Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
February-2022 Volume 49 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
February-2022 Volume 49 Issue 2

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review)

  • Authors:
    • Yunfei Zhao
    • Xiaojing Zhang
    • Xinye Chen
    • Yun Wei
  • View Affiliations / Copyright

    Affiliations: Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA, Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China, Shanghai Licheng Bio‑Technique Co. Ltd., Shanghai 201900, P.R. China
    Copyright: © Zhao et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 15
    |
    Published online on: December 8, 2021
       https://doi.org/10.3892/ijmm.2021.5070
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Stroke is the leading cause of disabilities and cognitive deficits, accounting for 5.2% of all mortalities worldwide. Transient or permanent occlusion of cerebral vessels leads to ischemic strokes, which constitutes the majority of strokes. Ischemic strokes induce brain infarcts, along with cerebral tissue death and focal neuronal damage. The infarct size and neurological severity after ischemic stroke episodes depends on the time period since occurrence, the severity of ischemia, systemic blood pressure, vein systems and location of infarcts, amongst others. Ischemic stroke is a complex disease, and neuronal injuries after ischemic strokes have been the focus of current studies. The present review will provide a basic pathological background of ischemic stroke and cerebral infarcts. Moreover, the major mechanisms underlying ischemic stroke and neuronal injuries are summarized. This review will also briefly summarize some representative clinical trials and up‑to‑date treatments that have been applied to stroke and brain infarcts.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Benjamin EJ, Blaha MJ, Chiuve SE, Cushman M, Das SR, Deo R, de Ferranti SD, Floyd J, Fornage M, Gillespie C, et al: Heart disease and stroke statistics-2017 update: A report from the American Heart Association. Circulation. 135:e146–e603. 2017. View Article : Google Scholar : PubMed/NCBI

2 

GBD 2015 Mortality and Causes of Death Collaborators: Global, regional, and national life expectancy, all-cause mortality, and cause-specific mortality for 249 causes of death, 1980-2015: A systematic analysis for the Global Burden of Disease Study 2015. Lancet. 388:1459–1544. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Bailey EL, Smith C, Sudlow CL and Wardlaw JM: Pathology of lacunar ischemic stroke in humans-a systematic review. Brain Pathol. 22:583–591. 2012. View Article : Google Scholar : PubMed/NCBI

4 

Warlow C, Sudlow C, Dennis M, Wardlaw J and Sandercock P: Stroke. Lancet. 362:1211–1224. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Balch MHH, Nimjee SM, Rink C and Hannawi Y: Beyond the brain: The systemic pathophysiological response to acute ischemic stroke. J Stroke. 22:159–172. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Boyle PA, Yang J, Yu L, Leurgans SE, Capuano AW, Schneider JA, Wilson RS and Bennett DA: Varied effects of age-related neuropathologies on the trajectory of late life cognitive decline. Brain. 140:804–812. 2017.PubMed/NCBI

7 

Boyle PA, Yu L, Wilson RS, Schneider JA and Bennett DA: Relation of neuropathology with cognitive decline among older persons without dementia. Front Aging Neurosci. 5:502013. View Article : Google Scholar : PubMed/NCBI

8 

Corrada MM, Sonnen JA, Kim RC and Kawas CH: Microinfarcts are common and strongly related to dementia in the oldest-old: The 90+ study. Alzheimers Dement. 12:900–908. 2016. View Article : Google Scholar : PubMed/NCBI

9 

Ince PG, Minett T, Forster G, Brayne C and Wharton SB: Medical Research Council Cognitive Function and Ageing Neuropathology Study: Microinfarcts in an older population-representative brain donor cohort (MRC CFAS): Prevalence, relation to dementia and mobility, and implications for the evaluation of cerebral Small Vessel Disease. Neuropathol Appl Neurobiol. 43:409–418. 2017. View Article : Google Scholar

10 

Kawas CH, Kim RC, Sonnen JA, Bullain SS, Trieu T and Corrada MM: Multiple pathologies are common and related to dementia in the oldest-old: The 90+ study. Neurology. 85:535–542. 2015. View Article : Google Scholar : PubMed/NCBI

11 

White LR, Edland SD, Hemmy LS, Montine KS, Zarow C, Sonnen JA, Uyehara-Lock JH, Gelber RP, Ross GW, Petrovitch H, et al: Neuropathologic comorbidity and cognitive impairment in the Nun and Honolulu-Asia aging studies. Neurology. 86:1000–1008. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Buchman AS, Yu L, Boyle PA, Levine SR, Nag S, Schneider JA and Bennett DA: Microvascular brain pathology and late-life motor impairment. Neurology. 80:712–718. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Hogan AM, Kirkham FJ, Prengler M, Telfer P, Lane R, Vargha-Khadem F and Haan M: An exploratory study of physiological correlates of neurodevelopmental delay in infants with sickle cell anaemia. Br J Haematol. 132:99–107. 2006. View Article : Google Scholar

14 

Bernaudin F, Verlhac S, Freard F, Roudot-Thoraval F, Benkerrou M, Thuret I, Mardini R, Vannier JP, Ploix E, Romero M, et al: Multicenter prospective study of children with sickle cell disease: Radiographic and psychometric correlation. J Child Neurol. 15:333–343. 2000. View Article : Google Scholar : PubMed/NCBI

