Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2022 Volume 49 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2022 Volume 49 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review)

  • Authors:
    • Alexandre Vallée
  • View Affiliations / Copyright

    Affiliations: Department of Epidemiology‑Data‑Biostatistics, Delegation of Clinical Research and Innovation (DRCI), Foch Hospital, 92150 Suresnes, France
    Copyright: © Vallée et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 79
    |
    Published online on: April 19, 2022
       https://doi.org/10.3892/ijmm.2022.5135
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Curcumin is a natural product widely used due to its pharmacological effects. Nevertheless, only a limited number of studies concerning the effects of curcumin on exudative age‑related macular degeneration (AMD) is currently available. Since ophthalmic diseases, including exudative AMD, have a marked impact on public health, the prevention and therapy of ophthalmic disorders remain of increasing concern. Exudative AMD is characterized by choroidal neovascularization (CNV) invading the subretinal space, ultimately enhancing exudation and hemorrhaging. The exudative AMD subtype corresponds to 10 to 15% of cases of macular degeneration; however, the occurrence of this subtype has been reported as the major cause of vision loss and blindness, with the occurrence of CNV being responsible for 80% of the cases with vision loss. In CNV increased expression of VEGF has been observed, stimulated by the overactivation of Wnt/β‑catenin signaling pathway. The stimulation of the Wnt/β‑catenin signaling pathway is responsible for the activation of several cellular mechanisms, simultaneously enhancing inflammation, oxidative stress and angiogenesis in numerous diseases, including ophthalmic disorders. Some studies have previously demonstrated the possible advantage of the use of curcumin for the inhibition of Wnt/β‑catenin signaling. In the present review article, the different mechanisms of curcumin are described concerning its effects on oxidative stress, inflammation and angiogenesis in exudative AMD, by interacting with Wnt/β‑catenin signaling.
View Figures

Figure 1

Figure 2

View References

1 

Bird AC: Therapeutic targets in age-related macular disease. J Clin Invest. 120:3033–3041. 2010. View Article : Google Scholar :

2 

Radomska-Leśniewska DM, Skopiński P, Bałan BJ, Białoszewska A, Jóźwiak J, Rokicki D, Skopińska-Różewska E, Borecka A and Hevelke A: Angiomodulatory properties of Rhodiola spp. and other natural antioxidants. Cent Eur J Immunol. 40:249–262. 2015. View Article : Google Scholar

3 

Radomska-Leśniewska DM, Bałan BJ and Skopiński P: Angiogenesis modulation by exogenous antioxidants. Cent Eur J Immunol. 42:370–376. 2017. View Article : Google Scholar

4 

Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: PPARγ agonists: Potential treatments for exudative age-related macular degeneration. Life Sci. 188:123–130. 2017. View Article : Google Scholar

5 

Coffe V, Carbajal RC and Salceda R: Glucose metabolism in rat retinal pigment epithelium. Neurochem Res. 31:103–108. 2006. View Article : Google Scholar

6 

Kaur C, Foulds WS and Ling EA: Hypoxia-ischemia and retinal ganglion cell damage. Clin Ophthalmol. 2:879–889. 2008. View Article : Google Scholar

7 

Ferris FL, Fine SL and Hyman L: Age-related macular degeneration and blindness due to neovascular maculopathy. Arch Ophthalmol. 102:164016421984. View Article : Google Scholar : PubMed/NCBI

8 

Barchitta M and Maugeri A: Association between vascular endothelial growth factor polymorphisms and age-related macular degeneration: An updated meta-analysis. Dis Markers. 2016:84864062016. View Article : Google Scholar

9 

Yin F, Boveris A and Cadenas E: Mitochondrial energy metabolism and redox signaling in brain aging and neurodegeneration. Antioxid Redox Signal. 20:353–371. 2014. View Article : Google Scholar

10 

Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: opposite interplay between the canonical WNT/β-catenin pathway and PPAR Gamma: A potential therapeutic target in gliomas. Neurosci Bull. 34:573–588. 2018. View Article : Google Scholar

11 

Vallée A, Lecarpentier Y and Vallée JN: Curcumin: A therapeutic strategy in cancers by inhibiting the canonical WNT/β-catenin pathway. J Exp Clin Cancer Res. 38:3232019. View Article : Google Scholar

12 

Yeung AWK, Horbańczuk M, Tzvetkov NT, Mocan A, Carradori S, Maggi F, Marchewka J, Sut S, Dall'Acqua S, Gan RY, et al: Curcumin: Total-scale analysis of the scientific literature. Molecules. 24:13932019. View Article : Google Scholar

13 

Kao YW, Hsu SK, Chen JY, Lin IL, Chen KJ, Lee PY, Ng HS, Chiu CC and Cheng KC: Curcumin metabolite tetrahydrocurcumin in the treatment of eye diseases. Int J Mol Sci. 22:2122020. View Article : Google Scholar

14 

Bhutto I and Lutty G: Understanding age-related macular degeneration (AMD): Relationships between the photoreceptor/retinal pigment epithelium/Bruch's membrane/choriocapillaris complex. Mol Aspects Med. 33:295–317. 2012. View Article : Google Scholar

15 

McLeod DS, Grebe R, Bhutto I, Merges C, Baba T and Lutty GA: Relationship between RPE and choriocapillaris in age-related macular degeneration. Invest Ophthalmol Vis Sci. 50:4982–4991. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Takata S, Masuda T, Nakamura S, Kuchimaru T, Tsuruma K, Shimazawa M, Nagasawa H, Kizaka-Kondoh S and Hara H: The effect of triamcinolone acetonide on laser-induced choroidal neovascularization in mice using a hypoxia visualization bio-imaging probe. Sci Rep. 5:98982015. View Article : Google Scholar

17 

Sakurai E, Anand A, Ambati BK, van Rooijen N and Ambati J: Macrophage depletion inhibits experimental choroidal neovascularization. Invest Ophthalmol Vis Sci. 44:3578–3585. 2003. View Article : Google Scholar : PubMed/NCBI

18 

Indaram M, Ma W, Zhao L, Fariss RN, Rodriguez IR and Wong WT: 7-Ketocholesterol increases retinal microglial migration, activation, and angiogenicity: A potential pathogenic mechanism underlying age-related macular degeneration. Sci Rep. 5:91442015. View Article : Google Scholar

19 

Terasaki H, Kase S, Shirasawa M, Otsuka H, Hisatomi T, Sonoda S, Ishida S, Ishibashi T and Sakamoto T: TNF-α decreases VEGF secretion in highly polarized RPE cells but increases it in non-polarized RPE cells related to crosstalk between JNK and NF-κB pathways. PLoS One. 8:e699942013. View Article : Google Scholar

20 

Hu Y, Chen Y, Lin M, Lee K, Mott RA and Ma J: Pathogenic role of the Wnt signaling pathway activation in laser-induced choroidal neovascularization. Invest Ophthalmol Vis Sci. 54:141–154. 2013. View Article : Google Scholar

21 

Tuo J, Wang Y, Cheng R, Li Y, Chen M, Qiu F, Qian H, Shen D, Penalva R, Xu H, et al: Wnt signaling in age-related macular degeneration: Human macular tissue and mouse model. J Transl Med. 13:3302015. View Article : Google Scholar : PubMed/NCBI

