Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2022 Volume 49 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2022 Volume 49 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review)

  • Authors:
    • Xiaolu Zhang
    • Wenyun Zeng
    • Yue Zhang
    • Qun Yu
    • Miao Zeng
    • Jiali Gan
    • Wenlan Zhang
    • Xijuan Jiang
    • Huhu Li
  • View Affiliations / Copyright

    Affiliations: School of Integrative Medicine, Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
    Copyright: © Zhang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 74
    |
    Published online on: April 7, 2022
       https://doi.org/10.3892/ijmm.2022.5130
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Post‑ischemic neuroinflammation induced by the innate local immune response is a major pathophysiological feature of cerebral ischemic stroke, which remains the leading cause of mortality and disability worldwide. NLR family pyrin domain containing (NLRP)3 inflammasome crucially mediates post‑ischemic inflammatory responses via its priming, activation and interleukin‑1β release during hypoxic‑ischemic brain damage. Mitochondrial dysfunctions are among the main hallmarks of several brain diseases, including ischemic stroke. In the present review, focus was addressed on the role of mitochondria in cerebral ischemic stroke while keeping NLRP3 inflammasome as a link. Under ischemia and hypoxia, mitochondria are capable of controlling NLRP3 inflammasome‑mediated neuroinflammation through mitochondrial released contents, mitochondrial localization and mitochondrial related proteins. Thus, inflammasome and mitochondria may be attractive targets to treat ischemic stroke as well as the several drugs that target the process of mitochondrial function to treat cerebral ischemic stroke. At present, certain drugs have already been studied in clinical trials.
View Figures

Figure 1

Figure 2

View References

1 

Wang H, Wang Z, Wu Q, Yuan Y, Cao W and Zhang X: Regulatory T cells in ischemic stroke. CNS Neurosci Ther. 27:643–651. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Lu M, Guo J, Wu B, Zhou Y, Wu M, Farzaneh M and Khoshnam SE: Mesenchymal stem cell-mediated mitochondrial transfer: A therapeutic approach for ischemic stroke. Transl Stroke Res. 12:212–229. 2021. View Article : Google Scholar

3 

Feng L, Han CX, Cao SY, Zhang HM and Wu GY: Deficits in motor and cognitive functions in an adult mouse model of hypoxia-ischemia induced stroke. Sci Rep. 10:206462020. View Article : Google Scholar : PubMed/NCBI

4 

Barrington J, Lemarchand E and Allan SM: A brain in flame; do inflammasomes and pyroptosis influence stroke pathology? Brain Pathol. 27:205–212. 2017. View Article : Google Scholar

5 

Lambertsen KL, Finsen B and Clausen BH: Post-stroke inflammation-target or tool for therapy? Acta Neuropathol. 137:693–714. 2019. View Article : Google Scholar

6 

Andrabi SS, Parvez S and Tabassum H: Ischemic stroke and mitochondria: Mechanisms and targets. Protoplasma. 257:335–343. 2020. View Article : Google Scholar

7 

Li X, Huang Z, Liu S, Zeng X, Xie J, Liu C, Xiao H, Liu R, Li L and Zeng J: 3′-Daidzein sulfonate sodium provides neuroprotection by promoting the expression of the alpha7 nicotinic acetylcholine receptor and suppressing inflammatory responses in a rat model of focal cerebral ischemia. Am J Transl Res. 10:3455–3464. 2018.

8 

Mo Y, Sun YY and Liu KY: Autophagy and inflammation in ischemic stroke. Neural Regen Res. 15:1388–1396. 2020. View Article : Google Scholar : PubMed/NCBI

9 

Jayaraj RL, Azimullah S, Beiram R, Jalal FY and Rosenberg GA: Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflammation. 16:1422019. View Article : Google Scholar : PubMed/NCBI

10 

Vats K, Sarmah D, Kaur H, Wanve M, Kalia K, Borah A, Dave KR, Yavagal DR and Bhattacharya P: Inflammasomes in stroke: A triggering role for acid-sensing ion channels. Ann N Y Acad Sci. 1431:14–24. 2018. View Article : Google Scholar

11 

Forn-Cuni G, Meijer AH and Varela M: Zebrafish in inflammasome research. Cells. 8:9012019. View Article : Google Scholar :

12 

Ma C, Liu S, Zhang S, Xu T, Yu X, Gao Y, Zhai C, Li C, Lei C, Fan S, et al: Evidence and perspective for the role of the NLRP3 inflammasome signaling pathway in ischemic stroke and its therapeutic potential (Review). Int J Mol Med. 42:2979–2990. 2018.

13 

Xu Q, Zhao B, Ye Y, Li Y, Zhang Y, Xiong X and Gu L: Relevant mediators involved in and therapies targeting the inflammatory response induced by activation of the NLRP3 inflammasome in ischemic stroke. J Neuroinflammation. 18:1232021. View Article : Google Scholar : PubMed/NCBI

14 

Qian Y, Lyu Y, Jiang M, Tang B, Nie T and Lu S: Human urinary kallidinogenase or edaravone combined with butylphthalide in the treatment of acute ischemic stroke. Brain Behav. 9:e014382019. View Article : Google Scholar : PubMed/NCBI

15 

Poh L, Kang SW, Baik SH, Ng GYQ, She DT, Balaganapathy P, Dheen ST, Magnus T, Gelderblom M, Sobey CG, et al: Evidence that NLRC4 inflammasome mediates apoptotic and pyroptotic microglial death following ischemic stroke. Brain Behav Immun. 75:34–47. 2019. View Article : Google Scholar

16 

Cao Y, Zhang H, Lu X, Wang J, Zhang X, Sun S, Bao Z, Tian W, Ning S, Wang L and Cui L: Overexpression of MicroRNA-9a-5p Ameliorates NLRP1 inflammasome-mediated ischemic injury in rats following ischemic stroke. Neuroscience. 444:106–117. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Xu SY, Bian HJ, Shu S, Xia SN, Gu Y, Zhang MJ, Xu Y and Cao X: AIM2 deletion enhances blood-brain barrier integrity in experimental ischemic stroke. CNS Neurosci Ther. 27:1224–1237. 2021. View Article : Google Scholar : PubMed/NCBI

18 

Yu JW and Lee MS: Mitochondria and the NLRP3 inflammasome: Physiological and pathological relevance. Arch Pharm Res. 39:1503–1518. 2016. View Article : Google Scholar : PubMed/NCBI

19 

He Y, Hara H and Nunez G: Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 41:1012–1021. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Wang YL, Wu HR, Zhang SS, Xiao HL, Yu J, Ma YY, Zhang YD and Liu Q: Catalpol ameliorates depressive-like behaviors in CUMS mice via oxidative stress-mediated NLRP3 inflammasome and neuroinflammation. Transl Psychiatry. 11:3532021. View Article : Google Scholar : PubMed/NCBI

21 

Elliott EI and Sutterwala FS: Initiation and perpetuation of NLRP3 inflammasome activation and assembly. Immunol Rev. 265:35–52. 2015. View Article : Google Scholar : PubMed/NCBI

22 

Savyuk M, Krivonosov M, Mishchenko T, Gazaryan I, Ivanchenko M, Khristichenko A, Poloznikov A, Hushpulian D, Nikulin S, Tonevitsky E, et al: Neuroprotective Effect of HIF prolyl hydroxylase inhibition in an in vitro hypoxia model. Antioxidants (Basel). 9:6622020. View Article : Google Scholar

23 

Huber W, Zanner R, Schneider G, Schmid R and Lahmer T: Assessment of regional perfusion and organ function: Less and non-invasive techniques. Front Med (Lausanne). 6:502019. View Article : Google Scholar

24 

Wang W, Zhao F, Ma X, Perry G and Zhu X: Mitochondria dysfunction in the pathogenesis of Alzheimer's disease: Recent advances. Mol Neurodegener. 15:302020. View Article : Google Scholar : PubMed/NCBI

25 

Li W, Kui L, Demetrios T, Gong X and Tang M: A Glimmer of hope: Maintain mitochondrial homeostasis to mitigate Alzheimer's disease. Aging Dis. 11:1260–1275. 2020. View Article : Google Scholar :

26 

Ham PR and Raju R: Mitochondrial function in hypoxic ischemic injury and influence of aging. Prog Neurobiol. 157:92–116. 2017. View Article : Google Scholar

27 

Liu Y, Lin J, Wu X, Guo X, Sun H, Yu B, Shen J, Bai J, Chen Z, Yang H, et al: Aspirin-mediated attenuation of intervertebral disc degeneration by ameliorating reactive oxygen species in vivo and in vitro. Oxid Med Cell Longev. 2019:71898542019. View Article : Google Scholar

28 

Anzell AR, Maizy R, Przyklenk K and Sanderson TH: Mitochondrial quality control and disease: Insights into ischemia-reperfusion injury. Mol Neurobiol. 55:2547–2564. 2018. View Article : Google Scholar

29 

Babenko VA, Silachev DN, Popkov VA, Zorova LD, Pevzner IB, Plotnikov EY, Sukhikh GT and Zorov DB: Miro1 enhances mitochondria transfer from multipotent mesenchymal stem cells (MMSC) to neural cells and improves the efficacy of cell recovery. Molecules. 23:6872018. View Article : Google Scholar :