15 

Brown RT, Davis PC, Lambert R, Hsu L, Hopkins K and Eckman J: Neurocognitive functioning and magnetic resonance imaging in children with sickle cell disease. J Pediatr Psychol. 25:503–513. 2000. View Article : Google Scholar : PubMed/NCBI

16 

DeBaun MR, Schatz J, Siegel MJ, Koby M, Craft S, Resar L, Chu JY, Launius G, Dadash-Zadeh M, Lee RB and Noetzel M: Cognitive screening examinations for silent cerebral infarcts in sickle cell disease. Neurology. 50:1678–1682. 1998. View Article : Google Scholar : PubMed/NCBI

17 

Hogan AM, Pit-ten Cate IM, Vargha-Khadem F, Prengler M and Kirkham FJ: Physiological correlates of intellectual function in children with sickle cell disease: Hypoxaemia, hyperaemia and brain infarction. Dev Sci. 9:379–387. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Steen RG, Miles MA, Helton KJ, Strawn S, Wang W, Xiong X and Mulhern RK: Cognitive impairment in children with hemoglobin SS sickle cell disease: Relationship to MR imaging findings and hematocrit. AJNR Am J Neuroradiol. 24:382–389. 2003.PubMed/NCBI

19 

Watkins KE, Hewes DK, Connelly A, Kendall BE, Kingsley DP, Evans JE, Gadian DG, Vargha-Khadem F and Kirkham FJ: Cognitive deficits associated with frontal-lobe infarction in children with sickle cell disease. Dev Med Child Neurol. 40:536–543. 1998. View Article : Google Scholar : PubMed/NCBI

20 

Chen YC, Ma NX, Pei ZF, Wu Z, Do-Monte FH, Keefe S, Yellin E, Chen MS, Yin JC, Lee G, et al: A neuroD1 AAV-based gene therapy for functional brain repair after ischemic injury through in vivo astrocyte-to-neuron conversion. Mol Ther. 28:217–234. 2020. View Article : Google Scholar

21 

Hu X, Wu D, He X, Zhao H, He Z, Lin J, Wang K, Wang W, Pan Z, Lin H and Wang M: circGSK3β promotes metastasis in esophageal squamous cell carcinoma by augmenting β-catenin signaling. Mol Cancer. 18:1602019. View Article : Google Scholar

22 

Ren X, Hu H, Farooqi I and Simpkins JW: Blood substitution therapy rescues the brain of mice from ischemic damage. Nat Commun. 11:40782020. View Article : Google Scholar : PubMed/NCBI

23 

Sommer CJ: Ischemic stroke: Experimental models and reality. Acta Neuropathol. 133:245–261. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Zhang L, Zhang RL, Jiang Q, Ding G, Chopp M and Zhang ZG: Focal embolic cerebral ischemia in the rat. Nat Protoc. 10:539–547. 2015. View Article : Google Scholar : PubMed/NCBI

25 

McBride DW and Zhang JH: Precision stroke animal models: The permanent MCAO model should be the primary model, not transient MCAO. Transl Stroke Res. Jul 17–2017.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

26 

Lunardi Baccetto S and Lehmann C: Microcirculatory changes in experimental models of stroke and CNS-injury induced immunodepression. Int J Mol Sci. 20:51842019. View Article : Google Scholar :

27 

Fujie W, Kirino T, Tomukai N, Iwasawa T and Tamura A: Progressive shrinkage of the thalamus following middle cerebral artery occlusion in rats. Stroke. 21:1485–1488. 1990. View Article : Google Scholar : PubMed/NCBI

28 

Prabhakaran S, Ruff I and Bernstein RA: Acute stroke intervention: A systematic review. JAMA. 313:1451–1462. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Zhao Y, Yuan B, Chen J, Feng D, Zhao B, Qin C and Chen YF: Endothelial progenitor cells: Therapeutic perspective for ischemic stroke. CNS Neurosci Ther. 19:67–75. 2013. View Article : Google Scholar

30 

Kidwell CS, Alger JR and Saver JL: Beyond mismatch: Evolving paradigms in imaging the ischemic penumbra with multimodal magnetic resonance imaging. Stroke. 34:2729–2735. 2003. View Article : Google Scholar : PubMed/NCBI

31 

Khoshnam SE, Winlow W, Farzaneh M, Farbood Y and Moghaddam HF: Pathogenic mechanisms following ischemic stroke. Neurol Sci. 38:1167–1186. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Guo JD, Zhao X, Li Y, Li GR and Liu XL: Damage to dopaminergic neurons by oxidative stress in Parkinson's disease (Review). Int J Mol Med. 41:1817–1825. 2018.PubMed/NCBI

33 

Kierdorf K, Wang Y and Neumann H: Immune-mediated CNS damage. Results Probl Cell Differ. 51:173–196. 2010. View Article : Google Scholar

34 

Lazarov O and Hollands C: Hippocampal neurogenesis: Learning to remember. Prog Neurobiol. 138-140:1–18. 2016. View Article : Google Scholar : PubMed/NCBI

