You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
|
Bird AC: Therapeutic targets in age-related macular disease. J Clin Invest. 120:3033–3041. 2010. View Article : Google Scholar : | |
|
Radomska-Leśniewska DM, Skopiński P, Bałan BJ, Białoszewska A, Jóźwiak J, Rokicki D, Skopińska-Różewska E, Borecka A and Hevelke A: Angiomodulatory properties of Rhodiola spp. and other natural antioxidants. Cent Eur J Immunol. 40:249–262. 2015. View Article : Google Scholar | |
|
Radomska-Leśniewska DM, Bałan BJ and Skopiński P: Angiogenesis modulation by exogenous antioxidants. Cent Eur J Immunol. 42:370–376. 2017. View Article : Google Scholar | |
|
Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: PPARγ agonists: Potential treatments for exudative age-related macular degeneration. Life Sci. 188:123–130. 2017. View Article : Google Scholar | |
|
Coffe V, Carbajal RC and Salceda R: Glucose metabolism in rat retinal pigment epithelium. Neurochem Res. 31:103–108. 2006. View Article : Google Scholar | |
|
Kaur C, Foulds WS and Ling EA: Hypoxia-ischemia and retinal ganglion cell damage. Clin Ophthalmol. 2:879–889. 2008. View Article : Google Scholar | |
|
Ferris FL, Fine SL and Hyman L: Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol. 102:164016421984. View Article : Google Scholar : PubMed/NCBI | |
|
Barchitta M and Maugeri A: Association between vascular endothelial growth factor polymorphisms and age-related macular degeneration: An updated meta-analysis. Dis Markers. 2016:84864062016. View Article : Google Scholar | |
|
Yin F, Boveris A and Cadenas E: Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal. 20:353–371. 2014. View Article : Google Scholar | |
|
Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: opposite interplay between the canonical WNT/β-catenin pathway and PPAR Gamma: A potential therapeutic target in gliomas. Neurosci Bull. 34:573–588. 2018. View Article : Google Scholar | |
|
Vallée A, Lecarpentier Y and Vallée JN: Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res. 38:3232019. View Article : Google Scholar | |
|
Yeung AWK, Horbańczuk M, Tzvetkov NT, Mocan A, Carradori S, Maggi F, Marchewka J, Sut S, Dall'Acqua S, Gan RY, et al: Curcumin: Total-scale analysis of the scientific literature. Molecules. 24:13932019. View Article : Google Scholar | |
|
Kao YW, Hsu SK, Chen JY, Lin IL, Chen KJ, Lee PY, Ng HS, Chiu CC and Cheng KC: Curcumin metabolite tetrahydrocurcumin in the treatment of eye diseases. Int J Mol Sci. 22:2122020. View Article : Google Scholar | |
|
Bhutto I and Lutty G: Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med. 33:295–317. 2012. View Article : Google Scholar | |
|
McLeod DS, Grebe R, Bhutto I, Merges C, Baba T and Lutty GA: Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci. 50:4982–4991. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Takata S, Masuda T, Nakamura S, Kuchimaru T, Tsuruma K, Shimazawa M, Nagasawa H, Kizaka-Kondoh S and Hara H: The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe. Sci Rep. 5:98982015. View Article : Google Scholar | |
|
Sakurai E, Anand A, Ambati BK, van Rooijen N and Ambati J: Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 44:3578–3585. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Indaram M, Ma W, Zhao L, Fariss RN, Rodriguez IR and Wong WT: 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: A potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep. 5:91442015. View Article : Google Scholar | |
|
Terasaki H, Kase S, Shirasawa M, Otsuka H, Hisatomi T, Sonoda S, Ishida S, Ishibashi T and Sakamoto T: TNF-α decreases VEGF secretion in highly polarized RPE cells but increases it in non-polarized RPE cells related to crosstalk between JNK and NF-κB pathways. PLoS One. 8:e699942013. View Article : Google Scholar | |
|
Hu Y, Chen Y, Lin M, Lee K, Mott RA and Ma J: Pathogenic role of the Wnt signaling pathway activation in laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci. 54:141–154. 2013. View Article : Google Scholar | |
|
Tuo J, Wang Y, Cheng R, Li Y, Chen M, Qiu F, Qian H, Shen D, Penalva R, Xu H, et al: Wnt signaling in age-related macular degeneration: Human macular tissue and mouse model. J Transl Med. 13:3302015. View Article : Google Scholar : PubMed/NCBI | |
|
Nussenblatt RB and Ferris F: Age-related macular degeneration and the immune response: Implications for therapy. Am J Ophthalmol. 144:618–626. 2007. View Article : Google Scholar | |
|
Radeke MJ, Radeke CM, Shih YH, Hu J, Bok D, Johnson LV and Coffey PJ: Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: Implications for age-related macular degeneration. Genome Med. 7:582015. View Article : Google Scholar | |
|
Lin CH, Li CH, Liao PL, Tse LS, Huang WK, Cheng HW and Cheng YW: Silibinin inhibits VEGF secretion and age-related macular degeneration in a hypoxia-dependent manner through the PI-3 kinase/Akt/mTOR pathway. Br J Pharmacol. 168:920–931. 2013. View Article : Google Scholar | |
|