30 

Mondal NK, Behera J, Kelly KE, George AK, Tyagi PK and Tyagi N: Tetrahydrocurcumin epigenetically mitigates mitochondrial dysfunction in brain vasculature during ischemic stroke. Neurochem Int. 122:120–138. 2019. View Article : Google Scholar :

31 

Andrabi SS, Ali M, Tabassum H, Parveen S and Parvez S: Pramipexole prevents ischemic cell death via mitochondrial pathways in ischemic stroke. Dis Model Mech. 12:dmm0338602019. View Article : Google Scholar :

32 

Chen N, Zhou Z, Li J, Li B, Feng J, He D, Luo Y, Zheng X, Luo J and Zhang J: 3-n-butylphthalide exerts neuroprotective effects by enhancing anti-oxidation and attenuating mitochondrial dysfunction in an in vitro model of ischemic stroke. Drug Des Devel Ther. 12:4261–4271. 2018. View Article : Google Scholar :

33 

Peng J, Wang H, Gong Z, Li X, He L, Shen Q, Pan J and Peng Y: Idebenone attenuates cerebral inflammatory injury in ischemia and reperfusion via dampening NLRP3 inflammasome activity. Mol Immunol. 123:74–87. 2020. View Article : Google Scholar

34 

Luan Y, Yang D, Zhang Z, Bie X, Zhao H, Wang Y, Liu Y, Yang S, Zhou B, Xu Y, et al: Association study between genetic variation in whole mitochondrial genome and ischemic stroke. J Mol Neurosci. 71:2152–2162. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Sarmah D, Datta A, Raut S, Sarkar A, Shah B, Bohra M, Singh U, Jagtap P, Baidya F, Kalia K, et al: The role of inflammasomes in atherosclerosis and stroke pathogenesis. Curr Pharm Des. 26:4234–4245. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Martynov MY and Gusev EI: Current knowledge on the neuroprotective and neuroregenerative properties of citicoline in acute ischemic stroke. J Exp Pharmacol. 7:17–28. 2015. View Article : Google Scholar : PubMed/NCBI

37 

Bissen D, Foss F and Acker-Palmer A: AMPA receptors and their minions: Auxiliary proteins in AMPA receptor trafficking. Cell Mol Life Sci. 76:2133–2169. 2019. View Article : Google Scholar : PubMed/NCBI

38 

Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K, Xu J, Guo G, Tong A and Zhou L: The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif. 53:e127812020. View Article : Google Scholar :

39 

Wen B, Xu K, Huang R, Jiang T, Wang J, Chen J, Chen J and He B: Preserving mitochondrial function by inhibiting GRP75 ameliorates neuron injury under ischemic stroke. Mol Med Rep. 25:1652022. View Article : Google Scholar : PubMed/NCBI

40 

Liu D, Gharavi R, Pitta M, Gleichmann M and Mattson MP: Nicotinamide prevents NAD+ depletion and protects neurons against excitotoxicity and cerebral ischemia: NAD+ consumption by SIRT1 may endanger energetically compromised neurons. Neuromolecular Med. 11:28–42. 2009. View Article : Google Scholar :

41 

Misawa T, Takahama M, Kozaki T, Lee H, Zou J, Saitoh T and Akira S: Microtubule-driven spatial arrangement of mitochondria promotes activation of the NLRP3 inflammasome. Nat Immunol. 14:454–460. 2013. View Article : Google Scholar : PubMed/NCBI

42 

Li S, Wang T, Zhai L, Ge K, Zhao J, Cong W and Guo Y: Picroside II exerts a neuroprotective effect by inhibiting mPTP permeability and EndoG release after cerebral ischemia/reperfusion injury in rats. J Mol Neurosci. 64:144–155. 2018. View Article : Google Scholar

43 

Zheng W, Talley WL, Holstein DM, Wewer J and Lechleiter JD: P2Y1R-initiated, IP3R-dependent stimulation of astrocyte mitochondrial metabolism reduces and partially reverses ischemic neuronal damage in mouse. J Cereb Blood Flow Metab. 33:600–711. 2013. View Article : Google Scholar : PubMed/NCBI

44 

Bonora M, Bononi A, De Marchi E, Giorgi C, Lebiedzinska M, Marchi S, Patergnani S, Rimessi A, Suski JM, Wojtala A, et al: Role of the c subunit of the FO ATP synthase in mitochondrial permeability transition. Cell Cycle. 12:674–683. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Zhou H, Hu S, Jin Q, Shi C, Zhang Y, Zhu P, Ma Q, Tian F and Chen Y: Mff-Dependent mitochondrial fission contributes to the pathogenesis of cardiac microvasculature ischemia/reperfusion injury via induction of mROS-mediated cardiolipin oxidation and HK2/VDAC1 disassociation-involved mPTP opening. J Am Heart Assoc. 6:e0053282017. View Article : Google Scholar : PubMed/NCBI

46 

Jin X, Zhang J, An T, Zhao H, Fu W, Li D, Liu S, Cao X and Liu B: A Genome-wide screen in saccharomyces cerevisiae reveals a critical role for oxidative phosphorylation in cellular tolerance to lithium hexafluorophosphate. Cells. 10:8882021. View Article : Google Scholar :

47 

He J, Liu J, Huang Y, Zhuo Y, Chen W, Duan D, Tang X, Lu M and Hu Z: Olfactory mucosa mesenchymal stem cells alleviate cerebral ischemia/reperfusion injury via Golgi apparatus secretory pathway Ca2+-ATPase isoform1. Front Cell Dev Biol. 8:5865412020. View Article : Google Scholar

48 

Chen M, Wang M, Yang Q, Wang M, Wang Z, Zhu Y, Zhang Y, Wang C, Jia Y, Li Y and Wen A: Antioxidant effects of hydroxysafflor yellow A and acetyl-11-keto-β-boswellic acid in combination on isoproterenol-induced myocardial injury in rats. Int J Mol Med. 37:1501–1510. 2016. View Article : Google Scholar :

49 

Wang C, Hao J, Liu X, Li C, Yuan X, Lee RJ, Bai T and Wang D: Isoforsythiaside attenuates Alzheimer's disease via regulating mitochondrial function through the PI3K/AKT pathway. Int J Mol Sci. 21:56872020. View Article : Google Scholar

50 

Wang T, Wang F, Yu L and Li Z: Nobiletin alleviates cerebral ischemic-reperfusion injury via MAPK signaling pathway. Am J Transl Res. 11:5967–5977. 2019.PubMed/NCBI

51 

Zhao Q, Zhang C, Wang X, Chen L, Ji H and Zhang Y: (S)-ZJM-289, a nitric oxide-releasing derivative of 3-n-butylphthalide, protects against ischemic neuronal injury by attenuating mitochondrial dysfunction and associated cell death. Neurochem Int. 60:134–144. 2012. View Article : Google Scholar

52 

Tan YQ, Zhang X, Zhang S, Zhu T, Garg M, Lobie PE and Pandey V: Mitochondria: The metabolic switch of cellular oncogenic transformation. Biochim Biophys Acta Rev Cancer. 1876:1885342021. View Article : Google Scholar : PubMed/NCBI

53 

Jahani-Asl A, Cheung EC, Neuspiel M, MacLaurin JG, Fortin A, Park DS, McBride HM and Slack RS: Mitofusin 2 protects cerebellar granule neurons against injury-induced cell death. J Biol Chem. 282:23788–23798. 2007. View Article : Google Scholar : PubMed/NCBI

54 

McGahan L, Hakim AM and Robertson GS: Hippocampal Myc and p53 expression following transient global ischemia. Brain Res Mol Brain Res. 56:133–145. 1998. View Article : Google Scholar : PubMed/NCBI

55 

Li Y and Liu X: Novel insights into the role of mitochondrial fusion and fission in cardiomyocyte apoptosis induced by ischemia/reperfusion. J Cell Physiol. 233:5589–5597. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Grohm J, Kim SW, Mamrak U, Tobaben S, Cassidy-Stone A, Nunnari J, Plesnila N and Culmsee C: Inhibition of Drp1 provides neuroprotection in vitro and in vivo. Cell Death Differ. 19:1446–1458. 2012. View Article : Google Scholar : PubMed/NCBI

57 

Zhao YX, Cui M, Chen SF, Dong Q and Liu XY: Amelioration of ischemic mitochondrial injury and Bax-dependent outer membrane permeabilization by Mdivi-1. CNS Neurosci Ther. 20:528–538. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Wang J, Xiong S, Xie C, Markesbery WR and Lovell MA: Increased oxidative damage in nuclear and mitochondrial DNA in Alzheimer's disease. J Neurochem. 93:953–962. 2005. View Article : Google Scholar : PubMed/NCBI

59 

West AP and Shadel GS: Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 17:363–375. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Guo S, Geng X, Lee H and Ding Y: Phenothiazine inhibits neuroinflammation and inflammasome activation independent of hypothermia after ischemic stroke. Mol Neurobiol. 58:6136–6152. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Lian L, Zhang Y, Liu L, Yang L, Cai Y, Zhang J and Xu S: Neuroinflammation in ischemic stroke: Focus on MicroRNA-mediated polarization of microglia. Front Mol Neurosci. 13:6124392020. View Article : Google Scholar

