Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2022 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Article Open Access

Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia

  • Authors:
    • Styliani A. Geronikolou
    • Işil Takan
    • Athanasia Pavlopoulou
    • Marina Mantzourani
    • George P. Chrousos
  • View Affiliations / Copyright

    Affiliations: Clinical, Translational and Experimental Surgery Research Centre, Biomedical Research Foundation Academy of Athens, 11527 Athens, Greece, Izmir Biomedicine and Genome Center (IBG), 35340 Izmir, Turkey, First Department of Internal Medicine, Laiko Hospital, National and Kapodistrian University of Athens Medical School, 11527 Athens, Greece
    Copyright: © Geronikolou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 35
    |
    Published online on: January 21, 2022
       https://doi.org/10.3892/ijmm.2022.5090
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The highly heterogeneous symptomatology and unpredictable progress of COVID‑19 triggered unprecedented intensive biomedical research and a number of clinical research projects. Although the pathophysiology of the disease is being progressively clarified, its complexity remains vast. Moreover, some extremely infrequent cases of thrombotic thrombocytopenia following vaccination against SARS‑CoV‑2 infection have been observed. The present study aimed to map the signaling pathways of thrombocytopenia implicated in COVID‑19, as well as in vaccine‑induced thrombotic thrombocytopenia (VITT). The biomedical literature database, MEDLINE/PubMed, was thoroughly searched using artificial intelligence techniques for the semantic relations among the top 50 similar words (>0.9) implicated in COVID‑19‑mediated human infection or VITT. Additionally, STRING, a database of primary and predicted associations among genes and proteins (collected from diverse resources, such as documented pathway knowledge, high‑throughput experimental studies, cross‑species extrapolated information, automated text mining results, computationally predicted interactions, etc.), was employed, with the confidence threshold set at 0.7. In addition, two interactomes were constructed: i) A network including 119 and 56 nodes relevant to COVID‑19 and thrombocytopenia, respectively; and ii) a second network containing 60 nodes relevant to VITT. Although thrombocytopenia is a dominant morbidity in both entities, three nodes were observed that corresponded to genes (AURKA, CD46 and CD19) expressed only in VITT, whilst ADAM10, CDC20, SHC1 and STXBP2 are silenced in VITT, but are commonly expressed in both COVID‑19 and thrombocytopenia. The calculated average node degree was immense (11.9 in COVID‑19 and 6.43 in VITT), illustrating the complexity of COVID‑19 and VITT pathologies and confirming the importance of cytokines, as well as of pathways activated following hypoxic events. In addition, PYCARD, NLP3 and P2RX7 are key potential therapeutic targets for all three morbid entities, meriting further research. This interactome was based on wild‑type genes, revealing the predisposition of the body to hypoxia‑induced thrombosis, leading to the acute COVID‑19 phenotype, the ‘long‑COVID syndrome’, and/or VITT. Thus, common nodes appear to be key players in illness prevention, progression and treatment.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

World Health Organization (WHO): Coronovirus disease (COVID-19): Vaccines safety. WHO; Geneva: 2021

2 

Greinacher A, Thiele T, Warkentin TE, Weisser K, Kyrle PA and Eichinger S: Thrombotic thrombocytopenia after ChAdOx1 nCov-19 vaccination. N Engl J Med. 384:2092–2101. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Mathieu E, Ritchie H, Ortiz-Ospina E, Roser M, Hasell J, Appel C, Giattino C and Rodés-Guirao L: A global database of COVID-19 vaccinations. Nat Hum Behav. 5:947–953. 2021. View Article : Google Scholar

4 

Wei CH, Allot A, Leaman R and Lu Z: PubTator central: Automated concept annotation for biomedical full text articles. Nucleic Acids Res. 47(W1): W587–W593. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Chen Q, Allot A and Lu Z: LitCovid: An open database of COVID-19 literature. Nucleic Acids Res. 49(D1): D1534–D1540. 2021. View Article : Google Scholar :

6 

Szklarczyk D, Gable AL, Lyon D, Junge A, Wyder S, Huerta-Cepas J, Simonovic M, Doncheva NT, Morris JH, Bork P, et al: STRING v11: Protein-protein association networks with increased coverage, supporting functional discovery in genome-wide experimental datasets. Nucleic Acids Res. 47(D1): D607–D613. 2019. View Article : Google Scholar

7 

Szklarczyk D, Gable AL, Nastou KC, Lyon D, Kirsch R, Pyysalo S, Doncheva NT, Legeay M, Fang T, Bork P, et al: The STRING database in 2021: Customizable protein-protein networks, and functional characterization of user-uploaded gene/measurement sets. Nucleic Acids Res. 49(D1): D605–D612. 2021. View Article : Google Scholar

8 

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski B and Ideker T: Cytoscape: A software environment for integrated models of biomolecular interaction networks. Genome Res. 13:2498–2504. 2003. View Article : Google Scholar : PubMed/NCBI

9 

Hippocrates: Epidemics 2, 4-7. Smith Wesley D: Loeb Classical Library 477. Harvard University Press; Cambridge, MA: 1994

10 

Jouanna J: Hippocrates. John Hopkins University Press; Baltimore, MD: 1999

11 

Mammas IN and Spandidos DA: Paediatric virology in the Hippocratic corpus. Exp Ther Med. 12:541–549. 2016. View Article : Google Scholar : PubMed/NCBI

12 

Pappas G, Kiriaze IJ and Falagas ME: Insights into infectious disease in the era of Hippocrates. Int J Infect Dis. 12:347–350. 2008. View Article : Google Scholar

13 

Misselbrook D: Aristotle, hume and the goals of medicine. J Eval Clin Pract. 22:544–549. 2016. View Article : Google Scholar

14 

Wulff HR: The concept of disease: From Newton back to Aristotle. Lancet. 354(Suppl): SIV501999. View Article : Google Scholar

15 

Wulff HR: The concept of disease: From Newton back to Aristotle. Lancet. 54:3541999.

16 

Lorenz EN: Deterministic nonperiodic flow. J Atmos Sci. 20:130–141. 1963. View Article : Google Scholar

17 

Barabási AL, Gulbahce N and Loscalzo J: Network medicine: A network-based approach to human disease. Nat Rev Genet. 12:56–68. 2011. View Article : Google Scholar :

18 

Li Q, Guan X, Wu P, Wang X, Zhou L, Tong Y, Ren R, Leung KSM, Lau EHY, Wong JY, et al: Early transmission dynamics in Wuhan, China, of novel coronavirus-infected pneumonia. N Engl J Med. 382:1199–1207. 2020. View Article : Google Scholar :

19 

Raoult D, Zumla A, Locatelli F, Ippolito G and Kroemer G: Coronavirus infections: Epidemiological, clinical and immunological features and hypotheses. Cell Stress. 4:66–75. 2020. View Article : Google Scholar : PubMed/NCBI

20 

Mondal S, Quintili AL, Karamchandani K and Bose S: Thromboembolic disease in COVID-19 patients: A brief narrative review. J Intensive Care. 8:702020. View Article : Google Scholar : PubMed/NCBI

