Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2022 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2022 Volume 49 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review)

  • Authors:
    • Tao Yang
    • Jian Wang
    • Jiaying Zhao
    • Yang Liu
  • View Affiliations / Copyright

    Affiliations: Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China, Department of Respiratory and Critical Care Medicine, Affiliated People's Hospital of Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212001, P.R. China
    Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 37
    |
    Published online on: January 24, 2022
       https://doi.org/10.3892/ijmm.2022.5092
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Pulmonary fibrosis (PF) is a chronic, progressive, irreversible and life‑threatening lung disease. However, the pathogenesis and molecular mechanisms of this condition remain unclear. Extracellular vesicles (EVs) are structures derived from the plasma membrane, with a diameter ranging from 30 nm to 5 µm, that play an important role in cell‑to‑cell communications in lung disease, particularly between epithelial cells and the pulmonary microenvironment. In particular, exosomes are a type of EV that can deliver cargo molecules, including endogenous proteins, lipids and nucleic acids, such as microRNAs (miRNAs/miRs). These cargo molecules are encapsulated in lipid bilayers through target cell internalization, receptor‑ligand interactions or lipid membrane fusion. miRNAs are single‑stranded RNA molecules that regulate cell differentiation, proliferation and apoptosis by degrading target mRNAs or inhibiting translation to modulate gene expression. The aim of the present review was to discuss the current knowledge available on exosome biogenesis, composition and isolation methods. The role of miRNAs in the pathogenesis of PF was also reviewed. In addition, emerging diagnostic and therapeutic properties of exosomes and exosomal miRNAs in PF were described, in order to highlight the potential applications of exosomal miRNAs in PF.
View Figures

Figure 1

View References

1 

Raghu G, Remy-Jardin M, Myers JL, Richeldi L, Ryerson CJ, Lederer DJ, Behr J, Cottin V, Danoff SK, Morell F, et al: Diagnosis of idiopathic pulmonary fibrosis. An official ATS/ERS/JRS/ALAT clinical practice guideline. Am J Respir Crit Care Med. 198:e44–e68. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Lederer DJ and Martinez FJ: Idiopathic pulmonary fibrosis. N Engl J Med. 378:1811–1823. 2018. View Article : Google Scholar

3 

Schamberger AC, Schiller HB, Fernandez IE, Sterclova M, Heinzelmann K, Hennen E, Hatz R, Behr J, Vašáková M, Mann M, et al: Glutathione peroxidase 3 localizes to the epithelial lining fluid and the extracellular matrix in interstitial lung disease. Sci Rep. 6:299522016. View Article : Google Scholar : PubMed/NCBI

4 

Zhang L, Wang Y, Pandupuspitasari NS, Wu G, Xiang X, Gong Q, Xiong W, Wang CY, Yang P and Ren B: Endoplasmic reticulum stress, a new wrestler, in the pathogenesis of idiopathic pulmonary fibrosis. Am J Transl Res. 9:722–735. 2017.

5 

Kirby T: Living with idiopathic pulmonary fibrosis. Lancet Respir Med. 9:136–138. 2021. View Article : Google Scholar

6 

Shenderov K, Collins SL, Powell JD and Horton MR: Immune dysregulation as a driver of idiopathic pulmonary fibrosis. J Clin Invest. 131:e1432262021. View Article : Google Scholar :

7 

Guenther A, Krauss E, Tello S, Wagner J, Paul B, Kuhn S, Maurer O, Heinemann S, Costabel U, Barbero MAN, et al: The European IPF registry (eurIPFreg): Baseline characteristics and survival of patients with idiopathic pulmonary fibrosis. Respir Res. 19:1412018. View Article : Google Scholar : PubMed/NCBI

8 

Gao J, Kalafatis D, Carlson L, Pesonen IHA, Li CX, Wheelock Å, Magnusson JM and Sköld CM: Baseline characteristics and survival of patients of idiopathic pulmonary fibrosis: A longitudinal analysis of the Swedish IPF Registry. Respir Res. 22:402021. View Article : Google Scholar :

9 

Maher TM, Costabel U, Glassberg MK, Kondoh Y, Ogura T, Scholand MB, Kardatzke D, Howard M, Olsson J, Neighbors M, et al: Phase 2 trial to assess lebrikizumab in patients with idiopathic pulmonary fibrosis. Eur Respir J. 57:19024422021. View Article : Google Scholar :

10 

Di Martino E, Provenzani A, Vitulo P and Polidori P: Systematic review and meta-analysis of pirfenidone, nintedanib, and pamrevlumab for the treatment of idiopathic pulmonary fibrosis. Ann Pharmacother. 55:723–731. 2021. View Article : Google Scholar

11 

Raghu G, van den Blink B, Hamblin MJ, Brown AW, Golden JA, Ho LA, Wijsenbeek MS, Vasakova M, Pesci A, Antin-Ozerkis DE, et al: Effect of recombinant human pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis: A randomized clinical trial. JAMA. 319:2299–2307. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Maher TM, van der Aar EM, Van de Steen O, Allamassey L, Desrivot J, Dupont S, Fagard L, Ford P, Fieuw A and Wuyts W: Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): A phase 2a randomised placebo-controlled trial. Lancet Respir Med. 6:627–635. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Abuserewa ST, Duff R and Becker G: Treatment of idiopathic pulmonary fibrosis. Cureus. 13:e153602021.PubMed/NCBI

