ten Martin D, Seaman MN, Hazan J and Reid E: An ESCRT-spastin interaction promotes fission of recycling tubules from the endosome. J Cell Biol. 202:527–543. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Allison R, Edgar JR, Pearson G, Rizo T, Newton T, Günther S, Berner F, Hague J, Connell JW, Winkler J, et al: Defects in ER-endosome contacts impact lysosome function in hereditary spastic paraplegia. J Cell Biol. 216:1337–1355. 2017. View Article : Google Scholar :

19 

Leo L, Weissmann C, Burns M, Kang M, Song Y, Qiang L, Brady ST, Baas PW and Morfini G: Mutant spastin proteins promote deficits in axonal transport through an isoform-specific mechanism involving casein kinase 2 activation. Hum Mol Genet. 26:2321–2334. 2017. View Article : Google Scholar

20 

Kasher PR, De Vos KJ, Wharton SB, Manser C, Bennett EJ, Bingley M, Wood JD, Milner R, McDermott CJ, Miller CC, et al: Direct evidence for axonal transport defects in a novel mouse model of mutant spastin-induced hereditary spastic paraplegia (HSP) and human HSP patients. J Neurochem. 110:34–44. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Jeong B, Kim TH, Kim DS, Shin WH, Lee JR, Kim NS and Lee DY: Spastin contributes to neural development through the regulation of microtubule dynamics in the primary cilia of neural stem cells. Neuroscience. 411:76–85. 2019. View Article : Google Scholar : PubMed/NCBI

22 

Goyal U, Renvoisé B, Chang J and Blackstone C: Spastin-interacting protein NA14/SSNA1 functions in cytokinesis and axon development. PLoS One. 9:e1124282014. View Article : Google Scholar : PubMed/NCBI

23 

Ji Z, Zhang G, Chen L, Li J, Yang Y, Cha C, Zhang J, Lin H and Guo G: Spastin interacts with CRMP5 to promote neurite outgrowth by controlling the microtubule dynamics. Dev Neurobiol. 78:1191–1205. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Wood JD, Landers JA, Bingley M, McDermott CJ, Thomas-McArthur V, Gleadall LJ, Shaw PJ and Cunliffe VT: The microtubule-severing protein Spastin is essential for axon outgrowth in the zebrafish embryo. Hum Mol Genet. 15:2763–2771. 2006. View Article : Google Scholar : PubMed/NCBI

25 

Lopes AT, Hausrat TJ, Heisler FF, Gromova KV, Lombino FL, Fischer T, Ruschkies L, Breiden P, Thies E, Hermans-Borgmeyer I, et al: Spastin depletion increases tubulin polyglutamylation and impairs kinesin-mediated neuronal transport, leading to working and associative memory deficits. PLoS Biol. 18:e30008202020. View Article : Google Scholar :

26 

Ji ZS, Liu QL, Zhang JF, Yang YH, Li J, Zhang GW, Tan MH, Lin HS and Guo GQ: SUMOylation of spastin promotes the internalization of GluA1 and regulates dendritic spine morphology by targeting microtubule dynamics. Neurobiol Dis. 146:1051332020. View Article : Google Scholar : PubMed/NCBI

27 

Sherwood NT, Sun Q, Xue M, Zhang B and Zinn K: Drosophila spastin regulates synaptic microtubule networks and is required for normal motor function. PLoS Biol. 2:e4292004. View Article : Google Scholar : PubMed/NCBI

28 

Roll-Mecak A and Vale RD: Structural basis of microtubule severing by the hereditary spastic paraplegia protein spastin. Nature. 451:363–367. 2008. View Article : Google Scholar

29 

Kuo YW, Trottier O, Mahamdeh M and Howard J: Spastin is a dual-function enzyme that severs microtubules and promotes their regrowth to increase the number and mass of microtubules. Proc Natl Acad Sci USA. 116:5533–5541. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Connell JW, Lindon C, Luzio JP and Reid E: Spastin couples microtubule severing to membrane traffic in completion of cytokinesis and secretion. Traffic. 10:42–56. 2009. View Article : Google Scholar