21 

Xu P, Zhou Q and Xu J: Mechanism of thrombocytopenia in COVID-19 patients. Ann Hematol. 99:1205–1208. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Li W, Moore MJ, Vasilieva N, Sui J, Wong SK, Berne MA, Somasundaran M, Sullivan JL, Luzuriaga K, Greenough TC, et al: Angiotensin-converting enzyme 2 is a functional receptor for the SARS coronavirus. Nature. 426:450–454. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Ge XY, Li JL, Yang XL, Chmura AA, Zhu G, Epstein JH, Mazet JK, Hu B, Zhang W, Peng C, et al: Isolation and characterization of a bat SARS-like coronavirus that uses the ACE2 receptor. Nature. 503:535–538. 2013. View Article : Google Scholar : PubMed/NCBI

24 

Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M, Mencarini J, Caporale R, Peruzzi B, Antonelli A, et al: Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent. J Clin Invest. 130:4694–4703. 2020. View Article : Google Scholar :

25 

Sama IE, Ravera A, Santema BT, van Goor H, Ter Maaten JM, Cleland JGF, Rienstra M, Friedrich AW, Samani NJ, Ng LL, et al: Circulating plasma concentrations of angiotensin-converting enzyme 2 in men and women with heart failure and effects of renin-angiotensin-aldosterone inhibitors. Eur Heart J. 41:1810–1817. 2020. View Article : Google Scholar : PubMed/NCBI

26 

Diaz JH: Hypothesis: Angiotensin-converting enzyme inhibitors and angiotensin receptor blockers may increase the risk of severe COVID-19. J Travel Med. 27:taaa0412020. View Article : Google Scholar : PubMed/NCBI

27 

Hoffmann M, Kleine-Weber H, Schroeder S, Krüger N, Herrler T, Erichsen S, Schiergens TS, Herrler G, Wu NH, Nitsche A, et al: SARS-CoV-2 cell entry depends on ACE2 and TMPRSS2 and is blocked by a clinically proven protease inhibitor. Cell. 18:271–280.e8. 2020. View Article : Google Scholar

28 

Hamming I, Timens W, Bulthuis ML, Lely AT, Navis G and van Goor H: Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus. A first step in understanding SARS pathogenesis. J Pathol. 203:631–637. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Gao T, Hu M, Zhang X, Li H, Zhu L, Liu H, Dong Q, Zhang Z, Wang Z, Hu Y, et al: Highly pathogenic coronavirus N protein aggravates lung injury by MASP-2-mediated complement over-activation. medRxiv. ppmedrxiv-20041962. 2020.

30 

Cao X: COVID-19: Immunopathology and its implications for therapy. Nat Rev Immunol. 20:269–270. 2020. View Article : Google Scholar

31 

Channappanavar R and Perlman S: Pathogenic human coronavirus infections: Causes and consequences of cytokine storm and immunopathology. Semin Immunopathol. 39:529–539. 2017. View Article : Google Scholar : PubMed/NCBI

32 

Zhao J, Zhao J and Perlman S: T cell responses are required for protection from clinical disease and for virus clearance in severe acute respiratory syndrome coronavirus-infected mice. J Virol. 84:9318–9325. 2010. View Article : Google Scholar : PubMed/NCBI

33 

Meduri GU, Kohler G, Headley S, Tolley E, Stentz F and Postlethwaite A: Inflammatory cytokines in the BAL of patients with ARDS. Persistent elevation over time predicts poor outcome. Chest. 108:1303–1314. 1995. View Article : Google Scholar : PubMed/NCBI

34 

Tang N, Li D, Wang X and Sun Z: Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 18:844–847. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Helms J, Tacquard C, Severac F, Leonard-Lorant I, Ohana M, Delabranche X, Merdji H, Clere-Jehl R, Schenck M, Fagot Gandet F, et al: High risk of thrombosis in patients with severe SARS-CoV-2 infection: A multicenter prospective cohort study. Intensive Care Med. 46:1089–1098. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Klok FA, Kruip MJHA, van der Meer NJM, Arbous MS, Gommers DAMPJ, Kant KM, Kaptein FHJ, van Paassen J, Stals MAM, Huisman MV and Endeman H: Incidence of thrombotic complications in critically ill ICU patients with COVID-19. Thromb Res. 191:145–147. 2020. View Article : Google Scholar :

37 

Chang JC: Hemostasis based on a novel 'two-path unifying theory' and classification of hemostatic disorders. Blood Coagul Fibrinolysis. 29:573–584. 2018. View Article : Google Scholar

38 

Chang JC: Sepsis and septic shock: Endothelial molecular pathogenesis associated with vascular microthrombotic disease. Thromb J. 17:102019. View Article : Google Scholar : PubMed/NCBI

39 

Seirafianpour F, Sodagar S, Pour Mohammad A, Panahi P, Mozafarpoor S, Almasi S and Goodarzi A: Cutaneous manifestations and considerations in COVID-19 pandemic: A systematic review. Dermatol Ther. 33:e139862020. View Article : Google Scholar : PubMed/NCBI

40 

Vaughan DE: PAI-1 and atherothrombosis. J Thromb Haemost. 3:1879–1883. 2005. View Article : Google Scholar : PubMed/NCBI

41 

Badary OA: Pharmacogenomics and COVID-19: Clinical implications of human genome interactions with repurposed drugs. Pharmacogenomics J. 21:275–284. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Chen MR, Kuo HC, Lee YJ, Chi H, Li SC, Lee HC and Yang KD: Phenotype, susceptibility, autoimmunity, and immunotherapy between Kawasaki disease and coronavirus disease-19 associated multisystem inflammatory syndrome in children. Front Immunol. 12:6328902021. View Article : Google Scholar : PubMed/NCBI

43 

Romero-López JP, Carnalla-Cortés M, Pacheco-Olvera DL, Ocampo-Godínez JM, Oliva-Ramírez J, Moreno-Manjón J, Bernal-Alferes B, López-Olmedo N, García-Latorre E, Domínguez-López ML, et al: A bioinformatic prediction of antigen presentation from SARS-CoV-2 spike protein revealed a theoretical correlation of HLA-DRB1*01 with COVID-19 fatality in Mexican population: An ecological approach. J Med Virol. 93:2029–2038. 2021. View Article : Google Scholar

44 

Anzurez A, Naka I, Miki S, Nakayama-Hosoya K, Isshiki M, Watanabe Y, Nakamura-Hoshi M, Seki S, Matsumura T, Takano T, et al: Association of HLA-DRB1*09:01 with severe COVID-19. HLA. 98:37–42. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Rotondo JC, Bosi S, Bassi C, Ferracin M, Lanza G, Gafà R, Magri E, Selvatici R, Torresani S, Marci R, et al: Gene expression changes in progression of cervical neoplasia revealed by microarray analysis of cervical neoplastic keratinocytes. J Cell Physiol. 230:806–812. 2015. View Article : Google Scholar

46 

Combs AP: Recent advances in the discovery of competitive protein tyrosine phosphatase 1B inhibitors for the treatment of diabetes, obesity, and cancer. J Med Chem. 53:2333–2344. 2010. View Article : Google Scholar

47 

Finkel T and Holbrook NJ: Oxidants, oxidative stress and the biology of ageing. Nature. 408:239–247. 2000. View Article : Google Scholar : PubMed/NCBI

48 

Choi YM, Kwon HS, Choi KM, Lee WY and Hong EG: Short-term effects of beraprost sodium on the markers for cardiovascular risk prediction in type 2 diabetic patients with microalbuminuria. Endocrinol Metab (Seoul). 34:398–405. 2019. View Article : Google Scholar

