Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2022 Volume 49 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2022 Volume 49 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review)

  • Authors:
    • Farid Ghorbaninezhad
    • Patrizia Leone
    • Hajar Alemohammad
    • Basira Najafzadeh
    • Niloufar Sadat Nourbakhsh
    • Marcella Prete
    • Eleonora Malerba
    • Hossein Saeedi
    • Neda Jalili Tabrizi
    • Vito Racanelli
    • Behzad Baradaran
  • View Affiliations / Copyright

    Affiliations: Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, East Azerbaijan 5165665811, Iran, Department of Biomedical Sciences and Human Oncology, ‘Aldo Moro’ University of Bari Medical School, I‑70124 Bari, Italy, Department of Biology, Faculty of Natural Sciences, University of Tabriz, Tabriz, East Azerbaijan 5166616471, Iran, Department of Genetics, Faculty of Basic Sciences, Kazerun Branch, Islamic Azad University, Kazerun, Fars 7319846451, Iran
  • Article Number: 43
    |
    Published online on: February 4, 2022
       https://doi.org/10.3892/ijmm.2022.5098
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Tumor necrosis factor‑α (TNF‑α) is a pleiotropic pro‑inflammatory cytokine that contributes to the pathophysiology of several autoimmune diseases, such as multiple sclerosis, inflammatory bowel disease, rheumatoid arthritis, psoriatic arthritis and systemic lupus erythematosus (SLE). The specific role of TNF‑α in autoimmunity is not yet fully understood however, partially, in a complex disease such as SLE. Through the engagement of the TNF receptor 1 (TNFR1) and TNF receptor 2 (TNFR2), both the two variants, soluble and transmembrane TNF‑α, can exert multiple biological effects according to different settings. They can either function as immune regulators, impacting B‑, T‑ and dendritic cell activity, modulating the autoimmune response, or as pro‑inflammatory mediators, regulating the induction and maintenance of inflammatory processes in SLE. The present study reviews the dual role of TNF‑α, focusing on the different effects that TNF‑α may have on the pathogenesis of SLE. In addition, the efficacy and safety of anti‑TNF‑α therapies in preclinical and clinical trials SLE are discussed.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Micheau O and Tschopp J: Induction of TNF receptor I-mediated apoptosis via two sequential signaling complexes. Cell. 114:181–190. 2003. View Article : Google Scholar : PubMed/NCBI

2 

Graninger WB, Steiner CW, Graninger MT, Aringer M and Smolen JS: Cytokine regulation of apoptosis and Bcl-2 expression in lymphocytes of patients with systemic lupus erythematosus. Cell Death Differ. 7:966–972. 2000. View Article : Google Scholar : PubMed/NCBI

3 

Choy EH and Panayi GS: Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med. 344:907–916. 2001. View Article : Google Scholar : PubMed/NCBI

4 

Sands BE and Kaplan GG: The role of TNFalpha in ulcerative colitis. J Clin Pharmacol. 47:930–941. 2007. View Article : Google Scholar : PubMed/NCBI

5 

Adegbola SO, Sahnan K, Warusavitarne J, Hart A and Tozer P: Anti-TNF therapy in Crohn's disease. Int J Mol Sci. 19:22442018. View Article : Google Scholar : PubMed/NCBI

6 

Celis R, Cuervo A, Ramirez J and Cañete JD: Psoriatic synovitis: Singularity and potential clinical implications. Front Med (Lausanne). 6:142019. View Article : Google Scholar : PubMed/NCBI

7 

Derakhshani A, Asadzadeh Z, Safarpour H, Leone P, Shadbad MA, Heydari A, Baradaran B and Racanelli V: Regulation of CTLA-4 and PD-L1 expression in relapsing-remitting multiple sclerosis patients after treatment with fingolimod, IFNbeta-1α, glatiramer acetate, and dimethyl fumarate drugs. J Pers Med. 11:7212021. View Article : Google Scholar : PubMed/NCBI

8 

Pegoretti V, Baron W, Laman JD and Eisel ULM: Selective modulation of TNF-TNFRs signaling: Insights for multiple sclerosis treatment. Front Immunol. 9:9252018. View Article : Google Scholar : PubMed/NCBI

9 

Chen L, Huang Z, Liao Y, Yang B and Zhang J: Association between tumor necrosis factor polymorphisms and rheumatoid arthritis as well as systemic lupus erythematosus: A meta-analysis. Braz J Med Biol Res. 52:e79272019. View Article : Google Scholar : PubMed/NCBI

10 

Mahto H, Tripathy R, Meher BR, Prusty BK, Sharma M, Deogharia D, Saha AK, Panda AK and Das BK: TNF-α promoter polymorphisms (G-238A and G-308A) are associated with susceptibility to Systemic Lupus Erythematosus (SLE) and P. falciparum malaria: A study in malaria endemic area. Sci Rep. 9:117522019. View Article : Google Scholar : PubMed/NCBI

11 

Ramirez-Bello J, Cadena-Sandoval D, Mendoza-Rincon JF, Barbosa-Cobos RE, Sánchez-Muñoz F, Amezcua-Guerra LM, Sierra-Martínez M and Jiménez-Morales S: Tumor necrosis factor gene polymorphisms are associated with systemic lupus erythematosus susceptibility or lupus nephritis in Mexican patients. Immunol Res. 66:348–354. 2018. View Article : Google Scholar : PubMed/NCBI

12 

Idborg H, Eketjall S, Pettersson S, Gustafsson JT, Zickert A, Kvarnström M, Oke V, Jakobsson PJ, Gunnarsson I and Svenungsson E: TNF-α and plasma albumin as biomarkers of disease activity in systemic lupus erythematosus. Lupus Sci Med. 5:e0002602018. View Article : Google Scholar : PubMed/NCBI

13 

Kehrl JH, Miller A and Fauci AS: Effect of tumor necrosis factor alpha on mitogen-activated human B cells. J Exp Med. 166:786–791. 1987. View Article : Google Scholar : PubMed/NCBI

14 

Boussiotis VA, Nadler LM, Strominger JL and Goldfeld AE: Tumor necrosis factor alpha is an autocrine growth factor for normal human B cells. Proc Natl Acad Sci USA. 91:7007–7011. 1994. View Article : Google Scholar : PubMed/NCBI

15 

Rieckmann P, Tuscano JM and Kehrl JH: Tumor necrosis factor-alpha (TNF-alpha) and interleukin-6 (IL-6) in B-lymphocyte function. Methods. 11:128–132. 1997. View Article : Google Scholar : PubMed/NCBI

16 

Aringer M, Stummvoll GH, Steiner G, Köller M, Steiner CW, Höfler E, Hiesberger H, Smolen JS and Graninger WB: Serum interleukin-15 is elevated in systemic lupus erythematosus. Rheumatology (Oxford). 40:876–881. 2001. View Article : Google Scholar : PubMed/NCBI

17 

Gabay C, Cakir N, Moral F, Roux-Lombard P, Meyer O, Dayer JM, Vischer T, Yazici H and Guerne PA: Circulating levels of tumor necrosis factor soluble receptors in systemic lupus erythematosus are significantly higher than in other rheumatic diseases and correlate with disease activity. J Rheumatol. 24:303–308. 1997.PubMed/NCBI

