|
1
|
World Health Organization (WHO):
Coronovirus disease (COVID-19): Vaccines safety. WHO; Geneva:
2021
|
|
2
|
Greinacher A, Thiele T, Warkentin TE,
Weisser K, Kyrle PA and Eichinger S: Thrombotic thrombocytopenia
after ChAdOx1 nCov-19 vaccination. N Engl J Med. 384:2092–2101.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Mathieu E, Ritchie H, Ortiz-Ospina E,
Roser M, Hasell J, Appel C, Giattino C and Rodés-Guirao L: A global
database of COVID-19 vaccinations. Nat Hum Behav. 5:947–953. 2021.
View Article : Google Scholar
|
|
4
|
Wei CH, Allot A, Leaman R and Lu Z:
PubTator central: Automated concept annotation for biomedical full
text articles. Nucleic Acids Res. 47(W1): W587–W593. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Chen Q, Allot A and Lu Z: LitCovid: An
open database of COVID-19 literature. Nucleic Acids Res. 49(D1):
D1534–D1540. 2021. View Article : Google Scholar :
|
|
6
|
Szklarczyk D, Gable AL, Lyon D, Junge A,
Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork
P, et al: STRING v11: Protein-protein association networks with
increased coverage, supporting functional discovery in genome-wide
experimental datasets. Nucleic Acids Res. 47(D1): D607–D613. 2019.
View Article : Google Scholar
|
|
7
|
Szklarczyk D, Gable AL, Nastou KC, Lyon D,
Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al:
The STRING database in 2021: Customizable protein-protein networks,
and functional characterization of user-uploaded gene/measurement
sets. Nucleic Acids Res. 49(D1): D605–D612. 2021. View Article : Google Scholar
|
|
8
|
Shannon P, Markiel A, Ozier O, Baliga NS,
Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A
software environment for integrated models of biomolecular
interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Hippocrates: Epidemics 2, 4-7. Smith
Wesley D: Loeb Classical Library 477. Harvard University Press;
Cambridge, MA: 1994
|
|
10
|
Jouanna J: Hippocrates. John Hopkins
University Press; Baltimore, MD: 1999
|
|
11
|
Mammas IN and Spandidos DA: Paediatric
virology in the Hippocratic corpus. Exp Ther Med. 12:541–549. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Pappas G, Kiriaze IJ and Falagas ME:
Insights into infectious disease in the era of Hippocrates. Int J
Infect Dis. 12:347–350. 2008. View Article : Google Scholar
|
|
13
|
Misselbrook D: Aristotle, hume and the
goals of medicine. J Eval Clin Pract. 22:544–549. 2016. View Article : Google Scholar
|
|
14
|
Wulff HR: The concept of disease: From
Newton back to Aristotle. Lancet. 354(Suppl): SIV501999. View Article : Google Scholar
|
|
15
|
Wulff HR: The concept of disease: From
Newton back to Aristotle. Lancet. 54:3541999.
|
|
16
|
Lorenz EN: Deterministic nonperiodic flow.
J Atmos Sci. 20:130–141. 1963. View Article : Google Scholar
|
|
17
|
Barabási AL, Gulbahce N and Loscalzo J:
Network medicine: A network-based approach to human disease. Nat
Rev Genet. 12:56–68. 2011. View
Article : Google Scholar :
|
|
18
|
Li Q, Guan X, Wu P, Wang X, Zhou L, Tong
Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission
dynamics in Wuhan, China, of novel coronavirus-infected pneumonia.
N Engl J Med. 382:1199–1207. 2020. View Article : Google Scholar :
|
|
19
|
Raoult D, Zumla A, Locatelli F, Ippolito G
and Kroemer G: Coronavirus infections: Epidemiological, clinical
and immunological features and hypotheses. Cell Stress. 4:66–75.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Mondal S, Quintili AL, Karamchandani K and
Bose S: Thromboembolic disease in COVID-19 patients: A brief
narrative review. J Intensive Care. 8:702020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Xu P, Zhou Q and Xu J: Mechanism of
thrombocytopenia in COVID-19 patients. Ann Hematol. 99:1205–1208.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li W, Moore MJ, Vasilieva N, Sui J, Wong
SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough
TC, et al: Angiotensin-converting enzyme 2 is a functional receptor
for the SARS coronavirus. Nature. 426:450–454. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Ge XY, Li JL, Yang XL, Chmura AA, Zhu G,
Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, et al: Isolation and
characterization of a bat SARS-like coronavirus that uses the ACE2
receptor. Nature. 503:535–538. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mazzoni A, Salvati L, Maggi L, Capone M,
Vanni A, Spinicci M, Mencarini J, Caporale R, Peruzzi B, Antonelli
A, et al: Impaired immune cell cytotoxicity in severe COVID-19 is
IL-6 dependent. J Clin Invest. 130:4694–4703. 2020. View Article : Google Scholar :
|
|
25
|
Sama IE, Ravera A, Santema BT, van Goor H,
Ter Maaten JM, Cleland JGF, Rienstra M, Friedrich AW, Samani NJ, Ng
LL, et al: Circulating plasma concentrations of
angiotensin-converting enzyme 2 in men and women with heart failure
and effects of renin-angiotensin-aldosterone inhibitors. Eur Heart
J. 41:1810–1817. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Diaz JH: Hypothesis:
Angiotensin-converting enzyme inhibitors and angiotensin receptor
blockers may increase the risk of severe COVID-19. J Travel Med.
27:taaa0412020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Hoffmann M, Kleine-Weber H, Schroeder S,
Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH,
Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2
and is blocked by a clinically proven protease inhibitor. Cell.
18:271–280.e8. 2020. View Article : Google Scholar
|
|
28
|
Hamming I, Timens W, Bulthuis ML, Lely AT,
Navis G and van Goor H: Tissue distribution of ACE2 protein, the
functional receptor for SARS coronavirus. A first step in
understanding SARS pathogenesis. J Pathol. 203:631–637. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Gao T, Hu M, Zhang X, Li H, Zhu L, Liu H,
Dong Q, Zhang Z, Wang Z, Hu Y, et al: Highly pathogenic coronavirus
N protein aggravates lung injury by MASP-2-mediated complement
over-activation. medRxiv. ppmedrxiv-20041962. 2020.
|
|
30
|
Cao X: COVID-19: Immunopathology and its
implications for therapy. Nat Rev Immunol. 20:269–270. 2020.