49 

Nomura S, Taniura T, Shouzu A, Omoto S, Suzuki M, Okuda Y and Ito T: Effects of sarpogrelate, eicosapentaenoic acid and pitavastatin on arterioslcerosis obliterans-related biomarkers in patients with type 2 diabetes (SAREPITASO study). Vasc Health Risk Manag. 14:225–232. 2018. View Article : Google Scholar : PubMed/NCBI

50 

Zheng Y, Liu SQ, Sun Q, Xie JF, Xu JY, Li Q, Pan C, Liu L and Huang YZ: Plasma microRNAs levels are different between pulmonary and extrapulmonary ARDS patients: A clinical observational study. Ann Intensive Care. 8:232018. View Article : Google Scholar : PubMed/NCBI

51 

Attia EF, Jolley SE, Crothers K, Schnapp LM and Liles WC: Soluble vascular cell adhesion molecule-1 (sVCAM-1) is elevated in bronchoalveolar lavage fluid of patients with acute respiratory distress syndrome. PLoS One. 11:e01496872016. View Article : Google Scholar :

52 

Cines DB and Bussel JB: SARS-CoV-2 vaccine-induced immune thrombotic thrombocytopenia. N Engl J Med. 384:2254–2256. 2021. View Article : Google Scholar : PubMed/NCBI

53 

Schultz NH, Sørvoll IH, Michelsen AE, Munthe LA, Lund-Johansen F, Ahlen MT, Wiedmann M, Aamodt AH, Skattør TH, Tjønnfjord GE and Holme PA: Thrombosis and thrombocytopenia after ChAdOx1 nCoV-19 vaccination. N Engl J Med. 384:2124–2130. 2021. View Article : Google Scholar : PubMed/NCBI

54 

European Medicines Agency (EMA): COVID-19 Vaccine AstraZeneca: PRAC investigating cases of thromboembolic events-vaccine's benefits currently still outweigh risks-update. 2021.

55 

World Health Organization (WHO): Statement of the WHO global advisory committee on vaccine safety (GACVS) COVID-19 subcommittee on safety signals related to the AstraZeneca COVID-19 vaccine. WHO; Geneva: 2021

56 

Bussel JB, Connors JM, Cines DB, Dunbar CE, Michaelis LC, Kreuziger LB, Lee AYY and Pabinger-Fasching I: Thrombosis with thrombocytopenia syndrome (also termed vaccine-induced thrombotic thrombocytopenia). American Society of Haematology; Washington, DC: 2021

57 

Thaler J, Ay C, Gleixner KV, Hauswirth AW, Cacioppo F, Grafeneder J, Quehenberger P, Pabinger I and Knöbl P: Successful treatment of vaccine-induced prothrombotic immune thrombocytopenia (VIPIT). J Thromb Haemost. 19:1819–1822. 2021. View Article : Google Scholar : PubMed/NCBI

58 

Smadja DM, Mentzer SJ, Fontenay M, Laffan MA, Ackermann M, Helms J, Jonigk D, Chocron R, Pier GB, Gendron N, et al: COVID-19 is a systemic vascular hemopathy: Insight for mechanistic and clinical aspects. Angiogenesis. 24:755–788. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Kashir J, Ambia AR, Shafqat A, Sajid MR, AlKattan K and Yaqinuddin A: Scientific premise for the involvement of neutrophil extracellular traps (NETs) in vaccine-induced thrombotic thrombocytopenia (VITT). J Leukoc Biol. Sep 1–2021.Epub ahead of prin. View Article : Google Scholar : PubMed/NCBI

60 

Gupta N, Sahu A, Prabhakar A, Chatterjee T, Tyagi T, Kumari B, Khan N, Nair V, Bajaj N, Sharma M and Ashraf MZ: Activation of NLRP3 inflammasome complex potentiates venous thrombosis in response to hypoxia. Proc Natl Acad Sci USA. 114:4763–4768. 2017. View Article : Google Scholar : PubMed/NCBI

61 

Salaro E, Rambaldi A, Falzoni S, Amoroso FS, Franceschini A, Sarti AC, Bonora M, Cavazzini F, Rigolin GM, Ciccone M, et al: Involvement of the P2X7-NLRP3 axis in leukemic cell proliferation and death. Sci Rep. 6:262802016. View Article : Google Scholar :

62 

Ribeiro DE, Oliveira-Giacomelli Á, Glaser T, Arnaud-Sampaio VF, Andrejew R, Dieckmann L, Baranova J, Lameu C, Ratajczak MZ and Ulrich H: Hyperactivation of P2X7 receptors as a culprit of COVID-19 neuropathology. Mol Psychiatry. 26:1044–1059. 2021. View Article : Google Scholar

63 

Savio LEB, de Andrade Mello P, da Silva CG and Coutinho-Silva R: The P2X7 receptor in inflammatory diseases: Angel or demon. Front Pharmacol. 9:522018. View Article : Google Scholar

64 

Pacheco PAF and Faria RX: The potential involvement of P2X7 receptor in COVID-19 pathogenesis: A new therapeutic target? Scand J Immunol. 93:e129602021. View Article : Google Scholar

65 

Ortiz GG, Pacheco-Moisés FP, Macías-Islas M, Flores-Alvarado LJ, Mireles-Ramírez MA, González-Renovato ED and Her nández-Nava r ro VE: Role of the blood-brain barrier in multiple sclerosis. Arch Med Res. 45:687–697. 2014. View Article : Google Scholar : PubMed/NCBI

66 

Di Virgilio F, Tang Y, Sarti AC and Rossato M: A rationale for targeting the P2X7 receptor in coronavirus disease 19. Br J Pharmacol. 177:4990–4994. 2020. View Article : Google Scholar : PubMed/NCBI

67 

Ferreira AC, Soares VC, de Azevedo-Quintanilha IG, Dias SDSG, Fintelman-Rodrigues N, Sacramento CQ, Mattos M, de Freitas CS, Temerozo JR, Teixeira L, et al: SARS-CoV-2 engages inflammasome and pyroptosis in human primary monocytes. Cell Death Discov. 7:432021. View Article : Google Scholar : PubMed/NCBI

68 

Moss ML and Bartsch JW: Therapeutic benefits from targeting of ADAM family members. Biochemistry. 43:7227–7235. 2004. View Article : Google Scholar : PubMed/NCBI

69 

Souza JSM, Lisboa ABP, Santos TM, Andrade MVS, Neves VBS, Teles-Souza J, Jesus HNR, Bezerra TG, Falcão VGO, Oliveira RC and Del-Bem LE: The evolution of ADAM gene family in eukaryotes. Genomics. 112:3108–3116. 2020. View Article : Google Scholar

70 

Xu J, Xu X, Jiang L, Dua K, Hansbro PM and Liu G: SARS-CoV-2 induces transcriptional signatures in human lung epithelial cells that promote lung fibrosis. Respir Res. 21:1822020. View Article : Google Scholar : PubMed/NCBI

71 

Katneni UK, Alexaki A, Hunt RC, Schiller T, DiCuccio M, Buehler PW, Ibla JC and Kimchi-Sarfaty C: Coagulopathy and thrombosis as a result of severe COVID-19 infection: A microvascular focus. Thromb Haemost. 120:1668–1679. 2020. View Article : Google Scholar : PubMed/NCBI