22 

Nussenblatt RB and Ferris F: Age-related macular degeneration and the immune response: Implications for therapy. Am J Ophthalmol. 144:618–626. 2007. View Article : Google Scholar

23 

Radeke MJ, Radeke CM, Shih YH, Hu J, Bok D, Johnson LV and Coffey PJ: Restoration of mesenchymal retinal pigmented epithelial cells by TGFβ pathway inhibitors: Implications for age-related macular degeneration. Genome Med. 7:582015. View Article : Google Scholar

24 

Lin CH, Li CH, Liao PL, Tse LS, Huang WK, Cheng HW and Cheng YW: Silibinin inhibits VEGF secretion and age-related macular degeneration in a hypoxia-dependent manner through the PI-3 kinase/Akt/mTOR pathway. Br J Pharmacol. 168:920–931. 2013. View Article : Google Scholar

25 

Ambati J: Age-related macular degeneration and the other double helix. The Cogan lecture. Invest Ophthalmol Vis Sci. 52:2165–2169. 2011. View Article : Google Scholar

26 

Blasiak J, Petrovski G, Veréb Z, Facskó A and Kaarniranta K: Oxidative stress, hypoxia, and autophagy in the neovascular processes of age-related macular degeneration. Biomed Res Int. 2014:7680262014. View Article : Google Scholar

27 

Jaffe GJ, Eliott D, Wells JA, Prenner JL, Papp A and Patel S: A Phase 1 study of Intravitreous E10030 in combination with ranibizumab in neovascular age-related macular degeneration. Ophthalmology. 123:78–85. 2016. View Article : Google Scholar

28 

Kwak N, Okamoto N, Wood JM and Campochiaro PA: VEGF is major stimulator in model of choroidal neovascularization. Invest Ophthalmol Vis Sci. 41:3158–3164. 2000.

29 

Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, Sy JP and Schneider S; ANCHOR Study Group: Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 355:1432–1444. 2006. View Article : Google Scholar

30 

Rosenfeld PJ, Brown DM, Heier JS, Boyer DS, Kaiser PK, Chung CY and Kim RY; MARINA Study Group: Ranibizumab for neovascular age-related macular degeneration. N Engl J Med. 355:1419–1431. 2006. View Article : Google Scholar

31 

Zhang X, Gaspard JP and Chung DC: Regulation of vascular endothelial growth factor by the Wnt and K-ras pathways in colonic neoplasia. Cancer Res. 61:6050–6054. 2001.PubMed/NCBI

32 

Katoh Y and Katoh M: Comparative integromics on VEGF family members. Int J Oncol. 28:1585–1589. 2006.

33 

Zhou T, Hu Y, Chen Y, Zhou KK, Zhang B, Gao G and Ma J: The pathogenic role of the canonical Wnt pathway in age-related macular degeneration. Invest Ophthalmol Vis Sci. 51:4371–4379. 2010. View Article : Google Scholar :

34 

Ma B and Hottiger MO: Crosstalk between Wnt/β-catenin and NF-κB signaling pathway during inflammation. Front Immunol. 7:3782016. View Article : Google Scholar

35 

Wang H and Hartnett ME: Regulation of signaling events involved in the pathophysiology of neovascular AMD. Mol Vis. 22:189–202. 2016.

36 

Al-Harthi L: Wnt/β-catenin and its diverse physiological cell signaling pathways in neurodegenerative and neuropsychiatric disorders. J Neuroimmune Pharmacol. 7:725–730. 2012. View Article : Google Scholar

37 

Logan CY and Nusse R: The Wnt signaling pathway in development and disease. Annu Rev Cell Dev Biol. 20:781–810. 2004. View Article : Google Scholar

38 

Klaus A and Birchmeier W: Wnt signalling and its impact on development and cancer. Nat Rev Cancer. 8:387–398. 2008. View Article : Google Scholar

39 

Fuhrmann S: Wnt signaling in eye organogenesis. Organogenesis. 4:60–67. 2008. View Article : Google Scholar

40 

Fujimura N: WNT/β-catenin signaling in vertebrate eye development. Front Cell Dev Biol. 4:1382016. View Article : Google Scholar

41 

Machon O, Kreslova J, Ruzickova J, Vacik T, Klimova L, Fujimura N, Lachova J and Kozmik Z: Lens morphogenesis is dependent on Pax6-mediated inhibition of the canonical Wnt/beta-catenin signaling in the lens surface ectoderm. Genesis. 48:86–95. 2010.

42 

Carpenter AC, Smith AN, Wagner H, Cohen-Tayar Y, Rao S, Wallace V, Ashery-Padan R and Lang RA: Wnt ligands from the embryonic surface ectoderm regulate 'bimetallic strip' optic cup morphogenesis in mouse. Development. 142:972–982. 2015. View Article : Google Scholar

43 

Hägglund AC, Berghard A and Carlsson L: Canonical Wnt/β-catenin signalling is essential for optic cup formation. PLoS One. 8:e811582013. View Article : Google Scholar

44 

Birdsey GM, Shah AV, Dufton N, Reynolds LE, Osuna Almagro L, Yang Y, Aspalter IM, Khan ST, Mason JC, Dejana E, et al: The endothelial transcription factor ERG promotes vascular stability and growth through Wnt/β-catenin signaling. Dev Cell. 32:82–96. 2015. View Article : Google Scholar

45 

Ye X, Wang Y, Cahill H, Yu M, Badea TC, Smallwood PM, Peachey NS and Nathans J: Norrin, frizzled-4, and Lrp5 signaling in endothelial cells controls a genetic program for retinal vascularization. Cell. 139:285–298. 2009. View Article : Google Scholar

46 

Zhou Y, Wang Y, Tischfield M, Williams J, Smallwood PM, Rattner A, Taketo MM and Nathans J: Canonical WNT signaling components in vascular development and barrier formation. J Clin Invest. 124:3825–3846. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Huang W, Li Q, Amiry-Moghaddam M, Hokama M, Sardi SH, Nagao M, Warman ML and Olsen BR: Critical endothelial regulation by LRP5 during retinal vascular development. PLoS One. 11:e01528332016. View Article : Google Scholar

48 

Shtutman M, Zhurinsky J, Simcha I, Albanese C, D'Amico M, Pestell R and Ben-Ze'ev A: The cyclin D1 gene is a target of the beta-catenin/LEF-1 pathway. Proc Natl Acad Sci USA. 96:5522–5527. 1999. View Article : Google Scholar

49 

Nusse R: Wnt signaling. Cold Spring Harb Perspect Biol. 4:a0111632012. View Article : Google Scholar

50 

Clevers H and Nusse R: Wnt/β-catenin signaling and disease. Cell. 149:1192–1205. 2012. View Article : Google Scholar

51 

Sprowl-Tanio S, Habowski AN, Pate KT, McQuade MM, Wang K, Edwards RA, Grun F, Lyou Y and Waterman ML: Lactate/pyruvate transporter MCT-1 is a direct Wnt target that confers sensitivity to 3-bromopyruvate in colon cancer. Cancer Metab. 4:202016. View Article : Google Scholar :

52 

Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, et al: Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33:1454–1473. 2014. View Article : Google Scholar :