14 

Brigstock DR: Extracellular vesicles in organ fibrosis: Mechanisms, therapies, and diagnostics. Cells. 10:15962021. View Article : Google Scholar : PubMed/NCBI

15 

Yamada M: Extracellular vesicles: Their emerging roles in the pathogenesis of respiratory diseases. Respir Investig. 59:302–311. 2021. View Article : Google Scholar : PubMed/NCBI

16 

Anderson HC: Vesicles associated with calcification in the matrix of epiphyseal cartilage. J Cell Biol. 41:59–72. 1969. View Article : Google Scholar : PubMed/NCBI

17 

György B, Szabó TG, Pásztói M, Pál Z, Misják P, Aradi B, László V, Pállinger E, Pap E, Kittel A, et al: Membrane vesicles, current state-of-the-art: Emerging role of extracellular vesicles. Cell Mol Life Sci. 68:2667–2688. 2011. View Article : Google Scholar : PubMed/NCBI

18 

Pan BT, Teng K, Wu C, Adam M and Johnstone RM: Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J Cell Biol. 101:942–948. 1985. View Article : Google Scholar : PubMed/NCBI

19 

Menck K, Sivaloganathan S, Bleckmann A and Binder C: Microvesicles in cancer: Small size, large potential. Int J Mol Sci. 21:53732020. View Article : Google Scholar :

20 

Pegtel DM and Gould SJ: Exosomes. Annu Rev Biochem. 88:487–514. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Cocozza F, Grisard E, Martin-Jaular L, Mathieu M and Théry C: SnapShot: Extracellular vesicles. Cell. 182:262–262.e1. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Zhang H, Freitas D, Kim HS, Fabijanic K, Li Z, Chen H, Mark MT, Molina H, Martin AB, Bojmar L, et al: Identification of distinct nanoparticles and subsets of extracellular vesicles by asymmetric flow field-flow fractionation. Nat Cell Biol. 20:332–343. 2018. View Article : Google Scholar :

23 

Anand S, Samuel M and Mathivanan S: Exomeres: A new member of extracellular vesicles family. Subcell Biochem. 97:89–97. 2021. View Article : Google Scholar

24 

Kučuk N, Primožič M, Knez Ž and Leitgeb M: Exosomes engineering and their roles as therapy delivery tools, therapeutic targets, and biomarkers. Int J Mol Sci. 22:95432021. View Article : Google Scholar

25 

Kodam SP and Ullah M: Diagnostic and therapeutic potential of extracellular vesicles. Technol Cancer Res Treat. 20:153303382110412032021. View Article : Google Scholar : PubMed/NCBI

26 

Shao H, Im H, Castro CM, Breakefield X, Weissleder R and Lee H: New technologies for analysis of extracellular vesicles. Chem Rev. 118:1917–1950. 2018. View Article : Google Scholar :

27 

Yang D, Zhang W, Zhang H, Zhang F, Chen L, Ma L, Larcher LM, Chen S, Liu N, Zhao Q, et al: Progress opportunity, and perspective on exosome isolation-efforts for efficient exosome-based theranostics. Theranostics. 10:3684–3707. 2020. View Article : Google Scholar

28 

Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002. View Article : Google Scholar : PubMed/NCBI

29 

Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D, Wieland F, Schwille P, Brügger B and Simons M: Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science. 319:1244–1247. 2008. View Article : Google Scholar : PubMed/NCBI

30 

van Niel G, Porto-Carreiro I, Simoes S and Raposo G: Exosomes: A common pathway for a specialized function. J Biochem. 140:13–21. 2006. View Article : Google Scholar : PubMed/NCBI

31 

Vietri M, Radulovic M and Stenmark H: The many functions of ESCRTs. Nat Rev Mol Cell Biol. 21:25–42. 2020. View Article : Google Scholar

32 

Ju Y, Bai H, Ren L and Zhang L: The role of exosome and the ESCRT pathway on enveloped virus infection. Int J Mol Sci. 22:90602021. View Article : Google Scholar : PubMed/NCBI

33 

Sun R, Liu Y, Lu M, Ding Q, Wang P, Zhang H, Tian X, Lu P, Meng D, Sun N, et al: ALIX increases protein content and protective function of iPSC-derived exosomes. J Mol Med (Berl). 97:829–844. 2019. View Article : Google Scholar

34 

Han Q, Lv L, Wei J, Lei X, Lin H, Li G, Cao J, Xie J, Yang W, Wu S, et al: Vps4A mediates the localization and exosome release of β-catenin to inhibit epithelial-mesenchymal transition in hepatocellular carcinoma. Cancer Lett. 457:47–59. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Kunadt M, Eckermann K, Stuendl A, Gong J, Russo B, Strauss K, Rai S, Kügler S, Falomir Lockhart L, Schwalbe M, et al: Extracellular vesicle sorting of α-Synuclein is regulated by sumoylation. Acta Neuropathol. 129:695–713. 2015. View Article : Google Scholar : PubMed/NCBI