18 

Studnicka-Benke A, Steiner G, Petera P and Smolen JS: Tumour necrosis factor alpha and its soluble receptors parallel clinical disease and autoimmune activity in systemic lupus erythematosus. Br J Rheumatol. 35:1067–1074. 1996. View Article : Google Scholar : PubMed/NCBI

19 

Svenungsson E, Fei GZ, Jensen-Urstad K, de Faire U, Hamsten A and Frostegard J: TNF-alpha: A link between hypertriglyceridaemia and inflammation in SLE patients with cardiovascular disease. Lupus. 12:454–461. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Svenungsson E, Gunnarsson I, Fei GZ, Lundberg IE, Klareskog L and Frostegård J: Elevated triglycerides and low levels of high-density lipoprotein as markers of disease activity in association with up-regulation of the tumor necrosis factor alpha/tumor necrosis factor receptor system in systemic lupus erythematosus. Arthritis Rheum. 48:2533–2540. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Gordon C and Salmon M: Update on systemic lupus erythematosus: Autoantibodies and apoptosis. Clin Med (Lond). 1:10–14. 2001. View Article : Google Scholar : PubMed/NCBI

22 

Wang CY, Mayo MW, Korneluk RG, Goeddel DV and Baldwin AS Jr: NF-kappaB antiapoptosis: Induction of TRAF1 and TRAF2 and c-IAP1 and c-IAP2 to suppress caspase-8 activation. Science. 281:1680–1683. 1998. View Article : Google Scholar : PubMed/NCBI

23 

Micheau O, Lens S, Gaide O, Alevizopoulos K and Tschopp J: NF-kappaB signals induce the expression of c-FLIP. Mol Cell Biol. 21:5299–5305. 2001. View Article : Google Scholar : PubMed/NCBI

24 

Yan X, Xiao CW, Sun M, Tsang BK and Gibb W: Nuclear factor kappa B activation and regulation of cyclooxygenase type-2 expression in human amnion mesenchymal cells by interleukin-1beta. Biol Reprod. 66:1667–1671. 2002. View Article : Google Scholar : PubMed/NCBI

25 

Jacob CO and McDevitt HO: Tumour necrosis factor-alpha in murine autoimmune ‘lupus’ nephritis. Nature. 331:356–358. 1988. View Article : Google Scholar : PubMed/NCBI

26 

Kontoyiannis D and Kollias G: Accelerated autoimmunity and lupus nephritis in NZB mice with an engineered heterozygous deficiency in tumor necrosis factor. Eur J Immunol. 30:2038–2047. 2000. View Article : Google Scholar : PubMed/NCBI

27 

Gordon C, Ranges GE, Greenspan JS and Wofsy D: Chronic therapy with recombinant tumor necrosis factor-alpha in autoimmune NZB/NZW F1 mice. Clin Immunol Immunopathol. 52:421–434. 1989. View Article : Google Scholar : PubMed/NCBI

28 

Mohan AK, Edwards ET, Coté TR, Siegel JN and Braun MM: Drug-induced systemic lupus erythematosus and TNF-alpha blockers. Lancet. 360:6462002. View Article : Google Scholar : PubMed/NCBI

29 

Charles PJ, Smeenk RJ, Jong JD, Feldmann M and Maini RN: Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: Findings in open-label and randomized placebo-controlled trials. Arthritis Rheum. 43:2383–2390. 2000. View Article : Google Scholar : PubMed/NCBI

30 

Carswell EA, Old LJ, Kassel RL, Green S, Fiore N and Williamson B: An endotoxin-induced serum factor that causes necrosis of tumors. Proc Natl Acad Sci USA. 72:3666–3670. 1975. View Article : Google Scholar : PubMed/NCBI

31 

Spriggs DR, Deutsch S and Kufe DW: Genomic structure, induction, and production of TNF-alpha. Immunol Ser. 56:3–34. 1992.PubMed/NCBI

32 

Shakhov AN, Collart MA, Vassalli P, Nedospasov SA and Jongeneel CV: Kappa B-type enhancers are involved in lipopolysaccharide-mediated transcriptional activation of the tumor necrosis factor alpha gene in primary macrophages. J Exp Med. 171:35–47. 1990. View Article : Google Scholar : PubMed/NCBI

33 

Smith RA and Baglioni C: The active form of tumor necrosis factor is a trimer. J Biol Chem. 262:6951–6954. 1987. View Article : Google Scholar : PubMed/NCBI

34 

Eck MJ and Sprang SR: The structure of tumor necrosis factor-alpha at 2.6 A resolution. Implications for receptor binding. J Biol Chem. 264:17595–17605. 1989. View Article : Google Scholar : PubMed/NCBI

35 

Watts AD, Hunt NH, Wanigasekara Y, Bloomfield G, Wallach D, Roufogalis BD and Chaudhri G: A casein kinase I motif present in the cytoplasmic domain of members of the tumour necrosis factor ligand family is implicated in ‘reverse signalling’. EMBO J. 18:2119–2126. 1999. View Article : Google Scholar : PubMed/NCBI

36 

Vilcek J and Lee TH: Tumor necrosis factor. New insights into the molecular mechanisms of its multiple actions. J Biol Chem. 266:7313–7316. 1991. View Article : Google Scholar : PubMed/NCBI

37 

Cairns CB, Panacek EA, Harken AH and Banerjee A: Bench to bedside: Tumor necrosis factor-alpha: From inflammation to resuscitation. Acad Emerg Med. 7:930–941. 2000. View Article : Google Scholar : PubMed/NCBI

38 

Camussi G, Albano E, Tetta C and Bussolino F: The molecular action of tumor necrosis factor-alpha. Eur J Biochem. 202:3–14. 1991. View Article : Google Scholar : PubMed/NCBI

39 

Yang L, Lindholm K, Konishi Y, Li R and Shen Y: Target depletion of distinct tumor necrosis factor receptor subtypes reveals hippocampal neuron death and survival through different signal transduction pathways. J Neurosci. 22:3025–3032. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Beyaert R and Fiers W: Molecular mechanisms of tumor necrosis factor-induced cytotoxicity. What we do understand and what we do not. FEBS Lett. 340:9–16. 1994. View Article : Google Scholar : PubMed/NCBI

41 

Darnay BG and Aggarwal BB: Signal transduction by tumour necrosis factor and tumour necrosis factor related ligands and their receptors. Ann Rheum Dis. 58 (Suppl 1):I2–I13. 1999. View Article : Google Scholar : PubMed/NCBI

42 

Kalliolias GD and Ivashkiv LB: TNF biology, pathogenic mechanisms and emerging therapeutic strategies. Nat Rev Rheumatol. 12:49–62. 2016. View Article : Google Scholar : PubMed/NCBI

43 

Fiers W: Tumor necrosis factor. Characterization at the molecular, cellular and in vivo level. FEBS Lett. 285:199–212. 1991. View Article : Google Scholar : PubMed/NCBI

44 

Jang DI, Lee AH, Shin HY, Song HR, Park JH, Kang TB, Lee SR and Yang SH: The role of tumor necrosis factor alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in therapeutics. Int J Mol Sci. 22:27192021. View Article : Google Scholar : PubMed/NCBI