Ambati J: Age-related macular degeneration and the other double helix. The Cogan lecture. Invest Ophthalmol Vis Sci. 52:2165–2169. 2011. View Article : Google Scholar | |
|
Blasiak J, Petrovski G, Veréb Z, Facskó A and Kaarniranta K: Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. Biomed Res Int. 2014:7680262014. View Article : Google Scholar | |
|
Jaffe GJ, Eliott D, Wells JA, Prenner JL, Papp A and Patel S: A Phase 1 study of Intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration. Ophthalmology. 123:78–85. 2016. View Article : Google Scholar | |
|
Kwak N, Okamoto N, Wood JM and Campochiaro PA: VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci. 41:3158–3164. 2000. | |
|
Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP and Schneider S; ANCHOR Study Group: Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 355:1432–1444. 2006. View Article : Google Scholar | |
|
Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY and Kim RY; MARINA Study Group: Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 355:1419–1431. 2006. View Article : Google Scholar | |
|
Zhang X, Gaspard JP and Chung DC: Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 61:6050–6054. 2001.PubMed/NCBI | |
|
Katoh Y and Katoh M: Comparative integromics on VEGF family members. Int J Oncol. 28:1585–1589. 2006. | |
|
Zhou T, Hu Y, Chen Y, Zhou KK, Zhang B, Gao G and Ma J: The pathogenic role of the canonical Wnt pathway in age-related macular degeneration. Invest Ophthalmol Vis Sci. 51:4371–4379. 2010. View Article : Google Scholar : | |
|
Ma B and Hottiger MO: Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol. 7:3782016. View Article : Google Scholar | |
|
Wang H and Hartnett ME: Regulation of signaling events involved in the pathophysiology of neovascular AMD. Mol Vis. 22:189–202. 2016. | |
|
Al-Harthi L: Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol. 7:725–730. 2012. View Article : Google Scholar | |
|
Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar | |
|
Klaus A and Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 8:387–398. 2008. View Article : Google Scholar | |
|
Fuhrmann S: Wnt signaling in eye organogenesis. Organogenesis. 4:60–67. 2008. View Article : Google Scholar | |
|
Fujimura N: WNT/β-catenin signaling in vertebrate eye development. Front Cell Dev Biol. 4:1382016. View Article : Google Scholar | |
|
Machon O, Kreslova J, Ruzickova J, Vacik T, Klimova L, Fujimura N, Lachova J and Kozmik Z: Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/beta-catenin signaling in the lens surface ectoderm. Genesis. 48:86–95. 2010. | |
|
Carpenter AC, Smith AN, Wagner H, Cohen-Tayar Y, Rao S, Wallace V, Ashery-Padan R and Lang RA: Wnt ligands from the embryonic surface ectoderm regulate 'bimetallic strip' optic cup morphogenesis in mouse. Development. 142:972–982. 2015. View Article : Google Scholar | |
|
Hägglund AC, Berghard A and Carlsson L: Canonical Wnt/β-catenin signalling is essential for optic cup formation. PLoS One. 8:e811582013. View Article : Google Scholar | |
|
Birdsey GM, Shah AV, Dufton N, Reynolds LE, Osuna Almagro L, Yang Y, Aspalter IM, Khan ST, Mason JC, Dejana E, et al: The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling. Dev Cell. 32:82–96. 2015. View Article : Google Scholar | |
|
Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS and Nathans J: Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell. 139:285–298. 2009. View Article : Google Scholar | |
|
Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM and Nathans J: Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest. 124:3825–3846. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Huang W, Li Q, Amiry-Moghaddam M, Hokama M, Sardi SH, Nagao M, Warman ML and Olsen BR: Critical endothelial regulation by LRP5 during retinal vascular development. PLoS One. 11:e01528332016. View Article : Google Scholar | |
|
Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R and Ben-Ze'ev A: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA. 96:5522–5527. 1999. View Article : Google Scholar | |
|
Nusse R: Wnt signaling. Cold Spring Harb Perspect Biol. 4:a0111632012. View Article : Google Scholar | |
|
Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar | |
|
Sprowl-Tanio S, Habowski AN, Pate KT, McQuade MM, Wang K, Edwards RA, Grun F, Lyou Y and Waterman ML: Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer. Cancer Metab. 4:202016. View Article : Google Scholar : | |
|
Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, et al: Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33:1454–1473. 2014. View Article : Google Scholar : | |
|
Gao C, Xiao G and Hu J: Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci. 4:132014. View Article : Google Scholar | |
|
Cruciat CM and Niehrs C: Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 5:a0150812013. View Article : Google Scholar | |
|
Aberle H, Bauer A, Stappert J, Kispert A and Kemler R: Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16:3797–3804. 1997. View Article : Google Scholar | |
|