31 

Qiang L, Piermarini E and Baas PW: New hypothesis for the etiology of SPAST-based hereditary spastic paraplegia. Cytoskeleton (Hoboken). 76:289–297. 2019. View Article : Google Scholar

32 

Sakoe K, Shioda N and Matsuura T: A newly identified NES sequence present in spastin regulates its subcellular localization and microtubule severing activity. Biochim Biophys Acta Mol Cell Res. 1868:1188622021. View Article : Google Scholar

33 

Beetz C, Brodhun M, Moutzouris K, Kiehntopf M, Berndt A, Lehnert D, Deufel T, Bastmeyer M and Schickel J: Identification of nuclear localisation sequences in spastin (SPG4) using a novel Tetra-GFP reporter system. Biochem Biophys Res Commun. 318:1079–1084. 2004. View Article : Google Scholar

34 

Monteonofrio L, Valente D, Rinaldo C and Soddu S: Extrachromosomal Histone H2B contributes to the formation of the abscission site for cell division. Cells. 8:13912019. View Article : Google Scholar

35 

Sandate CR, Szyk A, Zehr EA, Lander GC and Roll-Mecak A: An allosteric network in spastin couples multiple activities required for microtubule severing. Nat Struct Mol Biol. 26:671–678. 2019. View Article : Google Scholar :

36 

Han H, Schubert HL, McCullough J, Monroe N, Purdy MD, Yeager M, Sundquist WI and Hill CP: Structure of spastin bound to a glutamate-rich peptide implies a hand-over-hand mechanism of substrate translocation. J Biol Chem. 295:435–443. 2020. View Article : Google Scholar :

37 

White SR, Evans KJ, Lary J, Cole JL and Lauring B: Recognition of C-terminal amino acids in tubulin by pore loops in Spastin is important for microtubule severing. J Cell Biol. 176:995–1005. 2007. View Article : Google Scholar : PubMed/NCBI

38 

Vemu A, Szczesna E, Zehr EA, Spector JO, Grigorieff N, Deaconescu AM and Roll-Mecak A: Severing enzymes amplify microtubule arrays through lattice GTP-tubulin incorporation. Science. 361:eaau15042018. View Article : Google Scholar

39 

Kuo YW, Trottier O and Howard J: Predicted effects of severing enzymes on the length distribution and total mass of microtubules. Biophys J. 117:2066–2078. 2019. View Article : Google Scholar : PubMed/NCBI

40 

Saltini M and Mulder BM: Critical threshold for microtubule amplification through templated severing. Phys Rev E. 101:0524052020. View Article : Google Scholar

41 

Rao K, Stone MC, Weiner AT, Gheres KW, Zhou C, Deitcher DL, Levitan ES and Rolls MM: Spastin, atlastin, and ER relocalization are involved in axon but not dendrite regeneration. Mol Biol Cell. 27:3245–3256. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Vajente N, Norante R, Redolfi N, Daga A, Pizzo P and Pendin D: Microtubules stabilization by mutant spastin affects ER morphology and Ca2+ handling. Front Physiol. 10:15442019. View Article : Google Scholar

43 

Pendin D, McNew JA and Daga A: Balancing ER dynamics: Shaping, bending, severing, and mending membranes. Curr Opin Cell Biol. 23:435–442. 2011. View Article : Google Scholar : PubMed/NCBI

44 

Farías GG, Fréal A, Tortosa E, Stucchi R, Pan X, Portegies S, Will L, Altelaar M and Hoogenraad CC: Feedback-driven mechanisms between microtubules and the endoplasmic reticulum instruct neuronal polarity. Neuron. 102:184–201.e8. 2019. View Article : Google Scholar

45 

Liu X, Guo X, Niu L, Li X, Sun F, Hu J, Wang X and Shen K: Atlastin-1 regulates morphology and function of endoplasmic reticulum in dendrites. Nat Commun. 10:5682019. View Article : Google Scholar : PubMed/NCBI

46 

Hashimoto Y, Shirane M, Matsuzaki F, Saita S, Ohnishi T and Nakayama KI: Protrudin regulates endoplasmic reticulum morphology and function associated with the pathogenesis of hereditary spastic paraplegia. J Biol Chem. 289:12946–12961. 2014. View Article : Google Scholar :