62 

Shaheryar ZA, Khan MA, Adnan CS, Zaidi AA, Hanggi D and Muhammad S: Neuroinflammatory triangle presenting novel pharmacological targets for ischemic brain injury. Front Immunol. 12:7486632021. View Article : Google Scholar : PubMed/NCBI

63 

Xue Y, Nie D, Wang LJ, Qiu HC, Ma L, Dong MX, Tu WJ and Zhao J: Microglial polarization: Novel therapeutic strategy against ischemic stroke. Aging Dis. 12:466–479. 2021. View Article : Google Scholar : PubMed/NCBI

64 

Wang L, Yu CC, Liu XY, Deng XN, Tian Q and Du YJ: Epigenetic modulation of microglia function and phenotypes in neurodegenerative diseases. Neural Plast. 2021:99126862021. View Article : Google Scholar : PubMed/NCBI

65 

Ponsaerts L, Alders L, Schepers M, de Oliveira RMW, Prickaerts J, Vanmierlo T and Bronckaers A: Neuroinflammation in ischemic stroke: Inhibition of cAMP-Specific phosphodiesterases (PDEs) to the rescue. Biomedicines. 9:7032021. View Article : Google Scholar :

66 

Guan X, Zhang Y, Gareev I, Beylerli O, Li X, Lu X, Lv L and Hai X: MiR-499a prevents astrocytes mediated inflammation in ischemic stroke by targeting PTEN. Noncoding RNA Res. 6:146–152. 2021. View Article : Google Scholar : PubMed/NCBI

67 

Franke M, Bieber M, Kraft P, Weber A, Stoll G and Schuhmann MK: The NLRP3 inflammasome drives inflammation in ischemia/reperfusion injury after transient middle cerebral artery occlusion in mice. Brain Behav Immun. 92:223–233. 2021. View Article : Google Scholar

68 

Gritsenko A, Green JP, Brough D and Lopez-Castejon G: Mechanisms of NLRP3 priming in inflammaging and age related diseases. Cytokine Growth Factor Rev. 55:15–25. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Xu S, Li X, Liu Y, Xia Y, Chang R and Zhang C: Inflammasome inhibitors: Promising therapeutic approaches against cancer. J Hematol Oncol. 12:642019. View Article : Google Scholar : PubMed/NCBI

70 

Shim DW and Lee KH: Posttranslational regulation of the NLR family pyrin domain-containing 3 inflammasome. Front Immunol. 9:10542018. View Article : Google Scholar :

71 

Han S, Lear TB, Jerome JA, Rajbhandari S, Snavely CA, Gulick DL, Gibson KF, Zou C, Chen BB and Mallampalli RK: Lipopolysaccharide primes the NALP3 inflammasome by inhibiting its ubiquitination and degradation mediated by the SCFFBXL2 E3 ligase. J Biol Chem. 290:18124–18133. 2015. View Article : Google Scholar :

72 

Swanson KV, Deng M and Ting JP: The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI

73 

Susjan P, Roskar S and Hafner-Bratkovic I: The mechanism of NLRP3 inflammasome initiation: Trimerization but not dimerization of the NLRP3 pyrin domain induces robust activation of IL-1beta. Biochem Biophys Res Commun. 483:823–828. 2017. View Article : Google Scholar

74 

Lu A, Magupalli VG, Ruan J, Yin Q, Atianand MK, Vos MR, Schröder GF, Fitzgerald KA, Wu H and Egelman EH: Unified polymerization mechanism for the assembly of ASC-dependent inflammasomes. Cell. 156:1193–1206. 2014. View Article : Google Scholar : PubMed/NCBI

75 

Boucher D, Monteleone M, Coll RC, Chen KW, Ross CM, Teo JL, Gomez GA, Holley CL, Bierschenk D, Stacey KJ, et al: Caspase-1 self-cleavage is an intrinsic mechanism to terminate inflammasome activity. J Exp Med. 215:827–840. 2018. View Article : Google Scholar :

76 

Dick MS, Sborgi L, Ruhl S, Hiller S and Broz P: ASC filament formation serves as a signal amplification mechanism for inflammasomes. Nat Commun. 7:119292016. View Article : Google Scholar : PubMed/NCBI

77 

Lu L, Lu Q, Chen W, Li J, Li C and Zheng Z: Vitamin D3 protects against diabetic retinopathy by inhibiting high-glucose-induced activation of the ROS/TXNIP/NLRP3 inflammasome pathway. J Diabetes Res. 2018:81935232018. View Article : Google Scholar :

78 

Ratajczak MZ, Bujko K, Cymer M, Thapa A, Adamiak M, Ratajczak J, Abdel-Latif AK and Kucia M: The Nlrp3 inflammasome as a 'rising star' in studies of normal and malignant hematopoiesis. Leukemia. 34:1512–1523. 2020. View Article : Google Scholar : PubMed/NCBI

79 

Gao L, Dong Q, Song Z, Shen F, Shi J and Li Y: NLRP3 inflammasome: A promising target in ischemic stroke. Inflamm Res. 66:17–24. 2017. View Article : Google Scholar

80 

Liu H, Wu X, Luo J, Zhao L, Li X, Guo H, Bai H, Cui W, Guo W, Feng D and Qu Y: Adiponectin peptide alleviates oxidative stress and NLRP3 inflammasome activation after cerebral ischemia-reperfusion injury by regulating AMPK/GSK-3beta. Exp Neurol. 329:1133022020. View Article : Google Scholar

81 

Zhao J, Piao X, Wu Y, Liang S, Han F, Liang Q, Shao S and Zhao D: Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother. 127:1101512020. View Article : Google Scholar : PubMed/NCBI

82 

Yang F, Wang Z, Wei X, Han H, Meng X, Zhang Y, Shi W, Li F, Xin T, Pang Q and Yi F: NLRP3 deficiency ameliorates neurovascular damage in experimental ischemic stroke. J Cereb Blood Flow Metab. 34:660–667. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Feng YS, Tan ZX, Wang MM, Xing Y, Dong F and Zhang F: Inhibition of NLRP3 inflammasome: A prospective target for the treatment of ischemic stroke. Front Cell Neurosci. 14:1552020. View Article : Google Scholar : PubMed/NCBI

84 

Shi M, Chen J, Liu T, Dai W, Zhou Z, Chen L and Xie Y: Protective effects of remimazolam on cerebral ischemia/reperfusion injury in rats by inhibiting of NLRP3 inflammasome-dependent pyroptosis. Drug Des Devel Ther. 16:413–423. 2022. View Article : Google Scholar : PubMed/NCBI

85 

Ye Y, Jin T, Zhang X, Zeng Z, Ye B, Wang J, Zhong Y, Xiong X and Gu L: Meisoindigo protects against focal cerebral ischemia-reperfusion injury by inhibiting NLRP3 inflammasome activation and regulating microglia/macrophage polarization via TLR4/NF-κB signaling pathway. Front Cell Neurosci. 13:5532019. View Article : Google Scholar

86 

He Z, Ning N, Zhou Q, Khoshnam SE and Farzaneh M: Mitochondria as a therapeutic target for ischemic stroke. Free Radic Biol Med. 146:45–58. 2020. View Article : Google Scholar

87 

Chen Y, Zhou Z and Min W: Mitochondria, oxidative stress and innate immunity. Front Physiol. 9:14872018. View Article : Google Scholar : PubMed/NCBI

88 

Meyers AK and Zhu X: The NLRP3 inflammasome: Metabolic regulation and contribution to inflammaging. Cells. 9:18082020. View Article : Google Scholar :

89 

Bauernfeind F, Bartok E, Rieger A, Franchi L, Nunez G and Hornung V: Cutting edge: Reactive oxygen species inhibitors block priming, but not activation, of the NLRP3 inflammasome. J Immunol. 187:613–617. 2011. View Article : Google Scholar : PubMed/NCBI

90 

Paik S, Kim JK, Silwal P, Sasakawa C and Jo EK: An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 18:1141–1160. 2021. View Article : Google Scholar : PubMed/NCBI

91 

Ren GM, Li J, Zhang XC, Wang Y, Xiao Y, Zhang XY, Liu X, Zhang W, Ma WB, Zhang J, et al: Pharmacological targeting of NLRP3 deubiquitination for treatment of NLRP3-associated inflammatory diseases. Sci Immunol. 6:eabe29332021. View Article : Google Scholar

92 

Ren JD, Wu XB, Jiang R, Hao DP and Liu Y: Molecular hydrogen inhibits lipopolysaccharide-triggered NLRP3 inflammasome activation in macrophages by targeting the mitochondrial reactive oxygen species. Biochim Biophys Acta. 1863:50–55. 2016. View Article : Google Scholar

93 

Wang Y, Shi P, Chen Q, Huang Z, Zou D, Zhang J, Gao X and Lin Z: Mitochondrial ROS promote macrophage pyroptosis by inducing GSDMD oxidation. J Mol Cell Biol. 11:1069–1082. 2019. View Article : Google Scholar : PubMed/NCBI

