|
1
|
Akbari G: Role of zinc supplementation on
ischemia/reperfusion injury in various organs. Biol Trace Elem Res.
196:1–9. 2020. View Article : Google Scholar
|
|
2
|
Akella A, Bhattarai S and Dharap A: Long
noncoding RNAs in the pathophysiology of ischemic stroke.
Neuromolecular Med. 21:474–483. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Haddad G, Kölling M, Wegmann UA, Dettling
A, Seeger H, Schmitt R, Soerensen-Zender I, Haller H, Kistler AD,
Dueck A, et al: Renal AAV2-mediated overexpression of long
non-coding RNA H19 attenuates ischemic acute kidney injury through
sponging of microRNA-30a-5p. J Am Soc Nephrol. 32:323–341. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Frangogiannis NG: Pathophysiology of
myocardial infarction. Compr Physiol. 5:1841–1875. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Zhang L and Wang H: Long non-coding RNA in
CNS injuries: A new target for therapeutic intervention. Mol Ther
Nucleic Acids. 17:754–766. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kumar MM and Goyal R: LncRNA as a
therapeutic target for angiogenesis. Curr Top Med Chem.
17:1750–1757. 2017. View Article : Google Scholar :
|
|
7
|
Das A, Samidurai A and Salloum FN:
Deciphering non-coding RNAs in cardiovascular health and disease.
Front Cardiovasc Med. 5:732018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Zhou J, Chen H and Fan Y: Systematic
analysis of the expression profile of non-coding RNAs involved in
ischemia/reperfusion-induced acute kidney injury in mice using RNA
sequencing. Oncotarget. 8:100196–100215. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Li J, Hao M, Yang B, Shi T, Zhang Y, Feng
J and Chen J: Long non-coding RNAs expression profile and
functional analysis of acute ischemic stroke. Medicine (Baltimore).
99:e229642020. View Article : Google Scholar
|
|
10
|
Wang Y, Pan WY, Ge JS, Wang XD, Chen W,
Luo X and Wang YL: A review of the relationship between long
noncoding RNA and post-stroke injury repair. J Int Med Res.
47:4619–4624. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Su M, Hu X, Lin J, Zhang L, Sun W, Zhang
J, Tian Y and Qiu W: Identification of candidate genes involved in
renal ischemia/reperfusion injury. DNA Cell Biol. 38:256–262. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Wei L, Li J, Han Z, Chen Z and Zhang Q:
Silencing of lncRNA MALAT1 prevents inflammatory injury after lung
transplant ischemia-reperfusion by downregulation of IL-8 via p300.
Mol Ther Nucleic Acids. 18:285–297. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ali T and Grote P: Beyond the
RNA-dependent function of LncRNA genes. Elife. 9:e605832020.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Uszczynska-Ratajczak B, Lagarde J,
Frankish A, Guigó R and Johnson R: Towards a complete map of the
human long non-coding RNA transcriptome. Nat Rev Genet. 19:535–548.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Fang S, Zhang L, Guo J, Niu Y, Wu Y, Li H,
Zhao L, Li X, Teng X, Sun X, et al: NONCODEV5: A comprehensive
annotation database for long non-coding RNAs. Nucleic Acids Res.
46(D1): D308–D314. 2018. View Article : Google Scholar :
|
|
16
|
Quinn JJ and Chang HY: Unique features of
long non-coding RNA biogenesis and function. Nat Rev Genet.
17:47–62. 2016. View Article : Google Scholar
|
|
17
|
Bridges MC, Daulagala AC and Kourtidis A:
LNCcation: lncRNA localization and function. J Cell Biol.
220:e2020090452021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Statello L, Guo CJ, Chen LL and Huarte M:
Gene regulation by long non-coding RNAs and its biological
functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar
|
|
19
|
Charles Richard JL and Eichhorn PJA:
Platforms for investigating LncRNA functions. SLAS Technol.