35 

Sun L, Zhang Y, Liu E, Ma Q, Anatol M, Han H and Yan J: The roles of astrocyte in the brain pathologies following ischemic stroke. Brain Inj. 33:712–716. 2019. View Article : Google Scholar

36 

Liu Z and Chopp M: Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 144:103–120. 2016. View Article : Google Scholar :

37 

L'Episcopo F, Serapide MF, Tirolo C, Testa N, Caniglia S, Morale MC, Pluchino S and Marchetti B: A Wnt1 regulated Frizzled-1/β-Catenin signaling pathway as a candidate regulatory circuit controlling mesencephalic dopaminergic neuron-astrocyte crosstalk: Therapeutical relevance for neuron survival and neuroprotection. Mol Neurodegener. 6:492011. View Article : Google Scholar

38 

Salinas PC: Wnt signaling in the vertebrate central nervous system: From axon guidance to synaptic function. Cold Spring Harb Perspect Biol. 4:a0080032012. View Article : Google Scholar : PubMed/NCBI

39 

Grainger S and Willert K: Mechanisms of Wnt signaling and control. Wiley Interdiscip Rev Syst Biol Med. Mar 30–2018, Epub ahead of print. View Article : Google Scholar

40 

Kalani MY, Cheshier SH, Cord BJ, Bababeygy SR, Vogel H, Weissman IL, Palmer TD and Nusse R: Wnt-mediated self-renewal of neural stem/progenitor cells. Proc Natl Acad Sci USA. 105:16970–16975. 2008. View Article : Google Scholar : PubMed/NCBI

41 

Clevers H, Loh KM and Nusse R: Stem cell signaling. An integral program for tissue renewal and regeneration: Wnt signaling and stem cell control. Science. 346:12480122014. View Article : Google Scholar : PubMed/NCBI

42 

Pal S, Hartnett KA, Nerbonne JM, Levitan ES and Aizenman E: Mediation of neuronal apoptosis by Kv2.1-encoded potassium channels. J Neurosci. 23:4798–4802. 2003. View Article : Google Scholar : PubMed/NCBI

43 

Baver SB and O'Connell KM: The C-terminus of neuronal Kv2.1 channels is required for channel localization and targeting but not for NMDA-receptor-mediated regulation of channel function. Neuroscience. 217:56–66. 2012. View Article : Google Scholar : PubMed/NCBI

44 

Justice JA, Schulien AJ, He K, Hartnett KA, Aizenman E and Shah NH: Disruption of KV2.1 somato-dendritic clusters prevents the apoptogenic increase of potassium currents. Neuroscience. 354:158–167. 2017. View Article : Google Scholar : PubMed/NCBI

45 

Schulien AJ, Yeh CY, Orange BN, Pav OJ, Hopkins MP, Moutal A, Khanna R, Sun D, Justice JA and Aizenman E: Targeted disruption of Kv2.1-VAPA association provides neuroprotection against ischemic stroke in mice by declustering Kv2.1 channels. Sci Adv. 6:eaaz81102020. View Article : Google Scholar : PubMed/NCBI

46 

Sánchez-Morán I, Rodríguez C, Lapresa R, Agulla J, Sobrino T, Castillo J, Bolaños JP and Almeida A: Nuclear WRAP53 promotes neuronal survival and functional recovery after stroke. Sci Adv. 6:eabc57022020. View Article : Google Scholar : PubMed/NCBI

47 

Ji HJ, Wang DM, Hu JF, Sun MN, Li G, Li ZP, Wu DH, Liu G and Chen NH: IMM-H004, a novel courmarin derivative, protects against oxygen-and glucose-deprivation/restoration-induced apoptosis in PC12 cells. Eur J Pharmacol. 723:259–266. 2014. View Article : Google Scholar

48 

Canudas S, Hernández-Alonso P, Galié S, Muralidharan J, Morell-Azanza L, Zalba G, García-Gavilán J, Martí A, Salas-Salvadó J and Bulló M: Pistachio consumption modulates DNA oxidation and genes related to telomere maintenance: A crossover randomized clinical trial. Am J Clin Nutr. 109:1738–1745. 2019. View Article : Google Scholar : PubMed/NCBI

49 

van Rooden S, Goos JD, van Opstal AM, Versluis MJ, Webb AG, Blauw GJ, van der Flier WM, Scheltens P, Barkhof F, van Buchem MA and van der Grond J: Increased number of microinfarcts in Alzheimer disease at 7-T MR imaging. Radiology. 270:205–211. 2014. View Article : Google Scholar

50 

Bernaudin F, Verlhac S, Arnaud C, Kamdem A, Chevret S, Hau I, Coïc L, Leveillé E, Lemarchand E, Lesprit E, et al: Impact of early transcranial Doppler screening and intensive therapy on cerebral vasculopathy outcome in a newborn sickle cell anemia cohort. Blood. 117:1130–1140. 2011. View Article : Google Scholar

51 

Hindmarsh PC, Brozovic M, Brook CG and Davies SC: Incidence of overt and covert neurological damage in children with sickle cell disease. Postgrad Med J. 63:751–753. 1987. View Article : Google Scholar : PubMed/NCBI