36 

Chang HM and Yeh ETH: SUMO: From bench to bedside. Physiol Rev. 100:1599–1619. 2020. View Article : Google Scholar : PubMed/NCBI

37 

de Gassart A, Géminard C, Février B, Raposo G and Vidal M: Lipid raft-associated protein sorting in exosomes. Blood. 102:4336–4344. 2003. View Article : Google Scholar : PubMed/NCBI

38 

Rana S and Zöller M: Exosome target cell selection and the importance of exosomal tetraspanins: A hypothesis. Biochem Soc Trans. 39:559–562. 2011. View Article : Google Scholar : PubMed/NCBI

39 

van Niel G, Charrin S, Simoes S, Romao M, Rochin L, Saftig P, Marks MS, Rubinstein E and Raposo G: The tetraspanin CD63 regulates ESCRT-Independent and -Dependent endosomal sorting during melanogenesis. Dev Cell. 21:708–721. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Chairoungdua A, Smith DL, Pochard P, Hull M and Caplan MJ: Exosome release of β-catenin: A novel mechanism that antagonizes Wnt signaling. J Cell Biol. 190:1079–1091. 2010. View Article : Google Scholar : PubMed/NCBI

41 

Doyle LM and Wang MZ: Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells. 8:7272019. View Article : Google Scholar :

42 

Dang VD, Jella KK, Ragheb RRT, Denslow ND and Alli AA: Lipidomic and proteomic analysis. of exosomes from mouse cortical collecting duct cells. FASEB J. 31:5399–5408. 2017. View Article : Google Scholar : PubMed/NCBI

43 

O'Brien K, Breyne K, Ughetto S, Laurent LC and Breakefield XO: RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat Rev Mol Cell Biol. 21:585–606. 2020. View Article : Google Scholar

44 

Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar :

45 

Saad MH, Badierah R, Redwan EM and El-Fakharany EM: A comprehensive insight into the role of exosomes in viral infection: Dual faces bearing different functions. Pharmaceutics. 13:14052021. View Article : Google Scholar :

46 

Gurunathan S, Kang MH, Qasim M, Khan K and Kim JH: Biogenesis, membrane trafficking, functions, and next generation nanotherapeutics medicine of extracellular vesicles. Int J Nanomedicine. 16:3357–3383. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Zhang Q, Higginbotham JN, Jeppesen DK, Yang YP, Li W, McKinley ET, Graves-Deal R, Ping J, Britain CM, Dorsett KA, et al: Transfer of functional cargo in exomeres. Cell Rep. 27:940–954.e6. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Krol J, Loedige I and Filipowicz W: The widespread regulation of microRNA biogenesis, function and decay. Nat Rev Genet. 11:597–610. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Mohr AM and Mott JL: Overview of MicroRNA biology. Semin Liver Dis. 35:3–11. 2015. View Article : Google Scholar : PubMed/NCBI

50 

Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ and Lötvall JO: Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat Cell Biol. 9:654–659. 2007. View Article : Google Scholar : PubMed/NCBI

51 

Shao N, Xue L, Wang R, Luo K, Zhi F and Lan Q: MiR-454-3p is an exosomal biomarker and functions as a tumor suppressor in glioma. Mol Cancer Ther. 18:459–469. 2019. View Article : Google Scholar

52 

Qiu Y, Li P, Zhang Z and Wu M: Insights into exosomal Non-coding RNAs sorting mechanism and clinical application. Front Oncol. 11:6649042021. View Article : Google Scholar : PubMed/NCBI

53 

Schirle NT, Sheu-Gruttadauria J and MacRae IJ: Structural basis for microRNA targeting. Science. 346:608–613. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Methods in MicroRNA biogenesis, identification, function and decay. Methods. 152:1–2. 2019. View Article : Google Scholar

55 

Zhang J, Li S, Li L, Li M, Guo C, Yao J and Mi S: Exosome and exosomal microRNA: Trafficking, sorting, and function. Genomics Proteomics Bioinformatics. 13:17–24. 2015. View Article : Google Scholar : PubMed/NCBI

56 

Guduric-Fuchs J, O'Connor A, Camp B, O'Neill CL, Medina RJ and Simpson DA: Selective extracellular vesicle-mediated export of an overlapping set of microRNAs from multiple cell types. BMC Genomics. 13:3572012. View Article : Google Scholar : PubMed/NCBI

57 

Donzelli J, Proestler E, Riedel A, Nevermann S, Hertel B, Guenther A, Gattenlöhner S, Savai R, Larsson K and Saul MJ: Small extracellular vesicle-derived miR-574-5p regulates PGE2-biosynthesis via TLR7/8 in lung cancer. J Extracell Vesicles. 10:e121432021. View Article : Google Scholar

58 

Melo SA, Sugimoto H, O'Connell JT, Kato N, Villanueva A, Vidal A, Qiu L, Vitkin E, Perelman LT, Melo CA, et al: Cancer exosomes perform Cell-Independent MicroRNA biogenesis and promote tumorigenesis. Cancer Cell. 26:707–721. 2014. View Article : Google Scholar : PubMed/NCBI

59 

Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J, Martin-Cofreces N, Martinez-Herrera DJ, Pascual-Montano A, Mittelbrunn M and Sánchez-Madrid F: Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat Commun. 4:29802013. View Article : Google Scholar