72 

Tian J, Sun D, Xie Y, Liu K and Ma Y: Network pharmacology-based study of the molecular mechanisms of Qixuekang in treating COVID-19 during the recovery period. Int J Clin Exp Pathol. 13:2677–2690. 2020.PubMed/NCBI

73 

Boron WF and Boulpaep EL: Medical physiology: A cellular and molecular approach. Saunders Elsevier; Philadelphia, PA: 2012

74 

Fitzpatrick D, Purves D and Augustine G: Neuroscience. 3rd edition. Sinauer Associates, Inc; Sunderland, MA: 2004

75 

Wang Q, Zhu W, Xiao G, Ding M, Chang J and Liao H: Effect of AGER on the biological behavior of non-small cell lung cancer H1299 cells. Mol Med Rep. 22:810–818. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Man SM, Karki R and Kanneganti TD: AIM2 inflammasome in infection, cancer, and autoimmunity: Role in DNA sensing, inflammation, and innate immunity. Eur J Immunol. 46:269–280. 2016. View Article : Google Scholar

77 

Bafunno V, Firinu D, D'Apolito M, Cordisco G, Loffredo S, Leccese A, Bova M, Barca MP, Santacroce R, Cicardi M, et al: Mutation of the angiopoietin-1 gene (ANGPT1) associates with a new type of hereditary angioedema. J Allergy Clin Immunol. 141:1009–1017. 2018. View Article : Google Scholar

78 

PubMed Gene database: ANGPT2 angiopoietin 2 [Homo sapiens (human)]. https://www.ncbi.nlm.nih.gov/gene?Db=gene&Cmd=ShowDetailView&TermToSearch=285 Accessed December 12, 2020.

79 

Marumoto T, Honda S, Hara T, Nitta M, Hirota T, Kohmura E and Saya H: Aurora-A kinase maintains the fidelity of early and late mitotic events in HeLa cells. J Biol Chem. 278:51786–51795. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Li N, Zhang J, Liao D, Yang L, Wang Y and Hou S: Association between C4, C4A, and C4B copy number variations and susceptibility to autoimmune diseases: A meta-analysis. Sci Rep. 7:426282017. View Article : Google Scholar : PubMed/NCBI

81 

Horiuchi T and Tsukamoto H: Complement-targeted therapy: Development of C5- and C5a-targeted inhibition. Inflamm Regen. 36:112016. View Article : Google Scholar : PubMed/NCBI

82 

Hobart MJ, Fernie BA and DiScipio RG: Structure of the human C7 gene and comparison with the C6, C8A, C8B, and C9 genes. J Immunol. 154:5188–5194. 1995.PubMed/NCBI

83 

Xia S, Zhang Z, Magupalli VG, Pablo JL, Dong Y, Vora SM, Wang L, Fu TM, Jacobson MP, Greka A, et al: Gasdermin D pore structure reveals preferential release of mature interleukin-1. Nature. 593:607–611. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Cohen GM: Caspases: The executioners of apoptosis. Biochem J. 326:1–16. 1997. View Article : Google Scholar : PubMed/NCBI

85 

Avrutsky MI and Troy CM: Caspase-9: A multimodal therapeutic target with diverse cellular expression in human disease. Front Pharmacol. 12:7013012021. View Article : Google Scholar : PubMed/NCBI

86 

Singh S, Anshita D and Ravichandiran V: MCP-1: Function, regulation, and involvement in disease. Int Immunopharmacol. 101:1075982021. View Article : Google Scholar : PubMed/NCBI

87 

Coperchini F, Chiovato L, Ricci G, Croce L, Magri F and Rotondi M: The cytokine storm in COVID-19: Further advances in our understanding the role of specific chemokines involved. Cytokine Growth Factor Rev. 58:82–91. 2021. View Article : Google Scholar :

88 

Guan E, Wang J and Norcross MA: Identification of human macrophage inflammatory proteins 1alpha and 1beta as a native secreted heterodimer. J Biol Chem. 276:12404–12409. 2001. View Article : Google Scholar

89 

Charrier A and Brigstock DR: Regulation of pancreatic function by connective tissue growth factor (CTGF, CCN2). Cytokine Growth Factor Rev. 24:59–68. 2013. View Article : Google Scholar

90 

Garcillán B, Fuentes P, Marin AV, Megino RF, Chacon-Arguedas D, Mazariegos MS, Jiménez-Reinoso A, Muñoz-Ruiz M, Laborda RG, Cárdenas PP, et al: CD3G or CD3D knockdown in mature, but not immature, T lymphocytes similarly cripples the human TCRαβ complex. Front Cell Dev Biol. 9:6084902021. View Article : Google Scholar

91 

Heritable gene regulation in the CD4:CD8 T cell lineage choice. Front Immunol. 8:2912017.PubMed/NCBI

92 

Sharma P, Pandey AK and Bhattacharyya DK: Determining crucial genes associated with COVID-19 based on COPD findings✶,✶✶. Comput Biol Med. 128:1041262021. View Article : Google Scholar

93 

Zou M, Su X, Wang L, Yi X, Qiu Y, Yin X, Zhou Z, Niu X, Wang L and Su M: The molecular mechanism of multiple organ dysfunction and targeted intervention of COVID-19 based on time-order transcriptomic analysis. Front Immunol. 12:7297762021. View Article : Google Scholar : PubMed/NCBI

94 

Jing Y, Luo L, Chen Y, Westerberg LS, Zhou P, Xu Z, Herrada AA, Park CS, Kubo M, Mei H, et al: SARS-CoV-2 infection causes immunodeficiency in recovered patients by downregulating CD19 expression in B cells via enhancing B-cell metabolism. Signal Transduct Target Ther. 6:3452021. View Article : Google Scholar :

95 

Badbaran A, Mailer RK, Dahlke C, Woens J, Fathi A, Mellinghoff SC, Renné T, Addo MM, Riecken K and Fehse B: Digital PCR to quantify ChAdOx1 nCoV-19 copies in blood and tissues. Mol Ther Methods Clin Dev. 23:418–423. 2021. View Article : Google Scholar : PubMed/NCBI

96 

Grewal IS and Flavell RA: CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol. 16:111–135. 1998. View Article : Google Scholar : PubMed/NCBI

97 

Riley-Vargas RC, Gill DB, Kemper C, Liszewski MK and Atkinson JP: CD46: Expanding beyond complement regulation. Trends Immunol. 25:496–503. 2004. View Article : Google Scholar : PubMed/NCBI

98 

Lundstrom K, Barh D, Uhal BD, Takayama K, Aljabali AAA, Abd El-Aziz TM, Lal A, Redwan EM, Adadi P, Chauhan G, et al: COVID-19 vaccines and thrombosis-roadblock or dead-end street? Biomolecules. 11:10202021. View Article : Google Scholar : PubMed/NCBI