53 

Gao C, Xiao G and Hu J: Regulation of Wnt/β-catenin signaling by posttranslational modifications. Cell Biosci. 4:132014. View Article : Google Scholar

54 

Cruciat CM and Niehrs C: Secreted and transmembrane Wnt inhibitors and activators. Cold Spring Harb Perspect Biol. 5:a0150812013. View Article : Google Scholar

55 

Aberle H, Bauer A, Stappert J, Kispert A and Kemler R: Beta-catenin is a target for the ubiquitin-proteasome pathway. EMBO J. 16:3797–3804. 1997. View Article : Google Scholar

56 

Wu D and Pan W: GSK3: A multifaceted kinase in Wnt signaling. Trends Biochem Sci. 35:161–168. 2010. View Article : Google Scholar :

57 

Hur EM and Zhou FQ: GSK3 signalling in neural development. Nat Rev Neurosci. 11:539–551. 2010. View Article : Google Scholar

58 

Ambacher KK, Pitzul KB, Karajgikar M, Hamilton A, Ferguson SS and Cregan SP: The JNK- and AKT/GSK3β-signaling pathways converge to regulate puma induction and neuronal apoptosis induced by trophic factor deprivation. PLoS One. 7:e468852012. View Article : Google Scholar

59 

Yokosako K, Mimura T, Funatsu H, Noma H, Goto M, Kamei Y, Kondo A and Matsubara M: Glycolysis in patients with age-related macular degeneration. Open Ophthalmol J. 8:39–47. 2014. View Article : Google Scholar

60 

Grossniklaus HE, Kang SJ and Berglin L: Animal models of choroidal and retinal neovascularization. Prog Retin Eye Res. 29:500–519. 2010. View Article : Google Scholar

61 

Wang Z, Liu CH, Huang S and Chen J: Wnt Signaling in vascular eye diseases. Prog Retin Eye Res. 70:110–133. 2019. View Article : Google Scholar

62 

Wang Z, Cheng R, Lee K, Tyagi P, Ding L, Kompella UB, Chen J, Xu X and Ma JX: Nanoparticle-mediated expression of a wnt pathway inhibitor ameliorates ocular neovascularization. Arterioscler Thromb Vasc Biol. 35:855–864. 2015. View Article : Google Scholar

63 

Chen Y, Hu Y, Lu K, Flannery JG and Ma JX: Very low density lipoprotein receptor, a negative regulator of the wnt signaling pathway and choroidal neovascularization. J Biol Chem. 282:34420–34428. 2007. View Article : Google Scholar

64 

Lin JB, Sene A, Wiley LA, Santeford A, Nudleman E, Nakamura R, Lin JB, Moolani HV and Apte RS: WNT7A/B promote choroidal neovascularization. Exp Eye Res. 174:107–112. 2018. View Article : Google Scholar

65 

Park K, Lee K, Zhang B, Zhou T, He X, Gao G, Murray AR and Ma JX: Identification of a novel inhibitor of the canonical Wnt pathway. Mol Cell Biol. 31:3038–3051. 2011. View Article : Google Scholar : PubMed/NCBI

66 

Dai Z, Lu L, Yang Z, Mao Y, Lu J, Li C, Qi W, Chen Y, Yao Y, Li L, et al: Kallikrein-binding protein inhibits LPS-induced TNF-α by upregulating SOCS3 expression. J Cell Biochem. 114:1020–1028. 2013. View Article : Google Scholar

67 

Zhang J, Yang Z, Li P, Bledsoe G, Chao L and Chao J: Kallistatin antagonizes Wnt/β-catenin signaling and cancer cell motility via binding to low-density lipoprotein receptor-related protein 6. Mol Cell Biochem. 379:295–301. 2013. View Article : Google Scholar

68 

Lu SL, Tsai C Y, Luo YH, Kuo C F, Lin WC, Chang YT, Wu JJ, Chuang WJ, Liu CC, Chao L, et al: Kallistatin modulates immune cells and confers anti-inflammatory response to protect mice from Group A streptococcal infection. Antimicrob Agents Chemother. 57:5366–5372. 2013. View Article : Google Scholar : PubMed/NCBI

69 

McBride JD, Jenkins AJ, Liu X, Zhang B, Lee K, Berry WL, Janknecht R, Griffin CT, Aston CE, Lyons TJ, et al: Elevated circulation levels of an antiangiogenic SERPIN in patients with diabetic microvascular complications impair wound healing through suppression of Wnt signaling. J Invest Dermatol. 134:1725–1734. 2014. View Article : Google Scholar

70 

Bach RR: Initiation of coagulation by tissue factor. CRC Crit Rev Biochem. 23:339–368. 1988. View Article : Google Scholar : PubMed/NCBI

71 

Tuo J, Bojanowski CM, Zhou M, Shen D, Ross RJ, Rosenberg KI, Cameron DJ, Yin C, Kowalak JA, Zhuang Z, et al: Murine ccl2/cx3cr1 deficiency results in retinal lesions mimicking human age-related macular degeneration. Invest Ophthalmol Vis Sci. 48:3827–3836. 2007. View Article : Google Scholar

72 

Chan CC, Ross RJ, Shen D, Ding X, Majumdar Z, Bojanowski CM, Zhou M, Salem N Jr, Bonner R and Tuo J: Ccl2/Cx3cr1-deficient mice: An animal model for age-related macular degeneration. Ophthalmic Res. 40:124–128. 2008. View Article : Google Scholar

73 

Chu XK, Wang Y, Ardeljan D, Tuo J and Chan CC: Controversial view of a genetically altered mouse model of focal retinal degeneration. Bioengineered. 4:130–135. 2013. View Article : Google Scholar :

74 

Tuo J, Ross RJ, Herzlich AA, Shen D, Ding X, Zhou M, Coon SL, Hussein N, Salem N Jr and Chan CC: A high omega-3 fatty acid diet reduces retinal lesions in a murine model of macular degeneration. Am J Pathol. 175:799–807. 2009. View Article : Google Scholar

75 

Tuo J, Pang JJ, Cao X, Shen D, Zhang J, Scaria A, Wadsworth SC, Pechan P, Boye SL, Hauswirth WW and Chan CC: AAV5-mediated sFLT01 gene therapy arrests retinal lesions in Ccl2(-/-)/Cx3cr1(-/-) mice. Neurobiol Aging. 33. pp. 433.e1–e10. 2012, View Article : Google Scholar

76 

Zhang J, Tuo J, Cao X, Shen D, Li W and Chan CC: Early degeneration of photoreceptor synapse in Ccl2/Cx3cr1-deficient mice on Crb1(rd8) background. Synapse. 67:515–531. 2013. View Article : Google Scholar

77 

Clemons TE, Milton RC, Klein R and Seddon JM: Risk factors for the incidence of advanced age-related macular degeneration in the age-related eye disease study (AREDS) AREDS report no. 19. Ophthalmology. 112:533–539. 2005. View Article : Google Scholar

78 

Wang Y, Sang A, Zhu M, Zhang G, Guan H, Ji M and Chen H: Tissue factor induces VEGF expression via activation of the Wnt/β-catenin signaling pathway in ARPE-19 cells. Mol Vis. 22:886–897. 2016.