94 

Heid ME, Keyel PA, Kamga C, Shiva S, Watkins SC and Salter RD: Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J Immunol. 191:5230–5238. 2013. View Article : Google Scholar : PubMed/NCBI

95 

Qiu Z, He Y, Ming H, Lei S, Leng Y and Xia ZY: Lipopolysaccharide (LPS) aggravates high glucose- and hypoxia/reoxygenation-induced injury through activating ROS-Dependent NLRP3 inflammasome-mediated pyroptosis in H9C2 cardiomyocytes. J Diabetes Res. 2019:81518362019. View Article : Google Scholar : PubMed/NCBI

96 

Liu X, Zhang X, Ding Y, Zhou W, Tao L, Lu P, Wang Y and Hu R: Nuclear factor E2-Related Factor-2 negatively regulates NLRP3 inflammasome activity by inhibiting reactive oxygen species-induced NLRP3 priming. Antioxid Redox Signal. 26:28–43. 2017. View Article : Google Scholar :

97 

Juliana C, Fernandes-Alnemri T, Kang S, Farias A, Qin F and Alnemri ES: Non-transcriptional priming and deubiquitination regulate NLRP3 inflammasome activation. J Biol Chem. 287:36617–36622. 2012. View Article : Google Scholar : PubMed/NCBI

98 

Krysko DV, Agostinis P, Krysko O, Garg AD, Bachert C, Lambrecht BN and Vandenabeele P: Emerging role of damage-associated molecular patterns derived from mitochondria in inflammation. Trends Immunol. 32:157–164. 2011. View Article : Google Scholar : PubMed/NCBI

99 

Arias-Cartin R, Grimaldi S, Arnoux P, Guigliarelli B and Magalon A: Cardiolipin binding in bacterial respiratory complexes: Structural and functional implications. Biochim Biophys Acta. 1817:1937–1949. 2012. View Article : Google Scholar : PubMed/NCBI

100 

Ji J, Baart S, Vikulina AS, Clark RS, Anthonymuthu TS, Tyurin VA, Du L, St Croix CM, Tyurina YY, Lewis J, et al: Deciphering of mitochondrial cardiolipin oxidative signaling in cerebral ischemia-reperfusion. J Cereb Blood Flow Metab. 35:319–328. 2015. View Article : Google Scholar :

101 

Liu J, Wang T, He K, Xu M and Gong JP: Cardiolipin inhibitor ameliorates the non-alcoholic steatohepatitis through suppressing NLRP3 inflammasome activation. Eur Rev Med Pharmacol Sci. 23:8158–8167. 2019.PubMed/NCBI

102 

Szeto HH, Liu S, Soong Y, Seshan SV, Cohen-Gould L, Manichev V, Feldman LC and Gustafsson T: Mitochondria protection after acute ischemia prevents prolonged upregulation of IL-1β and IL-18 and arrests CKD. J Am Soc Nephrol. 28:1437–1449. 2017. View Article : Google Scholar

103 

Carinci M, Vezzani B, Patergnani S, Ludewig P, Lessmann K, Magnus T, Casetta I, Pugliatti M, Pinton P and Giorgi C: Different roles of mitochondria in cell death and inflammation: Focusing on mitochondrial quality control in ischemic stroke and reperfusion. Biomedicines. 9:1692021. View Article : Google Scholar : PubMed/NCBI

104 

Yabal M, Calleja DJ, Simpson DS and Lawlor KE: Stressing out the mitochondria: Mechanistic insights into NLRP3 inflammasome activation. J Leukoc Biol. 105:377–399. 2019. View Article : Google Scholar

105 

Englander EW, Greeley GJ, Wang G, Perez-Polo JR and Lee HM: Hypoxia-induced mitochondrial and nuclear DNA damage in the rat brain. J Neurosci Res. 58:262–269. 1999. View Article : Google Scholar : PubMed/NCBI

106 

Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et al: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36:401–414. 2012. View Article : Google Scholar : PubMed/NCBI

107 

Nakahira K, Haspel JA, Rathinam VA, Lee SJ, Dolinay T, Lam HC, Englert JA, Rabinovitch M, Cernadas M, Kim HP, et al: Autophagy proteins regulate innate immune responses by inhibiting the release of mitochondrial DNA mediated by the NALP3 inflammasome. Nat Immunol. 12:222–2230. 2011. View Article : Google Scholar

108 

Lara PC, Macias-Verde D and Burgos-Burgos J: Age-induced NLRP3 inflammasome over-activation increases lethality of SARS-CoV-2 pneumonia in elderly patients. Aging Dis. 11:756–762. 2020. View Article : Google Scholar :

109 

Fu L, Zhang DX, Zhang LM, Song YC, Liu FH, Li Y, Wang XP, Zheng WC, Wang XD, Gui CX, et al: Exogenous carbon monoxide protects against mitochondrial DNAinduced hippocampal pyroptosis in a model of hemorrhagic shock and resuscitation. Int J Mol Med. 45:1176–1186. 2020.

110 

Simon R, Meller R, Yang T, Pearson A and Wilson G: Enhancing base excision repair of mitochondrial DNA to reduce ischemic injury following reperfusion. Transl Stroke Res. 10:664–671. 2019. View Article : Google Scholar :

111 

Gomez-Suaga P, Bravo-San PJ, Gonzalez-Polo RA, Fuentes JM and Niso-Santano M: ER-mitochondria signaling in Parkinson's disease. Cell Death Dis. 9:3372018. View Article : Google Scholar : PubMed/NCBI

112 

Tubbs E, Theurey P, Vial G, Bendridi N, Bravard A, Chauvin MA, Ji-Cao J, Zoulim F, Bartosch B, Ovize M, et al: Mitochondria-associated endoplasmic reticulum membrane (MAM) integrity is required for insulin signaling and is implicated in hepatic insulin resistance. Diabetes. 63:3279–3294. 2014. View Article : Google Scholar : PubMed/NCBI

113 

Bravo R, Vicencio JM, Parra V, Troncoso R, Munoz JP, Bui M, Quiroga C, Rodriguez AE, Verdejo HE, Ferreira J, et al: Increased ER-mitochondrial coupling promotes mitochondrial respiration and bioenergetics during early phases of ER stress. J Cell Sci. 24:2143–2152. 2011. View Article : Google Scholar

114 

Elliott EI, Miller AN, Banoth B, Iyer SS, Stotland A, Weiss JP, Gottlieb RA, Sutterwala FS and Cassel SL: Cutting Edge: Mitochondrial assembly of the NLRP3 inflammasome complex is initiated at priming. J Immunol. 200:3047–3052. 2018. View Article : Google Scholar : PubMed/NCBI

115 

Hamilton C and Anand PK: Right place, right time: Localisation and assembly of the NLRP3 inflammasome. F1000Res. 8:F1000 Faculty Rev-676. 2019. View Article : Google Scholar : PubMed/NCBI

116 

Zhou R, Yazdi AS, Menu P and Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–225. 2011. View Article : Google Scholar

117 

Gu J, Zhang T, Guo J, Chen K, Li H and Wang J: PINK1 activation and translocation to mitochondria-associated membranes mediates mitophagy and protects against hepatic ischemia/reperfusion injury. Shock. 54:783–793. 2020. View Article : Google Scholar : PubMed/NCBI

118 

Spescha RD, Klohs J, Semerano A, Giacalone G, Derungs RS, Reiner MF, Rodriguez Gutierrez D, Mendez-Carmona N, Glanzmann M, Savarese G, et al: Post-ischaemic silencing of p66Shc reduces ischaemia/reperfusion brain injury and its expression correlates to clinical outcome in stroke. Eur Heart J. 36:1590–1600. 2015. View Article : Google Scholar : PubMed/NCBI

119 

Thoudam T, Jeon JH, Ha CM and Lee IK: Role of Mitochondria-Associated endoplasmic reticulum membrane in inflammation-mediated metabolic diseases. Mediators Inflamm. 2016:18514202016. View Article : Google Scholar

120 

Fu MM and Holzbaur EL: Integrated regulation of motor-driven organelle transport by scaffolding proteins. Trends Cell Biol. 24:564–574. 2014. View Article : Google Scholar : PubMed/NCBI

121 

Place DE and Kanneganti TD: Recent advances in inflammasome biology. Curr Opin Immunol. 50:32–38. 2018. View Article : Google Scholar :

122 

Harkcom WT, Ghosh AK, Sung MS, Matov A, Brown KD, Giannakakou P and Jaffrey SR: NAD+ and SIRT3 control microtubule dynamics and reduce susceptibility to antimicrotubule agents. Proc Natl Acad Sci USA. 111:E2443–E2452. 2014. View Article : Google Scholar : PubMed/NCBI

123 

Nasoohi S, Ismael S and Ishrat T: Thioredoxin-Interacting Protein (TXNIP) in Cerebrovascular and Neurodegenerative Diseases: Regulation and Implication. Mol Neurobiol. 55:7900–7920. 2018. View Article : Google Scholar : PubMed/NCBI