45 

Fuchs P, Strehl S, Dworzak M, Himmler A and Ambros PF: Structure of the human TNF receptor 1 (p60) gene (TNFR1) and localization to chromosome 12p13 [corrected]. Genomics. 13:219–224. 1992. View Article : Google Scholar : PubMed/NCBI

46 

Wang XY, Kafka M, Dvilansky A and Nathan I: The roles of protein phosphorylation/dephosphorylation in tumor necrosis factor antitumor effects. J Interferon Cytokine Res. 16:1021–1025. 1996. View Article : Google Scholar : PubMed/NCBI

47 

Kemper O and Wallach D: Cloning and partial characterization of the promoter for the human p55 tumor necrosis factor (TNF) receptor. Gene. 134:209–216. 1993. View Article : Google Scholar : PubMed/NCBI

48 

Desplat-Jego S, Burkly L and Putterman C: Targeting TNF and its family members in autoimmune/inflammatory disease. Mediators Inflamm. 2014:6287482014. View Article : Google Scholar : PubMed/NCBI

49 

Bodmer JL, Schneider P and Tschopp J: The molecular architecture of the TNF superfamily. Trends Biochem Sci. 27:19–26. 2002. View Article : Google Scholar : PubMed/NCBI

50 

Locksley RM, Killeen N and Lenardo MJ: The TNF and TNF receptor superfamilies: Integrating mammalian biology. Cell. 104:487–501. 2001. View Article : Google Scholar : PubMed/NCBI

51 

Grell M: Tumor necrosis factor (TNF) receptors in cellular signaling of soluble and membrane-expressed TNF. J Inflamm. 47:8–17. 1995.PubMed/NCBI

52 

Hsu H, Xiong J and Goeddel DV: The TNF receptor 1-associated protein TRADD signals cell death and NF-kappa B activation. Cell. 81:495–504. 1995. View Article : Google Scholar : PubMed/NCBI

53 

Sedger LM and McDermott MF: TNF and TNF-receptors: From mediators of cell death and inflammation to therapeutic giants-past, present and future. Cytokine Growth Factor Rev. 25:453–472. 2014. View Article : Google Scholar : PubMed/NCBI

54 

Faustman D and Davis M: TNF receptor 2 pathway: Drug target for autoimmune diseases. Nat Rev Drug Discov. 9:482–493. 2010. View Article : Google Scholar : PubMed/NCBI

55 

Grell M, Wajant H, Zimmermann G and Scheurich P: The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci USA. 95:570–575. 1998. View Article : Google Scholar : PubMed/NCBI

56 

Wajant H, Pfizenmaier K and Scheurich P: Tumor necrosis factor signaling. Cell Death Differ. 10:45–65. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Tartaglia LA, Ayres TM, Wong GH and Goeddel DV: A novel domain within the 55 kd TNF receptor signals cell death. Cell. 74:845–853. 1993. View Article : Google Scholar : PubMed/NCBI

58 

Bradley JR: TNF-mediated inflammatory disease. J Pathol. 214:149–160. 2008. View Article : Google Scholar : PubMed/NCBI

59 

Fischer R, Maier O, Naumer M, Krippner-Heidenreich A, Scheurich P and Pfizenmaier K: Ligand-induced internalization of TNF receptor 2 mediated by a di-leucin motif is dispensable for activation of the NFκB pathway. Cell Signal. 23:161–170. 2011. View Article : Google Scholar : PubMed/NCBI

60 

Naude PJ, den Boer JA, Luiten PG and Eisel UL: Tumor necrosis factor receptor cross-talk. FEBS J. 278:888–898. 2011. View Article : Google Scholar : PubMed/NCBI

61 

Marchetti L, Klein M, Schlett K, Pfizenmaier K and Eisel ULM: Tumor necrosis factor (TNF)-mediated neuroprotection against glutamate-induced excitotoxicity is enhanced by N-methyl-D-aspartate receptor activation. Essential role of a TNF receptor 2-mediated phosphatidylinositol 3-kinase-dependent NF-kappa B pathway. J Biol Chem. 279:32869–32881. 2004. View Article : Google Scholar : PubMed/NCBI

62 

Goto N, Tsurumi H, Takemura M, Hara T, Sawada M, Kasahara S, Kanemura N, Yamada T, Shimizu M, Takahashi T, et al: Serum-soluble tumor necrosis factor receptor 2 (sTNF-R2) level determines clinical outcome in patients with aggressive non-Hodgkin's lymphoma. Eur J Haematol. 77:217–225. 2006. View Article : Google Scholar : PubMed/NCBI

63 

Kanayama A, Seth RB, Sun L, Ea CK, Hong M, Shaito A, Chiu YH, Deng L and Chen ZJ: TAB2 and TAB3 activate the NF-kappaB pathway through binding to polyubiquitin chains. Mol Cell. 15:535–548. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Haas TL, Emmerich CH, Gerlach B, Schmukle AC, Cordier SM, Rieser E, Feltham R, Vince J, Warnken U, Wenger T, et al: Recruitment of the linear ubiquitin chain assembly complex stabilizes the TNF-R1 signaling complex and is required for TNF-mediated gene induction. Mol Cell. 36:831–844. 2009. View Article : Google Scholar : PubMed/NCBI

65 

Tokunaga F, Sakata S, Saeki Y, Satomi Y, Kirisako T, Kamei K, Nakagawa T, Kato M, Murata S, Yamaoka S, et al: Involvement of linear polyubiquitylation of NEMO in NF-kappaB activation. Nat Cell Biol. 11:123–132. 2009. View Article : Google Scholar : PubMed/NCBI

66 

Sabio G and Davis RJ: TNF and MAP kinase signalling pathways. Semin Immunol. 26:237–245. 2014. View Article : Google Scholar : PubMed/NCBI

67 

Zeke A, Misheva M, Reményi A and Bogoyevitch MA: JNK signaling: Regulation and functions based on complex protein-protein partnerships. Microbiol Mol Biol Rev. 80:793–835. 2016. View Article : Google Scholar : PubMed/NCBI

68 

Itoh N and Nagata S: A novel protein domain required for apoptosis. Mutational analysis of human fas antigen. J Biol Chem. 268:10932–10937. 1993. View Article : Google Scholar : PubMed/NCBI

69 

Vercammen D, Beyaert R, Denecker G, Goossens V, Loo GV, Declercq W, Grooten J, Fiers W and Vandenabeele P: Inhibition of caspases increases the sensitivity of L929 cells to necrosis mediated by tumor necrosis factor. J Exp Med. 187:1477–1485. 1998. View Article : Google Scholar : PubMed/NCBI

70 

Shalini S, Dorstyn L, Dawar S and Kumar S: Old, new and emerging functions of caspases. Cell Death Differ. 22:526–539. 2015. View Article : Google Scholar : PubMed/NCBI

71 

Samson AL, Zhang Y, Geoghegan ND, Gavin XJ, Davies KA, Mlodzianoski MJ, Whitehead LW, Frank D, Garnish SE, Fitzgibbon C, et al: MLKL trafficking and accumulation at the plasma membrane control the kinetics and threshold for necroptosis. Nat Commun. 11:31512020. View Article : Google Scholar : PubMed/NCBI