99 

Chen J, Goyal N, Dai L, Lin Z, Del Valle L, Zabaleta J, Liu J, Post SR, Foroozesh M and Qin Z: Developing new ceramide analogs and identifying novel sphingolipid-controlled genes against a virus-associated lymphoma. Blood. 136:2175–2187. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Dementyeva E, Kryukov F, Kubiczkova L, Nemec P, Sevcikova S, Ihnatova I, Jarkovsky J, Minarik J, Stefanikova Z, Kuglik P and Hajek R: Clinical implication of centrosome amplification and expression of centrosomal functional genes in multiple myeloma. J Transl Med. 11:772013. View Article : Google Scholar :

101 

Martinez FO, Combes TW, Orsenigo F and Gordon S: Monocyte activation in systemic Covid-19 infection: Assay and rationale. EBioMedicine. 59:1029642020. View Article : Google Scholar : PubMed/NCBI

102 

Root RK and Dale DC: Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor: Comparisons and potential for use in the treatment of infections in nonneutropenic patients. J Infect Dis. 179(Suppl 2): S342–S352. 1999. View Article : Google Scholar

103 

Zhang N, Zhao YD and Wang XM: CXCL10 an important chemokine associated with cytokine storm in COVID-19 infected patients. Eur Rev Med Pharmacol Sci. 24:7497–7505. 2020.PubMed/NCBI

104 

Bergamaschi C, Terpos E, Rosati M, Angel M, Bear J, Stellas D, Karaliota S, Apostolakou F, Bagratuni T, Patseas D, et al: Systemic IL-15, IFN-γ, and IP-10/CXCL10 signature associated with effective immune response to SARS-CoV-2 in BNT162b2 mRNA vaccine recipients. Cell Rep. 36:1095042021. View Article : Google Scholar

105 

Du HX, Zhu JQ, Chen J, Zhou HF, Yang JH and Wan HT: Revealing the therapeutic targets and molecular mechanisms of emodin-treated coronavirus disease 2019 via a systematic study of network pharmacology. Aging (Albany NY). 13:14571–14589. 2021. View Article : Google Scholar

106 

Lombardero M, Kovacs K and Scheithauer BW: Erythropoietin: A hormone with multiple functions. Pathobiology. 78:41–53. 2011. View Article : Google Scholar : PubMed/NCBI

107 

Petrović J, Pešić V and Lauschke VM: Frequencies of clinically important CYP2C19 and CYP2D6 alleles are graded across Europe. Eur J Hum Genet. 28:88–94. 2020. View Article : Google Scholar

108 

Kell AM and Gale M Jr: RIG-I in RNA virus recognition. Virology. 479-480:110–121. 2015. View Article : Google Scholar : PubMed/NCBI

109 

Boron WF and Boulpaep EL: Medical physiology: A cellular and molecular approach. 2nd edition. Saunders Elsevier; Philadelphia, PA: 2009

110 

Devreese KMJ: COVID-19-related laboratory coagulation findings. Int J Lab Hematol. 43(Suppl 1): S36–S42. 2021. View Article : Google Scholar

111 

Patel KR, Roberts JT and Barb AW: Multiple variables at the leukocyte cell surface impact Fc γ receptor-dependent mechanisms. Front Immunol. 10:2232019. View Article : Google Scholar

112 

Kelton JG, Smith JW, Santos AV, Murphy WG and Horsewood P: Platelet IgG Fc receptor. Am J Hematol. 25:299–310. 1987. View Article : Google Scholar : PubMed/NCBI

113 

Qiao J, Al-Tamimi M, Baker RI, Andrews RK and Gardiner EE: The platelet Fc receptor, FcγRIIa. Immunol Rev. 268:241–252. 2015. View Article : Google Scholar : PubMed/NCBI

114 

Fearon DT and Carroll MC: Regulation of B lymphocyte responses to foreign and self-antigens by the CD19/CD21 complex. Annu Rev Immunol. 18:393–422. 2000. View Article : Google Scholar : PubMed/NCBI

115 

Hartwig JH, Barkalow K, Azim A and Italiano J: The elegant platelet: Signals controlling actin assembly. Thromb Haemost. 82:392–398. 1999. View Article : Google Scholar

116 

Viertlboeck BC, Schweinsberg S, Hanczaruk MA, Schmitt R, Du Pasquier L, Herberg FW and Göbel TW: The chicken leukocyte receptor complex encodes a primordial, activating, high-affinity IgY Fc receptor. Proc Natl Acad Sci USA. 104:11718–11723. 2007. View Article : Google Scholar : PubMed/NCBI

117 

Tan Y and Tang F: SARS-CoV-2-mediated immune system activation and potential application in immunotherapy. Med Res Rev. 41:1167–1194. 2021. View Article : Google Scholar

118 

Hotchkiss KM, Clark NM and Olivares-Navarrete R: Macrophage response to hydrophilic biomaterials regulates MSC recruitment and T-helper cell populations. Biomaterials. 182:202–215. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Springer S, Menzel LM and Zieger M: Google trends provides a tool to monitor population concerns and information needs during COVID-19 pandemic. Brain Behav Immun. 87:109–110. 2020. View Article : Google Scholar : PubMed/NCBI

120 

Brockmeyer NH, Potthoff A, Kasper A, Nabring C, Jöckel KH and Siffert W: GNB3 C825T polymorphism and response to anti-retroviral combination therapy in HIV-1-infected patients-a pilot study. Eur J Med Res. 10:489–494. 2005.PubMed/NCBI

121 

Uddin MN, Akter R, Li M and Abdelrahman Z: Expression of SARS-COV-2 cell receptor gene ACE2 is associated with immunosuppression and metabolic reprogramming in lung adenocarcinoma based on bioinformatics analyses of gene expression profiles. Chem Biol Interact. 335:1093702021. View Article : Google Scholar

122 

Bieberich F, Vazquez-Lombardi R, Yermanos A, Ehling RA, Mason DM, Wagner B, Kapetanovic E, Di Roberto RB, Weber CR, Savic M, et al: A single-cell atlas of lymphocyte adaptive immune repertoires and transcriptomes reveals age-related differences in convalescent COVID-19 patients. Front Immunol. 12:7010852021. View Article : Google Scholar : PubMed/NCBI

123 

Fricke-Galindo I and Falfán-Valencia R: Genetics insight for COVID-19 susceptibility and severity: A review. Front Immunol. 12:6221762021. View Article : Google Scholar : PubMed/NCBI

124 

Jiang Z, Wei F, Zhang Y, Wang T, Gao W, Yu S, Sun H, Pu J, Sun Y, Wang M, et al: IFI16 directly senses viral RNA and enhances RIG-I transcription and activation to restrict influenza virus infection. Nat Microbiol. 6:932–945. 2021. View Article : Google Scholar : PubMed/NCBI

125 

Kennedy RB, Poland GA, Ovsyannikova IG, Oberg AL, Asmann YW, Grill DE, Vierkant RA and Jacobson RM: Impaired innate, humoral, and cellular immunity despite a take in smallpox vaccine recipients. Vaccine. 34:3283–3290. 2016. View Article : Google Scholar : PubMed/NCBI

126 

Kotenko SV: IFN-λs. Curr Opin Immunol. 23:583–590. 2011. View Article : Google Scholar :

127 

Wu UI and Holland SM: Host susceptibility to non-tuberculous mycobacterial infections. Lancet Infect Dis. 15:968–980. 2015. View Article : Google Scholar : PubMed/NCBI