124 

Nagaraj K, Lapkina-Gendler L, Sarfstein R, Gurwitz D, Pasmanik-Chor M, Laron Z, Yakar S and Werner H: Identification of thioredoxin-interacting protein (TXNIP) as a downstream target for IGF1 action. Proc Natl Acad Sci USA. 115:1045–1050. 2018. View Article : Google Scholar : PubMed/NCBI

125 

Zhou R, Tardivel A, Thorens B, Choi I and Tschopp J: Thioredoxin-interacting protein links oxidative stress to inflammasome activation. Nat Immunol. 11:136–140. 2010. View Article : Google Scholar

126 

Fann DY, Lee SY, Manzanero S, Chunduri P, Sobey CG and Arumugam TV: Pathogenesis of acute stroke and the role of inflammasomes. Ageing Res Rev. 12:941–966. 2013. View Article : Google Scholar : PubMed/NCBI

127 

Han Y, Xu X, Tang C, Gao P, Chen X, Xiong X, Yang M, Yang S, Zhu X, Yuan S, et al: Reactive oxygen species promote tubular injury in diabetic nephropathy: The role of the mitochondrial ros-txnip-nlrp3 biological axis. Redox Biol. 16:32–46. 2018. View Article : Google Scholar : PubMed/NCBI

128 

Wang BF and Yoshioka J: The Emerging role of thioredoxin-interacting protein in myocardial ischemia/reperfusion injury. J Cardiovasc Pharmacol Ther. 22:219–229. 2017. View Article : Google Scholar :

129 

Schafer MK, Pfeiffer A, Jaeckel M, Pouya A, Dolga AM and Methner A: Regulators of mitochondrial Ca(2+) homeostasis in cerebral ischemia. Cell Tissue Res. 357:395–405. 2014. View Article : Google Scholar

130 

Missiroli S, Patergnani S, Caroccia N, Pedriali G, Perrone M, Previati M, Wieckowski MR and Giorgi C: Mitochondria-associated membranes (MAMs) and inflammation. Cell Death Dis. 9:3292018. View Article : Google Scholar : PubMed/NCBI

131 

Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner DL and Chae JJ: The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 492:123–127. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Wang C, Jia Q, Sun C and Jing C: Calcium sensing receptor contribute to early brain injury through the CaMKII/NLRP3 pathway after subarachnoid hemorrhage in mice. Biochem Biophys Res Commun. 530:651–657. 2020. View Article : Google Scholar : PubMed/NCBI

133 

Triantafilou K, Hughes TR, Triantafilou M and Morgan BP: The complement membrane attack complex triggers intracellular Ca2+ fluxes leading to NLRP3 inflammasome activation. J Cell Sci. 126:2903–2913. 2013.PubMed/NCBI

134 

Murakami T, Ockinger J, Yu J, Byles V, McColl A, Hofer AM and Horng T: Critical role for calcium mobilization in activation of the NLRP3 inflammasome. Proc Natl Acad Sci USA. 109:11282–11287. 2012. View Article : Google Scholar : PubMed/NCBI

135 

Pan T, Zhu QJ, Xu LX, Ding X, Li JQ, Sun B, Hua J and Feng X: Knocking down TRPM2 expression reduces cell injury and NLRP3 inflammasome activation in PC12 cells subjected to oxygen-glucose deprivation. Neural Regen Res. 15:2154–2161. 2020. View Article : Google Scholar : PubMed/NCBI

136 

Chen AQ, Fang Z, Chen XL, Yang S, Zhou YF, Mao L, Xia YP, Jin HJ, Li YN, You MF, et al: Microglia-derived TNF-α mediates endothelial necroptosis aggravating blood brain-barrier disruption after ischemic stroke. Cell Death Dis. 10:4872019. View Article : Google Scholar

137 

Wang H, Sun L, Su L, Rizo J, Liu L, Wang LF, Wang FS and Wang X: Mixed lineage kinase domain-like protein MLKL causes necrotic membrane disruption upon phosphorylation by RIP3. Mol Cell. 54:133–146. 2014. View Article : Google Scholar : PubMed/NCBI

138 

He S and Wang X: RIP kinases as modulators of inflammation and immunity. Nat Immunol. 19:912–922. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Zeng F, Chen X, Cui W, Wen W, Lu F, Sun X, Ma D, Yuan Y, Li Z, Hou N, et al: RIPK1 Binds MCU to mediate induction of mitochondrial Ca2+ uptake and promotes colorectal oncogenesis. Cancer Res. 78:2876–2885. 2018. View Article : Google Scholar : PubMed/NCBI

140 

Jiao Y, Wang J, Zhang H, Cao Y, Qu Y, Huang S, Kong X, Song C, Li J, Li Q, et al: Inhibition of microglial receptor-interacting protein kinase 1 ameliorates neuroinflammation following cerebral ischaemic stroke. J Cell Mol Med. 24:12585–12598. 2020. View Article : Google Scholar : PubMed/NCBI

141 

Deng XX, Li SS and Sun FY: Necrostatin-1 prevents necroptosis in brains after ischemic stroke via inhibition of RIPK1-Mediated RIPK3/MLKL signaling. Aging Dis. 10:807–817. 2019. View Article : Google Scholar : PubMed/NCBI

142 

Park S, Won JH, Hwang I, Hong S, Lee HK and Yu JW: Defective mitochondrial fission augments NLRP3 inflammasome activation. Sci Rep. 5:154892015. View Article : Google Scholar : PubMed/NCBI

143 

Xie JH, Li YY and Jin J: The essential functions of mitochondrial dynamics in immune cells. Cell Mol Immunol. 17:712–721. 2020. View Article : Google Scholar : PubMed/NCBI

144 

Ren L, Chen X, Chen X, Li J, Cheng B and Xia J: Mitochondrial dynamics: Fission and fusion in fate determination of mesenchymal stem cells. Front Cell Dev Biol. 8:5800702020. View Article : Google Scholar : PubMed/NCBI

145 

Szabadkai G, Simoni AM, Chami M, Wieckowski MR, Youle RJ and Rizzuto R: Drp-1-dependent division of the mitochondrial network blocks intraorganellar Ca2+ waves and protects against Ca2+-mediated apoptosis. Mol Cell. 16:59–68. 2004. View Article : Google Scholar : PubMed/NCBI

146 

Flippo KH, Gnanasekaran A, Perkins GA, Ajmal A, Merrill RA, Dickey AS, Taylor SS, McKnight GS, Chauhan AK, Usachev YM and Strack S: AKAP1 protects from cerebral ischemic stroke by inhibiting Drp1-dependent mitochondrial fission. J Neurosci. 38:8233–8242. 2018. View Article : Google Scholar : PubMed/NCBI

147 

Guo M, Wang X, Zhao Y, Yang Q, Ding H, Dong Q, Chen X and Cui M: Ketogenic diet improves brain ischemic tolerance and inhibits NLRP3 inflammasome activation by preventing Drp1-Mediated mitochondrial fission and endoplasmic reticulum stress. Front Mol Neurosci. 11:862018. View Article : Google Scholar :

148 

He J and Zhang X: miR-668 inhibitor attenuates mitochondrial membrane potential and protects against neuronal apoptosis in cerebral ischemic stroke. Folia Neuropathol. 58:22–29. 2020. View Article : Google Scholar

149 

Zhang X, Yan H, Yuan Y, Gao J, Shen Z, Cheng Y, Shen Y, Wang RR, Wang X, Hu WW, et al: Cerebral ischemia-reperfusion-induced autophagy protects against neuronal injury by mitochondrial clearance. Autophagy. 9:1321–1333. 2013. View Article : Google Scholar : PubMed/NCBI

150 

Wang J, Yu S, Li J, Li H, Jiang H, Xiao P, Pan Y, Zheng J, Yu L and Jiang J: Protective role of N-acetyl-l-tryptophan against hepatic ischemia-reperfusion injury via the RIP2/caspase-1/IL-1beta signaling pathway. Pharm Biol. 57:385–391. 2019. View Article : Google Scholar : PubMed/NCBI

151 

Wang Y, Tian J, Qiao X, Su X, Mi Y, Zhang R and Li R: Intermedin protects against renal ischemia-reperfusion injury by inhibiting endoplasmic reticulum stress. BMC Nephrol. 16:1692015. View Article : Google Scholar : PubMed/NCBI

152 

He Q, Li Z, Meng C, Wu J, Zhao Y and Zhao J: Parkin-dependent mitophagy is required for the inhibition of ATF4 on NLRP3 inflammasome activation in cerebral ischemia-reperfusion injury in rats. Cells. 8:8972019. View Article : Google Scholar :

153 

Yang J, Chen Y and Pang Y: Occurrence of mitochondrial autophagy and nlrp3 inflammatory bodies in cerebral ischemia-reperfusion injury and its correlation with neuroinflammatory response. Acta Medica Mediterranea. 37:1033–1037. 2021.