72 

Rothe M, Wong SC, Henzel WJ and Goeddel DV: A novel family of putative signal transducers associated with the cytoplasmic domain of the 75 kDa tumor necrosis factor receptor. Cell. 78:681–692. 1994. View Article : Google Scholar : PubMed/NCBI

73 

Borghi A, Haegman M, Fischer R, Carpentier I, Bertrand MJM, Libert C, Afonina IS and Beyaert R: The E3 ubiquitin ligases HOIP and cIAP1 are recruited to the TNFR2 signaling complex and mediate TNFR2-induced canonical NF-kappaB signaling. Biochem Pharmacol. 153:292–298. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Rauert H, Wicovsky A, Muller N, Siegmund D, Spindler V, Waschke J, Kneitz C and Wajant H: Membrane tumor necrosis factor (TNF) induces p100 processing via TNF receptor-2 (TNFR2). J Biol Chem. 285:7394–7404. 2010. View Article : Google Scholar : PubMed/NCBI

75 

Sun SC: The non-canonical NF-κB pathway in immunity and inflammation. Nat Rev Immunol. 17:545–558. 2017. View Article : Google Scholar : PubMed/NCBI

76 

Devin A, Cook A, Lin Y, Rodriguez Y, Kelliher M and Liu Z: The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1: TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity. 12:419–429. 2000. View Article : Google Scholar : PubMed/NCBI

77 

Fotin-Mleczek M, Henkler F, Samel D, Reichwein M, Hausser A, Parmryd I, Scheurich P, Schmid JA and Wajant H: Apoptotic crosstalk of TNF receptors: TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci. 115:2757–2770. 2002. View Article : Google Scholar : PubMed/NCBI

78 

Li X, Yang Y and Ashwell JD: TNF-RII and c-IAP1 mediate ubiquitination and degradation of TRAF2. Nature. 416:345–347. 2002. View Article : Google Scholar : PubMed/NCBI

79 

Tada K, Okazaki T, Sakon S, Kobarai T, Kurosawa K, Yamaoka S, Hashimoto H, Mak TW, Yagita H, Okumura K, et al: Critical roles of TRAF2 and TRAF5 in tumor necrosis factor-induced NF-kappa B activation and protection from cell death. J Biol Chem. 276:36530–36534. 2001. View Article : Google Scholar : PubMed/NCBI

80 

Vince JE, Pantaki D, Feltham R, Mace PD, Cordier SM, Schmukle AC, Davidson AJ, Callus BA, Wong WWL, Gentle IE, et al: TRAF2 must bind to cellular inhibitors of apoptosis for tumor necrosis factor (tnf) to efficiently activate nf-{kappa}b and to prevent tnf-induced apoptosis. J Biol Chem. 284:35906–35915. 2009. View Article : Google Scholar : PubMed/NCBI

81 

Liu ZG, Hsu H, Goeddel DV and Karin M: Dissection of TNF receptor 1 effector functions: JNK activation is not linked to apoptosis while NF-kappaB activation prevents cell death. Cell. 87:565–576. 1996. View Article : Google Scholar : PubMed/NCBI

82 

Ridgley LA, Anderson AE and Pratt AG: What are the dominant cytokines in early rheumatoid arthritis? Curr Opin Rheumatol. 30:207–214. 2018. View Article : Google Scholar : PubMed/NCBI

83 

Kobayashi M, Squires GR, Mousa A, Tanzer M, Zukor DJ, Antoniou J, Feige U and Poole AR: Role of interleukin-1 and tumor necrosis factor alpha in matrix degradation of human osteoarthritic cartilage. Arthritis Rheum. 52:128–135. 2005. View Article : Google Scholar : PubMed/NCBI

84 

Mirza F, Lorenzo J, Drissi H, Lee FY and Soung DY: Dried plum alleviates symptoms of inflammatory arthritis in TNF transgenic mice. J Nutr Biochem. 52:54–61. 2018. View Article : Google Scholar : PubMed/NCBI

85 

Chen W, Li Z, Wang Z, Gao H, Ding J and He Z: Intraarticular injection of infliximab-loaded thermosensitive hydrogel alleviates pain and protects cartilage in rheumatoid arthritis. J Pain Res. 13:3315–3329. 2020. View Article : Google Scholar : PubMed/NCBI

86 

Rioja I, Bush KA, Buckton JB, Dickson MC and Life PF: Joint cytokine quantification in two rodent arthritis models: Kinetics of expression, correlation of mRNA and protein levels and response to prednisolone treatment. Clin Exp Immunol. 137:65–73. 2004. View Article : Google Scholar : PubMed/NCBI

87 

Williams RO, Marinova-Mutafchieva L, Feldmann M and Maini RN: Evaluation of TNF-alpha and IL-1 blockade in collagen-induced arthritis and comparison with combined anti-TNF-alpha/anti-CD4 therapy. J Immunol. 165:7240–7245. 2000. View Article : Google Scholar : PubMed/NCBI

88 

Yu D, Ye X, Che R, Wu Q, Qi J, Song L, Guo X, Zhang S, Wu H, Ren G and Li D: FGF21 exerts comparable pharmacological efficacy with Adalimumab in ameliorating collagen-induced rheumatoid arthritis by regulating systematic inflammatory response. Biomed Pharmacother. 89:751–760. 2017. View Article : Google Scholar : PubMed/NCBI

89 

Wu AJ, Hua H, Munson SH and McDevitt HO: Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc Natl Acad Sci USA. 99:12287–12292. 2002. View Article : Google Scholar : PubMed/NCBI

90 

Ehrenstein MR, Evans JG, Singh A, Moore S, Warnes G, Isenberg DA and Mauri C: Compromised function of regulatory T cells in rheumatoid arthritis and reversal by anti-TNFalpha therapy. J Exp Med. 200:277–285. 2004. View Article : Google Scholar : PubMed/NCBI

91 

Louis E: The immuno-inflammatory reaction in Crohn's disease and ulcerative colitis: Characterisation, genetics and clinical application. Focus on TNF alpha. Acta Gastroenterol Belg. 64:1–5. 2001.PubMed/NCBI

92 

Gottlieb AB, Chamian F, Masud S, Cardinale I, Abello MV, Lowes MA, Chen F, Magliocco M and Krueger JG: TNF inhibition rapidly down-regulates multiple proinflammatory pathways in psoriasis plaques. J Immunol. 175:2721–2729. 2005. View Article : Google Scholar : PubMed/NCBI

93 

Catalina MD, Owen KA, Labonte AC, Grammer AC and Lipsky PE: The pathogenesis of systemic lupus erythematosus: Harnessing big data to understand the molecular basis of lupus. J Autoimmun. 110:1023592020. View Article : Google Scholar : PubMed/NCBI

94 

Kwon YC, Chun S, Kim K and Mak A: Update on the genetics of systemic lupus erythematosus: Genome-wide association studies and beyond. Cells. 8:11802019. View Article : Google Scholar : PubMed/NCBI

95 

Marion TN and Postlethwaite AE: Chance, genetics, and the heterogeneity of disease and pathogenesis in systemic lupus erythematosus. Semin Immunopathol. 36:495–517. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Hedrich CM: Epigenetics in SLE. Curr Rheumatol Rep. 19:582017. View Article : Google Scholar : PubMed/NCBI