View Article : Google Scholar
|
|
31
|
Channappanavar R and Perlman S: Pathogenic
human coronavirus infections: Causes and consequences of cytokine
storm and immunopathology. Semin Immunopathol. 39:529–539. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zhao J, Zhao J and Perlman S: T cell
responses are required for protection from clinical disease and for
virus clearance in severe acute respiratory syndrome
coronavirus-infected mice. J Virol. 84:9318–9325. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Meduri GU, Kohler G, Headley S, Tolley E,
Stentz F and Postlethwaite A: Inflammatory cytokines in the BAL of
patients with ARDS. Persistent elevation over time predicts poor
outcome. Chest. 108:1303–1314. 1995. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Tang N, Li D, Wang X and Sun Z: Abnormal
coagulation parameters are associated with poor prognosis in
patients with novel coronavirus pneumonia. J Thromb Haemost.
18:844–847. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Helms J, Tacquard C, Severac F,
Leonard-Lorant I, Ohana M, Delabranche X, Merdji H, Clere-Jehl R,
Schenck M, Fagot Gandet F, et al: High risk of thrombosis in
patients with severe SARS-CoV-2 infection: A multicenter
prospective cohort study. Intensive Care Med. 46:1089–1098. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Klok FA, Kruip MJHA, van der Meer NJM,
Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J,
Stals MAM, Huisman MV and Endeman H: Incidence of thrombotic
complications in critically ill ICU patients with COVID-19. Thromb
Res. 191:145–147. 2020. View Article : Google Scholar :
|
|
37
|
Chang JC: Hemostasis based on a novel
'two-path unifying theory' and classification of hemostatic
disorders. Blood Coagul Fibrinolysis. 29:573–584. 2018. View Article : Google Scholar
|
|
38
|
Chang JC: Sepsis and septic shock:
Endothelial molecular pathogenesis associated with vascular
microthrombotic disease. Thromb J. 17:102019. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Seirafianpour F, Sodagar S, Pour Mohammad
A, Panahi P, Mozafarpoor S, Almasi S and Goodarzi A: Cutaneous
manifestations and considerations in COVID-19 pandemic: A
systematic review. Dermatol Ther. 33:e139862020. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Vaughan DE: PAI-1 and atherothrombosis. J
Thromb Haemost. 3:1879–1883. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Badary OA: Pharmacogenomics and COVID-19:
Clinical implications of human genome interactions with repurposed
drugs. Pharmacogenomics J. 21:275–284. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Chen MR, Kuo HC, Lee YJ, Chi H, Li SC, Lee
HC and Yang KD: Phenotype, susceptibility, autoimmunity, and
immunotherapy between Kawasaki disease and coronavirus disease-19
associated multisystem inflammatory syndrome in children. Front
Immunol. 12:6328902021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Romero-López JP, Carnalla-Cortés M,
Pacheco-Olvera DL, Ocampo-Godínez JM, Oliva-Ramírez J,
Moreno-Manjón J, Bernal-Alferes B, López-Olmedo N, García-Latorre
E, Domínguez-López ML, et al: A bioinformatic prediction of antigen
presentation from SARS-CoV-2 spike protein revealed a theoretical
correlation of HLA-DRB1*01 with COVID-19 fatality in Mexican
population: An ecological approach. J Med Virol. 93:2029–2038.
2021. View Article : Google Scholar
|
|
44
|
Anzurez A, Naka I, Miki S, Nakayama-Hosoya
K, Isshiki M, Watanabe Y, Nakamura-Hoshi M, Seki S, Matsumura T,
Takano T, et al: Association of HLA-DRB1*09:01 with severe
COVID-19. HLA. 98:37–42. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Rotondo JC, Bosi S, Bassi C, Ferracin M,
Lanza G, Gafà R, Magri E, Selvatici R, Torresani S, Marci R, et al:
Gene expression changes in progression of cervical neoplasia
revealed by microarray analysis of cervical neoplastic
keratinocytes. J Cell Physiol. 230:806–812. 2015. View Article : Google Scholar
|
|
46
|
Combs AP: Recent advances in the discovery
of competitive protein tyrosine phosphatase 1B inhibitors for the
treatment of diabetes, obesity, and cancer. J Med Chem.
53:2333–2344. 2010. View Article : Google Scholar
|
|
47
|
Finkel T and Holbrook NJ: Oxidants,
oxidative stress and the biology of ageing. Nature. 408:239–247.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Choi YM, Kwon HS, Choi KM, Lee WY and Hong
EG: Short-term effects of beraprost sodium on the markers for
cardiovascular risk prediction in type 2 diabetic patients with
microalbuminuria. Endocrinol Metab (Seoul). 34:398–405. 2019.
View Article : Google Scholar
|
|
49
|
Nomura S, Taniura T, Shouzu A, Omoto S,
Suzuki M, Okuda Y and Ito T: Effects of sarpogrelate,
eicosapentaenoic acid and pitavastatin on arterioslcerosis
obliterans-related biomarkers in patients with type 2 diabetes
(SAREPITASO study). Vasc Health Risk Manag. 14:225–232. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zheng Y, Liu SQ, Sun Q, Xie JF, Xu JY, Li
Q, Pan C, Liu L and Huang YZ: Plasma microRNAs levels are different
between pulmonary and extrapulmonary ARDS patients: A clinical
observational study. Ann Intensive Care. 8:232018. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Attia EF, Jolley SE, Crothers K, Schnapp
LM and Liles WC: Soluble vascular cell adhesion molecule-1
(sVCAM-1) is elevated in bronchoalveolar lavage fluid of patients
with acute respiratory distress syndrome. PLoS One.
11:e01496872016. View Article : Google Scholar :
|
|
52
|
Cines DB and Bussel JB: SARS-CoV-2
vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med.
384:2254–2256. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Schultz NH, Sørvoll IH, Michelsen AE,
Munthe LA, Lund-Johansen F, Ahlen MT, Wiedmann M, Aamodt AH,
Skattør TH, Tjønnfjord GE and Holme PA: Thrombosis and
thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med.