60 

Santangelo L, Giurato G, Cicchini C, Montaldo C, Mancone C, Tarallo R, Battistelli C, Alonzi T, Weisz A and Tripodi M: The RNA-Binding Protein SYNCRIP Is a component of the hepatocyte exosomal machinery controlling MicroRNA sorting. Cell Rep. 17:799–808. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Boateng E and Krauss-Etschmann S: miRNAs in lung development and diseases. Int J Mol Sci. 21:27652020. View Article : Google Scholar :

62 

Bersimbaev R, Aripova A, Bulgakova O, Kussainova A, Akparova A and Izzotti A: The plasma levels of hsa-miR-19b-3p hsa-miR-125b-5p and hsamiR-320c in patients with asthma, COPD and asthma-COPD overlap syndrome (ACOS). MicroRNA. 10:130–138. 2021. View Article : Google Scholar

63 

Zeng Q and Zeng J: Inhibition of miR-494-3p alleviates oxidative stress-induced cell senescence and inflammation in the primary epithelial cells of COPD patients. Int Immunopharmacol. 92:1070442021. View Article : Google Scholar : PubMed/NCBI

64 

Weidner J, Bartel S, Kılıç A, Zissler UM, Renz H, Schwarze J, Schmidt-Weber CB, Maes T, Rebane A, Krauss-Etschmann S and Rådinger M: Spotlight on microRNAs in allergy and asthma. Allergy. 76:1661–1678. 2021. View Article : Google Scholar

65 

Wardzyńska A, Pawełczyk M, Rywaniak J, Makowska J, Jamroz-Brzeska J and Kowalski ML: Circulating miRNA expression in asthmatics is age-related and associated with clinical asthma parameters, respiratory function and systemic inflammation. Respir Res. 22:1772021. View Article : Google Scholar

66 

Zhong S, Golpon H, Zardo P and Borlak J: MiRNAs in lung cancer. A systematic review identifies predictive and prognostic miRNA candidates for precision medicine in lung cancer. Transl Res. 230:164–196. 2021. View Article : Google Scholar

67 

Cainap C, Balacescu O, Cainap SS and Pop LA: Next generation sequencing technology in lung cancer diagnosis. Biology (Basel). 10:8642021.

68 

Yang G, Yang L, Wang W, Wang J, Wang J and Xu Z: Discovery and validation of extracellular/circulating microRNAs during idiopathic pulmonary fibrosis disease progression. Gene. 562:138–144. 2015. View Article : Google Scholar : PubMed/NCBI

69 

Zhang H, Song M, Guo J, Ma J, Qiu M and Yang Z: The function of non-coding RNAs in idiopathic pulmonary fibrosis. Open Med (Wars). 16:481–490. 2021. View Article : Google Scholar

70 

Wang Q, Xie ZL, Wu Q, Jin ZX, Yang C and Feng J: Role of various imbalances centered on alveolar epithelial cell/fibroblast apoptosis imbalance in the pathogenesis of idiopathic pulmonary fibrosis. Chin Med J (Engl). 134:261–274. 2021. View Article : Google Scholar

71 

Mao C, Zhang J, Lin S, Jing L, Xiang J, Wang M, Wang B, Xu P, Liu W, Song X and Lv C: Mi RNA -30a inhibits AEC s-II apoptosis by blocking mitochondrial fission dependent on Drp-1. J Cell Mol Med. 18:2404–2416. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Matsushima S and Ishiyama J: MicroRNA-29c regulates apoptosis sensitivity via modulation of the cell-surface death receptor, Fas, in lung fibroblasts. Am J Physiol Lung Cell Mol Physiol. 311:L1050–L1061. 2016. View Article : Google Scholar : PubMed/NCBI

73 

Shetty SK, Tiwari N, Marudamuthu AS, Puthusseri B, Bhandary YP, Fu J, Levin J, Idell S and Shetty S: p53 and miR-34a feedback promotes lung epithelial injury and pulmonary fibrosis. Am J Pathol. 187:1016–1034. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Milanovic M, Fan DNY, Belenki D, Däbritz JHM, Zhao Z, Yu Y, Dörr JR, Dimitrova L, Lenze D, Monteiro Barbosa IA, et al: Senescence-associated reprogramming promotes cancer stemness. Nature. 553:96–100. 2018. View Article : Google Scholar

75 

Wolters PJ, Collard HR and Jones KD: Pathogenesis of idiopathic pulmonary fibrosis. Annu Rev Pathol. 9:157–179. 2014. View Article : Google Scholar :

76 

Hussen BM, Shoorei H, Mohaqiq M, Dinger ME, Hidayat HJ, Taheri M and Ghafouri-Fard S: The impact of Non-coding RNAs in the epithelial to mesenchymal transition. Front Mol Biosci. 8:6651992021. View Article : Google Scholar : PubMed/NCBI

77 

Sun J, Li Q, Lian X, Zhu Z, Chen X, Pei W, Li S, Abbas A, Wang Y and Tian L: MicroRNA-29b mediates lung mesenchymal-epithelial transition and prevents lung fibrosis in the silicosis model. Mol Ther Nucleic Acids. 14:20–31. 2019. View Article : Google Scholar

