Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2022 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines

  • Authors:
    • Jana Kotulova
    • Katerina Lonova
    • Agata Kubickova
    • Jana Vrbkova
    • Pavla Kourilova
    • Marian Hajduch
    • Petr Dzubak
  • View Affiliations / Copyright

    Affiliations: Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Palacky University Olomouc, 77900 Olomouc, Czech Republic
    Copyright: © Kotulova et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 31
    |
    Published online on: January 18, 2022
       https://doi.org/10.3892/ijmm.2022.5086
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Specific A3 adenosine receptor (A3AR) agonist, 2‑chloro‑N6‑(3‑iodobenzyl)‑5'‑N‑methylcarboxamidoadenosine (2‑Cl‑IB‑MECA), demonstrates anti‑proliferative effects on various types of tumor. In the present study, the cytotoxicity of 2‑Cl‑IB‑MECA was analyzed in a panel of tumor and non‑tumor cell lines and its anticancer mechanisms in JoPaca‑1 pancreatic and Hep‑3B hepatocellular carcinoma cell lines were also investigated. Initially, decreased tumor cell proliferation, cell accumulation in the G1 phase and inhibition of DNA and RNA synthesis was found. Furthermore, western blot analysis showed decreased protein expression level of β‑catenin, patched1 (Ptch1) and glioma‑associated oncogene homolog zinc finger protein 1 (Gli1), which are components of the Wnt/β‑catenin and Sonic hedgehog/Ptch/Gli transduction pathways. In concordance with these findings, the protein expression levels of cyclin D1 and c‑Myc were reduced. Using a luciferase assay, it was revealed for the first time a decrease in β‑catenin transcriptional activity, as an early event following 2‑Cl‑IB‑MECA treatment. In addition, the protein expression levels of multidrug resistance‑associated protein 1 and P‑glycoprotein (P‑gp) were reduced and the P‑gp xenobiotic efflux function was also reduced. Next, the enhancing effects of 2‑Cl‑IB‑MECA on the cytotoxicity of conventional chemotherapy was investigated. It was found that 2‑Cl‑IB‑MECA enhanced carboplatin and doxorubicin cytotoxic effects in the JoPaca‑1 and Hep‑3B cell lines, and a greater synergy was found in the highly tumorigenic JoPaca‑1 cell line. This provides a novel in vitro rationale for the utilization of 2‑Cl‑IB‑MECA in combination with chemotherapeutic agents, not only for hepatocellular carcinoma, but also for pancreatic cancer. Other currently used conventional chemotherapeutics, fluorouracil and gemcitabine, showed synergy only when combined with high doses of 2‑Cl‑IB‑MECA. Notably, experiments with A3AR‑specific antagonist, N‑[9‑Chloro‑2‑(2‑furanyl)(1,2,4)‑triazolo(1,5‑c)quinazolin‑5‑yl]benzene acetamide, revealed that 2‑Cl‑IB‑MECA had antitumor effects via both A3AR‑dependent and ‑independent pathways. In conclusion, the present study identified novel antitumor mechanisms of 2‑Cl‑IB‑MECA in pancreatic and hepatocellular carcinoma in vitro that further underscores the importance of A3AR agonists in cancer therapy.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

View References

1 

Ferlay J, Ervik M, Lam F, Colombet M, Mery L, Piñeros M, Znaor A, Soerjomataram I and Bray F: Global cancer observatory: Cancer today. Lyon, France: International Agency for Research on Cancer; 2020, Available from: https://gco.iarc.fr/today. Accessed November 24, 2021.

2 

Rawla P, Sunkara T and Gaduputi V: Epidemiology of pancreatic cancer: Global trends, etiology and risk factors. World J Oncol. 10:10–27. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI

4 

Marquardt JU, Gomez-Quiroz L, Arreguin Camacho LO, Pinna F, Lee YH, Kitade M, Domínguez MP, Castven D, Breuhahn K, Conner EA, et al: Curcumin effectively inhibits oncogenic NF-κB signaling and restrains stemness features in liver cancer. J Hepatol. 63:661–669. 2015. View Article : Google Scholar :

5 

Zeng SY, Pottler M, Lan B, Grutzmann R, Pilarsky C and Yang H: Chemoresistance in pancreatic cancer. Int J Mol Sci. 20:45042019. View Article : Google Scholar