23:493–506. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Wang SW, Liu Z and Shi ZS: Non-coding RNA
in acute ischemic stroke: Mechanisms, biomarkers and therapeutic
targets. Cell Transplant. 27:1763–1777. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Yang J, Chen M, Cao RY, Li Q and Zhu F:
The role of circular RNAs in cerebral ischemic diseases: Ischemic
stroke and cerebral ischemia/reperfusion injury. Adv Exp Med Biol.
1087:309–325. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G and
Zhu YS: MALAT1: A potential biomarker in cancer. Cancer Manag Res.
10:6757–6768. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Liu S, Yan G, Zhang J and Yu L: Knockdown
of long noncoding RNA (lncRNA) metastasis-associated lung
adenocarcinoma transcript 1 (MALAT1) inhibits proliferation,
migration, and invasion and promotes apoptosis by targeting miR-124
in retinoblastoma. Oncol Res. 26:581–591. 2018. View Article : Google Scholar
|
|
24
|
Lelli A, Nolan KA, Santambrogio S,
Gonçalves AF, Schönenberger MJ, Guinot A, Frew IJ, Marti HH,
Hoogewijs D and Wenger RH: Induction of long noncoding RNA MALAT1
in hypoxic mice. Hypoxia (Auckl). 3:45–52. 2015.
|
|
25
|
Zhang X, Tang X, Liu K, Hamblin MH and Yin
KJ: Long noncoding RNA Malat1 regulates cerebrovascular pathologies
in ischemic stroke. J Neurosci. 37:1797–1806. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Zhang T, Wang H, Li Q, Fu J, Huang J and
Zhao Y: MALAT1 activates the P53 signaling pathway by regulating
MDM2 to promote ischemic stroke. Cell Physiol Biochem.
50:2216–2228. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Guo D, Ma J, Yan L, Li T, Li Z, Han X and
Shui S: Down-regulation of lncrna MALAT1 attenuates neuronal cell
death through suppressing beclin1-dependent autophagy by regulating
Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem.
43:182–194. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Wang H, Zheng X, Jin J, Zheng L, Guan T,
Huo Y, Xie S, Wu Y and Chen W: LncRNA MALAT1 silencing protects
against cerebral ischemia-reperfusion injury through miR-145 to
regulate AQP4. J Biomed Sci. 27:402020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Cao DW, Liu MM, Duan R, Tao YF, Zhou JS,
Fang WR, Zhu JR, Niu L and Sun JG: The lncRNA Malat1 functions as a
ceRNA to contribute to berberine-mediated inhibition of HMGB1 by
sponging miR-181c-5p in poststroke inflammation. Acta Pharmacol
Sin. 41:22–33. 2020. View Article : Google Scholar :
|
|
30
|
Zhang L, Yang H, Li WJ and Liu YH: LncRNA
MALAT1 promotes OGD-induced apoptosis of brain microvascular
endothelial cells by sponging miR-126 to repress PI3K/Akt signaling
pathway. Neurochem Res. 45:2091–2099. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Ruan W, Li J, Xu Y, Wang Y, Zhao F, Yang
X, Jiang H, Zhang L, Saavedra JM, Shi L and Pang T: MALAT1
Up-regulator polydatin protects brain microvascular integrity and
ameliorates stroke through C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ pathway.