Wu D and Pan W: GSK3: A multifaceted kinase in Wnt signaling. Trends Biochem Sci. 35:161–168. 2010. View Article : Google Scholar : | |
|
Hur EM and Zhou FQ: GSK3 signalling in neural development. Nat Rev Neurosci. 11:539–551. 2010. View Article : Google Scholar | |
|
Ambacher KK, Pitzul KB, Karajgikar M, Hamilton A, Ferguson SS and Cregan SP: The JNK- and AKT/GSK3β-signaling pathways converge to regulate puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One. 7:e468852012. View Article : Google Scholar | |
|
Yokosako K, Mimura T, Funatsu H, Noma H, Goto M, Kamei Y, Kondo A and Matsubara M: Glycolysis in patients with age-related macular degeneration. Open Ophthalmol J. 8:39–47. 2014. View Article : Google Scholar | |
|
Grossniklaus HE, Kang SJ and Berglin L: Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res. 29:500–519. 2010. View Article : Google Scholar | |
|
Wang Z, Liu CH, Huang S and Chen J: Wnt Signaling in vascular eye diseases. Prog Retin Eye Res. 70:110–133. 2019. View Article : Google Scholar | |
|
Wang Z, Cheng R, Lee K, Tyagi P, Ding L, Kompella UB, Chen J, Xu X and Ma JX: Nanoparticle-mediated expression of a wnt pathway inhibitor ameliorates ocular neovascularization. Arterioscler Thromb Vasc Biol. 35:855–864. 2015. View Article : Google Scholar | |
|
Chen Y, Hu Y, Lu K, Flannery JG and Ma JX: Very low density lipoprotein receptor, a negative regulator of the wnt signaling pathway and choroidal neovascularization. J Biol Chem. 282:34420–34428. 2007. View Article : Google Scholar | |
|
Lin JB, Sene A, Wiley LA, Santeford A, Nudleman E, Nakamura R, Lin JB, Moolani HV and Apte RS: WNT7A/B promote choroidal neovascularization. Exp Eye Res. 174:107–112. 2018. View Article : Google Scholar | |
|
Park K, Lee K, Zhang B, Zhou T, He X, Gao G, Murray AR and Ma JX: Identification of a novel inhibitor of the canonical Wnt pathway. Mol Cell Biol. 31:3038–3051. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Dai Z, Lu L, Yang Z, Mao Y, Lu J, Li C, Qi W, Chen Y, Yao Y, Li L, et al: Kallikrein-binding protein inhibits LPS-induced TNF-α by upregulating SOCS3 expression. J Cell Biochem. 114:1020–1028. 2013. View Article : Google Scholar | |
|
Zhang J, Yang Z, Li P, Bledsoe G, Chao L and Chao J: Kallistatin antagonizes Wnt/β-catenin signaling and cancer cell motility via binding to low-density lipoprotein receptor-related protein 6. Mol Cell Biochem. 379:295–301. 2013. View Article : Google Scholar | |
|
Lu SL, Tsai C Y, Luo YH, Kuo C F, Lin WC, Chang YT, Wu JJ, Chuang WJ, Liu CC, Chao L, et al: Kallistatin modulates immune cells and confers anti-inflammatory response to protect mice from Group A streptococcal infection. Antimicrob Agents Chemother. 57:5366–5372. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
McBride JD, Jenkins AJ, Liu X, Zhang B, Lee K, Berry WL, Janknecht R, Griffin CT, Aston CE, Lyons TJ, et al: Elevated circulation levels of an antiangiogenic SERPIN in patients with diabetic microvascular complications impair wound healing through suppression of Wnt signaling. J Invest Dermatol. 134:1725–1734. 2014. View Article : Google Scholar | |
|
Bach RR: Initiation of coagulation by tissue factor. CRC Crit Rev Biochem. 23:339–368. 1988. View Article : Google Scholar : PubMed/NCBI | |
|
Tuo J, Bojanowski CM, Zhou M, Shen D, Ross RJ, Rosenberg KI, Cameron DJ, Yin C, Kowalak JA, Zhuang Z, et al: Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci. 48:3827–3836. 2007. View Article : Google Scholar | |
|
Chan CC, Ross RJ, Shen D, Ding X, Majumdar Z, Bojanowski CM, Zhou M, Salem N Jr, Bonner R and Tuo J: Ccl2/Cx3cr1-deficient mice: An animal model for age-related macular degeneration. Ophthalmic Res. 40:124–128. 2008. View Article : Google Scholar | |
|
Chu XK, Wang Y, Ardeljan D, Tuo J and Chan CC: Controversial view of a genetically altered mouse model of focal retinal degeneration. Bioengineered. 4:130–135. 2013. View Article : Google Scholar : | |
|
Tuo J, Ross RJ, Herzlich AA, Shen D, Ding X, Zhou M, Coon SL, Hussein N, Salem N Jr and Chan CC: A high omega-3 fatty acid diet reduces retinal lesions in a murine model of macular degeneration. Am J Pathol. 175:799–807. 2009. View Article : Google Scholar | |
|
Tuo J, Pang JJ, Cao X, Shen D, Zhang J, Scaria A, Wadsworth SC, Pechan P, Boye SL, Hauswirth WW and Chan CC: AAV5-mediated sFLT01 gene therapy arrests retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. Neurobiol Aging. 33. pp. 433.e1–e10. 2012, View Article : Google Scholar | |
|
Zhang J, Tuo J, Cao X, Shen D, Li W and Chan CC: Early degeneration of photoreceptor synapse in Ccl2/Cx3cr1-deficient mice on Crb1(rd8) background. Synapse. 67:515–531. 2013. View Article : Google Scholar | |
|
Clemons TE, Milton RC, Klein R and Seddon JM: Risk factors for the incidence of advanced age-related macular degeneration in the age-related eye disease study (AREDS) AREDS report no. 19. Ophthalmology. 112:533–539. 2005. View Article : Google Scholar | |
|