97 

Pan L, Lu MP, Wang JH, Xu M and Yang SR: Immunological pathogenesis and treatment of systemic lupus erythematosus. World J Pediatr. 16:19–30. 2020. View Article : Google Scholar : PubMed/NCBI

98 

Maningding E, Dall'Era M, Trupin L, Murphy LB and Yazdany J: Racial and ethnic differences in the prevalence and time to onset of manifestations of systemic lupus erythematosus: The California lupus surveillance project. Arthritis Care Res (Hoboken). 72:622–629. 2020. View Article : Google Scholar : PubMed/NCBI

99 

Christou EAA, Banos A, Kosmara D, Bertsias GK and Boumpas DT: Sexual dimorphism in SLE: Above and beyond sex hormones. Lupus. 28:3–10. 2019. View Article : Google Scholar : PubMed/NCBI

100 

Barbhaiya M and Costenbader KH: Environmental exposures and the development of systemic lupus erythematosus. Curr Opin Rheumatol. 28:497–505. 2016. View Article : Google Scholar : PubMed/NCBI

101 

Constantin MM, Nita IE, Olteanu R, Constantin T, Bucur S, Matei C and Raducan A: Significance and impact of dietary factors on systemic lupus erythematosus pathogenesis. Exp Ther Med. 17:1085–1090. 2019.PubMed/NCBI

102 

Luo S, Long H and Lu Q: Recent advances in understanding pathogenesis and therapeutic strategies of systemic lupus erythematosus. Int Immunopharmacol. 89:1070282020. View Article : Google Scholar : PubMed/NCBI

103 

Parks CG, de Souza Espindola Santos A, Barbhaiya M and Costenbader KH: Understanding the role of environmental factors in the development of systemic lupus erythematosus. Best Pract Res Clin Rheumatol. 31:306–320. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Habib HM, Taher TE, Isenberg DA and Mageed RA: Enhanced propensity of T lymphocytes in patients with systemic lupus erythematosus to apoptosis in the presence of tumour necrosis factor alpha. Scand J Rheumatol. 38:112–120. 2009. View Article : Google Scholar : PubMed/NCBI

105 

Gómez D, Correa PA, Gómez LM, Cadena J, Molina JF and Anaya JM: Th1/Th2 cytokines in patients with systemic lupus erythematosus: Is tumor necrosis factor alpha protective? Semin Arthritis Rheum. 33:404–413. 2004. View Article : Google Scholar : PubMed/NCBI

106 

Zhu L, Yang X, Chen W, Li X, Ji Y, Mao H, Nie J and Yu X: Decreased expressions of the TNF-alpha signaling adapters in peripheral blood mononuclear cells (PBMCs) are correlated with disease activity in patients with systemic lupus erythematosus. Clin Rheumatol. 26:1481–1489. 2007. View Article : Google Scholar : PubMed/NCBI

107 

McCarthy EM, Smith S, Lee RZ, Cunnane G, Doran MF, Donnelly S, Howard D, O'Connell P, Kearns G, Gabhann JN and Jefferies CA: The association of cytokines with disease activity and damage scores in systemic lupus erythematosus patients. Rheumatology (Oxford). 53:1586–1594. 2014. View Article : Google Scholar : PubMed/NCBI

108 

Prete M, Leone P, Frassanito MA, Desantis V, Marasco C, Cicco S, Dammacco F, Vacca A and Racanelli V: Belimumab restores Treg/Th17 balance in patients with refractory systemic lupus erythematosus. Lupus. 27:1926–1935. 2018. View Article : Google Scholar : PubMed/NCBI

109 

Su DL, Lu ZM, Shen MN, Li X and Sun LY: Roles of pro- and anti-inflammatory cytokines in the pathogenesis of SLE. J Biomed Biotechnol. 2012:3471412012. View Article : Google Scholar : PubMed/NCBI

110 

Tahernia L, Alimadadi H, Tahghighi F, Amini Z and Ziaee V: Frequency and type of hepatic and gastrointestinal involvement in juvenile systemic lupus erythematosus. Autoimmune Dis. 2017:80972732017.PubMed/NCBI

111 

Yap DY and Lai KN: The role of cytokines in the pathogenesis of systemic lupus erythematosus-from bench to bedside. Nephrology (Carlton). 18:243–255. 2013. View Article : Google Scholar : PubMed/NCBI

112 

Takemura T, Yoshioka K, Murakami K, Akano N, Okada M, Aya N and Maki S: Cellular localization of inflammatory cytokines in human glomerulonephritis. Virchows Arch. 424:459–464. 1994. View Article : Google Scholar : PubMed/NCBI

113 

Malide D, Russo P and Bendayan M: Presence of tumor necrosis factor alpha and interleukin-6 in renal mesangial cells of lupus nephritis patients. Hum Pathol. 26:558–564. 1995. View Article : Google Scholar : PubMed/NCBI

114 

Neale TJ, Ruger BM, Macaulay H, Dunbar PR, Hasan Q, Bourke A, Murray-McIntosh RP and Kitching AR: Tumor necrosis factor-alpha is expressed by glomerular visceral epithelial cells in human membranous nephropathy. Am J Pathol. 146:1444–1454. 1995.PubMed/NCBI

115 

Herrera-Esparza R, Barbosa-Cisneros O, Villalobos-Hurtado R and Avalos-Díaz E: Renal expression of IL-6 and TNFalpha genes in lupus nephritis. Lupus. 7:154–158. 1998. View Article : Google Scholar : PubMed/NCBI

116 

Aringer M and Smolen JS: The role of tumor necrosis factor-alpha in systemic lupus erythematosus. Arthritis Res Ther. 10:2022008. View Article : Google Scholar : PubMed/NCBI

117 

D'Alfonso S, Colombo G, Bella SD, Scorza R and Momigliano-Richiardi P: Association between polymorphisms in the TNF region and systemic lupus erythematosus in the Italian population. Tissue Antigens. 47:551–555. 1996. View Article : Google Scholar : PubMed/NCBI

118 

Dourmishev L, Kamenarska Z, Hristova M, Dodova R, Kaneva R and Mitev V: Association of TNF-α polymorphisms with adult dermatomyositis and systemic lupus erythematosus in Bulgarian patients. Int J Dermatol. 51:1467–1473. 2012. View Article : Google Scholar : PubMed/NCBI

119 

Lee YH, Harley JB and Nath SK: Meta-analysis of TNF-alpha promoter-308 A/G polymorphism and SLE susceptibility. Eur J Hum Genet. 14:364–371. 2006. View Article : Google Scholar : PubMed/NCBI

120 

Lin YJ, Chen RH, Wan L, Sheu JC, Huang CM, Lin CW, Chen SY, Lai CH, Lan YC, Hsueh KC, et al: Association of TNF-alpha gene polymorphisms with systemic lupus erythematosus in Taiwanese patients. Lupus. 18:974–979. 2009. View Article : Google Scholar : PubMed/NCBI