78 

Qi Y, Zhao A, Yang P, Jin L and Hao C: MiR-34a-5p Attenuates EMT through targeting SMAD4 in silica-induced pulmonary fibrosis. J Cell Mol Med. 24:12219–12224. 2020. View Article : Google Scholar :

79 

Jeong MH, Kim HR, Park YJ, Chung KH and Kim HS: Reprogrammed lung epithelial cells by decrease of miR-451a in extracellular vesicles contribute to aggravation of pulmonary fibrosis. Cell Biol Toxicol. Aug 30–2021.Epub ahead of print. View Article : Google Scholar

80 

Liu Y, Nie H, Ding Y, Hou Y, Mao K and Cui Y: MiRNA, a new treatment strategy for pulmonary fibrosis. Curr Drug Targets. 22:793–802. 2021. View Article : Google Scholar

81 

Rajasekaran S, Rajaguru P and Sudhakar Gandhi PS: MicroRNAs as potential targets for progressive pulmonary fibrosis. Front Pharmacol. 6:2542015. View Article : Google Scholar : PubMed/NCBI

82 

Wei P, Xie Y, Abel PW, Huang Y, Ma Q, Li L, Hao J, Wolff DW, Wei T and Tu Y: Transforming growth factor (TGF)-β1-induced miR-133a inhibits myofibroblast differentiation and pulmonary fibrosis. Cell Death Dis. 10:6702019. View Article : Google Scholar

83 

Xiao T, Zou Z, Xue J, Syed BM, Sun J, Dai X, Shi M, Li J, Wei S, Tang H, et al: LncRNA H19-mediated M2 polarization of macro-phages promotes myofibroblast differentiation in pulmonary fibrosis induced by arsenic exposure. Environ Pollut. 268(Pt A): 1158102021. View Article : Google Scholar

84 

Wang P, Xiao T, Li J, Wang D, Sun J, Cheng C, Ma H, Xue J, Li Y, Zhang A and Liu Q: MiR-21 in EVs from pulmonary epithelial cells promotes myofibroblast differentiation via glycolysis in arsenic-induced pulmonary fibrosis. Environ Pollut. 286:1172592021. View Article : Google Scholar : PubMed/NCBI

85 

Huang Y, Xie Y, Abel PW, Wei P, Plowman J, Toews ML, Strah H, Siddique A, Bailey KL and Tu Y: TGF-β1-induced miR-424 promotes pulmonary myofibroblast differentiation by targeting Slit2 protein expression. Biochem Pharmacol. 180:1141722020. View Article : Google Scholar

86 

Chen X, Shi C, Wang C, Liu W, Chu Y, Xiang Z, Hu K, Dong P and Han X: The role of miR-97-5p in myofibroblast differentiation of LR-MSCs and pulmonary fibrogenesis. Sci Rep. 7:409582017. View Article : Google Scholar

87 

Wang C, Gu S, Cao H, Li Z, Xiang Z, Hu K and Han X: MiR-877-3p targets Smad7 and is associated with myofibroblast differentiation and bleomycin-induced lung fibrosis. Sci Rep. 6:301222016. View Article : Google Scholar : PubMed/NCBI

88 

Akbari Dilmaghnai N, Shoorei H, Sharifi G, Mohaqiq M, Majidpoor J, Dinger ME, Taheri M and Ghafouri-Fard S: Non-coding RNAs modulate function of extracellular matrix proteins. Biomed Pharmacother. 136:1112402021. View Article : Google Scholar : PubMed/NCBI

89 

Li J, Zhang X, Wang T, Li J, Su Q, Zhong C, Chen Z and Liang Y: The MIR155 host gene/microRNA-627/HMGB1/NF-κB loop modulates fibroblast proliferation and extracellular matrix deposition. Life Sci. 269:1190852021. View Article : Google Scholar

90 

Wang YC, Xie H, Zhang YC, Meng QH, Xiong MM, Jia MW, Peng F and Tang DL: Exosomal miR-107 antagonizes profibrotic phenotypes of pericytes by targeting a pathway involving HIF-1 α/Notch1/PDGFR β/YAP1/Twist1 axis in vitro. Am J Physiol-Heart Circ Physiol. 320:H520–H534. 2021. View Article : Google Scholar

91 

Phan THG, Paliogiannis P, Nasrallah GK, Giordo R, Eid AH, Fois AG, Zinellu A, Mangoni AA and Pintus G: Emerging cellular and molecular determinants of idiopathic pulmonary fibrosis. Cell Mol Life Sci. 78:2031–2057. 2021. View Article : Google Scholar

92 

Zhang S, Jia X, Zhang Q, Zhang L, Yang J, Hu C, Shi J, Jiang X, Lu J and Shen H: Neutrophil extracellular traps activate lung fibroblast to induce polymyositis-related interstitial lung diseases via TLR9-miR-7-Smad2 pathway. J Cell Mol Med. 24:1658–1669. 2020. View Article : Google Scholar

93 

Chen YC, Chen BC, Yu CC, Lin SH and Lin CH: MiR-19a, -19b, and -26b Mediate CTGF expression and pulmonary fibroblast differentiation. J Cell Physiol. 231:2236–2248. 2016. View Article : Google Scholar : PubMed/NCBI