Wang Y, Sang A, Zhu M, Zhang G, Guan H, Ji M and Chen H: Tissue factor induces VEGF expression via activation of the Wnt/β-catenin signaling pathway in ARPE-19 cells. Mol Vis. 22:886–897. 2016. | |
|
Qiu F, Liu Z, Zhou Y, He J, Gong S, Bai X, Zeng Y, Liu Z and Ma JX: Decreased circulating levels of dickkopf-1 in patients with exudative age-related macular degeneration. Sci Rep. 7:12632017. View Article : Google Scholar | |
|
Voorzanger-Rousselot N, Goehrig D, Facon T, Clézardin P and Garnero P: Platelet is a major contributor to circulating levels of Dickkopf-1: Clinical implications in patients with multiple myeloma. Br J Haematol. 145:264–266. 2009. View Article : Google Scholar | |
|
Esen E, Chen J, Karner CM, Okunade AL, Patterson BW and Long F: WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17:745–755. 2013. View Article : Google Scholar | |
|
Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, et al: Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33:1454–1473. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Thompson CB: Wnt meets Warburg: Another piece in the puzzle? EMBO J. 33:1420–1422. 2014. View Article : Google Scholar | |
|
Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC and Thompson CB: The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 21:1037–1049. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Manea A: NADPH oxidase-derived reactive oxygen species: Involvement in vascular physiology and pathology. Cell Tissue Res. 342:325–339. 2010. View Article : Google Scholar | |
|
Radomska-Leśniewska DM, Hevelke A, Skopiński P, Bałan B, Jóźwiak J, Rokicki D, Skopińska-Różewska E and Białoszewska A: Reactive oxygen species and synthetic antioxidants as angiogenesis modulators: Clinical implications. Pharmacol Rep. 68:462–471. 2016. View Article : Google Scholar | |
|
Mittal M, Siddiqui MR, Tran K, Reddy SP and Malik AB: Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 20:1126–1167. 2014. View Article : Google Scholar : | |
|
Kim YW, West XZ and Byzova TV: Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berl). 91:323–328. 2013. View Article : Google Scholar | |
|
Brambilla D, Mancuso C, Scuderi MR, Bosco P, Cantarella G, Lempereur L, Di Benedetto G, Pezzino S and Bernardini R: The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: A point of view for an assessment of the risk/benefit profile. Nutr J. 7:292008. View Article : Google Scholar : PubMed/NCBI | |
|
Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar | |
|
Kim YW and Byzova TV: Oxidative stress in angiogenesis and vascular disease. Blood. 123:625–631. 2014. View Article : Google Scholar : | |
|
Vallée A, Lecarpentier Y, Vallée R, Guillevin R and Vallée JN: Circadian rhythms in exudative age-related macular degeneration: The key role of the canonical WNT/β-catenin pathway. Int J Mol Sci. 21:8202020. View Article : Google Scholar | |
|
Brugarolas JB, Vazquez F, Reddy A, Sellers WR and Kaelin WG: TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell. 4:147–158. 2003. View Article : Google Scholar | |
|
Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 39:171–183. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM, Lee JW, Choi S, Park JW, Ye SK and Chung MH: STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 19:1296–1298. 2005. View Article : Google Scholar | |
|
Land SC and Tee AR: Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem. 282:20534–20543. 2007. View Article : Google Scholar | |
|
Toschi A, Lee E, Gadir N, Ohh M and Foster DA: Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J Biol Chem. 283:34495–34499. 2008. View Article : Google Scholar | |
|
Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL, et al: Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 24:5552–5560. 2005. View Article : Google Scholar | |
|
Kim J, Gao P, Liu YC, Semenza GL and Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 27:7381–7393. 2007. View Article : Google Scholar | |
|
Suda T, Takubo K and Semenza GL: Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 9:298–310. 2011. View Article : Google Scholar | |
|
Firth JD, Ebert BL and Ratcliffe PJ: Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem. 270:21021–21027. 1995. View Article : Google Scholar | |
|
Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A and Dang CV: Identification of putative c-Myc-responsive genes: Characterization of rcl, a novel growth-related gene. Mol Cell Biol. 17:4967–4978. 1997. View Article : Google Scholar : PubMed/NCBI | |
|
Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P and Giallongo A: Hypoxia response elements in the Aldolase A, Enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 271:32529–32537. 1996. View Article : Google Scholar | |
|
Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R and Dang CV: c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA. 94:6658–6663. 1997. View Article : Google Scholar | |
|
Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar | |
|