121 

Zúñiga J, Vargas-Alarcón G, Hernández-Pacheco G, Portal-Celhay C, Yamamoto-Furusho JK and Granados J: Tumor necrosis factor-alpha promoter polymorphisms in Mexican patients with systemic lupus erythematosus (SLE). Genes Immun. 2:363–366. 2001. View Article : Google Scholar : PubMed/NCBI

122 

Davas EM, Tsirogianni A, Kappou I, Karamitsos D, Economidou I and Dantis PC: Serum IL-6, TNFalpha, p55 srTNFalpha, p75srTNFalpha, srIL-2alpha levels and disease activity in systemic lupus erythematosus. Clin Rheumatol. 18:17–22. 1999. View Article : Google Scholar : PubMed/NCBI

123 

Adrianto I, Wen F, Templeton A, Wiley G, King JB, Lessard CJ, Bates JS, Hu Y, Kelly JA, Kaufman KM, et al: Association of a functional variant downstream of TNFAIP3 with systemic lupus erythematosus. Nat Genet. 43:253–258. 2011. View Article : Google Scholar : PubMed/NCBI

124 

Bates JS, Lessard CJ, Leon JM, Nguyen T, Battiest LJ, Rodgers J, Kaufman KM, James JA, Gilkeson GS, Kelly JA, et al: Meta-analysis and imputation identifies a 109 kb risk haplotype spanning TNFAIP3 associated with lupus nephritis and hematologic manifestations. Genes Immun. 10:470–477. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Goulielmos GN, Zervou MI, Vazgiourakis VM, Ghodke-Puranik Y, Garyfallos A and Niewold TB: The genetics and molecular pathogenesis of systemic lupus erythematosus (SLE) in populations of different ancestry. Gene. 668:59–72. 2018. View Article : Google Scholar : PubMed/NCBI

126 

Manku H, Langefeld CD, Guerra SG, Malik TH, Alarcon-Riquelme M, Anaya JM, Bae SC, Boackle SA, Brown EE, Criswell LA, et al: Trans-ancestral studies fine map the SLE-susceptibility locus TNFSF4. PLoS Genet. 9:e10035542013. View Article : Google Scholar : PubMed/NCBI

127 

Komata T, Tsuchiya N, Matsushita M, Hagiwara K and Tokunaga K: Association of tumor necrosis factor receptor 2 (TNFR2) polymorphism with susceptibility to systemic lupus erythematosus. Tissue Antigens. 53:527–533. 1999. View Article : Google Scholar : PubMed/NCBI

128 

Aderka D, Wysenbeek A, Engelmann H, Cope AP, Brennan F, Molad Y, Hornik V, Levo Y, Maini RN and Feldmann M: Correlation between serum levels of soluble tumor necrosis factor receptor and disease activity in systemic lupus erythematosus. Arthritis Rheum. 36:1111–1120. 1993. View Article : Google Scholar : PubMed/NCBI

129 

Munroe ME, Vista ES, Guthridge JM, Thompson LF, Merrill JT and James JA: Proinflammatory adaptive cytokine and shed tumor necrosis factor receptor levels are elevated preceding systemic lupus erythematosus disease flare. Arthritis Rheumatol. 66:1888–1899. 2014. View Article : Google Scholar : PubMed/NCBI

130 

Horiuchi T, Mitoma H, Harashima S, Tsukamoto H and Shimoda T: Transmembrane TNF-alpha: Structure, function and interaction with anti-TNF agents. Rheumatology (Oxford). 49:1215–1228. 2010. View Article : Google Scholar : PubMed/NCBI

131 

Patel M, Oni L, Midgley A, Smith E, Tullus K, Marks SD, Jones CA, Pilkington C and Beresford MW: Increased concentration of plasma TNFR1 and TNFR2 in paediatric lupus nephritis. Lupus. 25:1040–1044. 2016. View Article : Google Scholar : PubMed/NCBI

132 

Ida H, Kawasaki E, Miyashita T, Tanaka F, Kamachi M, Izumi Y, Huang M, Tamai M, Origuchi T, Kawakami A, et al: A novel mutation (T61I) in the gene encoding tumour necrosis factor receptor superfamily 1A (TNFRSF1A) in a Japanese patient with tumour necrosis factor receptor-associated periodic syndrome (TRAPS) associated with systemic lupus erythematosus. Rheumatology (Oxford). 43:1292–1299. 2004. View Article : Google Scholar : PubMed/NCBI

133 

Al-Ansari AS, Ollier WE, Villarreal J, Ordi J, The LS and Hajeer AH: Tumor necrosis factor receptor II (TNFRII) exon 6 polymorphism in systemic lupus erythematosus. Tissue Antigens. 55:97–99. 2000. View Article : Google Scholar : PubMed/NCBI

134 

Chadha S, Miller K, Farwell L, Sacks S, Daly MJ, Rioux JD and Vyse TJ: Haplotype analysis of tumour necrosis factor receptor genes in 1p36: No evidence for association with systemic lupus erythematosus. Eur J Hum Genet. 14:69–78. 2006. View Article : Google Scholar : PubMed/NCBI

135 

Sullivan KE, Piliero LM, Goldman D and Petri MA: A TNFR2 3′ flanking region polymorphism in systemic lupus erythematosus. Genes Immun. 1:225–227. 2000. View Article : Google Scholar : PubMed/NCBI

136 

Fairhurst AM, Wandstrat AE and Wakeland EK: Systemic lupus erythematosus: Multiple immunological phenotypes in a complex genetic disease. Adv Immunol. 92:1–69. 2006. View Article : Google Scholar : PubMed/NCBI

137 

Li W, Titov AA and Morel L: An update on lupus animal models. Curr Opin Rheumatol. 29:434–441. 2017. View Article : Google Scholar : PubMed/NCBI

138 

Aringer M and Smolen JS: Therapeutic blockade of TNF in patients with SLE-promising or crazy? Autoimmun Rev. 11:321–325. 2012. View Article : Google Scholar : PubMed/NCBI

139 

Helyer BJ and Howie JB: Renal disease associated with positive lupus erythematosus tests in a cross-bred strain of mice. Nature. 197:1971963. View Article : Google Scholar : PubMed/NCBI

140 

Brennan DC, Yui MA, Wuthrich RP and Kelley VE: Tumor necrosis factor and IL-1 in New Zealand black/white mice. Enhanced gene expression and acceleration of renal injury. J Immunol. 143:3470–3475. 1989.PubMed/NCBI

141 

Boswell JM, Yui MA, Burt DW and Kelley VE: Increased tumor necrosis factor and IL-1 beta gene expression in the kidneys of mice with lupus nephritis. J Immunol. 141:3050–3054. 1988.PubMed/NCBI

142 

Yokoyama H, Kreft B and Kelley VR: Biphasic increase in circulating and renal TNF-alpha in MRL-lpr mice with differing regulatory mechanisms. Kidney Int. 47:122–130. 1995. View Article : Google Scholar : PubMed/NCBI

143 

Tsai CY, Wu TH, Huang SF, Sun KH, Hsieh SC, Han SH, Yu HS and Yu CL: Abnormal splenic and thymic IL-4 and TNF-alpha expression in MRL-lpr/lpr mice. Scand J Immunol. 41:157–163. 1995. View Article : Google Scholar : PubMed/NCBI