52 

Kwiatkowski JL, Zimmerman RA, Pollock AN, Seto W, Smith-Whitley K, Shults J, Blackwood-Chirchir A and Ohene-Frempong K: Silent infarcts in young children with sickle cell disease. Br J Haematol. 146:300–305. 2009. View Article : Google Scholar : PubMed/NCBI

53 

Moser FG, Miller ST, Bello JA, Pegelow CH, Zimmerman RA, Wang WC, Ohene-Frempong K, Schwartz A, Vichinsky EP, Gallagher D and Kinney TR: The spectrum of brain MR abnormalities in sickle-cell disease: A report from the cooperative study of sickle cell disease. AJNR Am J Neuroradiol. 17:965–972. 1996.PubMed/NCBI

54 

Westover MB, Bianchi MT, Yang C, Schneider JA and Greenberg SM: Estimating cerebral microinfarct burden from autopsy samples. Neurology. 80:1365–1369. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Hilal S, Sikking E, Shaik MA, Chan QL, van Veluw SJ, Vrooman H, Cheng CY, Sabanayagam C, Cheung CY, Wong TY, et al: Cortical cerebral microinfarcts on 3T MRI: A novel marker of cerebrovascular disease. Neurology. 87:1583–1590. 2016. View Article : Google Scholar : PubMed/NCBI

56 

van Veluw SJ, Hilal S, Kuijf HJ, Ikram MK, Xin X, Yeow TB, Venketasubramanian N, Biessels GJ and Chen C: Cortical microinfarcts on 3T MRI: Clinical correlates in memory-clinic patients. Alzheimers Dement. 11:1500–1509. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Anenberg E, Arstikaitis P, Niitsu Y, Harrison TC, Boyd JD, Hilton BJ, Tetzlaff W and Murphy TH: Ministrokes in channel-rhodopsin-2 transgenic mice reveal widespread deficits in motor output despite maintenance of cortical neuronal excitability. J Neurosci. 34:1094–1104. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Summers PM, Hartmann DA, Hui ES, Nie X, Deardorff RL, McKinnon ET, Helpern JA, Jensen JH and Shih AY: Functional deficits induced by cortical microinfarcts. J Cereb Blood Flow Metab. 37:3599–3614. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Wang M, Iliff JJ, Liao Y, Chen MJ, Shinseki MS, Venkataraman A, Cheung J, Wang W and Nedergaard M: Cognitive deficits and delayed neuronal loss in a mouse model of multiple microinfarcts. J Neurosci. 32:17948–17960. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Armstrong FD, Thompson RJ Jr, Wang W, Zimmerman R, Pegelow CH, Miller S, Moser F, Bello J, Hurtig A and Vass K: Cognitive functioning and brain magnetic resonance imaging in children with sickle cell disease. Neuropsychology committee of the cooperative study of sickle cell disease. Pediatrics. 97:864–870. 1996. View Article : Google Scholar : PubMed/NCBI

61 

Steen RG, Reddick WE, Mulhern RK, Langston JW, Ogg RJ, Bieberich AA, Kingsley PB and Wang WC: Quantitative MRI of the brain in children with sickle cell disease reveals abnormalities unseen by conventional MRI. J Magn Reson Imaging. 8:535–543. 1998. View Article : Google Scholar : PubMed/NCBI

62 

Wang W, Enos L, Gallagher D, Thompson R, Guarini L, Vichinsky E, Wright E, Zimmerman R and Armstrong FD: Cooperative Study of Sickle Cell Disease: Neuropsychologic performance in school-aged children with sickle cell disease: A report from the cooperative study of sickle cell disease. J Pediatr. 139:391–397. 2001. View Article : Google Scholar : PubMed/NCBI

63 

Hardingham GE and Bading H: Synaptic versus extrasynaptic NMDA receptor signalling: Implications for neurodegenerative disorders. Nat Rev Neurosci. 11:682–696. 2010. View Article : Google Scholar : PubMed/NCBI

64 

Lai TW, Shyu WC and Wang YT: Stroke intervention pathways: NMDA receptors and beyond. Trends Mol Med. 17:266–275. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Wu QJ and Tymianski M: Targeting NMDA receptors in stroke: New hope in neuroprotection. Mol Brain. 11:152018. View Article : Google Scholar : PubMed/NCBI

66 

Chen M, Lu TJ, Chen XJ, Zhou Y, Chen Q, Feng XY, Xu L, Duan WH and Xiong ZQ: Differential roles of NMDA receptor subtypes in ischemic neuronal cell death and ischemic tolerance. Stroke. 39:3042–3048. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Choo AM, Geddes-Klein DM, Hockenberry A, Scarsella D, Mesfin MN, Singh P, Patel TP and Meaney DF: NR2A and NR2B subunits differentially mediate MAP kinase signaling and mitochondrial morphology following excitotoxic insult. Neurochem Int. 60:506–516. 2012. View Article : Google Scholar : PubMed/NCBI

68 

Liu Y, Wong TP, Aarts M, Rooyakkers A, Liu L, Lai TW, Wu DC, Lu J, Tymianski M, Craig AM and Wang YT: NMDA receptor subunits have differential roles in mediating excitotoxic neuronal death both in vitro and in vivo. J Neurosci. 27:2846–2857. 2007. View Article : Google Scholar : PubMed/NCBI