Koukourakis MI, Giatromanolaki A, Sivridis E, Bougioukas G, Didilis V, Gatter KC and Harris AL; Tumour and Angiogenesis Research Group: Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer. 89:877–885. 2003. View Article : Google Scholar | |
|
Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: Aerobic glycolysis hypothesis through WNT/beta-catenin pathway in exudative age-related macular degeneration. J Mol Neurosci. 62:368–379. 2017. View Article : Google Scholar | |
|
Léveillard T and Sahel JA: Metabolic and redox signaling in the retina. Cell Mol Life Sci. 74:3649–3665. 2017. View Article : Google Scholar | |
|
Oguma K, Oshima H and Oshima M: Inflammation, tumor necrosis factor and Wnt promotion in gastric cancer development. Future Oncol. 6:515–526. 2010. View Article : Google Scholar | |
|
Schön S, Flierman I, Ofner A, Stahringer A, Holdt LM, Kolligs FT and Herbst A: β-catenin regulates NF-κB activity via TNFRSF19 in colorectal cancer cells. Int J Cancer. 135:1800–1811. 2014. View Article : Google Scholar | |
|
Oh H, Takagi H, Takagi C, Suzuma K, Otani A, Ishida K, Matsumura M, Ogura Y and Honda Y: The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 40:1891–1898. 1999. | |
|
Cousins SW, Espinosa-Heidmann DG and Csaky KG: Monocyte activation in patients with age-related macular degeneration: A biomarker of risk for choroidal neovascularization? Arch Ophthalmol. 122:1013–1018. 2004. View Article : Google Scholar | |
|
Duguid IG, Boyd AW and Mandel TE: Adhesion molecules are expressed in the human retina and choroid. Curr Eye Res. 11(Suppl): S153–S159. 1992. View Article : Google Scholar | |
|
Elner SG, Elner VM, Pavilack MA, Todd RF III, Mayo-Bond L, Franklin WA, Strieter RM, Kunkel SL and Huber AR: Modulation and function of intercellular adhesion molecule-1 (CD54) on human retinal pigment epithelial cells. Lab Invest. 66:200–211. 1992. | |
|
Anderson DH, Mullins RF, Hageman GS and Johnson LV: A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 134:411–431. 2002. View Article : Google Scholar | |
|
Donoso LA, Kim D, Frost A, Callahan A and Hageman G: The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 51:137–152. 2006. View Article : Google Scholar | |
|
Easwaran V, Lee SH, Inge L, Guo L, Goldbeck C, Garrett E, Wiesmann M, Garcia PD, Fuller JH, Chan V, et al: Beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res. 63:3145–3153. 2003. | |
|
Ip MS, Scott IU, Brown GC, Brown MM, Ho AC, Huang SS and Recchia FM; American Academy of Ophthalmology: Anti-vascular endothelial growth factor pharmacotherapy for age-related macular degeneration: A report by the American Academy of Ophthalmology. Ophthalmology. 115:1837–1846. 2008. View Article : Google Scholar | |
|
Wolf S: Current status of anti-vascular endothelial growth factor therapy in Europe. Jpn J Ophthalmol. 52:433–439. 2008. View Article : Google Scholar | |
|
Menon G and Walters G: New paradigms in the treatment of wet AMD: The impact of anti-VEGF therapy. Eye (Lond). 23(Suppl 1): S1–S7. 2009. View Article : Google Scholar | |
|
Grisanti S, Zhu Q, Tatar O, Lueke J, Lueke M, Tura A and Grisanti S: Differential expression of vascular endothelial growth factor-a isoforms in neovascular age-related macular degeneration. Retina. 35:764–772. 2015. View Article : Google Scholar | |
|
Liu X: Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity. Springerplus. 3:3562014. View Article : Google Scholar | |
|
Zhang P, Wang Y, Hui Y, Hu D, Wang H, Zhou J and Du H: Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells. Ophthalmologica. 221:411–417. 2007. View Article : Google Scholar | |
|
Zhang P, Zhang X, Hao X, Wang Y, Hui Y, Wang H, Hu D and Zhou J: Rac1 activates HIF-1 in retinal pigment epithelium cells under hypoxia. Graefes Arch Clin Exp Ophthalmol. 247:633–639. 2009. View Article : Google Scholar | |
|
Arjamaa O, Nikinmaa M, Salminen A and Kaarniranta K: Regulatory role of HIF-1alpha in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev. 8:349–358. 2009. View Article : Google Scholar | |
|
Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Trarbach T, Folprecht G, Shi MM, Lebwohl D, Jalava T, Laurent D, et al: Prognostic and predictive role of lactate dehydrogenase 5 expression in colorectal cancer patients treated with PTK787/ZK 222584 (vatalanib) antiangiogenic therapy. Clin Cancer Res. 17:4892–4900. 2011. View Article : Google Scholar | |
|
Giatromanolaki A, Sivridis E, Gatter KC, Turley H, Harris AL and Koukourakis MI; Tumour and Angiogenesis Research Group: Lactate dehydrogenase 5 (LDH-5) expression in endometrial cancer relates to the activated VEGF/VEGFR2(KDR) pathway and prognosis. Gynecol Oncol. 103:912–918. 2006. View Article : Google Scholar | |
|
Kolev Y, Uetake H, Takagi Y and Sugihara K: Lactate dehydrogenase-5 (LDH-5) expression in human gastric cancer: Association with hypoxia-inducible factor (HIF-1alpha) pathway, angiogenic factors production and poor prognosis. Ann Surg Oncol. 15:2336–2344. 2008. View Article : Google Scholar | |
|