384:2124–2130. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
European Medicines Agency (EMA): COVID-19
Vaccine AstraZeneca: PRAC investigating cases of thromboembolic
events-vaccine's benefits currently still outweigh risks-update.
2021.
|
|
55
|
World Health Organization (WHO): Statement
of the WHO global advisory committee on vaccine safety (GACVS)
COVID-19 subcommittee on safety signals related to the AstraZeneca
COVID-19 vaccine. WHO; Geneva: 2021
|
|
56
|
Bussel JB, Connors JM, Cines DB, Dunbar
CE, Michaelis LC, Kreuziger LB, Lee AYY and Pabinger-Fasching I:
Thrombosis with thrombocytopenia syndrome (also termed
vaccine-induced thrombotic thrombocytopenia). American Society of
Haematology; Washington, DC: 2021
|
|
57
|
Thaler J, Ay C, Gleixner KV, Hauswirth AW,
Cacioppo F, Grafeneder J, Quehenberger P, Pabinger I and Knöbl P:
Successful treatment of vaccine-induced prothrombotic immune
thrombocytopenia (VIPIT). J Thromb Haemost. 19:1819–1822. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Smadja DM, Mentzer SJ, Fontenay M, Laffan
MA, Ackermann M, Helms J, Jonigk D, Chocron R, Pier GB, Gendron N,
et al: COVID-19 is a systemic vascular hemopathy: Insight for
mechanistic and clinical aspects. Angiogenesis. 24:755–788. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Kashir J, Ambia AR, Shafqat A, Sajid MR,
AlKattan K and Yaqinuddin A: Scientific premise for the involvement
of neutrophil extracellular traps (NETs) in vaccine-induced
thrombotic thrombocytopenia (VITT). J Leukoc Biol. Sep 1–2021.Epub
ahead of prin. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Gupta N, Sahu A, Prabhakar A, Chatterjee
T, Tyagi T, Kumari B, Khan N, Nair V, Bajaj N, Sharma M and Ashraf
MZ: Activation of NLRP3 inflammasome complex potentiates venous
thrombosis in response to hypoxia. Proc Natl Acad Sci USA.
114:4763–4768. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Salaro E, Rambaldi A, Falzoni S, Amoroso
FS, Franceschini A, Sarti AC, Bonora M, Cavazzini F, Rigolin GM,
Ciccone M, et al: Involvement of the P2X7-NLRP3 axis in leukemic
cell proliferation and death. Sci Rep. 6:262802016. View Article : Google Scholar :
|
|
62
|
Ribeiro DE, Oliveira-Giacomelli Á, Glaser
T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C,
Ratajczak MZ and Ulrich H: Hyperactivation of P2X7 receptors as a
culprit of COVID-19 neuropathology. Mol Psychiatry. 26:1044–1059.
2021. View Article : Google Scholar
|
|
63
|
Savio LEB, de Andrade Mello P, da Silva CG
and Coutinho-Silva R: The P2X7 receptor in inflammatory diseases:
Angel or demon. Front Pharmacol. 9:522018. View Article : Google Scholar
|
|
64
|
Pacheco PAF and Faria RX: The potential
involvement of P2X7 receptor in COVID-19 pathogenesis: A new
therapeutic target? Scand J Immunol. 93:e129602021. View Article : Google Scholar
|
|
65
|
Ortiz GG, Pacheco-Moisés FP, Macías-Islas
M, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED and
Her nández-Nava r ro VE: Role of the blood-brain barrier in
multiple sclerosis. Arch Med Res. 45:687–697. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Di Virgilio F, Tang Y, Sarti AC and
Rossato M: A rationale for targeting the P2X7 receptor in
coronavirus disease 19. Br J Pharmacol. 177:4990–4994. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Ferreira AC, Soares VC, de
Azevedo-Quintanilha IG, Dias SDSG, Fintelman-Rodrigues N,
Sacramento CQ, Mattos M, de Freitas CS, Temerozo JR, Teixeira L, et
al: SARS-CoV-2 engages inflammasome and pyroptosis in human primary
monocytes. Cell Death Discov. 7:432021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Moss ML and Bartsch JW: Therapeutic
benefits from targeting of ADAM family members. Biochemistry.
43:7227–7235. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Souza JSM, Lisboa ABP, Santos TM, Andrade
MVS, Neves VBS, Teles-Souza J, Jesus HNR, Bezerra TG, Falcão VGO,
Oliveira RC and Del-Bem LE: The evolution of ADAM gene family in
eukaryotes. Genomics. 112:3108–3116. 2020. View Article : Google Scholar
|
|
70
|
Xu J, Xu X, Jiang L, Dua K, Hansbro PM and
Liu G: SARS-CoV-2 induces transcriptional signatures in human lung
epithelial cells that promote lung fibrosis. Respir Res.
21:1822020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Katneni UK, Alexaki A, Hunt RC, Schiller
T, DiCuccio M, Buehler PW, Ibla JC and Kimchi-Sarfaty C:
Coagulopathy and thrombosis as a result of severe COVID-19
infection: A microvascular focus. Thromb Haemost. 120:1668–1679.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tian J, Sun D, Xie Y, Liu K and Ma Y:
Network pharmacology-based study of the molecular mechanisms of
Qixuekang in treating COVID-19 during the recovery period. Int J
Clin Exp Pathol. 13:2677–2690. 2020.PubMed/NCBI
|
|
73
|
Boron WF and Boulpaep EL: Medical
physiology: A cellular and molecular approach. Saunders Elsevier;
Philadelphia, PA: 2012
|
|
74
|
Fitzpatrick D, Purves D and Augustine G:
Neuroscience. 3rd edition. Sinauer Associates, Inc; Sunderland, MA:
2004
|
|
75
|
Wang Q, Zhu W, Xiao G, Ding M, Chang J and
Liao H: Effect of AGER on the biological behavior of non-small cell
lung cancer H1299 cells. Mol Med Rep. 22:810–818. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Man SM, Karki R and Kanneganti TD: AIM2
inflammasome in infection, cancer, and autoimmunity: Role in DNA
sensing, inflammation, and innate immunity. Eur J Immunol.