47 

Chang J, Lee S and Blackstone C: Protrudin binds atlastins and endoplasmic reticulum-shaping proteins and regulates network formation. Proc Natl Acad Sci USA. 110:14954–14959. 2013. View Article : Google Scholar

48 

Iworima DG, Pasqualotto BA and Rintoul GL: Kif5 regulates mitochondrial movement, morphology, function and neuronal survival. Mol Cell Neurosci. 72:22–33. 2016. View Article : Google Scholar : PubMed/NCBI

49 

Matsuzaki F, Shirane M, Matsumoto M and Nakayama KI: Protrudin serves as an adaptor molecule that connects KIF5 and its cargoes in vesicular transport during process formation. Mol Biol Cell. 22:4602–4620. 2011. View Article : Google Scholar :

50 

Shirane M, Wada M, Morita K, Hayashi N, Kunimatsu R, Matsumoto Y, Matsuzaki F, Nakatsumi H, Ohta K, Tamura Y and Nakayama KI: Protrudin and PDZD8 contribute to neuronal integrity by promoting lipid extraction required for endosome maturation. Nat Commun. 11:45762020. View Article : Google Scholar : PubMed/NCBI

51 

Shirane M: Lipid transfer-dependent endosome maturation mediated by protrudin and PDZD8 in neurons. Front Cell Dev Biol. 8:6156002020. View Article : Google Scholar

52 

Zhang C, Li D, Ma Y, Yan J, Yang B, Li P, Yu A, Lu C and Ma X: Role of spastin and protrudin in neurite outgrowth. J Cell Biochem. 113:2296–2307. 2012. View Article : Google Scholar

53 

Olzmann JA and Carvalho P: Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 20:137–155. 2019. View Article : Google Scholar :

54 

Walther TC, Chung J and Farese RV Jr: Lipid droplet biogenesis. Annu Rev Cell Dev Biol. 33:491–510. 2017. View Article : Google Scholar

55 

Welte MA and Gould AP: Lipid droplet functions beyond energy storage. Biochim Biophys Acta Mol Cell Biol Lipids. 1862:1260–1272. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Velázquez AP, Tatsuta T, Ghillebert R, Drescher I and Graef M: Lipid droplet-mediated ER homeostasis regulates autophagy and cell survival during starvation. J Cell Biol. 212:621–631. 2016. View Article : Google Scholar

57 

Papadopoulos C, Orso G, Mancuso G, Herholz M, Gumeni S, Tadepalle N, Jüngst C, Tzschichholz A, Schauss A, Höning S, et al: Spastin binds to lipid droplets and affects lipid metabolism. PLoS Genet. 11:e10051492015. View Article : Google Scholar :

58 

Vietri M, Schink KO, Campsteijn C, Wegner CS, Schultz SW, Christ L, Thoresen SB, Brech A, Raiborg C and Stenmark H: Spastin and ESCRT-III coordinate mitotic spindle disassembly and nuclear envelope sealing. Nature. 522:231–235. 2015. View Article : Google Scholar

59 

Reid E, Connell J, Edwards TL, Duley S, Brown SE and Sanderson CM: The hereditary spastic paraplegia protein spastin interacts with the ESCRT-III complex-associated endosomal protein CHMP1B. Hum Mol Genet. 14:19–38. 2005. View Article : Google Scholar

60 

Christ L, Raiborg C, Wenzel EM, Campsteijn C and Stenmark H: Cellular functions and molecular mechanisms of the ESCRT membrane-scission machinery. Trends Biochem Sci. 42:42–56. 2017. View Article : Google Scholar

61 

Henne WM, Buchkovich NJ and Emr SD: The ESCRT pathway. Dev Cell. 21:77–91. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Pisciottani A, Biancolillo L, Ferrara M, Valente D, Sardina F, Monteonofrio L, Camerini S, Crescenzi M, Soddu S and Rinaldo C: HIPK2 phosphorylates the microtubule-severing enzyme spastin at S268 for abscission. Cells. 8:6842019. View Article : Google Scholar :