69 

DeRidder MN, Simon MJ, Siman R, Auberson YP, Raghupathi R and Meaney DF: Traumatic mechanical injury to the hippocampus in vitro causes regional caspase-3 and calpain activation that is influenced by NMDA receptor subunit composition. Neurobiol Dis. 22:165–176. 2006. View Article : Google Scholar

70 

Eyo UB, Bispo A, Liu J, Sabu S, Wu R, DiBona VL, Zheng J, Murugan M, Zhang H, Tang Y and Wu LJ: The GluN2A subunit regulates neuronal NMDA receptor-induced microglia-neuron physical interactions. Sci Rep. 8:8282018. View Article : Google Scholar : PubMed/NCBI

71 

Manzerra P, Behrens MM, Canzoniero LM, Wang XQ, Heidinger V, Ichinose T, Yu SP and Choi DW: Zinc induces a Src family kinase-mediated up-regulation of NMDA receptor activity and excitotoxicity. Proc Natl Acad Sci USA. 98:11055–11061. 2001. View Article : Google Scholar : PubMed/NCBI

72 

Terasaki Y, Sasaki T, Yagita Y, Okazaki S, Sugiyama Y, Oyama N, Omura-Matsuoka E, Sakoda S and Kitagawa K: Activation of NR2A receptors induces ischemic tolerance through CREB signaling. J Cereb Blood Flow Metab. 30:1441–1449. 2010. View Article : Google Scholar : PubMed/NCBI

73 

Zhang X, Zhang Q, Tu J, Zhu Y, Yang F, Liu B, Brann D and Wang R: Prosurvival NMDA 2A receptor signaling mediates postconditioning neuroprotection in the hippocampus. Hippocampus. 25:286–296. 2015. View Article : Google Scholar

74 

Zhou M and Baudry M: Developmental changes in NMDA neurotoxicity reflect developmental changes in subunit composition of NMDA receptors. J Neurosci. 26:2956–2963. 2006. View Article : Google Scholar : PubMed/NCBI

75 

Hardingham GE, Fukunaga Y and Bading H: Extrasynaptic NMDARs oppose synaptic NMDARs by triggering CREB shut-off and cell death pathways. Nat Neurosci. 5:405–414. 2002. View Article : Google Scholar : PubMed/NCBI

76 

Lu W, Man H, Ju W, Trimble WS, MacDonald JF and Wang YT: Activation of synaptic NMDA receptors induces membrane insertion of new AMPA receptors and LTP in cultured hippocampal neurons. Neuron. 29:243–254. 2001. View Article : Google Scholar : PubMed/NCBI

77 

Karpova A, Mikhaylova M, Bera S, Bar J, Reddy PP, Behnisch T, Rankovic V, Spilker C, Bethge P, Sahin J, et al: Encoding and transducing the synaptic or extrasynaptic origin of NMDA receptor signals to the nucleus. Cell. 152:1119–1133. 2013. View Article : Google Scholar : PubMed/NCBI

78 

Kaufman AM, Milnerwood AJ, Sepers MD, Coquinco A, She K, Wang L, Lee H, Craig AM, Cynader M and Raymond LA: Opposing roles of synaptic and extrasynaptic NMDA receptor signaling in cocultured striatal and cortical neurons. J Neurosci. 32:3992–4003. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Lau D, Bengtson CP, Buchthal B and Bading H: BDNF reduces toxic extrasynaptic NMDA receptor signaling via synaptic NMDA receptors and nuclear-calcium-induced transcription of inhba/activin A. Cell Rep. 12:1353–1366. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Wang WY, Jia LJ, Luo Y, Zhang HH, Cai F, Mao H, Xu WC, Fang JB, Peng ZY, Ma ZW, et al: Location- and subunit-specific NMDA receptors determine the developmental sevoflurane neurotoxicity through ERK1/2 signaling. Mol Neurobiol. 53:216–230. 2016. View Article : Google Scholar

81 

Wang Y, Briz V, Chishti A, Bi X and Baudry M: Distinct roles for µ-calpain and m-calpain in synaptic NMDAR-mediated neuroprotection and extrasynaptic NMDAR-mediated neurodegeneration. J Neurosci. 33:18880–18892. 2013. View Article : Google Scholar : PubMed/NCBI

82 

Ivanov A, Pellegrino C, Rama S, Dumalska I, Salyha Y, Ben-Ari Y and Medina I: Opposing role of synaptic and extra-synaptic NMDA receptors in regulation of the extracellular signal-regulated kinases (ERK) activity in cultured rat hippocampal neurons. J Physiol. 572:789–798. 2006. View Article : Google Scholar : PubMed/NCBI

83 

Wu GY, Deisseroth K and Tsien RW: Activity-dependent CREB phosphorylation: Convergence of a fast, sensitive calmodulin kinase pathway and a slow, less sensitive mitogen-activated protein kinase pathway. Proc Natl Acad Sci USA. 98:2808–2813. 2001. View Article : Google Scholar : PubMed/NCBI