94 

Yi M, Liu B, Tang Y, Li F, Qin W and Yuan X: Irradiated human umbilical vein endothelial cells undergo endothelial-mesenchymal transition via the Snail/miR-199a-5p axis to promote the differentiation of fibroblasts into myofibroblasts. Biomed Res Int. 2018:41358062018. View Article : Google Scholar : PubMed/NCBI

95 

Desai O, Winkler J, Minasyan M and Herzog EL: The role of immune and inflammatory cells in idiopathic pulmonary fibrosis. Front Med (Lausanne). 5:432018. View Article : Google Scholar

96 

Heukels P, Moor CC, von der Thüsen JH, Wijsenbeek MS and Kool M: Inflammation and immunity in IPF pathogenesis and treatment. Respir Med. 147:79–91. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Zhu M, An Y, Zhang X, Wang Z and Duan H: Experimental pulmonary fibrosis was suppressed by microRNA-506 through NF-kappa-mediated apoptosis and inflammation. Cell Tissue Res. 378:255–265. 2019. View Article : Google Scholar

98 

Zhou L, Li P, Zhang M, Han B, Chu C, Su X, Li B, Kang H, Ning J, Zhang B, et al: Carbon black nanoparticles induce pulmonary fibrosis through NLRP3 inflammasome pathway modulated by miR-96 targeted FOXO3a. Chemosphere. 241:1250752020. View Article : Google Scholar

99 

Mo Y, Zhang Y, Wan R, Jiang M, Xu Y and Zhang Q: MiR-21 mediates nickel nanoparticle-induced pulmonary injury and fibrosis. Nanotoxicology. 14:1175–1197. 2020. View Article : Google Scholar : PubMed/NCBI

100 

Tan S and Chen S: The mechanism and effect of autophagy, apoptosis, and pyroptosis on the progression of silicosis. Int J Mol Sci. 22:81102021. View Article : Google Scholar :

101 

Zhao H, Wang Y, Qiu T, Liu W and Yao P: Autophagy, an important therapeutic target for pulmonary fibrosis diseases. Clin Chim Acta. 502:139–147. 2020. View Article : Google Scholar

102 

Lv X, Li K and Hu Z: Autophagy and pulmonary fibrosis. Adv Exp Med Biol. 1207:569–579. 2020. View Article : Google Scholar : PubMed/NCBI

103 

Xu T, Yan W, Wu Q, Xu Q, Yuan J, Li Y, Li P, Pan H and Ni C: MiR-326 inhibits inflammation and promotes autophagy in Silica-Induced pulmonary fibrosis through targeting TNFSF14 and PTBP1. Chem Res Toxicol. 32:2192–2203. 2019. View Article : Google Scholar : PubMed/NCBI

104 

Han R, Ji X, Rong R, Li Y, Yao W, Yuan J, Wu Q, Yang J, Yan W, Han L, et al: MiR-449a regulates autophagy to inhibit silica-induced. pulmonary fibrosis through targeting Bcl2. J Mol Med (Berl). 94:1267–1279. 2016. View Article : Google Scholar

105 

Zareba L, Szymanski J, Homoncik Z and Czystowska-Kuzmicz M: EVs from BALF-Mediators of inflammation and potential biomarkers in lung diseases. Int J Mol Sci. 22:36512021. View Article : Google Scholar : PubMed/NCBI

106 

Shaba E, Landi C, Carleo A, Vantaggiato L, Paccagnini E, Gentile M, Bianchi L, Lupetti P, Bargagli E, Prasse A and Bini L: Proteome characterization of BALF extracellular vesicles in idiopathic pulmonary fibrosis: Unveiling undercover molecular pathways. Int J Mol Sci. 22:56962021. View Article : Google Scholar :

107 

Rodríguez M, Silva J, López-Alfonso A, López-Muñiz MB, Peña C, Domínguez G, García JM, López-Gónzalez A, Méndez M, Provencio M, et al: Different exosome cargo from plasma/bronchoalveolar lavage in non-small-cell lung cancer. Genes Chromosomes Cancer. 53:713–724. 2014.PubMed/NCBI

108 

Liu B, Jiang T, Hu X, Liu Z, Zhao L, Liu H, Liu Z and Ma L: Downregulation of microRNA-30a in bronchoalveolar lavage fluid from idiopathic pulmonary fibrosis patients. Mol Med Rep. 18:5799–5806. 2018.PubMed/NCBI

109 

Zhu L, Chen Y, Chen M and Wang W: Mechanism of miR-204-5p in exosomes derived from bronchoalveolar lavage fluid on the progression of pulmonary fibrosis via AP1S2. Ann Transl Med. 9:10682021. View Article : Google Scholar : PubMed/NCBI

110 

Guiot J, Demarche S, Henket M, Paulus V, Graff S, Schleich F, Corhay JL, Louis R and Moermans C: Methodology for Sputum Induction and Laboratory Processing. J Vis Exp. 130:566122017.