63 

Scott CC, Vacca F and Gruenberg J: Endosome maturation, transport and functions. Semin Cell Dev Biol. 31:2–10. 2014. View Article : Google Scholar

64 

Tu Y, Zhao L, Billadeau DD and Jia D: Endosome-to-TGN trafficking: Organelle-vesicle and organelle-organelle interactions. Front Cell Dev Biol. 8:1632020. View Article : Google Scholar : PubMed/NCBI

65 

Wang J, Fedoseienko A, Chen B, Burstein E, Jia D and Billadeau DD: Endosomal receptor trafficking: Retromer and beyond. Traffic. 19:578–590. 2018. View Article : Google Scholar :

66 

Vagnozzi AN and Praticò D: Endosomal sorting and trafficking, the retromer complex and neurodegeneration. Mol Psychiatry. 24:857–868. 2019. View Article : Google Scholar :

67 

Allison R, Edgar JR and Reid E: Spastin MIT Domain Disease-Associated mutations disrupt lysosomal function. Front Neurosci. 13:11792019. View Article : Google Scholar :

68 

Skjeldal FM, Strunze S, Bergeland T, Walseng E, Gregers TF and Bakke O: The fusion of early endosomes induces molecular-motor-driven tubule formation and fission. J Cell Sci. 125:1910–1919. 2012.

69 

Hoyer MJ, Chitwood PJ, Ebmeier CC, Striepen JF, Qi RZ, Old WM and Voeltz GK: A novel class of ER membrane proteins regulates ER-associated endosome fission. Cell. 175:254–265.e14. 2018. View Article : Google Scholar : PubMed/NCBI

70 

Raiborg C, Wenzel EM, Pedersen NM, Olsvik H, Schink KO, Schultz SW, Vietri M, Nisi V, Bucci C, Brech A, et al: Repeated ER-endosome contacts promote endosome translocation and neurite outgrowth. Nature. 520:234–238. 2015. View Article : Google Scholar

71 

Elbaz-Alon Y, Guo Y, Segev N, Harel M, Quinnell DE, Geiger T, Avinoam O, Li D and Nunnari J: PDZD8 interacts with Protrudin and Rab7 at ER-late endosome membrane contact sites associated with mitochondria. Nat Commun. 11:36452020. View Article : Google Scholar : PubMed/NCBI

72 

Joshi AS, Nebenfuehr B, Choudhary V, Satpute-Krishnan P, Levine TP, Golden A and Prinz WA: Lipid droplet and peroxisome biogenesis occur at the same ER subdomains. Nat Commun. 9:29402018. View Article : Google Scholar :

73 

Joshi AS and Cohen S: Lipid droplet and peroxisome biogenesis: Do they go hand-in-hand? Front Cell Dev Biol. 7:922019. View Article : Google Scholar

74 

Walker CL, Pomatto LCD, Tripathi DN and Davies KJA: Redox regulation of homeostasis and proteostasis in peroxisomes. Physiol Rev. 98:89–115. 2018. View Article : Google Scholar

75 

Islinger M, Voelkl A, Fahimi HD and Schrader M: The peroxisome: An update on mysteries 2.0. Histochem Cell Biol. 150:443–471. 2018. View Article : Google Scholar :

76 

Henne WM: Spastin joins LDs and peroxisomes in the interorganelle contact ballet. J Cell Biol. 218:2439–2441. 2019. View Article : Google Scholar :

77 

Riano E, Martignoni M, Mancuso G, Cartelli D, Crippa F, Toldo I, Siciliano G, Di Bella D, Taroni F, Bassi MT, et al: Pleiotropic effects of spastin on neurite growth depending on expression levels. J Neurochem. 108:1277–1288. 2009. View Article : Google Scholar

78 

Denton KR, Lei L, Grenier J, Rodionov V, Blackstone C and Li XJ: Loss of spastin function results in disease-specific axonal defects in human pluripotent stem cell-based models of hereditary spastic paraplegia. Stem Cells. 32:414–423. 2014. View Article : Google Scholar

79 

Henson BJ, Zhu W, Hardaway K, Wetzel JL, Stefan M, Albers KM and Nicholls RD: Transcriptional and post-transcriptional regulation of SPAST, the gene most frequently mutated in hereditary spastic paraplegia. PLoS One. 7:e365052012. View Article : Google Scholar : PubMed/NCBI