6 

Adamska A and Falasca M: ATP-binding cassette transporters in progression and clinical outcome of pancreatic cancer: What is the way forward? World J Gastroenterol. 24:3222–3238. 2018. View Article : Google Scholar : PubMed/NCBI

7 

Lohitesh K, Chowdhury R and Mukherjee S: Resistance a major hindrance to chemotherapy in hepatocellular carcinoma: An insight. Cancer Cell Int. 18:442018. View Article : Google Scholar

8 

Liu A, Wu Q, Peng D, Ares I, Anadón A, Lopez-Torres B, Martínez-Larrañaga MR, Wang X and Martínez MA: A novel strategy for the diagnosis, prognosis, treatment, and chemoresistance of hepatocellular carcinoma: DNA methylation. Med Res Rev. 40:1973–2018. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Man S, Lu Y, Yin L, Cheng X and Ma L: Potential and promising anticancer drugs from adenosine and its analogs. Drug Discov Today. 26:1490–1500. 2021. View Article : Google Scholar

10 

Fredholm BB, IJzerman AP, Jacobson KA, Linden J and Müller CE: International union of basic and clinical pharmacology. LXXXI. Nomenclature and classification of adenosine receptors-an update. Pharmacol Rev. 63:1–34. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Madi L, Ochaion A, Rath-Wolfson L, Bar-Yehuda S, Erlanger A, Ohana G, Harish A, Merimski O, Barer F and Fishman P: The A3 adenosine receptor is highly expressed in tumor versus normal cells: Potential target for tumor growth inhibition. Clin Cancer Res. 10:4472–4479. 2004. View Article : Google Scholar

12 

Morello S, Petrella A, Festa M, Popolo A, Monaco M, Vuttariello E, Chiappetta G, Parente L and Pinto A: Cl-IB-MECA inhibits human thyroid cancer cell proliferation independently of A3 adenosine receptor activation. Cancer Biol Ther. 7:278–284. 2008. View Article : Google Scholar

13 

Bar-Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Zabutti A, Perez-Liz G, Del Valle L and Fishman P: The A3 adenosine receptor agonist CF102 induces apoptosis of hepatocellular carcinoma via de-regulation of the Wnt and NF-kappaB signal transduction pathways. Int J Oncol. 33:287–295. 2008.PubMed/NCBI

14 

Gessi S, Cattabriga E, Avitabile A, Gafa' R, Lanza G, Cavazzini L, Bianchi N, Gambari R, Feo C, Liboni A, et al: Elevated expression of A3 adenosine receptors in human colorectal cancer is reflected in peripheral blood cells. Clin Cancer Res. 10:5895–5901. 2004. View Article : Google Scholar : PubMed/NCBI

15 

Kim HO, Ji XD, Siddiqi SM, Olah ME, Stiles GL and Jacobson KA: 2-Substitution of N6-benzyladenosine-5′-uronamides enhances selectivity for A3 adenosine receptors. J Med Chem. 37:3614–3621. 1994. View Article : Google Scholar : PubMed/NCBI

16 

Van Schaick EA, Jacobson KA, Kim HO, Ijzerman AP and Danhof M: Hemodynamic effects and histamine release elicited by the selective adenosine A3 receptor agonist 2-Cl-IB-MECA in conscious rats. Eur J Pharmacol. 308:311–314. 1996. View Article : Google Scholar

17 

Wittendorp MC, Biber K and Boddeke HWGM: CL-IB-MECA induced release of CCL2 by astrocytes: Possible role for the adenosine A3 receptor? Naunyn-Schmiedeb Arch Pharmacol. 369:R1782004.