128 

Voloudakis G, Hoffman G, Venkatesh S, Lee KM, Dobrindt K, Vicari JM, Zhang W, Beckmann ND, Jiang S, Hoagland D, et al: IL10RB as a key regulator of COVID-19 host susceptibility and severity. medRxiv. View Article : Google Scholar

129 

Vecchié A, Bonaventura A, Toldo S, Dagna L, Dinarello CA and Abbate A: IL-18 and infections: Is there a role for targeted therapies. J Cell Physiol. 236:1638–1657. 2021. View Article : Google Scholar

130 

Peters VA, Joesting JJ and Freund GG: IL-1 receptor 2 (IL-1R2) and its role in immune regulation. Brain Behav Immun. 32:1–8. 2013. View Article : Google Scholar :

131 

Bénard A, Jacobsen A, Brunner M, Krautz C, Klösch B, Swierzy I, Naschberger E, Podolska MJ, Kouhestani D, David P, et al: Interleukin-3 is a predictive marker for severity and outcome during SARS-CoV-2 infections. Nat Commun. 12:11122021. View Article : Google Scholar :

132 

Zizzo G and Cohen PL: Imperfect storm: Is interleukin-33 the Achilles heel of COVID-19? Lancet Rheumatol. 12:e779–e790. 2020. View Article : Google Scholar

133 

Walsh PT and Fallon PG: The emergence of the IL-36 cytokine family as novel targets for inflammatory diseases. Ann NY Acad Sci. 1417:23–34. 2018. View Article : Google Scholar

134 

Nussbaum JC, Van Dyken SJ, von Moltke J, Cheng LE, Mohapatra A, Molofsky AB, Thornton EE, Krummel MF, Chawla A, Liang HE and Locksley RM: Type 2 innate lymphoid cells control eosinophil homeostasis. Nature. 502:245–248. 2013. View Article : Google Scholar : PubMed/NCBI

135 

Coomes EA and Haghbayan H: Interleukin-6 in Covid-19: A systematic review and meta-analysis. Rev Med Virol. 30:1–9. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Das UN: Bioactive lipids in COVID-19-further evidence. Arch Med Res. 52:107–120. 2021. View Article : Google Scholar

137 

Islam ABMMK, Khan MA, Ahmed R, Hossain MS, Kabir SMT, Islam MS and Siddiki AMAMZ: Transcriptome of nasopharyngeal samples from COVID-19 patients and a comparative analysis with other SARS-CoV-2 infection models reveal disparate host responses against SARS-CoV-2. J Transl Med. 19:322021. View Article : Google Scholar : PubMed/NCBI

138 

O'Brien JR: Shear-induced platelet aggregation. Lancet. 335:711–713. 1990. View Article : Google Scholar : PubMed/NCBI

139 

Langmuir P, Yeleswaram S, Smith P, Knorr B and Squier P: Design of clinical trials evaluating ruxolitinib, a JAK1/JAK2 inhibitor, for treatment of COVID-19-associated cytokine storm. Dela J Public Health. 6:50–54. 2020. View Article : Google Scholar : PubMed/NCBI

140 

Melman YF, Krummerman A and McDonald TV: KCNE regulation of KvLQT1 channels: Structure-function correlates. Trends Cardiovasc Med. 12:182–187. 2002. View Article : Google Scholar : PubMed/NCBI

141 

Gouas L, Nicaud V, Berthet M, Forhan A, Tiret L, Balkau B and Guicheney P; D.E.S.I.R. Study Group: Association of KCNQ1, KCNE1, KCNH2 and SCN5A polymorphisms with QTc interval length in a healthy population. Eur J Hum Genet. 13:1213–1222. 2005. View Article : Google Scholar : PubMed/NCBI

142 

Lazzerini PE, Acampa M, Laghi-Pasini F, Bertolozzi I, Finizola F, Vanni F, Natale M, Bisogno S, Cevenini G, Cartocci A, et al: Cardiac arrest risk during acute infections: Systemic inflammation directly prolongs QTc interval via cytokine-mediated effects on potassium channel expression. Circ Arrhythm Electrophysiol. 13:e0086272020. View Article : Google Scholar : PubMed/NCBI

143 

Szendrey M, Guo J, Li W, Yang T and Zhang S: COVID-19 drugs chloroquine and hydroxychloroquine, but not azithromycin and remdesivir, block hERG potassium channels. J Pharmacol Exp Ther. 377:265–272. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Dahl SL, Woodworth JS, Lerche CJ, Cramer EP, Nielsen PR, Moser C, Thomsen AR, Borregaard N and Cowland JB: Lipocalin-2 functions as inhibitor of innate resistance to mycobacterium tuberculosis. Front Immunol. 9:27172018. View Article : Google Scholar :

145 

Vincenti MP and Brinckerhoff CE: Transcriptional regulation of collagenase (MMP-1, MMP-13) genes in arthritis: Integration of complex signaling pathways for the recruitment of gene-specific transcription factors. Arthritis Res. 4:157–164. 2002. View Article : Google Scholar : PubMed/NCBI

146 

Jabłońska-Trypuć A, Matejczyk M and Rosochacki S: Matrix metalloproteinases (MMPs), the main extracellular matrix (ECM) enzymes in collagen degradation, as a target for anticancer drugs. J Enzyme Inhib Med Chem. 31(Suppl 1): S177–S183. 2016. View Article : Google Scholar

147 

Pisano TJ, Hakkinen I and Rybinnik I: Large vessel occlusion secondary to COVID-19 hypercoagulability in a young patient: A case report and literature review. J Stroke Cerebrovasc Dis. 29:1053072020. View Article : Google Scholar : PubMed/NCBI

148 

Apostolidis SA, Kakara M, Painter MM, Goel RR, Mathew D, Lenzi K, Rezk A, Patterson KR, Espinoza DA, Kadri JC, et al: Cellular and humoral immune responses following SARS-CoV-2 mRNA vaccination in patients with multiple sclerosis on anti-CD20 therapy. Nat Med. 27:1990–2001. 2021. View Article : Google Scholar : PubMed/NCBI

149 

Lu W, Liu X, Wang T, Liu F, Zhu A, Lin Y, Luo J, Ye F, He J, Zhao J, et al: Elevated MUC1 and MUC5AC mucin protein levels in airway mucus of critical ill COVID-19 patients. J Med Virol. 93:582–584. 2021. View Article : Google Scholar

150 

Conti P, Ronconi G, Caraffa A, Gallenga CE, Ross R, Frydas I and Kritas SK: Induction of pro-inflammatory cytokines (IL-1 and IL-6) and lung inflammation by Coronavirus-19 (COVI-19 or SARS-CoV-2): Anti-inflammatory strategies. J Biol Regul Homeost Agents. 34:327–331. 2020.PubMed/NCBI

151 

Morsy S: NCAM protein and SARS-COV-2 surface proteins: In-silico hypothetical evidence for the immunopathogenesis of Guillain-Barré syndrome. Med Hypotheses. 145:1103422020. View Article : Google Scholar

152 

Root-Bernstein R: Innate receptor activation patterns involving TLR and NLR synergisms in COVID-19, ALI/ARDS and sepsis cytokine storms: A review and model making novel predictions and therapeutic suggestions. Int J Mol Sci. 22:21082021. View Article : Google Scholar :

153 

Watanabe T, Kitani A, Murray PJ and Strober W: NOD2 is a negative regulator of Toll-like receptor 2-mediated T helper type 1 responses. Nat Immunol. 5:800–808. 2004. View Article : Google Scholar : PubMed/NCBI

154 

Esposito E and Cuzzocrea S: The role of nitric oxide synthases in lung inflammation. Curr Opin Investig Drugs. 8:899–909. 2007.PubMed/NCBI

155 

Gamkrelidze M, Intskirveli N, Vardosanidze K, Goliadze L, Chikhladze KH and Ratiani L: Myocardial dysfunction during septic shock (review). Georgian Med News. 237:40–46. 2014.