80 

Jiang T, Cai Z, Ji Z, Zou J, Liang Z, Zhang G, Liang Y, Lin H and Tan M: The lncRNA MALAT1/miR-30/Spastin axis regulates hippocampal neurite outgrowth. Front Cell Neurosci. 14:5557472020. View Article : Google Scholar

81 

Nakazeki F, Tsuge I, Horie T, Imamura K, Tsukita K, Hotta A, Baba O, Kuwabara Y, Nishino T, Nakao T, et al: MiR-33a is a therapeutic target in SPG4-related hereditary spastic paraplegia human neurons. Clin Sci (Lond). 133:583–595. 2019. View Article : Google Scholar

82 

Sardina F, Pisciottani A, Ferrara M, Valente D, Casella M, Crescenzi M, Peschiaroli A, Casali C, Soddu S, Grierson AJ and Rinaldo C: Spastin recovery in hereditary spastic paraplegia by preventing neddylation-dependent degradation. Life Sci Alliance. 3:e2020007992020. View Article : Google Scholar :

83 

Tan R, Lam AJ, Tan T, Han J, Nowakowski DW, Vershinin M, Simó S, Ori-McKenney KM and McKenney RJ: Microtubules gate tau condensation to spatially regulate microtubule functions. Nat Cell Biol. 21:1078–1085. 2019. View Article : Google Scholar :

84 

Jin Z, Shou HF, Liu JW, Jiang SS, Shen Y, Cheng WY and Gao LL: Spastin interacts with CRMP5 to promote spindle organization in mouse oocytes by severing microtubules. Zygote. 1–12. 2021. View Article : Google Scholar

85 

Newton T, Allison R, Edgar JR, Lumb JH, Rodger CE, Manna PT, Rizo T, Kohl Z, Nygren AOH, Arning L, et al: Mechanistic basis of an epistatic interaction reducing age at onset in hereditary spastic paraplegia. Brain. 141:1286–1299. 2018. View Article : Google Scholar : PubMed/NCBI

86 

Kapitein LC and Hoogenraad CC: Building the neuronal microtubule cytoskeleton. Neuron. 87:492–506. 2015. View Article : Google Scholar

87 

Kelliher MT, Saunders HA and Wildonger J: Microtubule control of functional architecture in neurons. Curr Opin Neurobiol. 57:39–45. 2019. View Article : Google Scholar : PubMed/NCBI

88 

Bond AM, Ming GL and Song H: Adult mammalian neural stem cells and neurogenesis: Five decades later. Cell Stem Cell. 17:385–395. 2015. View Article : Google Scholar :

89 

Katsimpardi L and Lledo PM: Regulation of neurogenesis in the adult and aging brain. Curr Opin Neurobiol. 53:131–138. 2018. View Article : Google Scholar

90 

McNally FJ and Roll-Mecak A: Microtubule-severing enzymes: From cellular functions to molecular mechanism. J Cell Biol. 217:4057–4069. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Kahn OI and Baas PW: Microtubules and growth cones: Motors drive the turn. Trends Neurosci. 39:433–440. 2016. View Article : Google Scholar :

92 

Dent EW and Gertler FB: Cytoskeletal dynamics and transport in growth cone motility and axon guidance. Neuron. 40:209–227. 2003. View Article : Google Scholar

93 

Lowery LA and Van Vactor D: The trip of the tip: Understanding the growth cone machinery. Nat Rev Mol Cell Biol. 10:332–343. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Dent EW, Gupton SL and Gertler FB: The growth cone cytoskeleton in axon outgrowth and guidance. Cold Spring Harb Perspect Biol. 3:a0018002011. View Article : Google Scholar

95 

Rao AN and Baas PW: Polarity sorting of microtubules in the axon. Trends Neurosci. 41:77–88. 2018. View Article : Google Scholar