18 

Ge ZD, Peart JN, Kreckler LM, Wan TC, Jacobson MA, Gross GJ and Auchampach JA: Cl-IB-MECA [2-chloro-N6-(3-iodobenzyl) adenosine-5′-N-methylcarboxamide] reduces ischemia/reperfusion injury in mice by activating the A3 adenosine receptor. J Pharmacol Exp Ther. 319:1200–1210. 2006. View Article : Google Scholar : PubMed/NCBI

19 

Coppi E, Cherchi F, Fusco I, Failli P, Vona A, Dettori I, Gaviano L, Lucarini E, Jacobson KA, Tosh DK, et al: Adenosine A3 receptor activation inhibits pronociceptive N-type Ca2+ currents and cell excitability in dorsal root ganglion neurons. Pain. 160:1103–1118. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Cohen S, Stemmer SM, Zozulya G, Ochaion A, Patoka R, Barer F, Bar-Yehuda S, Rath-Wolfson L, Jacobson KA and Fishman P: CF102 an A3 adenosine receptor agonist mediates anti-tumor and anti-inflammatory effects in the liver. J Cell Physiol. 226:2438–2447. 2011. View Article : Google Scholar

21 

Morello S, Sorrentino R, Montinaro A, Luciano A, Maiolino P, Ngkelo A, Arra C, Adcock IM and Pinto A: NK1.1 cells and CD8 T cells mediate the antitumor activity of Cl-IB-MECA in a mouse melanoma model. Neoplasia. 13:365–373. 2011. View Article : Google Scholar : PubMed/NCBI

22 

Bar Yehuda S, Stemmer SM, Madi L, Castel D, Ochaion A, Cohen S, Barer F, Perez-Liz G, Del Valle L and Fishman P: Effect of CF102 on growth suppression and apoptosis in an orthotopic model of hepatocellular carcinoma. J Clin Oncol. 26(Suppl 15): S221132008. View Article : Google Scholar

23 

Safadi R, Braun M, Francis A, Milgrom Y, Massarwa M, Hakimian D, Hazou W, Issachar A, Harpaz Z, Farbstein M, et al: Randomised clinical trial: A phase 2 double-blind study of namodenoson in non-alcoholic fatty liver disease and steatohepatitis. Aliment Pharmacol Ther. 54:1405–1415. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Stemmer SM, Manojlovic NS, Marinca MV, Petrov P, Cherciu N, Ganea D, Ciuleanu TE, Puscas IA, Beg MS, Purcell WT, et al: A phase II, randomized, double-blind, placebo-controlled trial evaluating efficacy and safety of namodenoson (CF102), an A3 adenosine receptor agonist (A3AR), as a second-line treatment in patients with Child-Pugh B (CPB) advanced hepatocellular carcinoma (HCC). J Clin Oncol. 37(Suppl 15): S25032019. View Article : Google Scholar

25 

Stemmer SM, Manojlovic NS, Marinca MV, Petrov P, Cherciu N, Ganea D, Ciuleanu TE, Pusca IA, Beg MS, Purcell WT, et al: Namodenoson in advanced hepatocellular carcinoma and Child-Pugh B cirrhosis: Randomized placebo-controlled clinical trial. Cancers (Basel). 13:1872021. View Article : Google Scholar

26 

Ohana G, Cohen S, Rath-Wolfson L and Fishman P: A3 adenosine receptor agonist, CF102, protects against hepatic ischemia/reperfusion injury following partial hepatectomy. Mol Med Rep. 14:4335–4341. 2016. View Article : Google Scholar : PubMed/NCBI

27 

David M, Gospodinov DK, Gheorghe N, Mateev GS, Rusinova MV, Hristakieva E, Solovastru LG, Patel RV, Giurcaneanu C, Hitova MC, et al: Treatment of plaque-type psoriasis with oral CF101: Data from a phase II/III multicenter, randomized, controlled trial. J Drugs Dermatol. 15:931–938. 2016.PubMed/NCBI

28 

Storme J, Tosh DK, Gao ZG, Jacobson KA and Stove CP: Probing structure-activity relationship in β-arrestin2 recruitment of diversely substituted adenosine derivatives. Biochem Pharmacol. 158:103–113. 2018. View Article : Google Scholar : PubMed/NCBI

29 

Suresh RR, Jain S, Chen Z, Tosh DK, Ma Y, Podszun MC, Rotman Y, Salvemini D and Jacobson KA: Design and in vivo activity of A3 adenosine receptor agonist prodrugs. Purinergic Signal. 16:367–377. 2020. View Article : Google Scholar :

30 

Pottie E, Tosh DK, Gao ZG, Jacobson KA and Stove CP: Assessment of biased agonism at the A3 adenosine receptor using β-arrestin and miniGαi recruitment assays. Biochem Pharmacol. 177:1139342020. View Article : Google Scholar