Dhup S, Dadhich RK, Porporato PE and Sonveaux P: Multiple biological activities of lactic acid in cancer: Influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des. 18:1319–1330. 2012. View Article : Google Scholar | |
|
Polet F and Feron O: Endothelial cell metabolism and tumour angiogenesis: Glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med. 273:156–165. 2013. View Article : Google Scholar | |
|
San-Millán I and Brooks GA: Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 38:119–133. 2017. | |
|
Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D and Zhai G: Oral bioavailability of curcumin: problems and advancements. J Drug Target. 24:694–702. 2016. View Article : Google Scholar | |
|
Vallée A and Lecarpentier Y: Curcumin and endometriosis. Int J Mol Sci. 21:24402020. View Article : Google Scholar : | |
|
Kotha RR and Luthria DL: Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. 24:29302019. View Article : Google Scholar | |
|
Prasad S, Gupta SC, Tyagi AK and Aggarwal BB: Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol Adv. 32:1053–1064. 2014. View Article : Google Scholar | |
|
Priyadarsini KI: The chemistry of curcumin: From extraction to therapeutic agent. Molecules. 19:20091–20112. 2014. View Article : Google Scholar | |
|
Zhang L, Zhu W, Yang C, Guo H, Yu A, Ji J, Gao Y, Sun M and Zhai G: A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomedicine. 7:151–162. 2012. | |
|
Shen L, Liu CC, An CY and Ji HF: How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci Rep. 6:208722016. View Article : Google Scholar : | |
|
Sun M, Su X, Ding B, He X, Liu X, Yu A, Lou H and Zhai G: Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (Lond). 7:1085–1100. 2012. View Article : Google Scholar | |
|
Naksuriya O, Okonogi S, Schiffelers RM and Hennink WE: Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 35:3365–3383. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Malam Y, Loizidou M and Seifalian AM: Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 30:592–599. 2009. View Article : Google Scholar | |
|
Lee WH, Loo CY, Young PM, Traini D, Mason RS and Rohanizadeh R: Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv. 11:1183–1201. 2014. View Article : Google Scholar | |
|
Hatefi A and Amsden B: Biodegradable injectable in situ forming drug delivery systems. J Control Release. 80:9–28. 2002. View Article : Google Scholar | |
|
Yallapu MM, Jaggi M and Chauhan SC: Beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces. 79:113–125. 2010. View Article : Google Scholar | |
|
Radomska-Leśniewska DM, Osiecka-Iwan A, Hyc A, Góźdź A, Dąbrowska AM and Skopiński P: Therapeutic potential of curcumin in eye diseases. Cent Eur J Immunol. 44:181–189. 2019. View Article : Google Scholar | |
|
Zhu W, Wu Y, Meng YF, Wang JY, Xu M, Tao JJ and Lu J: Effect of curcumin on aging retinal pigment epithelial cells. Drug Des Devel Ther. 9:5337–5344. 2015. | |
|
Jiang X, Li S, Qiu X, Cong J, Zhou J and Miu W: Curcumin inhibits cell viability and increases apoptosis of SW620 human colon adenocarcinoma cells via the caudal type homeobox-2 (CDX2)/Wnt/β-catenin pathway. Med Sci Monit. 25:7451–7458. 2019. View Article : Google Scholar | |
|
Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM and Haque R: Global microRNA expression profiling: Curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis. 19:544–560. 2013. | |
|
Mandal MNA, Patlolla JMR, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A, Elliott MH, Rao CV and Anderson RE: Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med. 46:672–679. 2009. View Article : Google Scholar | |
|
Muangnoi C, Sharif U, Ratnatilaka Na, Bhuket P, Rojsitthisak P and Paraoan L: Protective effects of curcumin ester prodrug, curcumin diethyl disuccinate against H2O2-Induced oxidative stress in human retinal pigment epithelial cells: Potential therapeutic avenues for age-related macular degeneration. Int J Mol Sci. 20:33672019. View Article : Google Scholar | |
|
Kim HJ, Park SY, Park OJ and Kim YM: Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol Med Rep. 8:282–286. 2013. View Article : Google Scholar | |
|
Leow PC, Bahety P, Boon CP, Lee CY, Tan KL, Yang T and Ee PL: Functionalized curcumin analogs as potent modulators of the Wnt/β-catenin signaling pathway. Eur J Med Chem. 71:67–80. 2014. View Article : Google Scholar | |
|
Kolb TM and Davis MA: The tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) provokes a prolonged morphologic response and ERK activation in Tsc2-null renal tumor cells. Toxicol Sci. 81:233–242. 2004. View Article : Google Scholar | |
|
Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U and Kundu TK: Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem. 279:51163–51171. 2004. View Article : Google Scholar | |
|
He M, Li Y, Zhang L, Li L, Shen Y, Lin L, Zheng W, Chen L, Bian X, Ng HK and Tang L: Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. Oncol Rep. 32:173–180. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Menon VP and Sudheer AR: Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 595:105–125. 2007. View Article : Google Scholar | |