96 

Tas RP, Chazeau A, Cloin BMC, Lambers MLA, Hoogenraad CC and Kapitein LC: Differentiation between oppositely oriented microtubules controls polarized neuronal transport. Neuron. 96:1264–1271.e5. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Claudiani P, Riano E, Errico A, Andolfi G and Rugarli EI: Spastin subcellular localization is regulated through usage of different translation start sites and active export from the nucleus. Exp Cell Res. 309:358–369. 2005. View Article : Google Scholar

98 

Butler R, Wood JD, Landers JA and Cunliffe VT: Genetic and chemical modulation of spastin-dependent axon outgrowth in zebrafish embryos indicates a role for impaired microtubule dynamics in hereditary spastic paraplegia. Dis Model Mech. 3:743–751. 2010. View Article : Google Scholar : PubMed/NCBI

99 

Karabay A, Yu W, Solowska JM, Baird DH and Baas PW: Axonal growth is sensitive to the levels of katanin, a protein that severs microtubules. J Neurosci. 24:5778–5788. 2004. View Article : Google Scholar

100 

Yu W, Qiang L, Solowska JM, Karabay A, Korulu S and Baas PW: The microtubule-severing proteins spastin and katanin participate differently in the formation of axonal branches. Mol Biol Cell. 19:1485–1498. 2008. View Article : Google Scholar : PubMed/NCBI

101 

Conde C and Cáceres A: Microtubule assembly, organization and dynamics in axons and dendrites. Nat Rev Neurosci. 10:319–332. 2009. View Article : Google Scholar

102 

Herms J and Dorostkar MM: Dendritic spine pathology in neurodegenerative diseases. Annu Rev Pathol. 11:221–250. 2016. View Article : Google Scholar : PubMed/NCBI

103 

Stein IS and Zito K: Dendritic spine elimination: Molecular mechanisms and implications. Neuroscientist. 25:27–47. 2019. View Article : Google Scholar

104 

Park M: AMPA receptor trafficking for postsynaptic potentiation. Front Cell Neurosci. 12:3612018.

105 

Chater TE and Goda Y: The role of AMPA receptors in postsynaptic mechanisms of synaptic plasticity. Front Cell Neurosci. 8:4012014. View Article : Google Scholar

106 

Hanley JG: AMPA receptor trafficking pathways and links to dendritic spine morphogenesis. Cell Adh Migr. 2:276–282. 2008. View Article : Google Scholar

107 

Dong H, O'Brien RJ, Fung ET, Lanahan AA, Worley PF and Huganir RL: GRIP: A synaptic PDZ domain-containing protein that interacts with AMPA receptors. Nature. 386:279–284. 1997. View Article : Google Scholar

108 

Nakajima K, Yin X, Takei Y, Seog DH, Homma N and Hirokawa N: Molecular motor KIF5A is essential for GABA(A) receptor transport, and KIF5A deletion causes epilepsy. Neuron. 76:945–961. 2012. View Article : Google Scholar : PubMed/NCBI

109 

Jaworski J, Kapitein LC, Gouveia SM, Dortland BR, Wulf PS, Grigoriev I, Camera P, Spangler SA, Di Stefano P, Demmers J, et al: Dynamic microtubules regulate dendritic spine morphology and synaptic plasticity. Neuron. 61:85–100. 2009. View Article : Google Scholar : PubMed/NCBI

110 

Okabe S and Hirokawa N: Axonal transport. Curr Opin Cell Biol. 1:91–97. 1989. View Article : Google Scholar : PubMed/NCBI

111 

Millecamps S and Julien JP: Axonal transport deficits and neurodegenerative diseases. Nat Rev Neurosci. 14:161–176. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Gibbs KL, Greensmith L and Schiavo G: Regulation of axonal transport by protein kinases. Trends Biochem Sci. 40:597–610. 2015. View Article : Google Scholar : PubMed/NCBI

113 

Guedes-Dias P and Holzbaur ELF: Axonal transport: Driving synaptic function. Science. 366:eaaw99972019. View Article : Google Scholar : PubMed/NCBI

114 

Cyr JL and Brady ST: Molecular motors in axonal transport. Cellular and molecular biology of kinesin Mol Neurobiol. 6:137–155. 1992.