31 

Kim SJ, Min HY, Chung HJ, Park EJ, Hong JY, Kang YJ, Shin DH, Jeong LS and Lee SK: Inhibition of cell proliferation through cell cycle arrest and apoptosis by thio-Cl-IB-MECA, a novel A3 adenosine receptor agonist, in human lung cancer cells. Cancer Lett. 264:309–315. 2008. View Article : Google Scholar

32 

Baltos JA, Paoletta S, Nguyen AT, Gregory KJ, Tosh DK, Christopoulos A, Jacobson KA and May LT: Structure-activity analysis of biased agonism at the human adenosine A3 receptor. Mol Pharmacol. 90:12–22. 2016. View Article : Google Scholar : PubMed/NCBI

33 

Vecchio EA, Baltos JA, Nguyen ATN, Christopoulos A, White PJ and May LT: New paradigms in adenosine receptor pharmacology: Allostery, oligomerization and biased agonism. Br J Pharmacol. 175:4036–4046. 2018. View Article : Google Scholar :

34 

Fredebohm J, Boettcher M, Eisen C, Gaidaμ M, Heller A, Keleg S, Tost J, Greulich-Bode KM, Hotz-Wagenblatt A, Lathrop M, et al: Establishment and characterization of a highly tumourigenic and cancer stem cell enriched pancreatic cancer cell line as a well defined model system. PLoS One. 7:e485032012. View Article : Google Scholar

35 

Novak I, Yu H, Magni L and Deshar G: Purinergic signaling in pancreas-from physiology to therapeutic strategies in pancreatic cancer. Int J Mol Sci. 21:87812020. View Article : Google Scholar

36 

Qiu GH, Xie X, Xu F, Shi XH, Wang Y and Deng L: Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology. 67:1–12. 2015. View Article : Google Scholar :

37 

Torres A, Vargas Y, Uribe D, Jaramillo C, Gleisner A, Salazar-Onfray F, López MN, Melo R, Oyarzún C, San Martín R and Quezada C: Adenosine A3 receptor elicits chemoresistance mediated by multiple resistance-associated protein-1 in human glioblastoma stem-like cells. Oncotarget. 7:67373–67386. 2016. View Article : Google Scholar

38 

Torres Á, Erices JI, Sanchez F, Ehrenfeld P, Turchi L, Virolle T, Uribe D, Niechi I, Spichiger C, Rocha JD, et al: Extracellular adenosine promotes cell migration/invasion of glioblastoma stem-like cells through A3 Adenosine Receptor activation under hypoxia. Cancer Lett. 446:112–122. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Montraveta A, Xargay-Torrent S, López-Guerra M, Rosich L, Pérez-Galán P, Salaverria I, Beà S, Kalko SG, de Frias M, Campàs C, et al: Synergistic anti-tumor activity of acadesine (AICAR) in combination with the anti-CD20 monoclonal antibody rituximab in in vivo and in vitro models of mantle cell lymphoma. Oncotarget. 5:726–739. 2014. View Article : Google Scholar :

40 

Fishman P, Bar-Yehuda S, Barer F, Madi L, Multani AS and Pathak S: The A3 adenosine receptor as a new target for cancer therapy and chemoprotection. Exp Cell Res. 269:230–236. 2001. View Article : Google Scholar

41 

Soares AS, Costa VM, Diniz C and Fresco P: The combination of Cl-IB-MECA with paclitaxel: A new anti-metastatic therapeutic strategy for melanoma. Cancer Chemother Pharmacol. 74:847–860. 2014. View Article : Google Scholar : PubMed/NCBI

42 

Soares AS, Costa VM, Diniz C and Fresco P: Potentiation of cytotoxicity of paclitaxel in combination with Cl-IB-MECA in human C32 metastatic melanoma cells: A new possible therapeutic strategy for melanoma. Biomed Pharmacother. 67:777–789. 2013. View Article : Google Scholar : PubMed/NCBI

43 

Mlejnek P, Dolezel P and Kosztyu P: P-glycoprotein mediates resistance to A3 adenosine receptor agonist 2-chloro-N6-(3-io dobenzyl)-adenosine-5′-n-methyluronamide in human leukemia cells. J Cell Physiol. 227:676–685. 2012. View Article : Google Scholar