79 

Qiu F, Liu Z, Zhou Y, He J, Gong S, Bai X, Zeng Y, Liu Z and Ma JX: Decreased circulating levels of dickkopf-1 in patients with exudative age-related macular degeneration. Sci Rep. 7:12632017. View Article : Google Scholar

80 

Voorzanger-Rousselot N, Goehrig D, Facon T, Clézardin P and Garnero P: Platelet is a major contributor to circulating levels of Dickkopf-1: Clinical implications in patients with multiple myeloma. Br J Haematol. 145:264–266. 2009. View Article : Google Scholar

81 

Esen E, Chen J, Karner CM, Okunade AL, Patterson BW and Long F: WNT-LRP5 signaling induces Warburg effect through mTORC2 activation during osteoblast differentiation. Cell Metab. 17:745–755. 2013. View Article : Google Scholar

82 

Pate KT, Stringari C, Sprowl-Tanio S, Wang K, TeSlaa T, Hoverter NP, McQuade MM, Garner C, Digman MA, Teitell MA, et al: Wnt signaling directs a metabolic program of glycolysis and angiogenesis in colon cancer. EMBO J. 33:1454–1473. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Thompson CB: Wnt meets Warburg: Another piece in the puzzle? EMBO J. 33:1420–1422. 2014. View Article : Google Scholar

84 

Lum JJ, Bui T, Gruber M, Gordan JD, DeBerardinis RJ, Covello KL, Simon MC and Thompson CB: The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. Genes Dev. 21:1037–1049. 2007. View Article : Google Scholar : PubMed/NCBI

85 

Manea A: NADPH oxidase-derived reactive oxygen species: Involvement in vascular physiology and pathology. Cell Tissue Res. 342:325–339. 2010. View Article : Google Scholar

86 

Radomska-Leśniewska DM, Hevelke A, Skopiński P, Bałan B, Jóźwiak J, Rokicki D, Skopińska-Różewska E and Białoszewska A: Reactive oxygen species and synthetic antioxidants as angiogenesis modulators: Clinical implications. Pharmacol Rep. 68:462–471. 2016. View Article : Google Scholar

87 

Mittal M, Siddiqui MR, Tran K, Reddy SP and Malik AB: Reactive oxygen species in inflammation and tissue injury. Antioxid Redox Signal. 20:1126–1167. 2014. View Article : Google Scholar :

88 

Kim YW, West XZ and Byzova TV: Inflammation and oxidative stress in angiogenesis and vascular disease. J Mol Med (Berl). 91:323–328. 2013. View Article : Google Scholar

89 

Brambilla D, Mancuso C, Scuderi MR, Bosco P, Cantarella G, Lempereur L, Di Benedetto G, Pezzino S and Bernardini R: The role of antioxidant supplement in immune system, neoplastic, and neurodegenerative disorders: A point of view for an assessment of the risk/benefit profile. Nutr J. 7:292008. View Article : Google Scholar : PubMed/NCBI

90 

Carmeliet P and Jain RK: Molecular mechanisms and clinical applications of angiogenesis. Nature. 473:298–307. 2011. View Article : Google Scholar

91 

Kim YW and Byzova TV: Oxidative stress in angiogenesis and vascular disease. Blood. 123:625–631. 2014. View Article : Google Scholar :

92 

Vallée A, Lecarpentier Y, Vallée R, Guillevin R and Vallée JN: Circadian rhythms in exudative age-related macular degeneration: The key role of the canonical WNT/β-catenin pathway. Int J Mol Sci. 21:8202020. View Article : Google Scholar

93 

Brugarolas JB, Vazquez F, Reddy A, Sellers WR and Kaelin WG: TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell. 4:147–158. 2003. View Article : Google Scholar

94 

Düvel K, Yecies JL, Menon S, Raman P, Lipovsky AI, Souza AL, Triantafellow E, Ma Q, Gorski R, Cleaver S, et al: Activation of a metabolic gene regulatory network downstream of mTOR complex 1. Mol Cell. 39:171–183. 2010. View Article : Google Scholar : PubMed/NCBI

95 

Jung JE, Lee HG, Cho IH, Chung DH, Yoon SH, Yang YM, Lee JW, Choi S, Park JW, Ye SK and Chung MH: STAT3 is a potential modulator of HIF-1-mediated VEGF expression in human renal carcinoma cells. FASEB J. 19:1296–1298. 2005. View Article : Google Scholar

96 

Land SC and Tee AR: Hypoxia-inducible factor 1alpha is regulated by the mammalian target of rapamycin (mTOR) via an mTOR signaling motif. J Biol Chem. 282:20534–20543. 2007. View Article : Google Scholar

97 

Toschi A, Lee E, Gadir N, Ohh M and Foster DA: Differential dependence of hypoxia-inducible factors 1 alpha and 2 alpha on mTORC1 and mTORC2. J Biol Chem. 283:34495–34499. 2008. View Article : Google Scholar

98 

Xu Q, Briggs J, Park S, Niu G, Kortylewski M, Zhang S, Gritsko T, Turkson J, Kay H, Semenza GL, et al: Targeting Stat3 blocks both HIF-1 and VEGF expression induced by multiple oncogenic growth signaling pathways. Oncogene. 24:5552–5560. 2005. View Article : Google Scholar

99 

Kim J, Gao P, Liu YC, Semenza GL and Dang CV: Hypoxia-inducible factor 1 and dysregulated c-Myc cooperatively induce vascular endothelial growth factor and metabolic switches hexokinase 2 and pyruvate dehydrogenase kinase 1. Mol Cell Biol. 27:7381–7393. 2007. View Article : Google Scholar

100 

Suda T, Takubo K and Semenza GL: Metabolic regulation of hematopoietic stem cells in the hypoxic niche. Cell Stem Cell. 9:298–310. 2011. View Article : Google Scholar

101 

Firth JD, Ebert BL and Ratcliffe PJ: Hypoxic regulation of lactate dehydrogenase A. Interaction between hypoxia-inducible factor 1 and cAMP response elements. J Biol Chem. 270:21021–21027. 1995. View Article : Google Scholar

102 

Lewis BC, Shim H, Li Q, Wu CS, Lee LA, Maity A and Dang CV: Identification of putative c-Myc-responsive genes: Characterization of rcl, a novel growth-related gene. Mol Cell Biol. 17:4967–4978. 1997. View Article : Google Scholar : PubMed/NCBI

103 

Semenza GL, Jiang BH, Leung SW, Passantino R, Concordet JP, Maire P and Giallongo A: Hypoxia response elements in the Aldolase A, Enolase 1, and lactate dehydrogenase A gene promoters contain essential binding sites for hypoxia-inducible factor 1. J Biol Chem. 271:32529–32537. 1996. View Article : Google Scholar

104 

Shim H, Dolde C, Lewis BC, Wu CS, Dang G, Jungmann RA, Dalla-Favera R and Dang CV: c-Myc transactivation of LDH-A: implications for tumor metabolism and growth. Proc Natl Acad Sci USA. 94:6658–6663. 1997. View Article : Google Scholar

105 

Warburg O: On the origin of cancer cells. Science. 123:309–314. 1956. View Article : Google Scholar