84 

Aarts M, Liu Y, Liu L, Besshoh S, Arundine M, Gurd JW, Wang YT, Salter MW and Tymianski M: Treatment of ischemic brain damage by perturbing NMDA receptor-PSD-95 protein interactions. Science. 298:846–850. 2002. View Article : Google Scholar : PubMed/NCBI

85 

Sattler R, Xiong Z, Lu WY, Hafner M, MacDonald JF and Tymianski M: Specific coupling of NMDA receptor activation to nitric oxide neurotoxicity by PSD-95 protein. Science. 284:1845–1848. 1999. View Article : Google Scholar : PubMed/NCBI

86 

Pei L, Shang Y, Jin H, Wang S, Wei N, Yan H, Wu Y, Yao C, Wang X, Zhu LQ and Lu Y: DAPK1-p53 interaction converges necrotic and apoptotic pathways of ischemic neuronal death. J Neurosci. 34:6546–6556. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Tu W, Xu X, Peng L, Zhong X, Zhang W, Soundarapandian MM, Balel C, Wang M, Jia N, Zhang W, et al: DAPK1 interaction with NMDA receptor NR2B subunits mediates brain damage in stroke. Cell. 140:222–234. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Ning K, Pei L, Liao M, Liu B, Zhang Y, Jiang W, Mielke JG, Li L, Chen Y, El-Hayek YH, et al: Dual neuroprotective signaling mediated by downregulating two distinct phosphatase activities of PTEN. J Neurosci. 24:4052–4060. 2004. View Article : Google Scholar : PubMed/NCBI

89 

Beschorner R, Adjodah D, Schwab JM, Mittelbronn M, Pedal I, Mattern R, Schluesener HJ and Meyermann R: Long-term expression of heme oxygenase-1 (HO-1, HSP-32) following focal cerebral infarctions and traumatic brain injury in humans. Acta Neuropathol. 100:377–384. 2000. View Article : Google Scholar : PubMed/NCBI

90 

Komkova MA, Karyakina EE and Karyakin AA: Catalytically synthesized prussian blue nanoparticles defeating natural enzyme peroxidase. J Am Chem Soc. 140:11302–11307. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Zhang W, Hu S, Yin JJ, He W, Lu W, Ma M, Gu N and Zhang Y: Prussian blue nanoparticles as multienzyme mimetics and reactive oxygen species scavengers. J Am Chem Soc. 138:5860–5865. 2016. View Article : Google Scholar : PubMed/NCBI

92 

Zhang K, Tu M, Gao W, Cai X, Song F, Chen Z, Zhang Q, Wang J, Jin C, Shi J, et al: Hollow prussian blue nanozymes drive neuroprotection against ischemic stroke via attenuating oxidative stress, counteracting inflammation, and suppressing cell apoptosis. Nano Lett. 19:2812–2823. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Dirnagl U, Klehmet J, Braun JS, Harms H, Meisel C, Ziemssen T, Prass K and Meisel A: Stroke-induced immunodepression: Experimental evidence and clinical relevance. Stroke. 38(Suppl 2): S770–S773. 2007. View Article : Google Scholar

94 

Sarvari S, Moakedi F, Hone E, Simpkins JW and Ren X: Mechanisms in blood-brain barrier opening and metabolism-challenged cerebrovascular ischemia with emphasis on ischemic stroke. Metab Brain Dis. 35:851–868. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Simpkins AN, Dias C and Leigh R: National Institutes of Health Natural History of Stroke Investigators: Identification of reversible disruption of the human blood-brain barrier following acute ischemia. Stroke. 47:2405–2408. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Lakhan SE, Kirchgessner A and Hofer M: Inflammatory mechanisms in ischemic stroke: Therapeutic approaches. J Transl Med. 7:972009. View Article : Google Scholar : PubMed/NCBI

97 

Wang Q, Wei J and Shi Y: Platelet microvesicles promote the recovery of neurological function in mouse model of cerebral infarction by inducing angiogenesis. Biochem Biophys Res Commun. 513:997–1004. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Rosińska J, Maciejewska J, Narożny R, Kozubski W and Łukasik M: Association of platelet-derived microvesicles with high on-treatment platelet reactivity in convalescent ischemic stroke patients treated with acetylsalicylic acid. Wiad Lek. 72:1426–1436. 2019. View Article : Google Scholar

99 

Ghoreishy A, Khosravi A and Ghaemmaghami A: Exosomal microRNA and stroke: A review. J Cell Biochem. 120:16352–16361. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Loffreda A, Nizzardo M, Arosio A, Ruepp MD, Calogero RA, Volinia S, Galasso M, Bendotti C, Ferrarese C, Lunetta C, et al: miR-129-5p: A key factor and therapeutic target in amyotrophic lateral sclerosis. Prog Neurobiol. 190:1018032020. View Article : Google Scholar : PubMed/NCBI

101 

Krützfeldt J, Kuwajima S, Braich R, Rajeev KG, Pena J, Tuschl T, Manoharan M and Stoffel M: Specificity, duplex degradation and subcellular localization of antagomirs. Nucleic Acids Res. 35:2885–2892. 2007. View Article : Google Scholar : PubMed/NCBI