44 

Abel B, Tosh DK, Durell SR, Murakami M, Vahedi S, Jacobson KA and Ambudkar SV: Evidence for the interaction of A3 adenosine receptor agonists at the drug-binding site(s) of human P-glycoprotein (ABCB1). Mol Pharmacol. 96:180–192. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Noskova V, Dzubak P, Kuzmina G, Ludkova A, Stehlik D, Trojanec R, Janostakova A, Korinkova G, Mihal V and Hajduch M: In vitro chemoresistance profile and expression/function of MDR associated proteins in resistant cell lines derived from CCRF-CEM, K562, A549 and MDA MB 231 parental cells. Neoplasma. 49:418–425. 2002.

46 

Le Poul E, Hisada S, Mizuguchi Y, Dupriez VJ, Burgeon E and Detheux M: Adaptation of aequorin functional assay to high throughput screening. J Biomol Screen. 7:57–65. 2002. View Article : Google Scholar : PubMed/NCBI

47 

Borková L, Frydrych I, Jakubcová N, Adámek R, Lišková B, Gurská S, Medvedíková M, Hajdúch M and Urban M: Synthesis and biological evaluation of triterpenoid thiazoles derived from betulonic acid, dihydrobetulonic acid, and ursonic acid. Eur J Med Chem. 185:1118062020. View Article : Google Scholar

48 

Chou TC: Theoretical basis, experimental design, and computerized simulation of synergism and antagonism in drug combination studies. Pharmacol Rev. 58:621–681. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Chou TC and Talalay P: Quantitative analysis of dose-effect relationships: The combined effects of multiple drugs or enzyme inhibitors. Adv Enzyme Regul. 22:27–55. 1984. View Article : Google Scholar

50 

Bourderioux A, Naus P, Perlíková P, Pohl R, Pichová I, Votruba I, Dzubák P, Konecný P, Hajdúch M, Stray KM, et al: Synthesis and significant cytostatic activity of 7-hetaryl-7-deazaadenosines. J Med Chem. 54:5498–5507. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Schneider CA, Rasband WS and Eliceiri KW: NIH image to imageJ: 25 Years of image analysis. Nat Methods. 9:671–675. 2012. View Article : Google Scholar : PubMed/NCBI

52 

Dzubák P, Hajdúch M, Gazák R, Svobodová A, Psotová J, Walterová D, Sedmera P and Kren V: New derivatives of silybin and 2,3-dehydrosilybin and their cytotoxic and P-glycoprotein modulatory activity. Bioorg Med Chem. 14:3793–3810. 2006. View Article : Google Scholar

53 

Borea PA, Varani K, Vincenzi F, Baraldi PG, Tabrizi MA, Merighi S and Gessi S: The A3 adenosine receptor: History and perspectives. Pharmacol Rev. 67:74–102. 2015. View Article : Google Scholar

54 

Laudadio MA and Psarropoulou C: The A3 adenosine receptor agonist 2-Cl-IB-MECA facilitates epileptiform discharges in the CA3 area of immature rat hippocampal slices. Epilepsy Res. 59:83–94. 2004. View Article : Google Scholar : PubMed/NCBI

55 

Jafari SM, Panjehpour M, Aghaei M, Joshaghani HR and Enderami SE: A3 adenosine receptor agonist inhibited survival of breast cancer stem cells via GLI-1 and ERK1/2 pathway. J Cell Biochem. 118:2909–2920. 2017. View Article : Google Scholar : PubMed/NCBI

56 

Merighi S, Benini A, Mirandola P, Gessi S, Varani K, Leung E, Maclennan S and Borea PA: A3 adenosine receptor activation inhibits cell proliferation via phosphatidylinositol 3-kinase/Akt-dependent inhibition of the extracellular signal-regulated kinase 1/2 phosphorylation in A375 human melanoma cells. J Biol Chem. 280:19516–19526. 2005. View Article : Google Scholar

57 

Borea PA, Gessi S, Merighi S, Vincenzi F and Varani K: Pharmacology of adenosine receptors: The state of the art. Physiol Rev. 98:1591–1625. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Haines K, Sarabia SF, Alvarez KR, Tomlinson G, Vasudevan SA, Heczey AA, Roy A, Finegold MJ, Parsons DW, Plon SE, et al: Characterization of pediatric hepatocellular carcinoma reveals genomic heterogeneity and diverse signaling pathway activation. Pediatr Blood Cancer. 66:e277452019. View Article : Google Scholar : PubMed/NCBI