144 

Deguchi Y and Kishimoto S: Tumour necrosis factor/cachectin plays a key role in autoimmune pulmonary inflammation in lupus-prone mice. Clin Exp Immunol. 85:392–395. 1991. View Article : Google Scholar : PubMed/NCBI

145 

Su X, Zhou T, Yang P, Edwards CK III and Mountz JD: Reduction of arthritis and pneumonitis in motheaten mice by soluble tumor necrosis factor receptor. Arthritis Rheum. 41:139–149. 1998. View Article : Google Scholar : PubMed/NCBI

146 

Bethunaickan R, Sahu R, Liu Z, Tang YT, Huang W, Edegbe O, Tao H, Ramanujam M, Madaio MP and Davidson A: Anti-tumor necrosis factor alpha treatment of interferon-α-induced murine lupus nephritis reduces the renal macrophage response but does not alter glomerular immune complex formation. Arthritis Rheum. 64:3399–3408. 2012. View Article : Google Scholar : PubMed/NCBI

147 

Monaco C, Nanchahal J, Taylor P and Feldmann M: Anti-TNF therapy: Past, present and future. Int Immunol. 27:55–62. 2015. View Article : Google Scholar : PubMed/NCBI

148 

Williams EL, Gadola S and Edwards CJ: Anti-TNF-induced lupus. Rheumatology (Oxford). 48:716–720. 2009. View Article : Google Scholar : PubMed/NCBI

149 

Aghdashi MA, Khadir M and Dinparasti-Saleh R: Antinuclear antibodies and lupus-like manifestations in rheumatoid arthritis and ankylosing spondylitis patients at 4 months' follow-up after treatment with infliximab and etanercept. Curr Rheumatol Rev. 16:61–66. 2020. View Article : Google Scholar : PubMed/NCBI

150 

Gonnet-Gracia C, Barnetche T, Richez C, Blanco P, Dehais J and Schaeverbeke T: Anti-nuclear antibodies, anti-DNA and C4 complement evolution in rheumatoid arthritis and ankylosing spondylitis treated with TNF-alpha blockers. Clin Exp Rheumatol. 26:401–407. 2008.PubMed/NCBI

151 

Ramos-Casals M, Brito-Zeron P, Munoz S, Soria N, Galiana D, Bertolaccini L, Cuadrado MJ and Khamashta MA: Autoimmune diseases induced by TNF-targeted therapies: Analysis of 233 cases. Medicine (Baltimore). 86:242–251. 2007. View Article : Google Scholar : PubMed/NCBI

152 

Santos CS, Castro CA, Morales CM and Álvarez ED: Anti-TNF-α-induced lupus syndrome: Two case reports and review of current literature. Z Rheumatol. 80:481–486. 2021. View Article : Google Scholar : PubMed/NCBI

153 

Stokes MB, Foster K, Markowitz GS, Ebrahimi F, Hines W, Kaufman D, Moore B, Wolde D and D'Agati VD: Development of glomerulonephritis during anti-TNF-alpha therapy for rheumatoid arthritis. Nephrol Dial Transplant. 20:1400–1406. 2005. View Article : Google Scholar : PubMed/NCBI

154 

Mor A, Bingham CO III, Barisoni L, Lydon E and Belmont HM: Proliferative lupus nephritis and leukocytoclastic vasculitis during treatment with etanercept. J Rheumatol. 32:740–743. 2005.PubMed/NCBI

155 

Aringer M, Graninger WB, Steiner G and Smolen JS: Safety and efficacy of tumor necrosis factor alpha blockade in systemic lupus erythematosus: An open-label study. Arthritis Rheum. 50:3161–3169. 2004. View Article : Google Scholar : PubMed/NCBI

156 

Aringer M, Steiner G, Graninger WB, Höfler E, Steiner CW and Smolen JS: Effects of short-term infliximab therapy on autoantibodies in systemic lupus erythematosus. Arthritis Rheum. 56:274–279. 2007. View Article : Google Scholar : PubMed/NCBI

157 

Aringer M, Houssiau F, Gordon C, Graninger WB, Voll RE, Rath E, Steiner G and Smolen JS: Adverse events and efficacy of TNF-alpha blockade with infliximab in patients with systemic lupus erythematosus: long-term follow-up of 13 patients. Rheumatology (Oxford). 48:1451–1454. 2009. View Article : Google Scholar : PubMed/NCBI

158 

Matsumura R, Umemiya K, Sugiyama T, Sueishi M, Umibe T, Ichikawa K and Yoshimura M; Study Group on Nephrology at the National Hospital Organization of Japan, : Anti-tumor necrosis factor therapy in patients with difficult-to-treat lupus nephritis: A prospective series of nine patients. Clin Exp Rheumatol. 27:416–421. 2009.PubMed/NCBI

159 

Hayat SJ and Uppal SS: Therapeutic efficacy and safety profile of infliximab in active systemic lupus erythematosus. Mod Rheumatol. 17:174–177. 2007. View Article : Google Scholar : PubMed/NCBI

160 

Uppal SS, Hayat SJ and Raghupathy R: Efficacy and safety of infliximab in active SLE: A pilot study. Lupus. 18:690–697. 2009. View Article : Google Scholar : PubMed/NCBI

161 

Moreland LW, Baumgartner SW, Schiff MH, Tindall EA, Fleischmann RM, Weaver AL, Ettlinger RE, Cohen S, Koopman WJ, Mohler K, et al: Treatment of rheumatoid arthritis with a recombinant human tumor necrosis factor receptor (p75)-Fc fusion protein. N Engl J Med. 337:141–147. 1997. View Article : Google Scholar : PubMed/NCBI

162 

Anderson PJ: Tumor necrosis factor inhibitors: Clinical implications of their different immunogenicity profiles. Semin Arthritis Rheum. 34 5 Suppl 1:S19–S22. 2005. View Article : Google Scholar : PubMed/NCBI

163 

Cortes-Hernandez J, Egri N, Vilardell-Tarres M and Ordi-Ros J: Etanercept in refractory lupus arthritis: An observational study. Semin Arthritis Rheum. 44:672–679. 2015. View Article : Google Scholar : PubMed/NCBI

164 

Norman R, Greenberg RG and Jackson JM: Case reports of etanercept in inflammatory dermatoses. J Am Acad Dermatol. 54 3 Suppl 2:S139–S142. 2006. View Article : Google Scholar : PubMed/NCBI

165 

Yang BB, Xiao H, Li XJ and Zheng M: Safety and efficacy of etanercept-methotrexate combination therapy in patients with rhupus: An observational study of non-glucocorticoid treatment for rheumatic diseases. Discov Med. 25:14–20. 2018.PubMed/NCBI

166 

Danion F, Sparsa L, Arnaud L, Alsaleh G, Lefebvre F, Gies V, Martin T, Lukas C, Durckel J, Ardizzone M, et al: Long-term efficacy and safety of antitumour necrosis factor alpha treatment in rhupus: An open-label study of 15 patients. RMD Open. 3:e0005552017. View Article : Google Scholar : PubMed/NCBI