46:269–280. 2016. View Article : Google Scholar
|
|
77
|
Bafunno V, Firinu D, D'Apolito M, Cordisco
G, Loffredo S, Leccese A, Bova M, Barca MP, Santacroce R, Cicardi
M, et al: Mutation of the angiopoietin-1 gene (ANGPT1) associates
with a new type of hereditary angioedema. J Allergy Clin Immunol.
141:1009–1017. 2018. View Article : Google Scholar
|
|
78
|
PubMed Gene database: ANGPT2 angiopoietin
2 [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=285
Accessed December 12, 2020.
|
|
79
|
Marumoto T, Honda S, Hara T, Nitta M,
Hirota T, Kohmura E and Saya H: Aurora-A kinase maintains the
fidelity of early and late mitotic events in HeLa cells. J Biol
Chem. 278:51786–51795. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Li N, Zhang J, Liao D, Yang L, Wang Y and
Hou S: Association between C4, C4A, and C4B copy number variations
and susceptibility to autoimmune diseases: A meta-analysis. Sci
Rep. 7:426282017. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Horiuchi T and Tsukamoto H:
Complement-targeted therapy: Development of C5- and C5a-targeted
inhibition. Inflamm Regen. 36:112016. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Hobart MJ, Fernie BA and DiScipio RG:
Structure of the human C7 gene and comparison with the C6, C8A,
C8B, and C9 genes. J Immunol. 154:5188–5194. 1995.PubMed/NCBI
|
|
83
|
Xia S, Zhang Z, Magupalli VG, Pablo JL,
Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, et al:
Gasdermin D pore structure reveals preferential release of mature
interleukin-1. Nature. 593:607–611. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Cohen GM: Caspases: The executioners of
apoptosis. Biochem J. 326:1–16. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Avrutsky MI and Troy CM: Caspase-9: A
multimodal therapeutic target with diverse cellular expression in
human disease. Front Pharmacol. 12:7013012021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Singh S, Anshita D and Ravichandiran V:
MCP-1: Function, regulation, and involvement in disease. Int
Immunopharmacol. 101:1075982021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Coperchini F, Chiovato L, Ricci G, Croce
L, Magri F and Rotondi M: The cytokine storm in COVID-19: Further
advances in our understanding the role of specific chemokines
involved. Cytokine Growth Factor Rev. 58:82–91. 2021. View Article : Google Scholar :
|
|
88
|
Guan E, Wang J and Norcross MA:
Identification of human macrophage inflammatory proteins 1alpha and
1beta as a native secreted heterodimer. J Biol Chem.
276:12404–12409. 2001. View Article : Google Scholar
|
|
89
|
Charrier A and Brigstock DR: Regulation of
pancreatic function by connective tissue growth factor (CTGF,
CCN2). Cytokine Growth Factor Rev. 24:59–68. 2013. View Article : Google Scholar
|
|
90
|
Garcillán B, Fuentes P, Marin AV, Megino
RF, Chacon-Arguedas D, Mazariegos MS, Jiménez-Reinoso A, Muñoz-Ruiz
M, Laborda RG, Cárdenas PP, et al: CD3G or CD3D knockdown in
mature, but not immature, T lymphocytes similarly cripples the
human TCRαβ complex. Front Cell Dev Biol. 9:6084902021. View Article : Google Scholar
|
|
91
|
Heritable gene regulation in the CD4:CD8 T
cell lineage choice. Front Immunol. 8:2912017.PubMed/NCBI
|
|
92
|
Sharma P, Pandey AK and Bhattacharyya DK:
Determining crucial genes associated with COVID-19 based on COPD
findings✶,✶✶. Comput Biol Med. 128:1041262021.
View Article : Google Scholar
|
|
93
|
Zou M, Su X, Wang L, Yi X, Qiu Y, Yin X,
Zhou Z, Niu X, Wang L and Su M: The molecular mechanism of multiple
organ dysfunction and targeted intervention of COVID-19 based on
time-order transcriptomic analysis. Front Immunol. 12:7297762021.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jing Y, Luo L, Chen Y, Westerberg LS, Zhou
P, Xu Z, Herrada AA, Park CS, Kubo M, Mei H, et al: SARS-CoV-2
infection causes immunodeficiency in recovered patients by
downregulating CD19 expression in B cells via enhancing B-cell
metabolism. Signal Transduct Target Ther. 6:3452021. View Article : Google Scholar :
|
|
95
|
Badbaran A, Mailer RK, Dahlke C, Woens J,
Fathi A, Mellinghoff SC, Renné T, Addo MM, Riecken K and Fehse B:
Digital PCR to quantify ChAdOx1 nCoV-19 copies in blood and
tissues. Mol Ther Methods Clin Dev. 23:418–423. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Grewal IS and Flavell RA: CD40 and CD154
in cell-mediated immunity. Annu Rev Immunol. 16:111–135. 1998.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Riley-Vargas RC, Gill DB, Kemper C,
Liszewski MK and Atkinson JP: CD46: Expanding beyond complement
regulation. Trends Immunol. 25:496–503. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Lundstrom K, Barh D, Uhal BD, Takayama K,
Aljabali AAA, Abd El-Aziz TM, Lal A, Redwan EM, Adadi P, Chauhan G,
et al: COVID-19 vaccines and thrombosis-roadblock or dead-end
street? Biomolecules. 11:10202021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Chen J, Goyal N, Dai L, Lin Z, Del Valle
L, Zabaleta J, Liu J, Post SR, Foroozesh M and Qin Z: Developing
new ceramide analogs and identifying novel sphingolipid-controlled
genes against a virus-associated lymphoma. Blood. 136:2175–2187.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Dementyeva E, Kryukov F, Kubiczkova L,
Nemec P, Sevcikova S, Ihnatova I, Jarkovsky J, Minarik J,
Stefanikova Z, Kuglik P and Hajek R: Clinical implication of
centrosome amplification and expression of centrosomal functional
genes in multiple myeloma. J Transl Med. 11:772013. View Article : Google Scholar :
|
|
101
|
Martinez FO, Combes TW, Orsenigo F and
Gordon S: Monocyte activation in systemic Covid-19 infection: Assay
and rationale. EBioMedicine. 59:1029642020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Root RK and Dale DC: Granulocyte
colony-stimulating factor and granulocyte-macrophage
colony-stimulating factor: Comparisons and potential for use in the
treatment of infections in nonneutropenic patients. J Infect Dis.