102 

Jickling GC, Ander BP, Zhan X, Noblett D, Stamova B and Liu D: microRNA expression in peripheral blood cells following acute ischemic stroke and their predicted gene targets. PLoS One. 9:e992832014. View Article : Google Scholar : PubMed/NCBI

103 

Shi Y, Li K, Xu K and Liu QH: MiR-155-5p accelerates cerebral ischemia-reperfusion injury via targeting DUSP14 by regulating NF-κB and MAPKs signaling pathways. Eur Rev Med Pharmacol Sci. 24:1408–1419. 2020.PubMed/NCBI

104 

Sun H, Zhong D, Wang C, Sun Y, Zhao J and Li G: MiR-298 exacerbates ischemia/reperfusion injury following ischemic stroke by targeting act1. Cell Physiol Biochem. 48:528–539. 2018. View Article : Google Scholar : PubMed/NCBI

105 

Liu W, Wang X, Zheng Y, Shang G, Huang J, Tao J and Chen L: Electroacupuncture inhibits inflammatory injury by targeting the miR-9-mediated NF-κB signaling pathway following ischemic stroke. Mol Med Rep. 13:1618–1626. 2016. View Article : Google Scholar : PubMed/NCBI

106 

Guo D, Ma J, Li T and Yan L: Up-regulation of miR-122 protects against neuronal cell death in ischemic stroke through the heat shock protein 70-dependent NF-κB pathway by targeting FOXO3. Exp Cell Res. 369:34–42. 2018. View Article : Google Scholar : PubMed/NCBI

107 

Block HS and Biller J: Commonly asked questions: Thrombolytic therapy in the management of acute stroke. Expert Rev Neurother. 13:157–165. 2013. View Article : Google Scholar : PubMed/NCBI

108 

Murray V, Norrving B, Sandercock PA, Terént A, Wardlaw JM and Wester P: The molecular basis of thrombolysis and its clinical application in stroke. J Intern Med. 267:191–208. 2010. View Article : Google Scholar : PubMed/NCBI

109 

Röther J, Ford GA and Thijs VN: Thrombolytics in acute ischaemic stroke: Historical perspective and future opportunities. Cerebrovasc Dis. 35:313–319. 2013. View Article : Google Scholar : PubMed/NCBI

110 

Saver JL: Number needed to treat estimates incorporating effects over the entire range of clinical outcomes: Novel derivation method and application to thrombolytic therapy for acute stroke. Arch Neurol. 61:1066–1070. 2004. View Article : Google Scholar : PubMed/NCBI

111 

Saver JL, Gornbein J, Grotta J, Liebeskind D, Lutsep H, Schwamm L, Scott P and Starkman S: Number needed to treat to benefit and to harm for intravenous tissue plasminogen activator therapy in the 3- to 4.5-h window: Joint outcome table analysis of the ECASS 3 trial. Stroke. 40:2433–2437. 2009. View Article : Google Scholar : PubMed/NCBI

112 

Ahmed N, Wahlgren N, Grond M, Hennerici M, Lees KR, Mikulik R, Parsons M, Roine RO and Toni D: Implementation and outcome of thrombolysis with alteplase 3-4.5 h after an acute stroke: An updated analysis from SITS-ISTR. Lancet Neurol. 9:866–874. 2010. View Article : Google Scholar : PubMed/NCBI

113 

Schwamm LH, Ali SF, Reeves MJ, Smith EE, Saver JL, Messe S, Bhatt DL, Grau-Sepulveda MV, Peterson ED and Fonarow GC: Temporal trends in patient characteristics and treatment with intravenous thrombolysis among acute ischemic stroke patients at Get With The Guidelines-Stroke hospitals. Circ Cardiovasc Qual Outcomes. 6:543–549. 2013. View Article : Google Scholar : PubMed/NCBI

114 

Wahlgren N, Ahmed N, Davalos A, Ford GA, Grond M, Hacke W, Hennerici MG, Kaste M, Kuelkens S, Larrue V, et al: Thrombolysis with alteplase for acute ischaemic stroke in the safe implementation of thrombolysis in stroke-monitoring study (SITS-MOST): An observational study. Lancet. 369:275–282. 2007. View Article : Google Scholar : PubMed/NCBI

115 

Ingall TJ, O'Fallon WM, Asplund K, Goldfrank LR, Hertzberg VS, Louis TA and Christianson TJH: Findings from the reanalysis of the NINDS tissue plasminogen activator for acute ischemic stroke treatment trial. Stroke. 35:2418–2424. 2004. View Article : Google Scholar : PubMed/NCBI

116 

Jansen O, von Kummer R, Forsting M, Hacke W and Sartor K: Thrombolytic therapy in acute occlusion of the intracranial internal carotid artery bifurcation. AJNR Am J Neuroradiol. 16:1977–1986. 1995.PubMed/NCBI

117 

Wolpert SM, Bruckmann H, Greenlee R, Wechsler L, Pessin MS and del Zoppo GJ: Neuroradiologic evaluation of patients with acute stroke treated with recombinant tissue plasminogen activator. The rt-PA acute stroke study group. AJNR Am J Neuroradiol. 14:3–13. 1993.PubMed/NCBI