111 

Pastor L, Vera E, Marin JM and Sanz-Rubio D: Extracellular Vesicles from Airway Secretions: New insights in lung diseases. Int J Mol Sci. 22:5832021. View Article : Google Scholar :

112 

Guiot J, Henket M, Corhay JL, Moermans C and Louis R: Sputum biomarkers in IPF: Evidence for raised gene expression and protein level of IGFBP-2, IL-8 and MMP-7. PLoS One. 12:e01713442017. View Article : Google Scholar : PubMed/NCBI

113 

Njock MS, Guiot J, Henket MA, Nivelles O, Thiry M, Dequiedt F, Corhay JL, Louis RE and Struman I: Sputum exosomes: Promising biomarkers for idiopathic pulmonary fibrosis. Thorax. 74:309–312. 2019. View Article : Google Scholar

114 

Trappe A, Donnelly SC, McNally P and Coppinger JA: Role of extracellular vesicles in chronic lung disease. Thorax. 76:1047–1056. 2021. View Article : Google Scholar : PubMed/NCBI

115 

Hua Y, Ding Y, Hou Y, Liu Y, Mao K, Cui Y and Nie H: Exosomal MicroRNA: Diagnostic marker and therapeutic tool for lung diseases. Curr Pharm Des. 27:2934–2942. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Minnis P, Kane R, Anglin R, Walsh S, Worrel J, Khan F, Lumsden RV, Whitty S and Keane MP: Serum exosomes from IPF patients display a fibrotic. miRNA profile that correlates to clinical measures of disease severity. Eur Respir Rev. 46(Suppl 59): PA38452015.

117 

Makiguchi T, Yamada M, Yoshioka Y, Sugiura H, Koarai A, Chiba S, Fujino N, Tojo Y, Ota C, Kubo H, et al: Serum extra-cellular vesicular miR-21-5p is a predictor of the prognosis in idiopathic pulmonary fibrosis. Respir Res. 17:1102016. View Article : Google Scholar

118 

Lacedonia D, Scioscia G, Soccio P, Conese M, Catucci L, Palladino GP, Simone F, Quarato CMI, Di Gioia S, Rana R, et al: Downregulation of exosomal let-7d and miR-16 in idiopathic pulmonary fibrosis. BMC Pulm Med. 21:1882021. View Article : Google Scholar : PubMed/NCBI

119 

Kuse N, Kamio K, Azuma A, Matsuda K, Inomata M, Usuki J, Morinaga A, Tanaka T, Kashiwada T, Atsumi K, et al: Exosome-derived microRNA-22 ameliorates. pulmonary fibrosis by regulating fibroblast-to-myofibroblast differentiation in vitro and in vivo. J Nippon Med Sch. 87:118–128. 2020. View Article : Google Scholar

120 

Inomata M, Kamio K, Azuma A, Matsuda K, Usuki J, Morinaga A, Tanaka T, Kashiwada T, Atsumi K, Hayashi H, et al: Rictor-targeting exosomal microRNA-16 ameliorates lung fibrosis by inhibiting the mTORC2-SPARC axis. Exp Cell Res. 398:1124162021. View Article : Google Scholar

121 

Vasse GF, Nizamoglu M, Heijink IH, Schlepütz M, van Rijn P, Thomas MJ, Burgess JK and Melgert BN: Macrophage-stroma interactions in fibrosis: Biochemical, biophysical, and cellular perspectives. J Pathol. 254:344–357. 2021. View Article : Google Scholar : PubMed/NCBI

122 

Kishore A and Petrek M: Roles of macrophage polarization and macrophage-derived. miRNAs in pulmonary fibrosis. Front Immunol. 12:6784572021. View Article : Google Scholar

123 

Yao MY, Zhang WH, Ma WT, Liu QH, Xing LH and Zhao GF: MicroRNA-328 in. exosomes derived from M2 macrophages exerts a promotive effect on the progression of pulmonary fibrosis via FAM13A in a rat model. Exp Mol Med. 51:1–16. 2019. View Article : Google Scholar

124 

Wang D, Hao C, Zhang L, Zhang J, Liu S, Li Y, Qu Y, Zhao Y, Huang R, Wei J and Yao W: Exosomal miR-125a-5p derived from silica-exposed. macrophages induces fibroblast transdifferentiation. Ecotoxicol Environ Saf. 192:1102532020. View Article : Google Scholar

125 

Guiot J, Cambier M, Boeckx A, Henket M, Nivelles O, Gester F, Louis E, Malaise M, Dequiedt F, Louis R, et al: Macrophage-derived exosomes attenuate fibrosis. in airway epithelial cells through delivery of antifibrotic miR-142-3p. Thorax. 75:870–881. 2020. View Article : Google Scholar : PubMed/NCBI

126 

Cruz FF and Rocco PRM: The potential of mesenchymal stem cell therapy for chronic lung disease. Expert Rev Respir Med. 14:31–39. 2020. View Article : Google Scholar

127 

Yang S, Liu P, Jiang Y, Wang Z, Dai H and Wang C: Therapeutic applications of. mesenchymal stem cells in idiopathic pulmonary fibrosis. Front Cell Dev Biol. 9:6396572021. View Article : Google Scholar

128 

Ntolios P, Manoloudi E, Tzouvelekis A, Bouros E, Steiropoulos P, Anevlavis S, Bouros D and Froudarakis M: Longitudinal outcomes of patients. Enrolled. in a phase Ib clinical trial of the adipose-derived stromal cells-stromal vascular fraction in idiopathic pulmonary fibrosis. Clin Respir J. 12:2084–2089. 2018. View Article : Google Scholar