59 

Jones S, Zhang XS, Parsons DW, Lin JC, Leary RJ, Angenendt P, Mankoo P, Carter H, Kamiyama H, Jimeno A, et al: Core signaling pathways in human pancreatic cancers revealed by global genomic analyses. Science. 321:1801–1806. 2008. View Article : Google Scholar : PubMed/NCBI

60 

Olive KP, Jacobetz MA, Davidson CJ, Gopinathan A, McIntyre D, Honess D, Madhu B, Goldgraben MA, Caldwell ME, Allard D, et al: Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer. Science. 324:1457–1461. 2009. View Article : Google Scholar : PubMed/NCBI

61 

Ding J, Zhou XT, Zou HY and Wu J: Hedgehog signaling pathway affects the sensitivity of hepatoma cells to drug therapy through the ABCC1 transporter. Lab Invest. 97:819–832. 2017. View Article : Google Scholar

62 

He TC, Sparks AB, Rago C, Hermeking H, Zawel L, da Costa LT, Morin PJ, Vogelstein B and Kinzler KW: Identification of c-MYC as a target of the APC pathway. Science. 281:1509–1512. 1998. View Article : Google Scholar : PubMed/NCBI

63 

Tetsu O and McCormick F: Beta-catenin regulates expression of cyclin D1 in colon carcinoma cells. Nature. 398:422–426. 1999. View Article : Google Scholar : PubMed/NCBI

64 

Spoelstra EC, Westerhoff HV, Pinedo HM, Dekker H and Lankelma J: The multidrug-resistance-reverser verapamil interferes with cellular P-glycoprotein-mediated pumping of daunorubicin as a non-competing substrate. Eur J Biochem. 221:363–373. 1994. View Article : Google Scholar : PubMed/NCBI

65 

Queiroz KCS, Ruela-de-Sousa RR, Fuhler GM, Aberson HL, Ferreira CV, Peppelenbosch MP and Spek CA: Hedgehog signaling maintains chemoresistance in myeloid leukemic cells. Oncogene. 29:6314–6322. 2010. View Article : Google Scholar

66 

Jacobson KA: Adenosine A3 receptors: Novel ligands and paradoxical effects. Trends Pharmacol Sci. 19:184–191. 1998. View Article : Google Scholar : PubMed/NCBI

67 

Aghaei M, Panjehpour M, Karami-Tehrani F and Salami S: Molecular mechanisms of A3 adenosine receptor-induced G1 cell cycle arrest and apoptosis in androgen-dependent and independent prostate cancer cell lines: Involvement of intrinsic pathway. J Cancer Res Clin Oncol. 137:1511–1523. 2011. View Article : Google Scholar

68 

Gao ZG and Jacobson KA: Translocation of arrestin induced by human A3 adenosine receptor ligands in an engineered cell line: Comparison with G protein-dependent pathways. Purinergic Signal. 4:S78–S79. 2008.

69 

Mundell S and Kelly E: Adenosine receptor desensitization and trafficking. Biochim Biophys Acta. 1808:1319–1328. 2011. View Article : Google Scholar

70 

Hu J, Nakano H, Sakurai H and Colburn NH: Insufficient p65 phosphorylation at S536 specifically contributes to the lack of NF-kappaB activation and transformation in resistant JB6 cells. Carcinogenesis. 25:1991–2003. 2004. View Article : Google Scholar : PubMed/NCBI

71 

De Luca A, Maiello MR, D'Alessio A, Pergameno M and Normanno N: The RAS/RAF/MEK/ERK and the PI3K/AKT signalling pathways: Role in cancer pathogenesis and implications for therapeutic approaches. Expert Opin Ther Targets. 16(Suppl 2): S17–S27. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Hasnain SZ, Lourie R, Das I, Chen AC and McGuckin MA: The interplay between endoplasmic reticulum stress and inflammation. Immunol Cell Biol. 90:260–270. 2012. View Article : Google Scholar : PubMed/NCBI

73 

Tam AB, Mercado EL, Hoffmann A and Niwa M: ER stress activates NF-κB by integrating functions of basal IKK activity, IRE1 and PERK. PLoS One. 7:e450782012. View Article : Google Scholar