167 

Micheloud D, Nuno L, Rodriguez-Mahou M, Sánchez-Ramón S, Ortega MC, Aguarón A, Junco E, Carbone J, Fernández-Cruzl E, Carreño L and López-Longo FJ: Efficacy and safety of Etanercept, high-dose intravenous gammaglobulin and plasmapheresis combined therapy for lupus diffuse proliferative nephritis complicating pregnancy. Lupus. 15:881–885. 2006. View Article : Google Scholar : PubMed/NCBI

168 

Mustafa G, Mahrosh HS, Salman M, Sharif S, Jabeen R, Majeed T and Tahir H: Identification of peptides as novel inhibitors to target IFN-γ, IL-3, and TNF-α in systemic lupus erythematosus. Biomed Res Int. 2021:11240552021. View Article : Google Scholar : PubMed/NCBI

169 

Bongartz T, Sutton AJ, Sweeting MJ, Buchan I, Matteson EL and Montori V: Anti-TNF antibody therapy in rheumatoid arthritis and the risk of serious infections and malignancies: Systematic review and meta-analysis of rare harmful effects in randomized controlled trials. JAMA. 295:2275–2285. 2006. View Article : Google Scholar : PubMed/NCBI

170 

Tack CJ, Kleijwegt FS, Van Riel PL and Roep BO: Development of type 1 diabetes in a patient treated with anti-TNF-alpha therapy for active rheumatoid arthritis. Diabetologia. 52:1442–1444. 2009. View Article : Google Scholar : PubMed/NCBI

171 

Bloom BJ: Development of diabetes mellitus during etanercept therapy in a child with systemic-onset juvenile rheumatoid arthritis. Arthritis Rheum. 43:2606–2608. 2000. View Article : Google Scholar : PubMed/NCBI

172 

Kollias G and Kontoyiannis D: Role of TNF/TNFR in autoimmunity: Specific TNF receptor blockade may be advantageous to anti-TNF treatments. Cytokine Growth Factor Rev. 13:315–321. 2002. View Article : Google Scholar : PubMed/NCBI

173 

Zhang N, Wang Z and Zhao Y: Selective inhibition of Tumor necrosis factor receptor-1 (TNFR1) for the treatment of autoimmune diseases. Cytokine Growth Factor Rev. 55:80–85. 2020. View Article : Google Scholar : PubMed/NCBI

174 

Van Hauwermeiren F, Armaka M, Karagianni N, Kranidioti K, Vandenbroucke RE, Loges S, Roy MV, Staelens J, Puimège L, Palagani A, et al: Safe TNF-based antitumor therapy following p55TNFR reduction in intestinal epithelium. J Clin Invest. 123:2590–2603. 2013. View Article : Google Scholar : PubMed/NCBI

175 

Puimege L, Libert C and Van Hauwermeiren F: Regulation and dysregulation of tumor necrosis factor receptor-1. Cytokine Growth Factor Rev. 25:285–300. 2014. View Article : Google Scholar : PubMed/NCBI

176 

Vinay DS and Kwon BS: The tumour necrosis factor/TNF receptor superfamily: Therapeutic targets in autoimmune diseases. Clin Exp Immunol. 164:145–157. 2011. View Article : Google Scholar : PubMed/NCBI

177 

Wu T, Xie C, Wang HW, Zhou XJ, Schwartz N, Calixto S, Mackay M, Aranow C, Putterman C and Mohan C: Elevated urinary VCAM-1, P-selectin, soluble TNF receptor-1, and CXC chemokine ligand 16 in multiple murine lupus strains and human lupus nephritis. J Immunol. 179:7166–7175. 2007. View Article : Google Scholar : PubMed/NCBI

178 

Deng GM, Liu L and Tsokos GC: Targeted tumor necrosis factor receptor I preligand assembly domain improves skin lesions in MRL/lpr mice. Arthritis Rheum. 62:2424–2431. 2010. View Article : Google Scholar : PubMed/NCBI

179 

Jacob N, Yang H, Pricop L, Liu Y, Gao X, Zheng SG, Wang J, Gao HX, Putterman C, Koss MN, et al: Accelerated pathological and clinical nephritis in systemic lupus erythematosus-prone New Zealand mixed 2328 mice doubly deficient in TNF receptor 1 and TNF receptor 2 via a Th17-associated pathway. J Immunol. 182:2532–2541. 2009. View Article : Google Scholar : PubMed/NCBI

180 

Zhou T, Edwards CK III, Yang P, Wang Z, Bluethmann H and Mountz JD: Greatly accelerated lymphadenopathy and autoimmune disease in lpr mice lacking tumor necrosis factor receptor I. J Immunol. 156:2661–2665. 1996.PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ghorbaninezhad F, Leone P, Alemohammad H, Najafzadeh B, Nourbakhsh NS, Prete M, Malerba E, Saeedi H, Tabrizi NJ, Racanelli V, Racanelli V, et al: Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int J Mol Med 49: 43, 2022.
APA
Ghorbaninezhad, F., Leone, P., Alemohammad, H., Najafzadeh, B., Nourbakhsh, N.S., Prete, M. ... Baradaran, B. (2022). Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). International Journal of Molecular Medicine, 49, 43. https://doi.org/10.3892/ijmm.2022.5098
MLA
Ghorbaninezhad, F., Leone, P., Alemohammad, H., Najafzadeh, B., Nourbakhsh, N. S., Prete, M., Malerba, E., Saeedi, H., Tabrizi, N. J., Racanelli, V., Baradaran, B."Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review)". International Journal of Molecular Medicine 49.4 (2022): 43.
Chicago
Ghorbaninezhad, F., Leone, P., Alemohammad, H., Najafzadeh, B., Nourbakhsh, N. S., Prete, M., Malerba, E., Saeedi, H., Tabrizi, N. J., Racanelli, V., Baradaran, B."Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review)". International Journal of Molecular Medicine 49, no. 4 (2022): 43. https://doi.org/10.3892/ijmm.2022.5098
Copy and paste a formatted citation
x
Spandidos Publications style
Ghorbaninezhad F, Leone P, Alemohammad H, Najafzadeh B, Nourbakhsh NS, Prete M, Malerba E, Saeedi H, Tabrizi NJ, Racanelli V, Racanelli V, et al: Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). Int J Mol Med 49: 43, 2022.
APA
Ghorbaninezhad, F., Leone, P., Alemohammad, H., Najafzadeh, B., Nourbakhsh, N.S., Prete, M. ... Baradaran, B. (2022). Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review). International Journal of Molecular Medicine, 49, 43. https://doi.org/10.3892/ijmm.2022.5098
MLA
Ghorbaninezhad, F., Leone, P., Alemohammad, H., Najafzadeh, B., Nourbakhsh, N. S., Prete, M., Malerba, E., Saeedi, H., Tabrizi, N. J., Racanelli, V., Baradaran, B."Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review)". International Journal of Molecular Medicine 49.4 (2022): 43.
Chicago
Ghorbaninezhad, F., Leone, P., Alemohammad, H., Najafzadeh, B., Nourbakhsh, N. S., Prete, M., Malerba, E., Saeedi, H., Tabrizi, N. J., Racanelli, V., Baradaran, B."Tumor necrosis factor‑α in systemic lupus erythematosus: Structure, function and therapeutic implications (Review)". International Journal of Molecular Medicine 49, no. 4 (2022): 43. https://doi.org/10.3892/ijmm.2022.5098
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team