179(Suppl 2): S342–S352. 1999. View
Article : Google Scholar
|
|
103
|
Zhang N, Zhao YD and Wang XM: CXCL10 an
important chemokine associated with cytokine storm in COVID-19
infected patients. Eur Rev Med Pharmacol Sci. 24:7497–7505.
2020.PubMed/NCBI
|
|
104
|
Bergamaschi C, Terpos E, Rosati M, Angel
M, Bear J, Stellas D, Karaliota S, Apostolakou F, Bagratuni T,
Patseas D, et al: Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature
associated with effective immune response to SARS-CoV-2 in BNT162b2
mRNA vaccine recipients. Cell Rep. 36:1095042021. View Article : Google Scholar
|
|
105
|
Du HX, Zhu JQ, Chen J, Zhou HF, Yang JH
and Wan HT: Revealing the therapeutic targets and molecular
mechanisms of emodin-treated coronavirus disease 2019 via a
systematic study of network pharmacology. Aging (Albany NY).
13:14571–14589. 2021. View Article : Google Scholar
|
|
106
|
Lombardero M, Kovacs K and Scheithauer BW:
Erythropoietin: A hormone with multiple functions. Pathobiology.
78:41–53. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Petrović J, Pešić V and Lauschke VM:
Frequencies of clinically important CYP2C19 and CYP2D6 alleles are
graded across Europe. Eur J Hum Genet. 28:88–94. 2020. View Article : Google Scholar
|
|
108
|
Kell AM and Gale M Jr: RIG-I in RNA virus
recognition. Virology. 479-480:110–121. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Boron WF and Boulpaep EL: Medical
physiology: A cellular and molecular approach. 2nd edition.
Saunders Elsevier; Philadelphia, PA: 2009
|
|
110
|
Devreese KMJ: COVID-19-related laboratory
coagulation findings. Int J Lab Hematol. 43(Suppl 1): S36–S42.
2021. View Article : Google Scholar
|
|
111
|
Patel KR, Roberts JT and Barb AW: Multiple
variables at the leukocyte cell surface impact Fc γ
receptor-dependent mechanisms. Front Immunol. 10:2232019.
View Article : Google Scholar
|
|
112
|
Kelton JG, Smith JW, Santos AV, Murphy WG
and Horsewood P: Platelet IgG Fc receptor. Am J Hematol.
25:299–310. 1987. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Qiao J, Al-Tamimi M, Baker RI, Andrews RK
and Gardiner EE: The platelet Fc receptor, FcγRIIa. Immunol Rev.
268:241–252. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Fearon DT and Carroll MC: Regulation of B
lymphocyte responses to foreign and self-antigens by the CD19/CD21
complex. Annu Rev Immunol. 18:393–422. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hartwig JH, Barkalow K, Azim A and
Italiano J: The elegant platelet: Signals controlling actin
assembly. Thromb Haemost. 82:392–398. 1999. View Article : Google Scholar
|
|
116
|
Viertlboeck BC, Schweinsberg S, Hanczaruk
MA, Schmitt R, Du Pasquier L, Herberg FW and Göbel TW: The chicken
leukocyte receptor complex encodes a primordial, activating,
high-affinity IgY Fc receptor. Proc Natl Acad Sci USA.
104:11718–11723. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Tan Y and Tang F: SARS-CoV-2-mediated
immune system activation and potential application in
immunotherapy. Med Res Rev. 41:1167–1194. 2021. View Article : Google Scholar
|
|
118
|
Hotchkiss KM, Clark NM and
Olivares-Navarrete R: Macrophage response to hydrophilic
biomaterials regulates MSC recruitment and T-helper cell
populations. Biomaterials. 182:202–215. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Springer S, Menzel LM and Zieger M: Google
trends provides a tool to monitor population concerns and
information needs during COVID-19 pandemic. Brain Behav Immun.
87:109–110. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Brockmeyer NH, Potthoff A, Kasper A,
Nabring C, Jöckel KH and Siffert W: GNB3 C825T polymorphism and
response to anti-retroviral combination therapy in HIV-1-infected
patients-a pilot study. Eur J Med Res. 10:489–494. 2005.PubMed/NCBI
|
|
121
|
Uddin MN, Akter R, Li M and Abdelrahman Z:
Expression of SARS-COV-2 cell receptor gene ACE2 is associated with
immunosuppression and metabolic reprogramming in lung
adenocarcinoma based on bioinformatics analyses of gene expression
profiles. Chem Biol Interact. 335:1093702021. View Article : Google Scholar
|
|
122
|
Bieberich F, Vazquez-Lombardi R, Yermanos
A, Ehling RA, Mason DM, Wagner B, Kapetanovic E, Di Roberto RB,
Weber CR, Savic M, et al: A single-cell atlas of lymphocyte
adaptive immune repertoires and transcriptomes reveals age-related
differences in convalescent COVID-19 patients. Front Immunol.
12:7010852021. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Fricke-Galindo I and Falfán-Valencia R:
Genetics insight for COVID-19 susceptibility and severity: A
review. Front Immunol. 12:6221762021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Jiang Z, Wei F, Zhang Y, Wang T, Gao W, Yu
S, Sun H, Pu J, Sun Y, Wang M, et al: IFI16 directly senses viral
RNA and enhances RIG-I transcription and activation to restrict
influenza virus infection. Nat Microbiol. 6:932–945. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Kennedy RB, Poland GA, Ovsyannikova IG,
Oberg AL, Asmann YW, Grill DE, Vierkant RA and Jacobson RM:
Impaired innate, humoral, and cellular immunity despite a take in
smallpox vaccine recipients. Vaccine. 34:3283–3290. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Kotenko SV: IFN-λs. Curr Opin Immunol.
23:583–590. 2011. View Article : Google Scholar :
|
|
127
|
Wu UI and Holland SM: Host susceptibility
to non-tuberculous mycobacterial infections. Lancet Infect Dis.
15:968–980. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Voloudakis G, Hoffman G, Venkatesh S, Lee
KM, Dobrindt K, Vicari JM, Zhang W, Beckmann ND, Jiang S, Hoagland
D, et al: IL10RB as a key regulator of COVID-19 host susceptibility
and severity. medRxiv. View Article : Google Scholar
|
|
129
|
Vecchié A, Bonaventura A, Toldo S, Dagna
L, Dinarello CA and Abbate A: IL-18 and infections: Is there a role
for targeted therapies. J Cell Physiol. 236:1638–1657. 2021.