154 

Su SH, Wu YF, Lin Q, Wang DP and Hai J: URB597 protects against NLRP3 inflammasome activation by inhibiting autophagy dysfunction in a rat model of chronic cerebral hypoperfusion. J Neuroinflammation. 16:2602019. View Article : Google Scholar : PubMed/NCBI

155 

Fan Y, Zhu S, Wang J, Zhao Y and Wang X: Propofol protects against oxygen/glucose deprivationinduced cell injury via gap junction inhibition in astrocytes. Mol Med Rep. 22:2896–2904. 2020.PubMed/NCBI

156 

Cai Y, Guo H, Fan Z, Zhang X, Wu D, Tang W, Gu T, Wang S, Yin A, Tao L, et al: Glycogenolysis is crucial for astrocytic glycogen accumulation and brain damage after reperfusion in ischemic stroke. iScience. 23:1011362020. View Article : Google Scholar : PubMed/NCBI

157 

Gao L, Liu F, Hou PP, Manaenko A, Xiao ZP, Wang F, Xu TL and Hu Q: Neurons release injured mitochondria as 'Help-Me' signaling after ischemic stroke. Front Aging Neurosci. 14:7857612022. View Article : Google Scholar

158 

Jiang D, Gao F, Zhang Y, Wong DS, Li Q, Tse HF, Xu G, Yu Z and Lian Q: Mitochondrial transfer of mesenchymal stem cells effectively protects corneal epithelial cells from mitochondrial damage. Cell Death Dis. 7:e24672016. View Article : Google Scholar : PubMed/NCBI

159 

Hasan-Olive MM, Enger R, Hansson HA, Nagelhus EA and Eide PK: Pathological mitochondria in neurons and perivascular astrocytic endfeet of idiopathic normal pressure hydrocephalus patients. Fluids Barriers CNS. 16:392019. View Article : Google Scholar :

160 

Guo W, Liu W, Chen Z, Gu Y, Peng S, Shen L, Shen Y, Wang X, Feng GS, Sun Y and Xu Q: Tyrosine phosphatase SHP2 negatively regulates NLRP3 inflammasome activation via ANT1-dependent mitochondrial homeostasis. Nat Commun. 8:21682017. View Article : Google Scholar :

161 

Aoki Y, Huang Z, Thomas SS, Bhide PG, Huang I, Moskowitz MA and Reeves SA: Increased susceptibility to ischemia-induced brain damage in transgenic mice overexpressing a dominant negative form of SHP2. FASEB J. 14:1965–1973. 2000. View Article : Google Scholar : PubMed/NCBI

162 

Zou X, Xie L, Wang W, Zhao G, Tian X and Chen M: FK866 alleviates cerebral pyroptosis and inflammation mediated by Drp1 in a rat cardiopulmonary resuscitation model. Int Immunopharmacol. 89:1070322020. View Article : Google Scholar : PubMed/NCBI

163 

Dong J, Bobe G, Guan Y, Li G, Zuo R, Shu X, Wang Y, Sun X, Chen X and Li X: Mitochondrial membrane protein mitofusin 2 as a potential therapeutic target for treating free fatty acid-induced hepatic inflammation in dairy cows during early lactation. J Dairy Sci. 103:5561–5574. 2020. View Article : Google Scholar : PubMed/NCBI

164 

Peng C, Rao W, Zhang L, Wang K, Hui H, Wang L, Su N, Luo P, Hao YL, Tu Y, et al: Mitofusin 2 ameliorates hypoxia-induced apoptosis via mitochondrial function and signaling pathways. Int J Biochem Cell Biol. 69:29–40. 2015. View Article : Google Scholar : PubMed/NCBI

165 

Wang X, Chen T, Ma X, Huang W, Huang Q, Liu K and Liang H: Progress on nuclear factor-E2 related factor 2 transcription factors in sepsis. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 30:810–814. 2018.In Chinese. PubMed/NCBI

166 

Zhao C, Gillette DD, Li X, Zhang Z and Wen H: Nuclear factor E2-related factor-2 (Nrf2) is required for NLRP3 and AIM2 inflammasome activation. J Biol Chem. 289:17020–17029. 2014. View Article : Google Scholar : PubMed/NCBI

167 

Anandhan A, Nguyen N, Syal A, Dreher LA, Dodson M, Zhang DD and Madhavan L: NRF2 loss accentuates Parkinsonian pathology and behavioral dysfunction in human α-synuclein overexpressing mice. Aging Dis. 12:964–982. 2021. View Article : Google Scholar : PubMed/NCBI

168 

Li W, Khor TO, Xu C, Shen G, Jeong WS, Yu S and Kong AN: Activation of Nrf2-antioxidant signaling attenuates NFkappaB-inflammatory response and elicits apoptosis. Biochem Pharmacol. 76:1485–1489. 2008. View Article : Google Scholar

169 

Xu X, Zhang L, Ye X, Hao Q, Zhang T, Cui G and Yu M: Nrf2/ARE pathway inhibits ROS-induced NLRP3 inflammasome activation in BV2 cells after cerebral ischemia reperfusion. Inflamm Res. 67:57–65. 2018. View Article : Google Scholar

170 

Xu B, Zhang J, Strom J, Lee S and Chen QM: Myocardial ischemic reperfusion induces de novo Nrf2 protein translation. Biochim Biophys Acta. 1842:1638–1647. 2014. View Article : Google Scholar : PubMed/NCBI

171 

Yu J, Wang WN, Matei N, Li X, Pang JW, Mo J, Chen SP, Tang JP, Yan M and Zhang JH: Ezetimibe attenuates oxidative stress and neuroinflammation via the AMPK/Nrf2/TXNIP Pathway after MCAO in Rats. Oxid Med Cell Longev. 2020:47172582020. View Article : Google Scholar : PubMed/NCBI

172 

Hou Y, Wang Y, He Q, Li L, Xie H, Zhao Y and Zhao J: Nrf2 inhibits NLRP3 inflammasome activation through regulating Trx1/TXNIP complex in cerebral ischemia reperfusion injury. Behav Brain Res. 336:32–39. 2018. View Article : Google Scholar

173 

Zhang C, He M, Ni L, He K, Su K, Deng Y, Li Y and Xia H: The role of arachidonic acid metabolism in myocardial ischemia-reperfusion injury. Cell Biochem Biophys. 78:255–265. 2020. View Article : Google Scholar : PubMed/NCBI

174 

Shi Y, Peng XH, Li X, Luo GP and Wu MF: Neuroprotective role of dexmedetomidine pretreatment in cerebral ischemia injury via ADRA2A-mediated phosphorylation of ERK1/2 in adult rats. Exp Ther Med. 16:5201–5209. 2018.PubMed/NCBI

175 

Liu F, Lu J, Manaenko A, Tang J and Hu Q: Mitochondria in Ischemic Stroke: New Insight and Implications. Aging Dis. 9:924–937. 2018. View Article : Google Scholar : PubMed/NCBI

176 

Wang X, Li R, Wang X, Fu Q and Ma S: Umbelliferone ameliorates cerebral ischemia-reperfusion injury via upregulating the PPAR gamma expression and suppressing TXNIP/NLRP3 inflammasome. Neurosci Lett. 600:182–187. 2015. View Article : Google Scholar : PubMed/NCBI

177 

Li Y, Li J, Li S, Li Y, Wang X, Liu B, Fu Q and Ma S: Curcumin attenuates glutamate neurotoxicity in the hippocampus by suppression of ER stress-associated TXNIP/NLRP3 inflammasome activation in a manner dependent on AMPK. Toxicol Appl Pharmacol. 286:53–63. 2015. View Article : Google Scholar : PubMed/NCBI

178 

Cao G, Jiang N, Hu Y, Zhang Y, Wang G, Yin M, Ma X, Zhou K, Qi J, Yu B and Kou J: Ruscogenin attenuates cerebral ischemia-induced blood-brain barrier dysfunction by suppressing TXNIP/NLRP3 inflammasome activation and the MAPK pathway. Int J Mol Sci. 17:14182016. View Article : Google Scholar :

179 

Ishrat T, Mohamed IN, Pillai B, Soliman S, Fouda AY, Ergul A, El-Remessy AB and Fagan SC: Thioredoxin-interacting protein: A novel target for neuroprotection in experimental thromboembolic stroke in mice. Mol Neurobiol. 51:766–778. 2015. View Article : Google Scholar

180 

Ismael S, Nasoohi S, Yoo A, Ahmed HA and Ishrat T: Tissue plasminogen activator promotes TXNIP-NLRP3 inflammasome activation after hyperglycemic stroke in mice. Mol Neurobiol. 57:2495–2508. 2020. View Article : Google Scholar : PubMed/NCBI

181 

Liu T, Wang W, Liu M, Ma Y, Mu F, Feng X, Zhang Y, Guo C, Ding Y and Wen A: Z-Guggulsterone alleviated oxidative stress and inflammation through inhibiting the TXNIP/NLRP3 axis in ischemic stroke. Int Immunopharmacol. 89:1070942020. View Article : Google Scholar : PubMed/NCBI

182 

Yang W, Chen X, Pan J, Ge H, Yin K, Wu Z, Li X, Sha D and Xu Y: Malibatol A protects against brain injury through reversing mitochondrial dysfunction in experimental stroke. Neurochem Int. 80:33–40. 2015. View Article : Google Scholar