|
Marchiani A, Rozzo C, Fadda A, Delogu G and Ruzza P: Curcumin and curcumin-like molecules: From spice to drugs. Curr Med Chem. 21:204–222. 2014. View Article : Google Scholar | |
|
Schneider C, Boeglin WE, Yin H, Stec DF and Voehler M: Convergent oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2. J Am Chem Soc. 128:720–721. 2006. View Article : Google Scholar | |
|
Giménez-Bastida JA, González-Sarrías A, Laparra-Llopis JM, Schneider C and Espín JC: Targeting mammalian 5-lipoxygenase by dietary phenolics as an anti-inflammatory mechanism: A systematic review. Int J Mol Sci. 22:79372021. View Article : Google Scholar : | |
|
Othman A, Ahmad S, Megyerdi S, Mussell R, Choksi K, Maddipati KR, Elmarakby A, Rizk N and Al-Shabrawey M: 12/15-Lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: Contribution of NADPH oxidase. PLoS One. 8:e572542013. View Article : Google Scholar | |
|
Subramanian P, Mendez EF and Becerra SP: A novel inhibitor of 5-Lipoxygenase (5-LOX) prevents oxidative stress-induced cell death of retinal pigment epithelium (RPE) cells. Invest Ophthalmol Vis Sci. 57:4581–4588. 2016. View Article : Google Scholar | |
|
Yadav UCS and Ramana KV: Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid Med Cell Longev. 2013:6905452013. View Article : Google Scholar | |
|
Ruan Y, Jiang S and Gericke A: Age-related macular degeneration: Role of oxidative stress and blood vessels. Int J Mol Sci. 22:12962021. View Article : Google Scholar : | |
|
Yabas M, Orhan C, Er B, Tuzcu M, Durmus AS, Ozercan IH, Sahin N, Bhanuse P, Morde AA, Padigaru M and Sahin K: A next generation formulation of curcumin ameliorates experimentally induced osteoarthritis in rats via regulation of inflammatory mediators. Front Immunol. 12:6096292021. View Article : Google Scholar : | |
|
Li X, Lu Y, Jin Y, Son JK, Lee SH and Chang HW: Curcumin inhibits the activation of immunoglobulin e-mediated mast cells and passive systemic anaphylaxis in mice by reducing serum eicosanoid and histamine levels. Biomol Ther (Seoul). 22:27–34. 2014. View Article : Google Scholar | |
|
Manjunatha H and Srinivasan K: Protective effect of dietary curcumin and capsaicin on induced oxidation of low-density lipoprotein, iron-induced hepatotoxicity and carrageenan-induced inflammation in experimental rats. FEBS J. 273:4528–4537. 2006. View Article : Google Scholar | |
|
Priyadarsini KI, Maity DK, Naik GH, Kumar MS, Unnikrishnan MK, Satav JG and Mohan H: Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med. 35:475–484. 2003. View Article : Google Scholar | |
|
Piwocka K, Jaruga E, Skierski J, Gradzka I and Sikora E: Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. Free Radic Biol Med. 31:670–678. 2001. View Article : Google Scholar | |
|
Motterlini R, Foresti R, Bassi R and Green CJ: Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med. 28:1303–1312. 2000. View Article : Google Scholar : PubMed/NCBI | |
|
Cao K, Dong YT, Xiang J, Xu Y, Hong W, Song H and Guan ZZ: Reduced expression of SIRT1 and SOD-1 and the correlation between these levels in various regions of the brains of patients with Alzheimer's disease. J Clin Pathol. 71:1090–1099. 2018. View Article : Google Scholar | |
|
Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E and Berinstein DM: Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med. 14:3442016. View Article : Google Scholar | |
|
Zuo L, Khan RS, Lee V, Dine K, Wu W and Shindler KS: SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. Invest Ophthalmol Vis Sci. 54:5097–5102. 2013. View Article : Google Scholar | |
|
Li K, Zhai M, Jiang L, Song F, Zhang B, Li J, Li H, Li B, Xia L, Xu L, et al: Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 Pathway. Oxid Med Cell Longev. 2019:67469072019. View Article : Google Scholar | |
|
Ghasemi F, Shafiee M, Banikazemi Z, Pourhanifeh MH, Khanbabaei H, Shamshirian A, Amiri Moghadam S, ArefNezhad R, Sahebkar A, Avan A and Mirzaei H: Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract. 215:1525562019. View Article : Google Scholar | |
|
Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, Snyder JP, Yoon Y, Shim H, Marcus AI, et al: Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inf lammatory and anti-cancer properties. Int Immunopharmacol. 12:368–377. 2012. View Article : Google Scholar | |
|
da Cruz BO, Cardozo LFM de F, Magliano DC and Stockler-Pinto MB: Nutritional strategies to modulate inflammation pathways via regulation of peroxisome proliferator-activated receptor β/δ. Nutr Rev. 78:207–214. 2020. | |
|
Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, Kamat AA, Spannuth WA, Gershenson DM, Lutgendorf SK, et al: Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res. 13:3423–3430. 2007. View Article : Google Scholar | |
|
Zhang ZB, Luo DD, Xie JH, Xian YF, Lai ZQ, Liu YH, Liu WH, Chen JN, Lai XP, Lin ZX and Su ZR: Curcumin's metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κB pathway. Front Pharmacol. 9:11812018. View Article : Google Scholar | |