View Article : Google Scholar
|
|
130
|
Peters VA, Joesting JJ and Freund GG: IL-1
receptor 2 (IL-1R2) and its role in immune regulation. Brain Behav
Immun. 32:1–8. 2013. View Article : Google Scholar :
|
|
131
|
Bénard A, Jacobsen A, Brunner M, Krautz C,
Klösch B, Swierzy I, Naschberger E, Podolska MJ, Kouhestani D,
David P, et al: Interleukin-3 is a predictive marker for severity
and outcome during SARS-CoV-2 infections. Nat Commun. 12:11122021.
View Article : Google Scholar :
|
|
132
|
Zizzo G and Cohen PL: Imperfect storm: Is
interleukin-33 the Achilles heel of COVID-19? Lancet Rheumatol.
12:e779–e790. 2020. View Article : Google Scholar
|
|
133
|
Walsh PT and Fallon PG: The emergence of
the IL-36 cytokine family as novel targets for inflammatory
diseases. Ann NY Acad Sci. 1417:23–34. 2018. View Article : Google Scholar
|
|
134
|
Nussbaum JC, Van Dyken SJ, von Moltke J,
Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla
A, Liang HE and Locksley RM: Type 2 innate lymphoid cells control
eosinophil homeostasis. Nature. 502:245–248. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Coomes EA and Haghbayan H: Interleukin-6
in Covid-19: A systematic review and meta-analysis. Rev Med Virol.
30:1–9. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Das UN: Bioactive lipids in
COVID-19-further evidence. Arch Med Res. 52:107–120. 2021.
View Article : Google Scholar
|
|
137
|
Islam ABMMK, Khan MA, Ahmed R, Hossain MS,
Kabir SMT, Islam MS and Siddiki AMAMZ: Transcriptome of
nasopharyngeal samples from COVID-19 patients and a comparative
analysis with other SARS-CoV-2 infection models reveal disparate
host responses against SARS-CoV-2. J Transl Med. 19:322021.
View Article : Google Scholar : PubMed/NCBI
|
|
138
|
O'Brien JR: Shear-induced platelet
aggregation. Lancet. 335:711–713. 1990. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Langmuir P, Yeleswaram S, Smith P, Knorr B
and Squier P: Design of clinical trials evaluating ruxolitinib, a
JAK1/JAK2 inhibitor, for treatment of COVID-19-associated cytokine
storm. Dela J Public Health. 6:50–54. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Melman YF, Krummerman A and McDonald TV:
KCNE regulation of KvLQT1 channels: Structure-function correlates.
Trends Cardiovasc Med. 12:182–187. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Gouas L, Nicaud V, Berthet M, Forhan A,
Tiret L, Balkau B and Guicheney P; D.E.S.I.R. Study Group:
Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc
interval length in a healthy population. Eur J Hum Genet.
13:1213–1222. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Lazzerini PE, Acampa M, Laghi-Pasini F,
Bertolozzi I, Finizola F, Vanni F, Natale M, Bisogno S, Cevenini G,
Cartocci A, et al: Cardiac arrest risk during acute infections:
Systemic inflammation directly prolongs QTc interval via
cytokine-mediated effects on potassium channel expression. Circ
Arrhythm Electrophysiol. 13:e0086272020. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Szendrey M, Guo J, Li W, Yang T and Zhang
S: COVID-19 drugs chloroquine and hydroxychloroquine, but not
azithromycin and remdesivir, block hERG potassium channels. J
Pharmacol Exp Ther. 377:265–272. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Dahl SL, Woodworth JS, Lerche CJ, Cramer
EP, Nielsen PR, Moser C, Thomsen AR, Borregaard N and Cowland JB:
Lipocalin-2 functions as inhibitor of innate resistance to
mycobacterium tuberculosis. Front Immunol. 9:27172018. View Article : Google Scholar :
|
|
145
|
Vincenti MP and Brinckerhoff CE:
Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in
arthritis: Integration of complex signaling pathways for the
recruitment of gene-specific transcription factors. Arthritis Res.
4:157–164. 2002. View
Article : Google Scholar : PubMed/NCBI
|
|
146
|
Jabłońska-Trypuć A, Matejczyk M and
Rosochacki S: Matrix metalloproteinases (MMPs), the main
extracellular matrix (ECM) enzymes in collagen degradation, as a
target for anticancer drugs. J Enzyme Inhib Med Chem. 31(Suppl 1):
S177–S183. 2016. View Article : Google Scholar
|
|
147
|
Pisano TJ, Hakkinen I and Rybinnik I:
Large vessel occlusion secondary to COVID-19 hypercoagulability in
a young patient: A case report and literature review. J Stroke
Cerebrovasc Dis. 29:1053072020. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Apostolidis SA, Kakara M, Painter MM, Goel
RR, Mathew D, Lenzi K, Rezk A, Patterson KR, Espinoza DA, Kadri JC,
et al: Cellular and humoral immune responses following SARS-CoV-2
mRNA vaccination in patients with multiple sclerosis on anti-CD20
therapy. Nat Med. 27:1990–2001. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Lu W, Liu X, Wang T, Liu F, Zhu A, Lin Y,
Luo J, Ye F, He J, Zhao J, et al: Elevated MUC1 and MUC5AC mucin
protein levels in airway mucus of critical ill COVID-19 patients. J
Med Virol. 93:582–584. 2021. View Article : Google Scholar
|
|
150
|
Conti P, Ronconi G, Caraffa A, Gallenga
CE, Ross R, Frydas I and Kritas SK: Induction of pro-inflammatory
cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19
(COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J Biol Regul
Homeost Agents. 34:327–331. 2020.PubMed/NCBI
|
|
151
|
Morsy S: NCAM protein and SARS-COV-2
surface proteins: In-silico hypothetical evidence for the
immunopathogenesis of Guillain-Barré syndrome. Med Hypotheses.
145:1103422020. View Article : Google Scholar
|
|
152
|
Root-Bernstein R: Innate receptor
activation patterns involving TLR and NLR synergisms in COVID-19,
ALI/ARDS and sepsis cytokine storms: A review and model making
novel predictions and therapeutic suggestions. Int J Mol Sci.