183 

Gao XJ, Xie GN, Liu L, Fu ZJ, Zhang ZW and Teng LZ: Sesamol attenuates oxidative stress, apoptosis and inflammation in focal cerebral ischemia/reperfusion injury. Exp Ther Med. 14:841–847. 2017. View Article : Google Scholar : PubMed/NCBI

184 

Lu Y, Xiao G and Luo W: Minocycline suppresses NLRP3 inflammasome activation in experimental ischemic stroke. Neuroimmunomodulation. 23:230–238. 2016. View Article : Google Scholar : PubMed/NCBI

185 

Qiu J, Wang M, Zhang J, Cai Q, Lu D, Li Y, Dong Y, Zhao T and Chen H: The neuroprotection of Sinomenine against ischemic stroke in mice by suppressing NLRP3 inflammasome via AMPK signaling. Int Immunopharmacol. 40:492–500. 2016. View Article : Google Scholar : PubMed/NCBI

186 

Peng J, Deng X, Huang W, Yu JH, Wang JX, Wang JP, Yang SB, Liu X, Wang L, Zhang Y, et al: Irisin protects against neuronal injury induced by oxygen-glucose deprivation in part depends on the inhibition of ROS-NLRP3 inflammatory signaling pathway. Mol Immunol. 91:185–194. 2017. View Article : Google Scholar : PubMed/NCBI

187 

Qin YY, Li M, Feng X, Wang J, Cao L, Shen XK, Chen J, Sun M, Sheng R, Han F and Qin ZH: Combined NADPH and the NOX inhibitor apocynin provides greater anti-inflammatory and neuroprotective effects in a mouse model of stroke. Free Radic Biol Med. 104:333–345. 2017. View Article : Google Scholar : PubMed/NCBI

188 

Safakheil M and Safakheil H: The effect of exosomes derived from bone marrow stem cells in combination with rosuvastatin on functional recovery and neuroprotection in rats after ischemic stroke. J Mol Neurosci. 70:724–737. 2020. View Article : Google Scholar : PubMed/NCBI

189 

Barakat W, Fahmy A, Askar M and El-Kannishy S: Effectiveness of arginase inhibitors against experimentally induced stroke. Naunyn Schmiedebergs Arch Pharmacol. 391:603–612. 2018. View Article : Google Scholar : PubMed/NCBI

190 

Wang Y, Guan X, Gao CL, Ruan W, Zhao S, Kai G, Li F and Pang T: Medioresinol as a novel PGC-1α activator prevents pyroptosis of endothelial cells in ischemic stroke through PPARα-GOT1 axis. Pharmacol Res. 169:1056402021. View Article : Google Scholar

191 

Hu J, Zeng C, Wei J, Duan F, Liu S, Zhao Y and Tan H: The combination of Panax ginseng and Angelica sinensis alleviates ischemia brain injury by suppressing NLRP3 inflammasome activation and microglial pyroptosis. Phytomedicine. 76:1532512020. View Article : Google Scholar : PubMed/NCBI

192 

Yao Z, Liu N, Zhu X, Wang L, Zhao Y, Liu Q, Gao C and Li J: Subanesthetic isoflurane abates ROS-activated MAPK/NF-κB signaling to repress ischemia-induced microglia inflammation and brain injury. Aging (Albany NY). 12:26121–26139. 2020. View Article : Google Scholar

193 

Lin KC, Chen KH, Wallace CG, Chen YL, Ko SF, Lee MS and Yip HK: Combined therapy with hyperbaric oxygen and melatonin effectively reduce brain infarct volume and preserve neurological function after acute ischemic infarct in rat. J Neuropathol Exp Neurol. 78:949–960. 2019. View Article : Google Scholar : PubMed/NCBI

194 

Yang M, Lv Y, Tian X, Lou J, An R, Zhang Q, Li M, Xu L and Dong Z: Neuroprotective effect of β-caryophyllene on cerebral ischemia-reperfusion injury via regulation of necroptotic neuronal death and inflammation: In vivo and in vitro. Front Neurosci. 11:5832017. View Article : Google Scholar

195 

Zhong KL, Lu MY, Liu F, Mei Y, Zhang XJ, Zhang H, Zan J, Sun XO and Tan W: Isosteviol sodium protects neural cells against hypoxia-induced apoptosis through inhibiting MAPK and NF-κB pathways. J Stroke Cerebrovasc Dis. 28:175–184. 2019. View Article : Google Scholar

196 

Turovskaya MV, Gaidin SG, Mal'Tseva VN, Zinchenko VP and Turovsky EA: Taxifolin protects neurons against ischemic injury in vitro via the activation of antioxidant systems and signal transduction pathways of GABAergic neurons. Mol Cell Neurosci. 96:10–24. 2019. View Article : Google Scholar : PubMed/NCBI

197 

Zhao P, Chang RY, Liu N, Wang J, Zhou R, Qi X, Liu Y, Ma L, Niu Y, Sun T, et al: Neuroprotective effect of oxysophocarpine by modulation of MAPK pathway in rat hippocampal neurons subject to oxygen-glucose deprivation and reperfusion. Cell Mol Neurobiol. 38:529–540. 2018. View Article : Google Scholar

198 

Wu D, Chen Y, Sun Y, Gao Q, Li H, Yang Z, Wang Y, Jiang X and Yu B: Target of MCC950 in Inhibition of NLRP3 inflammasome activation: A literature review. Inflammation. 43:17–23. 2020. View Article : Google Scholar

199 

Coll RC, Hill JR, Day CJ, Zamoshnikova A, Boucher D, Massey NL, Chitty JL, Fraser JA, Jennings MP, Robertson AAB and Schroder K: MCC950 directly targets the NLRP3 ATP-hydrolysis motif for inflammasome inhibition. Nat Chem Biol. 15:556–559. 2019. View Article : Google Scholar : PubMed/NCBI

200 

Jiao J, Zhao G, Wang Y, Ren P and Wu M: MCC950, a selective inhibitor of NLRP3 inflammasome, reduces the inflammatory response and improves neurological outcomes in mice model of spinal cord injury. Front Mol Biosci. 7:372020. View Article : Google Scholar : PubMed/NCBI

201 

Joaquim LS, Danielski LG, Bonfante S, Biehl E, Mathias K, Denicol T, Bagio E, Lanzzarin EV, Machado RS, Bernades GC, et al: NLRP3 inflammasome activation increases brain oxidative stress after transient global cerebral ischemia in rats. Int J Neurosci. 1–14. 2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

202 

Chen H, Guan B, Chen S, Yang D and Shen J: Peroxynitrite activates NLRP3 inflammasome and contributes to hemorrhagic transformation and poor outcome in ischemic stroke with hyperglycemia. Free Radic Biol Med. 165:171–183. 2021. View Article : Google Scholar : PubMed/NCBI

203 

Dwivedi DK and Jena GB: NLRP3 inhibitor glibenclamide attenuates high-fat diet and streptozotocin-induced non-alcoholic fatty liver disease in rat: Studies on oxidative stress, inflammation, DNA damage and insulin signalling pathway. Naunyn Schmiedebergs Arch Pharmacol. 393:705–716. 2020. View Article : Google Scholar

204 

Zhu S, Gao X, Huang K, Gu Y, Hu Y, Wu Y, Ji Z, Wang Q and Pan S: Glibenclamide enhances the therapeutic benefits of early hypothermia after severe stroke in rats. Aging Dis. 9:685–695. 2018. View Article : Google Scholar : PubMed/NCBI

205 

Gueven N, Ravishankar P, Eri R and Rybalka E: Idebenone: When an antioxidant is not an antioxidant. Redox Biol. 38:1018122021. View Article : Google Scholar

206 

Jiang W, Geng H, Lv X, Ma J, Liu F, Lin P and Yan C: Idebenone Protects against atherosclerosis in apolipoprotein E-Deficient mice via activation of the SIRT3-SOD2-mtROS pathway. Cardiovasc Drugs Ther. 35:1129–1145. 2021. View Article : Google Scholar

207 

Akopova O, Kolchinskaya L, Nosar V, Mankovska I and Sagach V: Diazoxide affects mitochondrial bioenergetics by the opening of mKATP channel on submicromolar scale. BMC Mol Cell Biol. 21:312020. View Article : Google Scholar : PubMed/NCBI

208 

Liu D, Lu C, Wan R, Auyeung WW and Mattson MP: Activation of mitochondrial ATP-dependent potassium channels protects neurons against ischemia-induced death by a mechanism involving suppression of Bax translocation and cytochrome c release. J Cereb Blood Flow Metab. 22:431–443. 2002. View Article : Google Scholar : PubMed/NCBI

209 

Lei X, Lei L, Zhang Z and Cheng Y: Diazoxide inhibits of ER stressmediated apoptosis during oxygenglucose deprivation in vitro and cerebral ischemiareperfusion in vivo. Mol Med Rep. 17:8039–8046. 2018.PubMed/NCBI

210 

Mishra SR, Mahapatra KK, Behera BP, Patra S, Bhol CS, Panigrahi DP, Praharaj PP, Singh A, Patil S, Dhiman R and Bhutia SK: Mitochondrial dysfunction as a driver of NLRP3 inflammasome activation and its modulation through mitophagy for potential therapeutics. Int J Biochem Cell Biol. 136:1060132021. View Article : Google Scholar : PubMed/NCBI