106 

Koukourakis MI, Giatromanolaki A, Sivridis E, Bougioukas G, Didilis V, Gatter KC and Harris AL; Tumour and Angiogenesis Research Group: Lactate dehydrogenase-5 (LDH-5) overexpression in non-small-cell lung cancer tissues is linked to tumour hypoxia, angiogenic factor production and poor prognosis. Br J Cancer. 89:877–885. 2003. View Article : Google Scholar

107 

Vallée A, Lecarpentier Y, Guillevin R and Vallée JN: Aerobic glycolysis hypothesis through WNT/beta-catenin pathway in exudative age-related macular degeneration. J Mol Neurosci. 62:368–379. 2017. View Article : Google Scholar

108 

Léveillard T and Sahel JA: Metabolic and redox signaling in the retina. Cell Mol Life Sci. 74:3649–3665. 2017. View Article : Google Scholar

109 

Oguma K, Oshima H and Oshima M: Inflammation, tumor necrosis factor and Wnt promotion in gastric cancer development. Future Oncol. 6:515–526. 2010. View Article : Google Scholar

110 

Schön S, Flierman I, Ofner A, Stahringer A, Holdt LM, Kolligs FT and Herbst A: β-catenin regulates NF-κB activity via TNFRSF19 in colorectal cancer cells. Int J Cancer. 135:1800–1811. 2014. View Article : Google Scholar

111 

Oh H, Takagi H, Takagi C, Suzuma K, Otani A, Ishida K, Matsumura M, Ogura Y and Honda Y: The potential angiogenic role of macrophages in the formation of choroidal neovascular membranes. Invest Ophthalmol Vis Sci. 40:1891–1898. 1999.

112 

Cousins SW, Espinosa-Heidmann DG and Csaky KG: Monocyte activation in patients with age-related macular degeneration: A biomarker of risk for choroidal neovascularization? Arch Ophthalmol. 122:1013–1018. 2004. View Article : Google Scholar

113 

Duguid IG, Boyd AW and Mandel TE: Adhesion molecules are expressed in the human retina and choroid. Curr Eye Res. 11(Suppl): S153–S159. 1992. View Article : Google Scholar

114 

Elner SG, Elner VM, Pavilack MA, Todd RF III, Mayo-Bond L, Franklin WA, Strieter RM, Kunkel SL and Huber AR: Modulation and function of intercellular adhesion molecule-1 (CD54) on human retinal pigment epithelial cells. Lab Invest. 66:200–211. 1992.

115 

Anderson DH, Mullins RF, Hageman GS and Johnson LV: A role for local inflammation in the formation of drusen in the aging eye. Am J Ophthalmol. 134:411–431. 2002. View Article : Google Scholar

116 

Donoso LA, Kim D, Frost A, Callahan A and Hageman G: The role of inflammation in the pathogenesis of age-related macular degeneration. Surv Ophthalmol. 51:137–152. 2006. View Article : Google Scholar

117 

Easwaran V, Lee SH, Inge L, Guo L, Goldbeck C, Garrett E, Wiesmann M, Garcia PD, Fuller JH, Chan V, et al: Beta-Catenin regulates vascular endothelial growth factor expression in colon cancer. Cancer Res. 63:3145–3153. 2003.

118 

Ip MS, Scott IU, Brown GC, Brown MM, Ho AC, Huang SS and Recchia FM; American Academy of Ophthalmology: Anti-vascular endothelial growth factor pharmacotherapy for age-related macular degeneration: A report by the American Academy of Ophthalmology. Ophthalmology. 115:1837–1846. 2008. View Article : Google Scholar

119 

Wolf S: Current status of anti-vascular endothelial growth factor therapy in Europe. Jpn J Ophthalmol. 52:433–439. 2008. View Article : Google Scholar

120 

Menon G and Walters G: New paradigms in the treatment of wet AMD: The impact of anti-VEGF therapy. Eye (Lond). 23(Suppl 1): S1–S7. 2009. View Article : Google Scholar

121 

Grisanti S, Zhu Q, Tatar O, Lueke J, Lueke M, Tura A and Grisanti S: Differential expression of vascular endothelial growth factor-a isoforms in neovascular age-related macular degeneration. Retina. 35:764–772. 2015. View Article : Google Scholar

122 

Liu X: Overstimulation can create health problems due to increases in PI3K/Akt/GSK3 insensitivity and GSK3 activity. Springerplus. 3:3562014. View Article : Google Scholar

123 

Zhang P, Wang Y, Hui Y, Hu D, Wang H, Zhou J and Du H: Inhibition of VEGF expression by targeting HIF-1 alpha with small interference RNA in human RPE cells. Ophthalmologica. 221:411–417. 2007. View Article : Google Scholar

124 

Zhang P, Zhang X, Hao X, Wang Y, Hui Y, Wang H, Hu D and Zhou J: Rac1 activates HIF-1 in retinal pigment epithelium cells under hypoxia. Graefes Arch Clin Exp Ophthalmol. 247:633–639. 2009. View Article : Google Scholar

125 

Arjamaa O, Nikinmaa M, Salminen A and Kaarniranta K: Regulatory role of HIF-1alpha in the pathogenesis of age-related macular degeneration (AMD). Ageing Res Rev. 8:349–358. 2009. View Article : Google Scholar

126 

Koukourakis MI, Giatromanolaki A, Sivridis E, Gatter KC, Trarbach T, Folprecht G, Shi MM, Lebwohl D, Jalava T, Laurent D, et al: Prognostic and predictive role of lactate dehydrogenase 5 expression in colorectal cancer patients treated with PTK787/ZK 222584 (vatalanib) antiangiogenic therapy. Clin Cancer Res. 17:4892–4900. 2011. View Article : Google Scholar

127 

Giatromanolaki A, Sivridis E, Gatter KC, Turley H, Harris AL and Koukourakis MI; Tumour and Angiogenesis Research Group: Lactate dehydrogenase 5 (LDH-5) expression in endometrial cancer relates to the activated VEGF/VEGFR2(KDR) pathway and prognosis. Gynecol Oncol. 103:912–918. 2006. View Article : Google Scholar

128 

Kolev Y, Uetake H, Takagi Y and Sugihara K: Lactate dehydrogenase-5 (LDH-5) expression in human gastric cancer: Association with hypoxia-inducible factor (HIF-1alpha) pathway, angiogenic factors production and poor prognosis. Ann Surg Oncol. 15:2336–2344. 2008. View Article : Google Scholar

129 

Dhup S, Dadhich RK, Porporato PE and Sonveaux P: Multiple biological activities of lactic acid in cancer: Influences on tumor growth, angiogenesis and metastasis. Curr Pharm Des. 18:1319–1330. 2012. View Article : Google Scholar

130 

Polet F and Feron O: Endothelial cell metabolism and tumour angiogenesis: Glucose and glutamine as essential fuels and lactate as the driving force. J Intern Med. 273:156–165. 2013. View Article : Google Scholar

131 

San-Millán I and Brooks GA: Reexamining cancer metabolism: Lactate production for carcinogenesis could be the purpose and explanation of the Warburg Effect. Carcinogenesis. 38:119–133. 2017.