156 

Zang X, Li S, Zhao Y, Chen K, Wang X, Song W, Ma J, Tu X, Xia Y, Zhang S and Gao C: Systematic meta-analysis of the association between a common NOS1AP genetic polymorphism, the QTc interval, and sudden death. Int Heart J. 60:1083–1090. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Guan SP, Seet RCS and Kennedy BK: Does eNOS derived nitric oxide protect the young from severe COVID-19 complications. Ageing Res Rev. 64:1012012020. View Article : Google Scholar

158 

Thom SR, Fisher D, Xu YA, Garner S and Ischiropoulos H: Role of nitric oxide-derived oxidants in vascular injury from carbon monoxide in the rat. Am J Physiol. 276:H984–H992. 1999.

159 

Valent A, Danglot G and Bernheim A: Mapping of the tyrosine kinase receptors trkA (NTRK1), trkB (NTRK2) and trkC(NTRK3) to human chromosomes 1q22, 9q22 and 15q25 by fluorescence in situ hybridization. Eur J Hum Genet. 5:102–104. 1997. View Article : Google Scholar : PubMed/NCBI

160 

Liu W, Chen L, Zhu J and Rodgers GP: The glycoprotein hGC-1 binds to cadherin and lectins. Exp Cell Res. 312:1785–1797. 2006. View Article : Google Scholar : PubMed/NCBI

161 

Hennigs JK, Lüneburg N, Stage A, Schmitz M, Körbelin J, Harbaum L, Matuszcak C, Mienert J, Bokemeyer C, Böger RH, et al: The P2-receptor-mediated Ca2+ signalosome of the human pulmonary endothelium-implications for pulmonary arterial hypertension. Purinergic Signal. 15:299–311. 2019. View Article : Google Scholar : PubMed/NCBI

162 

Russo MV and McGavern DB: Immune surveillance of the CNS following infection and injury. Trends Immunol. 36:637–650. 2015. View Article : Google Scholar : PubMed/NCBI

163 

Tuuminen R, Nykänen A, Keränen MA, Krebs R, Alitalo K, Koskinen PK and Lemström KB: The effect of platelet-derived growth factor ligands in rat cardiac allograft vasculopathy and fibrosis. Transplant Proc. 38:3271–3273. 2006. View Article : Google Scholar : PubMed/NCBI

164 

Blum E, Margalit R, Levy L, Getter T, Lahav R, Zilber S, Bradfield P, Imhof BA, Alpert E and Gruzman A: A Potent leukocyte transmigration blocker: GT-73 showed a protective effect against LPS-induced ARDS in mice. Molecules. 26:45832021. View Article : Google Scholar : PubMed/NCBI

165 

Rovina N, Akinosoglou K, Eugen-Olsen J, Hayek S, Reiser J and Giamarellos-Bourboulis EJ: Soluble urokinase plasminogen activator receptor (suPAR) as an early predictor of severe respiratory failure in patients with COVID-19 pneumonia. Crit Care. 24:1872020. View Article : Google Scholar

166 

Kumar S, Jain A, Choi SW, da Silva GPD, Allers L, Mudd MH, Peters RS, Anonsen JH, Rusten TE, Lazarou M and Deretic V: Mammalian Atg8 proteins and the autophagy factor IRGM control mTOR and TFEB at a regulatory node critical for responses to pathogens. Nat Cell Biol. 22:973–985. 2020. View Article : Google Scholar : PubMed/NCBI

167 

Hoxha M: What about COVID-19 and arachidonic acid pathway. Eur J Clin Pharmacol. 76:1501–1504. 2020. View Article : Google Scholar : PubMed/NCBI

168 

Keikha M, Ghazvini K, Eslami M, Yousefi B, Casseb J, Yousefi M and Karbalaei M: Molecular targeting of PD-1 signaling pathway as a novel therapeutic approach in HTLV-1 infection. Microb Pathog. 144:1041982020. View Article : Google Scholar : PubMed/NCBI

169 

Coggeshall KM: Negative signaling in health and disease. Immunol Res. 19:47–64. 1999. View Article : Google Scholar : PubMed/NCBI

170 

de Souza JG, Starobinas N and Ibañez O: Unknown/enigmatic functions of extracellular ASC. Immunology. 163:377–388. 2021. View Article : Google Scholar

171 

Larabi A, Barnich N and Nguyen HTT: New insights into the interplay between autophagy, gut microbiota and inflammatory responses in IBD. Autophagy. 16:38–51. 2020. View Article : Google Scholar :

172 

Brown MJ: Renin: Friend or foe? Heart. 93:1026–1033. 2007. View Article : Google Scholar

173 

Amraei R and Rahimi N: COVID-19, renin-angiotensin system and endothelial dysfunction. Cells. 9:16522020. View Article : Google Scholar :

174 

Yanatori I, Yasui Y, Noguchi Y and Kishi F: Inhibition of iron uptake by ferristatin II is exerted through internalization of DMT1 at the plasma membrane. Cell Biol Int. 39:427–434. 2015. View Article : Google Scholar

175 

Denham NC, Pearman CM, Ding WY, Waktare J, Gupta D, Snowdon R, Hall M, Cooper R, Modi S, Todd D and Mahida S: Systematic re-evaluation of SCN5A variants associated with Brugada syndrome. J Cardiovasc Electrophysiol. 30:118–127. 2019. View Article : Google Scholar

176 

Smadja DM, Guerin CL, Chocron R, Yatim N, Boussier J, Gendron N, Khider L, Hadjadj J, Goudot G, Debuc B, et al: Angiopoietin-2 as a marker of endothelial activation is a good predictor factor for intensive care unit admission of COVID-19 patients. Angiogenesis. 23:611–620. 2020. View Article : Google Scholar : PubMed/NCBI

177 

Bongiovanni D, Klug M, Lazareva O, Weidlich S, Biasi M, Ursu S, Warth S, Buske C, Lukas M, Spinner CD, et al: SARS-CoV-2 infection is associated with a pro-thrombotic platelet phenotype. Cell Death Dis. 12:502021. View Article : Google Scholar : PubMed/NCBI

178 

Wu D and Yang XO: Dysregulation of pulmonary responses in severe COVID-19. Viruses. 13:9572021. View Article : Google Scholar :

179 

Katzen J and Beers MF: Contributions of alveolar epithelial cell quality control to pulmonary fibrosis. J Clin Invest. 130:5088–5099. 2020. View Article : Google Scholar : PubMed/NCBI

180 

Nandy D, Sharma N and Senapati S: Systematic review and meta-analysis confirms significant contribution of surfactant protein D in chronic obstructive pulmonary disease. Front Genet. 10:3392019. View Article : Google Scholar : PubMed/NCBI