115 

Fuerst JC, Henkel AW, Stroebel A, Welzel O, Groemer TW, Kornhuber J and Bönsch D: Distinct intracellular vesicle transport mechanisms are selectively modified by spastin and spastin mutations. J Cell Physiol. 226:362–368. 2011. View Article : Google Scholar

116 

McDermott CJ, Grierson AJ, Wood JD, Bingley M, Wharton SB, Bushby KM and Shaw PJ: Hereditary spastic paraparesis: Disrupted intracellular transport associated with spastin mutation. Ann Neurol. 54:748–759. 2003. View Article : Google Scholar : PubMed/NCBI

117 

Wali G, Sutharsan R, Fan Y, Stewart R, Tello Velasquez J, Sue CM, Crane DI and Mackay-Sim A: Mechanism of impaired microtubule-dependent peroxisome trafficking and oxidative stress in SPAST-mutated cells from patients with Hereditary Spastic Paraplegia. Sci Rep. 6:270042016. View Article : Google Scholar : PubMed/NCBI

118 

Wali G, Liyanage E, Blair NF, Sutharsan R, Park JS, Mackay-Sim A and Sue CM: Oxidative stress-induced axon fragmentation is a consequence of reduced axonal transport in hereditary spastic paraplegia SPAST patient neurons. Front Neurosci. 14:4012020. View Article : Google Scholar :

119 

Plaud C, Joshi V, Marinello M, Pastré D, Galli T, Curmi PA and Burgo A: Spastin regulates VAMP7-containing vesicles trafficking in cortical neurons. Biochim Biophys Acta Mol Basis Dis. 1863:1666–1677. 2017. View Article : Google Scholar

120 

Jardin N, Giudicelli F, Ten Martín D, Vitrac A, De Gois S, Allison R, Houart C, Reid E, Hazan J and Fassier C: BMP- and neuropilin 1-mediated motor axon navigation relies on spastin alternative translation. Development. 145:dev1627012018. View Article : Google Scholar : PubMed/NCBI

121 

Plaud C, Joshi V, Kajevu N, Poüs C, Curmi PA and Burgo A: Functional differences of short and long isoforms of spastin harboring missense mutation. Dis Model Mech. 11:dmm0337042018. View Article : Google Scholar

122 

Öztürk Z, O'Kane CJ and Pérez-Moreno JJ: Axonal endoplasmic reticulum dynamics and its roles in neurodegeneration. Front Neurosci. 14:482020. View Article : Google Scholar : PubMed/NCBI

123 

Henne WM, Liou J and Emr SD: Molecular mechanisms of inter-organelle ER-PM contact sites. Curr Opin Cell Biol. 35:123–130. 2015. View Article : Google Scholar

124 

Phillips MJ and Voeltz GK: Structure and function of ER membrane contact sites with other organelles. Nat Rev Mol Cell Biol. 17:69–82. 2016. View Article : Google Scholar

125 

Chung WY, Jha A, Ahuja M and Muallem S: Ca2+ influx at the ER/PM junctions. Cell Calcium. 63:29–32. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Friel D: Interplay between ER Ca2+ uptake and release fluxes in neurons and its impact on [Ca2+] dynamics. Biol Res. 37:665–674. 2004. View Article : Google Scholar

127 

Rehbach K, Kesavan J, Hauser S, Ritzenhofen S, Jungverdorben J, Schüle R, Schöls L, Peitz M and Brüstle O: Multiparametric rapid screening of neuronal process pathology for drug target identification in HSP patient-specific neurons. Sci Rep. 9:96152019. View Article : Google Scholar : PubMed/NCBI

128 

Julien C, Lissouba A, Madabattula S, Fardghassemi Y, Rosenfelt C, Androschuk A, Strautman J, Wong C, Bysice A, O'sullivan J, et al: Conserved pharmacological rescue of hereditary spastic paraplegia-related phenotypes across model organisms. Hum Mol Genet. 25:1088–1099. 2016. View Article : Google Scholar :

129 

Connell JW, Allison R and Reid E: Quantitative gait analysis using a motorized treadmill system sensitively detects motor abnormalities in mice expressing ATPase defective spastin. PLoS One. 11:e01524132016. View Article : Google Scholar :