|
Chen W, Chen Y and Cui G: Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells. Chin Med J (Engl). 118:2052–2057. 2005. | |
|
Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H and Patumraj S: Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc. 34:109–115. 2006.PubMed/NCBI | |
|
Li L, Braiteh FS and Kurzrock R: Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer. 104:1322–1331. 2005. View Article : Google Scholar | |
|
Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E and Byers HR: Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 4:376–383. 1998. View Article : Google Scholar | |
|
Gururaj AE, Belakavadi M, Venkatesh DA, Marmé D and Salimath BP: Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun. 297:934–942. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Zahra FT, Sajib MS and Mikelis CM: Role of bFGF in acquired resistance upon Anti-VEGF therapy in cancer. Cancers (Basel). 13:14222021. View Article : Google Scholar | |
|
Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M and Christofori G: Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res. 60:7163–7169. 2000. | |
|
Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, Wetterskog D, Funa K, Bråkenhielm E and Cao Y: Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest. 117:2766–2777. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Casanovas O, Hicklin DJ, Bergers G and Hanahan D: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 8:299–309. 2005. View Article : Google Scholar | |
|
Choi HJ, Armaiz Pena GN, Pradeep S, Cho MS, Coleman RL and Sood AK: Anti-vascular therapies in ovarian cancer: Moving beyond anti-VEGF approaches. Cancer Metastasis Rev. 34:19–40. 2015. View Article : Google Scholar : | |
|
Aggarwal BB and Natarajan K: Tumor necrosis factors: Developments during the last decade. Eur Cytokine Netw. 7:93–124. 1996.PubMed/NCBI | |
|
Li H, Soria C, Griscelli F, Opolon P, Soria J, Yeh P, Legrand C, Vannier JP, Belin D, Perricaudet M and Lu H: Amino-terminal fragment of urokinase inhibits tumor cell invasion in vitro and in vivo: Respective contribution of the urokinase plasminogen activator receptor-dependent or -independent pathway. Hum Gene Ther. 16:1157–1167. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Aggarwal BB, Kumar A and Bharti AC: Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 23:363–398. 2003. | |
|
Wang LL, Sun Y, Huang K and Zheng L: Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res. 57:1557–1568. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Pittalà V, Fidilio A, Lazzara F, Platania CBM, Salerno L, Foresti R, Drago F and Bucolo C: Effects of novel nitric oxide-releasing molecules against oxidative stress on retinal pigmented epithelial cells. Oxid Med Cell Longev. 2017:14208922017. View Article : Google Scholar : PubMed/NCBI | |
|
Bucolo C, Drago F, Maisto R, Romano GL, D'Agata V, Maugeri G and Giunta S: Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway. J Cell Physiol. 234:17295–17304. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Vyas A, Dandawate P, Padhye S, Ahmad A and Sarkar F: Perspectives on New Synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des. 19:2047–2069. 2013. | |
|
Muangnoi C, Ratnatilaka Na Bhuket P, Jithavech P, Supasena W, Paraoan L, Patumraj S and Rojsitthisak P: Curcumin diethyl disuccinate, a prodrug of curcumin, enhances anti-proliferative effect of curcumin against HepG2 cells via apoptosis induction. Sci Rep. 9:117182019. View Article : Google Scholar : | |
|
Ohori H, Yamakoshi H, Tomizawa M, Shibuya M, Kakudo Y, Takahashi A, Takahashi S, Kato S, Suzuki T, Ishioka C, et al: Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol Cancer Ther. 5:2563–2571. 2006. View Article : Google Scholar | |
|
Shoba G, Joy D, Joseph T, Majeed M, Rajendran R and Srinivas PS: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64:353–356. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Sai N, Dong X, Huang P, You L, Yang C, Liu Y, Wang W, Wu H, Yu Y, Du Y, et al: A novel gel-forming solution based on PEG-DSPE/Solutol HS 15 Mixed Micelles and Gellan Gum for ophthalmic delivery of curcumin. Molecules. 25:812019. View Article : Google Scholar | |
|
Zhang J, Sun H, Zhou N, Zhang B and Ma J: Preparation and evaluation of biodegradable scleral plug containing curcumin in rabbit eye. Curr Eye Res. 42:1597–1603. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Mazzolani F, Togni S, Giacomelli L, Eggenhoffner R and Franceschi F: Oral administration of a curcumin-phospholipid formulation (Meriva®) for treatment of chronic diabetic macular edema: A pilot study. Eur Rev Med Pharmacol Sci. 22:3617–3625. 2018.PubMed/NCBI | |
|
Allegri P, Mastromarino A and Neri P: Management of chronic anterior uveitis relapses: Efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clin Ophthalmol. 4:1201–1206. 2010. | |
|
Chen J and Smith LEH: Retinopathy of prematurity. Angiogenesis. 10:133–140. 2007. View Article : Google Scholar |