181 

Di Lisa F, Kaludercic N, Carpi A, Menabò R and Giorgio M: Mitochondria and vascular pathology. Pharmacol Rep. 61:123–130. 2009. View Article : Google Scholar

182 

Dinarello CA, Nold-Petry C, Nold M, Fujita M, Li S, Kim S and Bufler P: Suppression of innate inflammation and immunity by interleukin-37. Eur J Immunol. 46:1067–1081. 2016. View Article : Google Scholar : PubMed/NCBI

183 

Montalbetti N, Simonin A, Kovacs G and Hediger MA: Mammalian iron transporters: families SLC11 and SLC40. Mol Aspects Med. 34:270–287. 2013. View Article : Google Scholar

184 

Schulert GS, Blum SA and Cron RQ: Host genetics of pediatric SARS-CoV-2 COVID-19 and multisystem inflammatory syndrome in children. Curr Opin Pediatr. 33:549–555. 2021. View Article : Google Scholar : PubMed/NCBI

185 

Pachlopnik Schmid J and de Saint Basile G: Angeborene hämophagozytische lymphohistiozytose (HLH). Klin Padiatr. 222:345–350. 2010. View Article : Google Scholar : PubMed/NCBI

186 

Shi JH, Xie X and Sun SC: TBK1 as a regulator of autoimmunity and antitumor immunity. Cell Mol Immunol. 15:743–745. 2018. View Article : Google Scholar : PubMed/NCBI

187 

Zimecki M, Actor JK and Kruzel ML: The potential for Lactoferrin to reduce SARS-CoV-2 induced cytokine storm. Int Immunopharmacol. 95:1075712021. View Article : Google Scholar :

188 

Chabot PR, Raiola L, Lussier-Price M, Morse T, Arseneault G, Archambault J and Omichinski JG: Structural and functional characterization of a complex between the acidic transactivation domain of EBNA2 and the Tfb1/p62 subunit of TFIIH. PLoS Pathog. 10:e10040422014. View Article : Google Scholar : PubMed/NCBI

189 

Speeckaert MM, Speeckaert R and Delanghe JR: Biological and clinical aspects of soluble transferrin receptor. Crit Rev Clin Lab Sci. 47:213–228. 2010. View Article : Google Scholar

190 

Bg S, Gosavi S, Ananda Rao A, Shastry S, Raj SC, Sharma A, Suresh A and Noubade R: Neutrophil-to-lymphocyte, lymphocyte-to-monocyte, and platelet-to-lymphocyte ratios: Prognostic significance in COVID-19. Cureus. 13:e126222021.PubMed/NCBI

191 

Campbell GR, To RK, Hanna J and Spector SA: SARS-CoV-2, SARS-CoV-1, and HIV-1 derived ssRNA sequences activate the NLRP3 inflammasome in human macrophages through a non-classical pathway. iScience. 24:1022952021. View Article : Google Scholar :

192 

Borrello S, Nicolò C, Delogu G, Pandolfi F and Ria F: TLR2: a crossroads between infections and autoimmunity. Int J Immunopathol Pharmacol. 24:549–556. 2011. View Article : Google Scholar

193 

Zheng M, Karki R, Williams EP, Yang D, Fitzpatrick E, Vogel P, Jonsson CB and Kanneganti TD: TLR2 senses the SARS-CoV-2 envelope protein to produce inflammatory cytokines. Nat Immunol. 22:829–838. 2021. View Article : Google Scholar : PubMed/NCBI

194 

Khan S, Shafiei M, Longoria C, Schoggins JW, Savani R and Zaki H: SARS-CoV-2 spike protein induces inflammation via TLR2-dependent activation of the NF-κB pathway. Elife. 10:e685632021. View Article : Google Scholar

195 

Sohn KM, Lee SG, Kim HJ, Cheon S, Jeong H, Lee J, Kim IS, Silwal P, Kim YJ, Paik S, et al: COVID-19 patients upregulate toll-like receptor 4-mediated inflammatory signaling that mimics bacterial sepsis. J Korean Med Sci. 35:e3432020. View Article : Google Scholar : PubMed/NCBI

196 

Guven-Maiorov E, Keskin O, Gursoy A, VanWaes C, Chen Z, Tsai CJ and Nussinov R: TRAF3 signaling: Competitive binding and evolvability of adaptive viral molecular mimicry. Biochim Biophys Acta. 1860:2646–2655. 2016. View Article : Google Scholar

197 

Callaway E: The quest to find genes that drive severe COVID. Nature. 595:346–348. 2021. View Article : Google Scholar : PubMed/NCBI

198 

Kaur S, Tripathi DM and Yadav A: The enigma of endothelium in COVID-19. Front Physiol. 11:9892020. View Article : Google Scholar :

199 

Rovas A, Osiaevi I, Buscher K, Sackarnd J, Tepasse PR, Fobker M, Kühn J, Braune S, Göbel U, Thölking G, et al: Microvascular dysfunction in COVID-19: The MYSTIC study. Angiogenesis. 24:145–157. 2021. View Article : Google Scholar

200 

Holcomb D, Alexaki A, Hernandez N, Hunt R, Laurie K, Kames J, Hamasaki-Katagiri N, Komar AA, DiCuccio M and Kimchi-Sarfaty C: Gene variants of coagulation related proteins that interact with SARS-CoV-2. PLoS Comput Biol. 17:e10088052021. View Article : Google Scholar : PubMed/NCBI

201 

Shahidi M: Thrombosis and von Willebrand factor. Adv Exp Med Biol. 906:285–306. 2017. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M and Chrousos GP: Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 49: 35, 2022.
APA
Geronikolou, S.A., Takan, I., Pavlopoulou, A., Mantzourani, M., & Chrousos, G.P. (2022). Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. International Journal of Molecular Medicine, 49, 35. https://doi.org/10.3892/ijmm.2022.5090
MLA
Geronikolou, S. A., Takan, I., Pavlopoulou, A., Mantzourani, M., Chrousos, G. P."Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia". International Journal of Molecular Medicine 49.3 (2022): 35.
Chicago
Geronikolou, S. A., Takan, I., Pavlopoulou, A., Mantzourani, M., Chrousos, G. P."Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia". International Journal of Molecular Medicine 49, no. 3 (2022): 35. https://doi.org/10.3892/ijmm.2022.5090
Copy and paste a formatted citation
x
Spandidos Publications style
Geronikolou SA, Takan I, Pavlopoulou A, Mantzourani M and Chrousos GP: Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. Int J Mol Med 49: 35, 2022.
APA
Geronikolou, S.A., Takan, I., Pavlopoulou, A., Mantzourani, M., & Chrousos, G.P. (2022). Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia. International Journal of Molecular Medicine, 49, 35. https://doi.org/10.3892/ijmm.2022.5090
MLA
Geronikolou, S. A., Takan, I., Pavlopoulou, A., Mantzourani, M., Chrousos, G. P."Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia". International Journal of Molecular Medicine 49.3 (2022): 35.
Chicago
Geronikolou, S. A., Takan, I., Pavlopoulou, A., Mantzourani, M., Chrousos, G. P."Thrombocytopenia in COVID‑19 and vaccine‑induced thrombotic thrombocytopenia". International Journal of Molecular Medicine 49, no. 3 (2022): 35. https://doi.org/10.3892/ijmm.2022.5090
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team