132 

Liu W, Zhai Y, Heng X, Che FY, Chen W, Sun D and Zhai G: Oral bioavailability of curcumin: problems and advancements. J Drug Target. 24:694–702. 2016. View Article : Google Scholar

133 

Vallée A and Lecarpentier Y: Curcumin and endometriosis. Int J Mol Sci. 21:24402020. View Article : Google Scholar :

134 

Kotha RR and Luthria DL: Curcumin: Biological, Pharmaceutical, Nutraceutical, and Analytical Aspects. Molecules. 24:29302019. View Article : Google Scholar

135 

Prasad S, Gupta SC, Tyagi AK and Aggarwal BB: Curcumin, a component of golden spice: From bedside to bench and back. Biotechnol Adv. 32:1053–1064. 2014. View Article : Google Scholar

136 

Priyadarsini KI: The chemistry of curcumin: From extraction to therapeutic agent. Molecules. 19:20091–20112. 2014. View Article : Google Scholar

137 

Zhang L, Zhu W, Yang C, Guo H, Yu A, Ji J, Gao Y, Sun M and Zhai G: A novel folate-modified self-microemulsifying drug delivery system of curcumin for colon targeting. Int J Nanomedicine. 7:151–162. 2012.

138 

Shen L, Liu CC, An CY and Ji HF: How does curcumin work with poor bioavailability? Clues from experimental and theoretical studies. Sci Rep. 6:208722016. View Article : Google Scholar :

139 

Sun M, Su X, Ding B, He X, Liu X, Yu A, Lou H and Zhai G: Advances in nanotechnology-based delivery systems for curcumin. Nanomedicine (Lond). 7:1085–1100. 2012. View Article : Google Scholar

140 

Naksuriya O, Okonogi S, Schiffelers RM and Hennink WE: Curcumin nanoformulations: A review of pharmaceutical properties and preclinical studies and clinical data related to cancer treatment. Biomaterials. 35:3365–3383. 2014. View Article : Google Scholar : PubMed/NCBI

141 

Malam Y, Loizidou M and Seifalian AM: Liposomes and nanoparticles: Nanosized vehicles for drug delivery in cancer. Trends Pharmacol Sci. 30:592–599. 2009. View Article : Google Scholar

142 

Lee WH, Loo CY, Young PM, Traini D, Mason RS and Rohanizadeh R: Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv. 11:1183–1201. 2014. View Article : Google Scholar

143 

Hatefi A and Amsden B: Biodegradable injectable in situ forming drug delivery systems. J Control Release. 80:9–28. 2002. View Article : Google Scholar

144 

Yallapu MM, Jaggi M and Chauhan SC: Beta-Cyclodextrin-curcumin self-assembly enhances curcumin delivery in prostate cancer cells. Colloids Surf B Biointerfaces. 79:113–125. 2010. View Article : Google Scholar

145 

Radomska-Leśniewska DM, Osiecka-Iwan A, Hyc A, Góźdź A, Dąbrowska AM and Skopiński P: Therapeutic potential of curcumin in eye diseases. Cent Eur J Immunol. 44:181–189. 2019. View Article : Google Scholar

146 

Zhu W, Wu Y, Meng YF, Wang JY, Xu M, Tao JJ and Lu J: Effect of curcumin on aging retinal pigment epithelial cells. Drug Des Devel Ther. 9:5337–5344. 2015.

147 

Jiang X, Li S, Qiu X, Cong J, Zhou J and Miu W: Curcumin inhibits cell viability and increases apoptosis of SW620 human colon adenocarcinoma cells via the caudal type homeobox-2 (CDX2)/Wnt/β-catenin pathway. Med Sci Monit. 25:7451–7458. 2019. View Article : Google Scholar

148 

Howell JC, Chun E, Farrell AN, Hur EY, Caroti CM, Iuvone PM and Haque R: Global microRNA expression profiling: Curcumin (diferuloylmethane) alters oxidative stress-responsive microRNAs in human ARPE-19 cells. Mol Vis. 19:544–560. 2013.

149 

Mandal MNA, Patlolla JMR, Zheng L, Agbaga MP, Tran JT, Wicker L, Kasus-Jacobi A, Elliott MH, Rao CV and Anderson RE: Curcumin protects retinal cells from light-and oxidant stress-induced cell death. Free Radic Biol Med. 46:672–679. 2009. View Article : Google Scholar

150 

Muangnoi C, Sharif U, Ratnatilaka Na, Bhuket P, Rojsitthisak P and Paraoan L: Protective effects of curcumin ester prodrug, curcumin diethyl disuccinate against H2O2-Induced oxidative stress in human retinal pigment epithelial cells: Potential therapeutic avenues for age-related macular degeneration. Int J Mol Sci. 20:33672019. View Article : Google Scholar

151 

Kim HJ, Park SY, Park OJ and Kim YM: Curcumin suppresses migration and proliferation of Hep3B hepatocarcinoma cells through inhibition of the Wnt signaling pathway. Mol Med Rep. 8:282–286. 2013. View Article : Google Scholar

152 

Leow PC, Bahety P, Boon CP, Lee CY, Tan KL, Yang T and Ee PL: Functionalized curcumin analogs as potent modulators of the Wnt/β-catenin signaling pathway. Eur J Med Chem. 71:67–80. 2014. View Article : Google Scholar

153 

Kolb TM and Davis MA: The tumor promoter 12-O-tetradecanoylphorbol 13-acetate (TPA) provokes a prolonged morphologic response and ERK activation in Tsc2-null renal tumor cells. Toxicol Sci. 81:233–242. 2004. View Article : Google Scholar

154 

Balasubramanyam K, Varier RA, Altaf M, Swaminathan V, Siddappa NB, Ranga U and Kundu TK: Curcumin, a novel p300/CREB-binding protein-specific inhibitor of acetyltransferase, represses the acetylation of histone/nonhistone proteins and histone acetyltransferase-dependent chromatin transcription. J Biol Chem. 279:51163–51171. 2004. View Article : Google Scholar

155 

He M, Li Y, Zhang L, Li L, Shen Y, Lin L, Zheng W, Chen L, Bian X, Ng HK and Tang L: Curcumin suppresses cell proliferation through inhibition of the Wnt/β-catenin signaling pathway in medulloblastoma. Oncol Rep. 32:173–180. 2014. View Article : Google Scholar : PubMed/NCBI

156 

Menon VP and Sudheer AR: Antioxidant and anti-inflammatory properties of curcumin. Adv Exp Med Biol. 595:105–125. 2007. View Article : Google Scholar

157 

Marchiani A, Rozzo C, Fadda A, Delogu G and Ruzza P: Curcumin and curcumin-like molecules: From spice to drugs. Curr Med Chem. 21:204–222. 2014. View Article : Google Scholar

158 

Schneider C, Boeglin WE, Yin H, Stec DF and Voehler M: Convergent oxygenation of arachidonic acid by 5-lipoxygenase and cyclooxygenase-2. J Am Chem Soc. 128:720–721. 2006. View Article : Google Scholar

159 

Giménez-Bastida JA, González-Sarrías A, Laparra-Llopis JM, Schneider C and Espín JC: Targeting mammalian 5-lipoxygenase by dietary phenolics as an anti-inflammatory mechanism: A systematic review. Int J Mol Sci. 22:79372021. View Article : Google Scholar :