74 

Makhov P, Naito S, Haifler M, Kutikov A, Boumber Y, Uzzo RG and Kolenko VM: The convergent roles of NF-κB and ER stress in sunitinib-mediated expression of pro-tumorigenic cytokines and refractory phenotype in renal cell carcinoma. Cell Death Dis. 9:3742018. View Article : Google Scholar

75 

Alessi DR, Andjelkovic M, Caudwell B, Cron P, Morrice N, Cohen P and Hemmings BA: Mechanism of activation of protein kinase B by insulin and IGF-1. EMBO J. 15:6541–6551. 1996. View Article : Google Scholar

76 

Vincent EE, Elder DJ, Thomas EC, Phillips L, Morgan C, Pawade J, Sohail M, May MT, Hetzel MR and Tavaré JM: Akt phosphorylation on Thr308 but not on Ser473 correlates with Akt protein kinase activity in human non-small cell lung cancer. Br J Cancer. 104:1755–1761. 2011. View Article : Google Scholar : PubMed/NCBI

77 

Yung HW, Charnock-Jones DS and Burton GJ: Regulation of AKT phosphorylation at Ser473 and Thr308 by endoplasmic reticulum stress modulates substrate specificity in a severity dependent manner. PLoS One. 6:e178942011. View Article : Google Scholar :

78 

Wu LF, Wei BL, Guo YT, Ye YQ, Li GP, Pu ZJ and Feng JL: Apoptosis induced by adenosine involves endoplasmic reticulum stress in EC109 cells. Int J Mol Med. 30:797–804. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Nie J, Liu A, Tan Q, Zhao K, Hu K, Li Y, Yan B and Zhou L: AICAR activates ER stress-dependent apoptosis in gallbladder cancer cells. Biochem Biophys Res Commun. 482:246–252. 2017. View Article : Google Scholar

80 

Ding L and Billadeau DD: Glycogen synthase kinase-3β: A novel therapeutic target for pancreatic cancer. Expert Opin Ther Targets. 24:417–426. 2020. View Article : Google Scholar : PubMed/NCBI

81 

Fishman P, Bar Yehuda S, Stemmer SM and Madi L: CF101 enhances the apoptotic effect of chemotherapy on colon and pancreatic carcinoma cell lines: Molecular mechanisms involved. J Clin Oncol. 22(Suppl 14): S31732004. View Article : Google Scholar

82 

Kwee SA and Tiirikainen M: Beta-catenin activation and immunotherapy resistance in hepatocellular carcinoma: Mechanisms and biomarkers. Hepatoma Res. 7:82021.PubMed/NCBI

83 

Hinz M, Krappmann D, Eichten A, Heder A, Scheidereit C and Strauss M: NF-kappaB function in growth control: Regulation of cyclin D1 expression and G0/G1-to-S-phase transition. Mol Cell Biol. 19:2690–2698. 1999. View Article : Google Scholar

84 

Bar-Yehuda S, Madi L, Silberman D, Gery S, Shkapenuk M and Fishman P: CF101, an agonist to the A3 adenosine receptor, enhances the chemotherapeutic effect of 5-fluorouracil in a colon carcinoma murine model. Neoplasia. 7:85–90. 2005. View Article : Google Scholar : PubMed/NCBI

85 

Varani K, Vincenzi F, Targa M, Paradiso B, Parrilli A, Fini M, Lanza G and Borea PA: The stimulation of A(3) adenosine receptors reduces bone-residing breast cancer in a rat preclinical model. Eur J Cancer. 49:482–491. 2013. View Article : Google Scholar

86 

Frydrych I, Dolezel P and Mlejnek P: P-glycoprotein overexpression confers resistance to A3 adenosine receptor agonists 2-chloro-N6-(3-iodobenzyl)-adenosine-5′-N-methyluronamide (Cl-IB-MECA) in human leukemia cells. Purinergic Signal. 4(Suppl 1): S1–S210. 2008.