118 

Mandavia R, Qureshi MI, Dharmarajah B, Head K and Davies AH: Safety of carotid intervention following thrombolysis in acute ischaemic stroke. Eur J Vasc Endovasc Surg. 48:505–512. 2014. View Article : Google Scholar : PubMed/NCBI

119 

Furlan AJ and Abou-Chebl A: The role of recombinant pro-urokinase (r-pro-UK) and intra-arterial thrombolysis in acute ischaemic stroke: The PROACT trials. Prolyse in acute cerebral thromboembolism. Curr Med Res Opin. 18(Suppl 2): S44–S47. 2002. View Article : Google Scholar : PubMed/NCBI

120 

Hao C, Ding W, Xu X, Sun Q, Li X, Wang W, Zhao Z and Tang L: Effect of recombinant human prourokinase on thrombolysis in a rabbit model of thromboembolic stroke. Biomed Rep. 8:77–84. 2018.PubMed/NCBI

121 

Agrawal A, Golovoy D, Nimjee S, Ferrell A, Smith T and Britz G: Mechanical thrombectomy devices for endovascular management of acute ischemic stroke: Duke stroke center experience. Asian J Neurosurg. 7:166–170. 2012. View Article : Google Scholar

122 

Deng L, Qiu S, Wang L, Li Y, Wang D and Liu M: Comparison of four food and drug administration-approved mechanical thrombectomy devices for acute ischemic stroke: A network meta-analysis. World Neurosurg. 127:e49–e57. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Nogueira RG, Lutsep HL, Gupta R, Jovin TG, Albers GW, Walker GA, Liebeskind DS and Smith WS: TREVO 2 Trialists: Trevo versus Merci retrievers for thrombectomy revascularisation of large vessel occlusions in acute ischaemic stroke (TREVO 2): A randomised trial. Lancet. 380:1231–1240. 2012. View Article : Google Scholar : PubMed/NCBI

124 

Saver JL, Jahan R, Levy EI, Jovin TG, Baxter B, Nogueira RG, Clark W, Budzik R and Zaidat OO: SWIFT Trialists: Solitaire flow restoration device versus the merci retriever in patients with acute ischaemic stroke (SWIFT): A randomised, parallel-group, non-inferiority trial. Lancet. 380:1241–1249. 2012. View Article : Google Scholar : PubMed/NCBI

125 

Suzuki K, Matsumaru Y, Takeuchi M, Morimoto M, Kanazawa R, Takayama Y, Kamiya Y, Shigeta K, Okubo S, Hayakawa M, et al: Effect of mechanical thrombectomy without vs with intravenous thrombolysis on functional outcome among patients with acute ischemic stroke: The SKIP randomized clinical trial. JAMA. 325:244–253. 2021. View Article : Google Scholar : PubMed/NCBI

126 

Machado M, Alves M, Fior A, Fragata I, Papoila AL, Reis J and Nunes AP: Functional outcome after mechanical thrombectomy with or without previous thrombolysis. J Stroke Cerebrovasc Dis. 30:1054952021. View Article : Google Scholar

127 

Cirillo C, Le Friec A, Frisach I, Darmana R, Robert L, Desmoulin F and Loubinoux I: Focal malonate injection into the internal capsule of rats as a model of lacunar stroke. Front Neurol. 9:10722018. View Article : Google Scholar

128 

Fries W, Danek A, Scheidtmann K and Hamburger C: Motor recovery following capsular stroke. Role of descending pathways from multiple motor areas. Brain. 116:369–382. 1993. View Article : Google Scholar : PubMed/NCBI

129 

Haga KK, Gregory LJ, Hicks CA, Ward MA, Beech JS, Bath PW, Williams SC and O'Neill MJ: The neuronal nitric oxide synthase inhibitor, TRIM, as a neuroprotective agent: Effects in models of cerebral ischaemia using histological and magnetic resonance imaging techniques. Brain Res. 993:42–53. 2003. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhao Y, Zhang X, Chen X and Wei Y: Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 49: 15, 2022.
APA
Zhao, Y., Zhang, X., Chen, X., & Wei, Y. (2022). Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). International Journal of Molecular Medicine, 49, 15. https://doi.org/10.3892/ijmm.2021.5070
MLA
Zhao, Y., Zhang, X., Chen, X., Wei, Y."Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review)". International Journal of Molecular Medicine 49.2 (2022): 15.
Chicago
Zhao, Y., Zhang, X., Chen, X., Wei, Y."Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review)". International Journal of Molecular Medicine 49, no. 2 (2022): 15. https://doi.org/10.3892/ijmm.2021.5070
Copy and paste a formatted citation
x
Spandidos Publications style
Zhao Y, Zhang X, Chen X and Wei Y: Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med 49: 15, 2022.
APA
Zhao, Y., Zhang, X., Chen, X., & Wei, Y. (2022). Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). International Journal of Molecular Medicine, 49, 15. https://doi.org/10.3892/ijmm.2021.5070
MLA
Zhao, Y., Zhang, X., Chen, X., Wei, Y."Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review)". International Journal of Molecular Medicine 49.2 (2022): 15.
Chicago
Zhao, Y., Zhang, X., Chen, X., Wei, Y."Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review)". International Journal of Molecular Medicine 49, no. 2 (2022): 15. https://doi.org/10.3892/ijmm.2021.5070
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team