160 

Othman A, Ahmad S, Megyerdi S, Mussell R, Choksi K, Maddipati KR, Elmarakby A, Rizk N and Al-Shabrawey M: 12/15-Lipoxygenase-derived lipid metabolites induce retinal endothelial cell barrier dysfunction: Contribution of NADPH oxidase. PLoS One. 8:e572542013. View Article : Google Scholar

161 

Subramanian P, Mendez EF and Becerra SP: A novel inhibitor of 5-Lipoxygenase (5-LOX) prevents oxidative stress-induced cell death of retinal pigment epithelium (RPE) cells. Invest Ophthalmol Vis Sci. 57:4581–4588. 2016. View Article : Google Scholar

162 

Yadav UCS and Ramana KV: Regulation of NF-κB-induced inflammatory signaling by lipid peroxidation-derived aldehydes. Oxid Med Cell Longev. 2013:6905452013. View Article : Google Scholar

163 

Ruan Y, Jiang S and Gericke A: Age-related macular degeneration: Role of oxidative stress and blood vessels. Int J Mol Sci. 22:12962021. View Article : Google Scholar :

164 

Yabas M, Orhan C, Er B, Tuzcu M, Durmus AS, Ozercan IH, Sahin N, Bhanuse P, Morde AA, Padigaru M and Sahin K: A next generation formulation of curcumin ameliorates experimentally induced osteoarthritis in rats via regulation of inflammatory mediators. Front Immunol. 12:6096292021. View Article : Google Scholar :

165 

Li X, Lu Y, Jin Y, Son JK, Lee SH and Chang HW: Curcumin inhibits the activation of immunoglobulin e-mediated mast cells and passive systemic anaphylaxis in mice by reducing serum eicosanoid and histamine levels. Biomol Ther (Seoul). 22:27–34. 2014. View Article : Google Scholar

166 

Manjunatha H and Srinivasan K: Protective effect of dietary curcumin and capsaicin on induced oxidation of low-density lipoprotein, iron-induced hepatotoxicity and carrageenan-induced inflammation in experimental rats. FEBS J. 273:4528–4537. 2006. View Article : Google Scholar

167 

Priyadarsini KI, Maity DK, Naik GH, Kumar MS, Unnikrishnan MK, Satav JG and Mohan H: Role of phenolic O-H and methylene hydrogen on the free radical reactions and antioxidant activity of curcumin. Free Radic Biol Med. 35:475–484. 2003. View Article : Google Scholar

168 

Piwocka K, Jaruga E, Skierski J, Gradzka I and Sikora E: Effect of glutathione depletion on caspase-3 independent apoptosis pathway induced by curcumin in Jurkat cells. Free Radic Biol Med. 31:670–678. 2001. View Article : Google Scholar

169 

Motterlini R, Foresti R, Bassi R and Green CJ: Curcumin, an antioxidant and anti-inflammatory agent, induces heme oxygenase-1 and protects endothelial cells against oxidative stress. Free Radic Biol Med. 28:1303–1312. 2000. View Article : Google Scholar : PubMed/NCBI

170 

Cao K, Dong YT, Xiang J, Xu Y, Hong W, Song H and Guan ZZ: Reduced expression of SIRT1 and SOD-1 and the correlation between these levels in various regions of the brains of patients with Alzheimer's disease. J Clin Pathol. 71:1090–1099. 2018. View Article : Google Scholar

171 

Golestaneh N, Chu Y, Cheng SK, Cao H, Poliakov E and Berinstein DM: Repressed SIRT1/PGC-1α pathway and mitochondrial disintegration in iPSC-derived RPE disease model of age-related macular degeneration. J Transl Med. 14:3442016. View Article : Google Scholar

172 

Zuo L, Khan RS, Lee V, Dine K, Wu W and Shindler KS: SIRT1 promotes RGC survival and delays loss of function following optic nerve crush. Invest Ophthalmol Vis Sci. 54:5097–5102. 2013. View Article : Google Scholar

173 

Li K, Zhai M, Jiang L, Song F, Zhang B, Li J, Li H, Li B, Xia L, Xu L, et al: Tetrahydrocurcumin ameliorates diabetic cardiomyopathy by attenuating high glucose-induced oxidative stress and fibrosis via activating the SIRT1 Pathway. Oxid Med Cell Longev. 2019:67469072019. View Article : Google Scholar

174 

Ghasemi F, Shafiee M, Banikazemi Z, Pourhanifeh MH, Khanbabaei H, Shamshirian A, Amiri Moghadam S, ArefNezhad R, Sahebkar A, Avan A and Mirzaei H: Curcumin inhibits NF-kB and Wnt/β-catenin pathways in cervical cancer cells. Pathol Res Pract. 215:1525562019. View Article : Google Scholar

175 

Olivera A, Moore TW, Hu F, Brown AP, Sun A, Liotta DC, Snyder JP, Yoon Y, Shim H, Marcus AI, et al: Inhibition of the NF-κB signaling pathway by the curcumin analog, 3,5-Bis(2-pyridinylmethylidene)-4-piperidone (EF31): Anti-inf lammatory and anti-cancer properties. Int Immunopharmacol. 12:368–377. 2012. View Article : Google Scholar

176 

da Cruz BO, Cardozo LFM de F, Magliano DC and Stockler-Pinto MB: Nutritional strategies to modulate inflammation pathways via regulation of peroxisome proliferator-activated receptor β/δ. Nutr Rev. 78:207–214. 2020.

177 

Lin YG, Kunnumakkara AB, Nair A, Merritt WM, Han LY, Armaiz-Pena GN, Kamat AA, Spannuth WA, Gershenson DM, Lutgendorf SK, et al: Curcumin inhibits tumor growth and angiogenesis in ovarian carcinoma by targeting the nuclear factor-kappaB pathway. Clin Cancer Res. 13:3423–3430. 2007. View Article : Google Scholar

178 

Zhang ZB, Luo DD, Xie JH, Xian YF, Lai ZQ, Liu YH, Liu WH, Chen JN, Lai XP, Lin ZX and Su ZR: Curcumin's metabolites, tetrahydrocurcumin and octahydrocurcumin, possess superior anti-inflammatory effects in vivo through suppression of TAK1-NF-κB pathway. Front Pharmacol. 9:11812018. View Article : Google Scholar

179 

Chen W, Chen Y and Cui G: Effects of TNF-alpha and curcumin on the expression of VEGF in Raji and U937 cells and on angiogenesis in ECV304 cells. Chin Med J (Engl). 118:2052–2057. 2005.