130 

Qiang L, Piermarini E, Muralidharan H, Yu W, Leo L, Hennessy LE, Fernandes S, Connors T, Yates PL, Swift M, et al: Hereditary spastic paraplegia: Gain-of-function mechanisms revealed by new transgenic mouse. Hum Mol Genet. 28:1136–1152. 2019. View Article : Google Scholar

131 

Solowska JM, D'Rozario M, Jean DC, Davidson MW, Marenda DR and Baas PW: Pathogenic mutation of spastin has gain-of-function effects on microtubule dynamics. J Neurosci. 34:1856–1867. 2014. View Article : Google Scholar : PubMed/NCBI

132 

Yip AG, Dürr A, Marchuk DA, Ashley-Koch A, Hentati A, Rubinsztein DC and Reid E: Meta-analysis of age at onset in spastin-associated hereditary spastic paraplegia provides no evidence for a correlation with mutational class. J Med Genet. 40:e1062003. View Article : Google Scholar

133 

Wu F, Qiu J, Fan Y, Zhang Q, Cheng B, Wu Y and Bai B: Apelin-13 attenuates ER stress-mediated neuronal apoptosis by activating Gαi/Gαq-CK2 signaling in ischemic stroke. Exp Neurol. 302:136–144. 2018. View Article : Google Scholar : PubMed/NCBI

134 

Manni S, Brancalion A, Tubi LQ, Colpo A, Pavan L, Cabrelle A, Ave E, Zaffino F, Di Maira G, Ruzzene M, et al: Protein kinase CK2 protects multiple myeloma cells from ER stress-induced apoptosis and from the cytotoxic effect of HSP90 inhibition through regulation of the unfolded protein response. Clin Cancer Res. 18:1888–1900. 2012. View Article : Google Scholar

135 

Hessenauer A, Schneider CC, Götz C and Montenarh M: CK2 inhibition induces apoptosis via the ER stress response. Cell Signal. 23:145–151. 2011. View Article : Google Scholar

136 

Fassier C, Tarrade A, Peris L, Courageot S, Mailly P, Dalard C, Delga S, Roblot N, Lefèvre J, Job D, et al: Microtubule-targeting drugs rescue axonal swellings in cortical neurons from spastin knockout mice. Dis Model Mech. 6:72–83. 2013.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu Q, Zhang G, Ji Z and Lin H: Molecular and cellular mechanisms of spastin in neural development and disease (Review). Int J Mol Med 48: 218, 2021.
APA
Liu, Q., Zhang, G., Ji, Z., & Lin, H. (2021). Molecular and cellular mechanisms of spastin in neural development and disease (Review). International Journal of Molecular Medicine, 48, 218. https://doi.org/10.3892/ijmm.2021.5051
MLA
Liu, Q., Zhang, G., Ji, Z., Lin, H."Molecular and cellular mechanisms of spastin in neural development and disease (Review)". International Journal of Molecular Medicine 48.6 (2021): 218.
Chicago
Liu, Q., Zhang, G., Ji, Z., Lin, H."Molecular and cellular mechanisms of spastin in neural development and disease (Review)". International Journal of Molecular Medicine 48, no. 6 (2021): 218. https://doi.org/10.3892/ijmm.2021.5051
Copy and paste a formatted citation
x
Spandidos Publications style
Liu Q, Zhang G, Ji Z and Lin H: Molecular and cellular mechanisms of spastin in neural development and disease (Review). Int J Mol Med 48: 218, 2021.
APA
Liu, Q., Zhang, G., Ji, Z., & Lin, H. (2021). Molecular and cellular mechanisms of spastin in neural development and disease (Review). International Journal of Molecular Medicine, 48, 218. https://doi.org/10.3892/ijmm.2021.5051
MLA
Liu, Q., Zhang, G., Ji, Z., Lin, H."Molecular and cellular mechanisms of spastin in neural development and disease (Review)". International Journal of Molecular Medicine 48.6 (2021): 218.
Chicago
Liu, Q., Zhang, G., Ji, Z., Lin, H."Molecular and cellular mechanisms of spastin in neural development and disease (Review)". International Journal of Molecular Medicine 48, no. 6 (2021): 218. https://doi.org/10.3892/ijmm.2021.5051
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team