211 

Nógrádi B, Nyúl-Tóth Á, Kozma M, Molnár K, Patai R, Siklós L, Wilhelm I and Krizbai IA: Upregulation of nucleotide-binding oligomerization Domain-, LRR- and pyrin domain-containing protein 3 in motoneurons following peripheral nerve injury in mice. Front Pharmacol. 11:5841842020. View Article : Google Scholar : PubMed/NCBI

212 

Gong Z, Pan J, Shen Q, Li M and Peng Y: Mitochondrial dysfunction induces NLRP3 inflammasome activation during cerebral ischemia/reperfusion injury. J Neuroinflammation. 15:2422018. View Article : Google Scholar : PubMed/NCBI

213 

Kondoh T, Uneyama H, Nishino H and Torii K: Melatonin reduces cerebral edema formation caused by transient forebrain ischemia in rats. Life Sci. 72:583–590. 2002. View Article : Google Scholar : PubMed/NCBI

214 

Kilic E, Caglayan B and Caglar BM: Physiological and pharmacological roles of melatonin in the pathophysiological components of cellular injury after ischemic stroke. Turk J Med Sci. 50:1655–1664. 2020. View Article : Google Scholar : PubMed/NCBI

215 

Fan W, He Y, Guan X, Gu W, Wu Z, Zhu X, Huang F and He H: Involvement of the nitric oxide in melatonin-mediated protection against injury. Life Sci. 200:142–147. 2018. View Article : Google Scholar : PubMed/NCBI

216 

Yang Y, Jiang S, Dong Y, Fan C, Zhao L, Yang X, Li J, Di S, Yue L, Liang G, et al: Melatonin prevents cell death and mitochondrial dysfunction via a SIRT1-dependent mechanism during ischemic-stroke in mice. J Pineal Res. 58:61–70. 2015. View Article : Google Scholar

217 

Ramos E, Patino P, Reiter RJ, Gil-Martín E, Marco-Contelles J, Parada E, de Los Rios C, Romero A and Egea J: Ischemic brain injury: New insights on the protective role of melatonin. Free Radic Biol Med. 104:32–53. 2017. View Article : Google Scholar : PubMed/NCBI

218 

Paredes SD, Rancan L, Kireev R, González A, Louzao P, González P, Rodríguez-Bobada C, García C, Vara E and Tresguerres JA: Melatonin counteracts at a transcriptional level the inflammatory and apoptotic response secondary to ischemic brain injury induced by middle cerebral artery blockade in aging rats. Biores Open Access. 4:407–416. 2015. View Article : Google Scholar : PubMed/NCBI

219 

Wang X, Figueroa BE, Stavrovskaya IG, Zhang Y, Sirianni AC, Zhu S, Day AL, Kristal BS and Friedlander RM: Methazolamide and melatonin inhibit mitochondrial cytochrome C release and are neuroprotective in experimental models of ischemic injury. Stroke. 40:1877–1885. 2009. View Article : Google Scholar : PubMed/NCBI

220 

Gilani GS, Nimal RW, Mueller R and Mazza G: Effects of source of protein and supplementary extracted isoflavones and anthocyanins on longevity of Stroke-prone Spontaneously Hypertensive (SHRSP) rats. J Toxicol Sci. 34:335–341. 2009. View Article : Google Scholar : PubMed/NCBI

221 

Song F, Zhu Y, Shi Z, Tian J, Deng X, Ren J, Andrews MC, Ni H, Ling W and Yang Y: Plant food anthocyanins inhibit platelet granule secretion in hypercholesterolaemia: Involving the signalling pathway of PI3K-Akt. Thromb Haemost. 112:981–991. 2014. View Article : Google Scholar : PubMed/NCBI

222 

Feng R, Ni HM, Wang SY, Tourkova IL, Shurin MR, Harada H and Yin XM: Cyanidin-3-rutinoside, a natural polyphenol antioxidant, selectively kills leukemic cells by induction of oxidative stress. J Biol Chem. 282:13468–13476. 2007. View Article : Google Scholar : PubMed/NCBI

223 

Dreiseitel A, Schreier P, Oehme A, Locher S, Rogler G, Piberger H, Hajak G and Sand PG: Inhibition of proteasome activity by anthocyanins and anthocyanidins. Biochem Biophys Res Commun. 372:57–61. 2008. View Article : Google Scholar : PubMed/NCBI

224 

Cai Y, Li X, Pan Z, Zhu Y, Tuo J, Meng Q, Dai G, Yang G and Pan Y: Anthocyanin ameliorates hypoxia and ischemia induced inflammation and apoptosis by increasing autophagic flux in SH-SY5Y cells. Eur J Pharmacol. 883:1733602020. View Article : Google Scholar : PubMed/NCBI

225 

Pan Z, Cui M, Dai G, Yuan T, Li Y, Ji T and Pan Y: Protective effect of anthocyanin on neurovascular unit in cerebral ischemia/reperfusion injury in rats. Front Neurosci. 12:9472018. View Article : Google Scholar

226 

Liobikas J, Skemiene K, Trumbeckaite S and Borutaite V: Anthocyanins in cardioprotection: A path through mitochondria. Pharmacol Res. 113:808–815. 2016. View Article : Google Scholar : PubMed/NCBI

227 

Min J, Yu SW, Baek SH, Nair KM, Bae ON, Bhatt A, Kassab M, Nair MG and Majid A: Neuroprotective effect of cyanidin-3-O-glucoside anthocyanin in mice with focal cerebral ischemia. Neurosci Lett. 500:157–161. 2011. View Article : Google Scholar : PubMed/NCBI

228 

Cui HX, Chen JH, Li JW, Cheng FR and Yuan K: Protection of anthocyanin from myrica rubra against cerebral ischemia-reperfusion injury via modulation of the TLR4/NF-κB and NLRP3 pathways. Moleculs. 23:17882018. View Article : Google Scholar

229 

Gutierrez-Vargas JA, Munera A and Cardona-Gomez GP: CDK5 knockdown prevents hippocampal degeneration and cognitive dysfunction produced by cerebral ischemia. J Cereb Blood Flow Metab. 35:1937–1949. 2015. View Article : Google Scholar : PubMed/NCBI

230 

Xue LX, Zhang T, Zhao YW, Geng Z, Chen JJ and Chen H: Efficacy and safety comparison of DL-3-n-butylphthalide and Cerebrolysin: Effects on neurological and behavioral outcomes in acute ischemic stroke. Exp Ther Med. 11:2015–2020. 2016. View Article : Google Scholar : PubMed/NCBI

231 

Fagan SC, Waller JL, Nichols FT, Edwards DJ, Pettigrew LC, Clark WM, Hall CE, Switzer JA, Ergul A and Hess DC: Minocycline to improve neurologic outcome in stroke (MINOS): A dose-finding study. Stroke. 41:2283–2287. 2010. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhang X, Zeng W, Zhang Y, Yu Q, Zeng M, Gan J, Zhang W, Jiang X and Li H: Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review). Int J Mol Med 49: 74, 2022.
APA
Zhang, X., Zeng, W., Zhang, Y., Yu, Q., Zeng, M., Gan, J. ... Li, H. (2022). Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review). International Journal of Molecular Medicine, 49, 74. https://doi.org/10.3892/ijmm.2022.5130
MLA
Zhang, X., Zeng, W., Zhang, Y., Yu, Q., Zeng, M., Gan, J., Zhang, W., Jiang, X., Li, H."Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review)". International Journal of Molecular Medicine 49.6 (2022): 74.
Chicago
Zhang, X., Zeng, W., Zhang, Y., Yu, Q., Zeng, M., Gan, J., Zhang, W., Jiang, X., Li, H."Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review)". International Journal of Molecular Medicine 49, no. 6 (2022): 74. https://doi.org/10.3892/ijmm.2022.5130
Copy and paste a formatted citation
x
Spandidos Publications style
Zhang X, Zeng W, Zhang Y, Yu Q, Zeng M, Gan J, Zhang W, Jiang X and Li H: Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review). Int J Mol Med 49: 74, 2022.
APA
Zhang, X., Zeng, W., Zhang, Y., Yu, Q., Zeng, M., Gan, J. ... Li, H. (2022). Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review). International Journal of Molecular Medicine, 49, 74. https://doi.org/10.3892/ijmm.2022.5130
MLA
Zhang, X., Zeng, W., Zhang, Y., Yu, Q., Zeng, M., Gan, J., Zhang, W., Jiang, X., Li, H."Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review)". International Journal of Molecular Medicine 49.6 (2022): 74.
Chicago
Zhang, X., Zeng, W., Zhang, Y., Yu, Q., Zeng, M., Gan, J., Zhang, W., Jiang, X., Li, H."Focus on the role of mitochondria in NLRP3 inflammasome activation: A prospective target for the treatment of ischemic stroke (Review)". International Journal of Molecular Medicine 49, no. 6 (2022): 74. https://doi.org/10.3892/ijmm.2022.5130
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team