22:21082021. View Article : Google Scholar :
|
|
153
|
Watanabe T, Kitani A, Murray PJ and
Strober W: NOD2 is a negative regulator of Toll-like receptor
2-mediated T helper type 1 responses. Nat Immunol. 5:800–808. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Esposito E and Cuzzocrea S: The role of
nitric oxide synthases in lung inflammation. Curr Opin Investig
Drugs. 8:899–909. 2007.PubMed/NCBI
|
|
155
|
Gamkrelidze M, Intskirveli N, Vardosanidze
K, Goliadze L, Chikhladze KH and Ratiani L: Myocardial dysfunction
during septic shock (review). Georgian Med News. 237:40–46.
2014.
|
|
156
|
Zang X, Li S, Zhao Y, Chen K, Wang X, Song
W, Ma J, Tu X, Xia Y, Zhang S and Gao C: Systematic meta-analysis
of the association between a common NOS1AP genetic polymorphism,
the QTc interval, and sudden death. Int Heart J. 60:1083–1090.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Guan SP, Seet RCS and Kennedy BK: Does
eNOS derived nitric oxide protect the young from severe COVID-19
complications. Ageing Res Rev. 64:1012012020. View Article : Google Scholar
|
|
158
|
Thom SR, Fisher D, Xu YA, Garner S and
Ischiropoulos H: Role of nitric oxide-derived oxidants in vascular
injury from carbon monoxide in the rat. Am J Physiol.
276:H984–H992. 1999.
|
|
159
|
Valent A, Danglot G and Bernheim A:
Mapping of the tyrosine kinase receptors trkA (NTRK1), trkB (NTRK2)
and trkC(NTRK3) to human chromosomes 1q22, 9q22 and 15q25 by
fluorescence in situ hybridization. Eur J Hum Genet. 5:102–104.
1997. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Liu W, Chen L, Zhu J and Rodgers GP: The
glycoprotein hGC-1 binds to cadherin and lectins. Exp Cell Res.
312:1785–1797. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Hennigs JK, Lüneburg N, Stage A, Schmitz
M, Körbelin J, Harbaum L, Matuszcak C, Mienert J, Bokemeyer C,
Böger RH, et al: The P2-receptor-mediated Ca2+
signalosome of the human pulmonary endothelium-implications for
pulmonary arterial hypertension. Purinergic Signal. 15:299–311.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Russo MV and McGavern DB: Immune
surveillance of the CNS following infection and injury. Trends
Immunol. 36:637–650. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Tuuminen R, Nykänen A, Keränen MA, Krebs
R, Alitalo K, Koskinen PK and Lemström KB: The effect of
platelet-derived growth factor ligands in rat cardiac allograft
vasculopathy and fibrosis. Transplant Proc. 38:3271–3273. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Blum E, Margalit R, Levy L, Getter T,
Lahav R, Zilber S, Bradfield P, Imhof BA, Alpert E and Gruzman A: A
Potent leukocyte transmigration blocker: GT-73 showed a protective
effect against LPS-induced ARDS in mice. Molecules. 26:45832021.
View Article : Google Scholar : PubMed/NCBI
|
|
165
|
Rovina N, Akinosoglou K, Eugen-Olsen J,
Hayek S, Reiser J and Giamarellos-Bourboulis EJ: Soluble urokinase
plasminogen activator receptor (suPAR) as an early predictor of
severe respiratory failure in patients with COVID-19 pneumonia.
Crit Care. 24:1872020. View Article : Google Scholar
|
|
166
|
Kumar S, Jain A, Choi SW, da Silva GPD,
Allers L, Mudd MH, Peters RS, Anonsen JH, Rusten TE, Lazarou M and
Deretic V: Mammalian Atg8 proteins and the autophagy factor IRGM
control mTOR and TFEB at a regulatory node critical for responses
to pathogens. Nat Cell Biol. 22:973–985. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
167
|
Hoxha M: What about COVID-19 and
arachidonic acid pathway. Eur J Clin Pharmacol. 76:1501–1504. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Keikha M, Ghazvini K, Eslami M, Yousefi B,
Casseb J, Yousefi M and Karbalaei M: Molecular targeting of PD-1
signaling pathway as a novel therapeutic approach in HTLV-1
infection. Microb Pathog. 144:1041982020. View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Coggeshall KM: Negative signaling in
health and disease. Immunol Res. 19:47–64. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
170
|
de Souza JG, Starobinas N and Ibañez O:
Unknown/enigmatic functions of extracellular ASC. Immunology.
163:377–388. 2021. View Article : Google Scholar
|
|
171
|
Larabi A, Barnich N and Nguyen HTT: New
insights into the interplay between autophagy, gut microbiota and
inflammatory responses in IBD. Autophagy. 16:38–51. 2020.
View Article : Google Scholar :
|
|
172
|
Brown MJ: Renin: Friend or foe? Heart.
93:1026–1033. 2007. View Article : Google Scholar
|
|
173
|
Amraei R and Rahimi N: COVID-19,
renin-angiotensin system and endothelial dysfunction. Cells.
9:16522020. View Article : Google Scholar :
|
|
174
|
Yanatori I, Yasui Y, Noguchi Y and Kishi
F: Inhibition of iron uptake by ferristatin II is exerted through
internalization of DMT1 at the plasma membrane. Cell Biol Int.
39:427–434. 2015. View Article : Google Scholar
|
|
175
|
Denham NC, Pearman CM, Ding WY, Waktare J,
Gupta D, Snowdon R, Hall M, Cooper R, Modi S, Todd D and Mahida S:
Systematic re-evaluation of SCN5A variants associated with Brugada
syndrome. J Cardiovasc Electrophysiol. 30:118–127. 2019. View Article : Google Scholar
|
|
176
|
Smadja DM, Guerin CL, Chocron R, Yatim N,
Boussier J, Gendron N, Khider L, Hadjadj J, Goudot G, Debuc B, et
al: Angiopoietin-2 as a marker of endothelial activation is a good
predictor factor for intensive care unit admission of COVID-19
patients. Angiogenesis. 23:611–620. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
177
|
Bongiovanni D, Klug M, Lazareva O,
Weidlich S, Biasi M, Ursu S, Warth S, Buske C, Lukas M, Spinner CD,
et al: SARS-CoV-2 infection is associated with a pro-thrombotic
platelet phenotype. Cell Death Dis. 12:502021. View Article : Google Scholar : PubMed/NCBI
|
|
178
|
Wu D and Yang XO: Dysregulation of
pulmonary responses in severe COVID-19. Viruses. 13:9572021.