129 

Hade MD, Suire CN and Suo Z: Mesenchymal stem cell-derived exosomes: Applications in regenerative medicine. Cells. 10:19592021. View Article : Google Scholar : PubMed/NCBI

130 

Wan X, Chen S, Fang Y, Zuo W, Cui J and Xie S: Mesenchymal stem cell-derived. extracellular vesicles suppress the fibroblast proliferation by downregulating FZD6 expression in fibroblasts via micrRNA-29b-3p in idiopathic pulmonary fibrosis. J Cell Physiol. 235:8613–8625. 2020. View Article : Google Scholar

131 

Lei X, He N, Zhu L, Zhou M, Zhang K, Wang C, Huang H, Chen S, Li Y, Liu Q, et al: Mesenchymal stem cell-derived extracellular vesicles Attenuate radiation-induced lung injury via miRNA-214-3p. Antioxid Redox Signal. 35:849–862. 2021. View Article : Google Scholar

132 

Zhou J, Lin Y, Kang X, Liu Z, Zhang W and Xu F: MicroRNA-186 in extracellular vesicles. from bone marrow mesenchymal stem cells alleviates idiopathic pulmonary fibrosis via interaction with SOX4 and DKK1. Stem Cell Res Ther. 12:962021. View Article : Google Scholar

133 

Ibrahim A, Ibrahim A and Parimon T: Diagnostic and therapeutic applications of extracellular vesicles in interstitial lung diseases. Diagnostics (Basel). 11:872021. View Article : Google Scholar

134 

Parimon T, Yao C, Habiel DM, Ge L, Bora SA, Brauer R, Evans CM, Xie T, Alonso-Valenteen F, Medina-Kauwe LK, et al: Syndecan-1 promotes lung fibrosis by. regulating epithelial reprogramming through extracellular vesicles. JCI Insight. 4:e1293592019. View Article : Google Scholar

135 

Feng Z, Zhou J, Liu Y, Xia R, Li Q, Yan L, Chen Q, Chen X, Jiang Y, Chao G, et al: Epithelium- and endothelium-derived exosomes regulate the. alveolar macrophages by targeting RGS1 mediated calcium signaling-dependent immune response. Cell Death Differ. 28:2238–2256. 2021. View Article : Google Scholar : PubMed/NCBI

136 

Dinh PC, Paudel D, Brochu H, Popowski KD, Gracieux MC, Cores J, Huang K, Hensley MT, Harrell E, Vandergriff AC, et al: Inhalation of lung spheroid cell secretome and exosomes promotes lung repair in pulmonary fibrosis. Nat Commun. 11:10642020. View Article : Google Scholar :

137 

Kadota T, Fujita Y, Araya J, Watanabe N, Fujimoto S, Kawamoto H, Minagawa S, Hara H, Ohtsuka T, Yamamoto Y, et al: Human bronchial epithelial cell-derived. Extracellular. vesicle therapy for pulmonary fibrosis via inhibition of TGF-β-WNT crosstalk. J Extracell Vesicles. 10:e121242021. View Article : Google Scholar

138 

Liu Z, Yan J, Tong L, Liu S and Zhang Y: The role of exosomes from BALF in lung disease. J Cell Physiol. Aug 13–2021.Epub ahead of print.

139 

Tieu A, Hu K, Gnyra C, Montroy J, Fergusson DA, Allan DS, Stewart DJ, Thébaud B and Lalu MM: Mesenchymal stromal cell extracellular vesicles as. Therapy. for acute and chronic respiratory diseases: A meta-analysis. J Extracell Vesicles. 10:e121412021. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Yang T, Wang J, Zhao J and Liu Y: Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 49: 37, 2022.
APA
Yang, T., Wang, J., Zhao, J., & Liu, Y. (2022). Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). International Journal of Molecular Medicine, 49, 37. https://doi.org/10.3892/ijmm.2022.5092
MLA
Yang, T., Wang, J., Zhao, J., Liu, Y."Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review)". International Journal of Molecular Medicine 49.3 (2022): 37.
Chicago
Yang, T., Wang, J., Zhao, J., Liu, Y."Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review)". International Journal of Molecular Medicine 49, no. 3 (2022): 37. https://doi.org/10.3892/ijmm.2022.5092
Copy and paste a formatted citation
x
Spandidos Publications style
Yang T, Wang J, Zhao J and Liu Y: Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). Int J Mol Med 49: 37, 2022.
APA
Yang, T., Wang, J., Zhao, J., & Liu, Y. (2022). Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review). International Journal of Molecular Medicine, 49, 37. https://doi.org/10.3892/ijmm.2022.5092
MLA
Yang, T., Wang, J., Zhao, J., Liu, Y."Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review)". International Journal of Molecular Medicine 49.3 (2022): 37.
Chicago
Yang, T., Wang, J., Zhao, J., Liu, Y."Current and prospective applications of exosomal microRNAs in pulmonary fibrosis (Review)". International Journal of Molecular Medicine 49, no. 3 (2022): 37. https://doi.org/10.3892/ijmm.2022.5092
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team