180 

Yoysungnoen P, Wirachwong P, Bhattarakosol P, Niimi H and Patumraj S: Effects of curcumin on tumor angiogenesis and biomarkers, COX-2 and VEGF, in hepatocellular carcinoma cell-implanted nude mice. Clin Hemorheol Microcirc. 34:109–115. 2006.PubMed/NCBI

181 

Li L, Braiteh FS and Kurzrock R: Liposome-encapsulated curcumin: In vitro and in vivo effects on proliferation, apoptosis, signaling, and angiogenesis. Cancer. 104:1322–1331. 2005. View Article : Google Scholar

182 

Arbiser JL, Klauber N, Rohan R, van Leeuwen R, Huang MT, Fisher C, Flynn E and Byers HR: Curcumin is an in vivo inhibitor of angiogenesis. Mol Med. 4:376–383. 1998. View Article : Google Scholar

183 

Gururaj AE, Belakavadi M, Venkatesh DA, Marmé D and Salimath BP: Molecular mechanisms of anti-angiogenic effect of curcumin. Biochem Biophys Res Commun. 297:934–942. 2002. View Article : Google Scholar : PubMed/NCBI

184 

Zahra FT, Sajib MS and Mikelis CM: Role of bFGF in acquired resistance upon Anti-VEGF therapy in cancer. Cancers (Basel). 13:14222021. View Article : Google Scholar

185 

Compagni A, Wilgenbus P, Impagnatiello MA, Cotten M and Christofori G: Fibroblast growth factors are required for efficient tumor angiogenesis. Cancer Res. 60:7163–7169. 2000.

186 

Nissen LJ, Cao R, Hedlund EM, Wang Z, Zhao X, Wetterskog D, Funa K, Bråkenhielm E and Cao Y: Angiogenic factors FGF2 and PDGF-BB synergistically promote murine tumor neovascularization and metastasis. J Clin Invest. 117:2766–2777. 2007. View Article : Google Scholar : PubMed/NCBI

187 

Casanovas O, Hicklin DJ, Bergers G and Hanahan D: Drug resistance by evasion of antiangiogenic targeting of VEGF signaling in late-stage pancreatic islet tumors. Cancer Cell. 8:299–309. 2005. View Article : Google Scholar

188 

Choi HJ, Armaiz Pena GN, Pradeep S, Cho MS, Coleman RL and Sood AK: Anti-vascular therapies in ovarian cancer: Moving beyond anti-VEGF approaches. Cancer Metastasis Rev. 34:19–40. 2015. View Article : Google Scholar :

189 

Aggarwal BB and Natarajan K: Tumor necrosis factors: Developments during the last decade. Eur Cytokine Netw. 7:93–124. 1996.PubMed/NCBI

190 

Li H, Soria C, Griscelli F, Opolon P, Soria J, Yeh P, Legrand C, Vannier JP, Belin D, Perricaudet M and Lu H: Amino-terminal fragment of urokinase inhibits tumor cell invasion in vitro and in vivo: Respective contribution of the urokinase plasminogen activator receptor-dependent or -independent pathway. Hum Gene Ther. 16:1157–1167. 2005. View Article : Google Scholar : PubMed/NCBI

191 

Aggarwal BB, Kumar A and Bharti AC: Anticancer potential of curcumin: Preclinical and clinical studies. Anticancer Res. 23:363–398. 2003.

192 

Wang LL, Sun Y, Huang K and Zheng L: Curcumin, a potential therapeutic candidate for retinal diseases. Mol Nutr Food Res. 57:1557–1568. 2013. View Article : Google Scholar : PubMed/NCBI

193 

Pittalà V, Fidilio A, Lazzara F, Platania CBM, Salerno L, Foresti R, Drago F and Bucolo C: Effects of novel nitric oxide-releasing molecules against oxidative stress on retinal pigmented epithelial cells. Oxid Med Cell Longev. 2017:14208922017. View Article : Google Scholar : PubMed/NCBI

194 

Bucolo C, Drago F, Maisto R, Romano GL, D'Agata V, Maugeri G and Giunta S: Curcumin prevents high glucose damage in retinal pigment epithelial cells through ERK1/2-mediated activation of the Nrf2/HO-1 pathway. J Cell Physiol. 234:17295–17304. 2019. View Article : Google Scholar : PubMed/NCBI

195 

Vyas A, Dandawate P, Padhye S, Ahmad A and Sarkar F: Perspectives on New Synthetic curcumin analogs and their potential anticancer properties. Curr Pharm Des. 19:2047–2069. 2013.

196 

Muangnoi C, Ratnatilaka Na Bhuket P, Jithavech P, Supasena W, Paraoan L, Patumraj S and Rojsitthisak P: Curcumin diethyl disuccinate, a prodrug of curcumin, enhances anti-proliferative effect of curcumin against HepG2 cells via apoptosis induction. Sci Rep. 9:117182019. View Article : Google Scholar :

197 

Ohori H, Yamakoshi H, Tomizawa M, Shibuya M, Kakudo Y, Takahashi A, Takahashi S, Kato S, Suzuki T, Ishioka C, et al: Synthesis and biological analysis of new curcumin analogues bearing an enhanced potential for the medicinal treatment of cancer. Mol Cancer Ther. 5:2563–2571. 2006. View Article : Google Scholar

198 

Shoba G, Joy D, Joseph T, Majeed M, Rajendran R and Srinivas PS: Influence of piperine on the pharmacokinetics of curcumin in animals and human volunteers. Planta Med. 64:353–356. 1998. View Article : Google Scholar : PubMed/NCBI

199 

Sai N, Dong X, Huang P, You L, Yang C, Liu Y, Wang W, Wu H, Yu Y, Du Y, et al: A novel gel-forming solution based on PEG-DSPE/Solutol HS 15 Mixed Micelles and Gellan Gum for ophthalmic delivery of curcumin. Molecules. 25:812019. View Article : Google Scholar

200 

Zhang J, Sun H, Zhou N, Zhang B and Ma J: Preparation and evaluation of biodegradable scleral plug containing curcumin in rabbit eye. Curr Eye Res. 42:1597–1603. 2017. View Article : Google Scholar : PubMed/NCBI

201 

Mazzolani F, Togni S, Giacomelli L, Eggenhoffner R and Franceschi F: Oral administration of a curcumin-phospholipid formulation (Meriva®) for treatment of chronic diabetic macular edema: A pilot study. Eur Rev Med Pharmacol Sci. 22:3617–3625. 2018.PubMed/NCBI

202 

Allegri P, Mastromarino A and Neri P: Management of chronic anterior uveitis relapses: Efficacy of oral phospholipidic curcumin treatment. Long-term follow-up. Clin Ophthalmol. 4:1201–1206. 2010.

203 

Chen J and Smith LEH: Retinopathy of prematurity. Angiogenesis. 10:133–140. 2007. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Vallée A: Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 49: 79, 2022.
APA
Vallée, A. (2022). Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). International Journal of Molecular Medicine, 49, 79. https://doi.org/10.3892/ijmm.2022.5135
MLA
Vallée, A."Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review)". International Journal of Molecular Medicine 49.6 (2022): 79.
Chicago
Vallée, A."Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review)". International Journal of Molecular Medicine 49, no. 6 (2022): 79. https://doi.org/10.3892/ijmm.2022.5135
Copy and paste a formatted citation
x
Spandidos Publications style
Vallée A: Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). Int J Mol Med 49: 79, 2022.
APA
Vallée, A. (2022). Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review). International Journal of Molecular Medicine, 49, 79. https://doi.org/10.3892/ijmm.2022.5135
MLA
Vallée, A."Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review)". International Journal of Molecular Medicine 49.6 (2022): 79.
Chicago
Vallée, A."Curcumin and Wnt/β‑catenin signaling in exudative age‑related macular degeneration (Review)". International Journal of Molecular Medicine 49, no. 6 (2022): 79. https://doi.org/10.3892/ijmm.2022.5135
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team