View Article : Google Scholar :
|
|
179
|
Katzen J and Beers MF: Contributions of
alveolar epithelial cell quality control to pulmonary fibrosis. J
Clin Invest. 130:5088–5099. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
180
|
Nandy D, Sharma N and Senapati S:
Systematic review and meta-analysis confirms significant
contribution of surfactant protein D in chronic obstructive
pulmonary disease. Front Genet. 10:3392019. View Article : Google Scholar : PubMed/NCBI
|
|
181
|
Di Lisa F, Kaludercic N, Carpi A, Menabò R
and Giorgio M: Mitochondria and vascular pathology. Pharmacol Rep.
61:123–130. 2009. View Article : Google Scholar
|
|
182
|
Dinarello CA, Nold-Petry C, Nold M, Fujita
M, Li S, Kim S and Bufler P: Suppression of innate inflammation and
immunity by interleukin-37. Eur J Immunol. 46:1067–1081. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
183
|
Montalbetti N, Simonin A, Kovacs G and
Hediger MA: Mammalian iron transporters: families SLC11 and SLC40.
Mol Aspects Med. 34:270–287. 2013. View Article : Google Scholar
|
|
184
|
Schulert GS, Blum SA and Cron RQ: Host
genetics of pediatric SARS-CoV-2 COVID-19 and multisystem
inflammatory syndrome in children. Curr Opin Pediatr. 33:549–555.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
185
|
Pachlopnik Schmid J and de Saint Basile G:
Angeborene hämophagozytische lymphohistiozytose (HLH). Klin
Padiatr. 222:345–350. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
186
|
Shi JH, Xie X and Sun SC: TBK1 as a
regulator of autoimmunity and antitumor immunity. Cell Mol Immunol.
15:743–745. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
187
|
Zimecki M, Actor JK and Kruzel ML: The
potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine
storm. Int Immunopharmacol. 95:1075712021. View Article : Google Scholar :
|
|
188
|
Chabot PR, Raiola L, Lussier-Price M,
Morse T, Arseneault G, Archambault J and Omichinski JG: Structural
and functional characterization of a complex between the acidic
transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH.
PLoS Pathog. 10:e10040422014. View Article : Google Scholar : PubMed/NCBI
|
|
189
|
Speeckaert MM, Speeckaert R and Delanghe
JR: Biological and clinical aspects of soluble transferrin
receptor. Crit Rev Clin Lab Sci. 47:213–228. 2010. View Article : Google Scholar
|
|
190
|
Bg S, Gosavi S, Ananda Rao A, Shastry S,
Raj SC, Sharma A, Suresh A and Noubade R: Neutrophil-to-lymphocyte,
lymphocyte-to-monocyte, and platelet-to-lymphocyte ratios:
Prognostic significance in COVID-19. Cureus.
13:e126222021.PubMed/NCBI
|
|
191
|
Campbell GR, To RK, Hanna J and Spector
SA: SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences
activate the NLRP3 inflammasome in human macrophages through a
non-classical pathway. iScience. 24:1022952021. View Article : Google Scholar :
|
|
192
|
Borrello S, Nicolò C, Delogu G, Pandolfi F
and Ria F: TLR2: a crossroads between infections and autoimmunity.
Int J Immunopathol Pharmacol. 24:549–556. 2011. View Article : Google Scholar
|
|
193
|
Zheng M, Karki R, Williams EP, Yang D,
Fitzpatrick E, Vogel P, Jonsson CB and Kanneganti TD: TLR2 senses
the SARS-CoV-2 envelope protein to produce inflammatory cytokines.
Nat Immunol. 22:829–838. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
194
|
Khan S, Shafiei M, Longoria C, Schoggins
JW, Savani R and Zaki H: SARS-CoV-2 spike protein induces
inflammation via TLR2-dependent activation of the NF-κB pathway.
Elife. 10:e685632021. View Article : Google Scholar
|
|
195
|
Sohn KM, Lee SG, Kim HJ, Cheon S, Jeong H,
Lee J, Kim IS, Silwal P, Kim YJ, Paik S, et al: COVID-19 patients
upregulate toll-like receptor 4-mediated inflammatory signaling
that mimics bacterial sepsis. J Korean Med Sci. 35:e3432020.
View Article : Google Scholar : PubMed/NCBI
|
|
196
|
Guven-Maiorov E, Keskin O, Gursoy A,
VanWaes C, Chen Z, Tsai CJ and Nussinov R: TRAF3 signaling:
Competitive binding and evolvability of adaptive viral molecular
mimicry. Biochim Biophys Acta. 1860:2646–2655. 2016. View Article : Google Scholar
|
|
197
|
Callaway E: The quest to find genes that
drive severe COVID. Nature. 595:346–348. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
198
|
Kaur S, Tripathi DM and Yadav A: The
enigma of endothelium in COVID-19. Front Physiol. 11:9892020.
View Article : Google Scholar :
|
|
199
|
Rovas A, Osiaevi I, Buscher K, Sackarnd J,
Tepasse PR, Fobker M, Kühn J, Braune S, Göbel U, Thölking G, et al:
Microvascular dysfunction in COVID-19: The MYSTIC study.
Angiogenesis. 24:145–157. 2021. View Article : Google Scholar
|
|
200
|
Holcomb D, Alexaki A, Hernandez N, Hunt R,
Laurie K, Kames J, Hamasaki-Katagiri N, Komar AA, DiCuccio M and
Kimchi-Sarfaty C: Gene variants of coagulation related proteins
that interact with SARS-CoV-2. PLoS Comput Biol. 17:e10088052021.
View Article : Google Scholar : PubMed/NCBI
|
|
201
|
Shahidi M: Thrombosis and von Willebrand
factor. Adv Exp Med Biol. 906:285–306. 2017. View Article : Google Scholar
|