87 

Lim JC, Kania KD, Wijesuriya H, Chawla S, Sethi JK, Pulaski L, Romero IA, Couraud PO, Weksler BB, Hladky SB and Barrand MA: Activation of beta-catenin signalling by GSK-3 inhibition increases p-glycoprotein expression in brain endothelial cells. J Neurochem. 106:1855–1865. 2008.PubMed/NCBI

88 

Buschauer S, Koch A, Wiggermann P, Müller M and Hellerbrand C: Hepatocellular carcinoma cells surviving doxorubicin treatment exhibit increased migratory potential and resistance to doxorubicin re-treatment in vitro. Oncol Lett. 15:4635–4640. 2018.

89 

Yin W, Xiang D, Wang T, Zhang Y, Pham CV, Zhou S, Jiang G, Hou Y, Zhu Y, Han Y, et al: The inhibition of ABCB1/MDR1 or ABCG2/BCRP enables doxorubicin to eliminate liver cancer stem cells. Sci Rep. 11:107912021. View Article : Google Scholar :

90 

Hoare SRJ: The problems of applying classical pharmacology analysis to modern in vitro drug discovery assays: Slow binding kinetics and high target concentration. SLAS Discov. 26:835–850. 2021.PubMed/NCBI

91 

Fredholm BB: Adenosine receptors as drug targets. Exp Cell Res. 316:1284–1288. 2010. View Article : Google Scholar : PubMed/NCBI

92 

Kim SG, Ravi G, Hoffmann C, Jung YJ, Kim M, Chen A and Jacobson KA: p53-Independent induction of Fas and apoptosis in leukemic cells by an adenosine derivative, Cl-IB-MECA. Biochem Pharmacol. 63:871–880. 2002. View Article : Google Scholar : PubMed/NCBI

93 

Mlejnek P, Dolezel P and Frydrych I: Effects of synthetic A3 adenosine receptor agonists on cell proliferation and viability are receptor independent at micromolar concentrations. J Physiol Biochem. 69:405–417. 2013. View Article : Google Scholar

94 

Jajoo S, Mukherjea D, Watabe K and Ramkumar V: Adenosine A(3) receptor suppresses prostate cancer metastasis by inhibiting NADPH oxidase activity. Neoplasia. 11:1132–1145. 2009. View Article : Google Scholar :

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Kotulova J, Lonova K, Kubickova A, Vrbkova J, Kourilova P, Hajduch M and Dzubak P: 2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines. Int J Mol Med 49: 31, 2022.
APA
Kotulova, J., Lonova, K., Kubickova, A., Vrbkova, J., Kourilova, P., Hajduch, M., & Dzubak, P. (2022). 2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines. International Journal of Molecular Medicine, 49, 31. https://doi.org/10.3892/ijmm.2022.5086
MLA
Kotulova, J., Lonova, K., Kubickova, A., Vrbkova, J., Kourilova, P., Hajduch, M., Dzubak, P."2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines". International Journal of Molecular Medicine 49.3 (2022): 31.
Chicago
Kotulova, J., Lonova, K., Kubickova, A., Vrbkova, J., Kourilova, P., Hajduch, M., Dzubak, P."2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines". International Journal of Molecular Medicine 49, no. 3 (2022): 31. https://doi.org/10.3892/ijmm.2022.5086
Copy and paste a formatted citation
x
Spandidos Publications style
Kotulova J, Lonova K, Kubickova A, Vrbkova J, Kourilova P, Hajduch M and Dzubak P: 2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines. Int J Mol Med 49: 31, 2022.
APA
Kotulova, J., Lonova, K., Kubickova, A., Vrbkova, J., Kourilova, P., Hajduch, M., & Dzubak, P. (2022). 2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines. International Journal of Molecular Medicine, 49, 31. https://doi.org/10.3892/ijmm.2022.5086
MLA
Kotulova, J., Lonova, K., Kubickova, A., Vrbkova, J., Kourilova, P., Hajduch, M., Dzubak, P."2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines". International Journal of Molecular Medicine 49.3 (2022): 31.
Chicago
Kotulova, J., Lonova, K., Kubickova, A., Vrbkova, J., Kourilova, P., Hajduch, M., Dzubak, P."2‑Cl‑IB‑MECA regulates the proliferative and drug resistance pathways, and facilitates chemosensitivity in pancreatic and liver cancer cell lines". International Journal of Molecular Medicine 49, no. 3 (2022): 31. https://doi.org/10.3892/ijmm.2022.5086
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team