Cell Mol Neurobiol. 39:265–286. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Li Z, Li J and Tang N: Long noncoding RNA
Malat1 is a potent autophagy inducer protecting brain microvascular
endothelial cells against oxygen-glucose
deprivation/reoxygenation-induced injury by sponging miR-26b and
upregulating ULK2 expression. Neuroscience. 354:1–10. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Al-Rugeebah A, Alanazi M and Parine NR:
MEG3: An oncogenic long non-coding RNA in different cancers. Pathol
Oncol Res. 25:859–874. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
You D and You H: Repression of long
non-coding RNA MEG3 restores nerve growth and alleviates
neurological impairment after cerebral ischemia-reperfusion injury
in a rat model. Biomed Pharmacother. 111:1447–1457. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Liang J, Wang Q, Li JQ, Guo T and Yu D:
Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion
injury through increasing pyroptosis by targeting miR-485/AIM2
axis. Exp Neurol. 325:1131392020. View Article : Google Scholar
|
|
36
|
Han L, Dong Z, Liu N, Xie F and Wang N:
Maternally expressed gene 3 (MEG3) enhances PC12 cell hypoxia
injury by targeting MiR-147. Cell Physiol Biochem. 43:2457–2469.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Deng D and Liang H: Silencing MEG3
protects PC12 cells from hypoxic injury by targeting miR-21. Artif
Cells Nanomed Biotechnol. 48:610–619. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zhou XM, Liu J, Wang Y and Zhang MH:
Silencing of long noncoding RNA MEG3 enhances cerebral protection
of dexmedetomidine against hypoxic-ischemic brain damage in
neonatal mice by binding to miR-129-5p. J Cell Biochem: Nov.
28:2018.Epub ahead of print.
|
|
39
|
Zhong L, Liu P, Fan J and Luo Y: Long
non-coding RNA H19: Physiological functions and involvements in
central nervous system disorders. Neurochem Int. 148:1050722021.
View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Zhu H, Wang L, Chen J, Shen H and Chen Z:
Mechanisms underlying abnormal expression of lncRNA H19 in neonatal
hypoxic-ischemic encephalopathy. Am J Perinatol. Oct 27–2020.Epub
ahead of print.
|
|
41
|
Fang H, Li HF, Pan Q, Yang M, Zhang FX,
Wang RR, Wang QY and Zhang JP: Long noncoding RNA H19
overexpression protects against hypoxic-ischemic brain damage by
inhibiting miR-107 and up-regulating vascular endothelial growth
factor. Am J Pathol. 191:503–514. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Hu S, Zheng J, Du Z and Wu G: Knock down
of lncRNA H19 promotes axon sprouting and functional recovery after
cerebral ischemic stroke. Brain Res. 1732:1466812020. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Xiao Z, Qiu Y, Lin Y, Medina R, Zhuang S,
Rosenblum JS, Cui J, Li Z, Zhang X and Guo L: Blocking lncRNA
H19-miR-19a-Id2 axis attenuates hypoxia/ischemia induced neuronal
injury. Aging (Albany NY). 11:3585–3600. 2019. View Article : Google Scholar
|
|
44
|
Du J, Li W and Wang B: Long non-coding RNA
TUG1 aggravates cerebral ischemia and reperfusion injury by
sponging miR-493-3p/miR-410-3p. Open Med (Wars). 16:919–930. 2021.
View Article : Google Scholar
|
|
45
|
Yin M, Chen WP, Yin XP, Tu JL, Hu N and Li
ZY: LncRNA TUG1 demethylated by TET2 promotes NLRP3 expression,
contributes to cerebral ischemia/reperfusion inflammatory injury.
ASN Neuro. 13:175909142110032472021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Cai J, Shangguan S, Li G, Cai Y, Chen Y,
Ma G, Miao Z, Liu L and Deng Y: Knockdown of lncRNA Gm11974 protect
against cerebral ischemic reperfusion through miR-766-3p/NR3C2
axis. Artif Cells Nanomed Biotechnol. 47:3847–3853. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Gai HY, Wu C, Zhang Y and Wang D: Long
non-coding RNA CHRF modulates the progression of cerebral
ischemia/reperfusion injury via miR-126/SOX6 signaling pathway.
Biochem Biophys Res Commun. 514:550–557. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Li EY, Zhao PJ, Jian J, Yin BQ, Sun ZY, Xu
CX, Tang YC and Wu H: LncRNA MIAT overexpression reduced neuron
apoptosis in a neonatal rat model of hypoxic-ischemic injury
through miR-211/GDNF. Cell Cycle. 18:156–166. 2019. View Article : Google Scholar :
|
|
49
|
Jing H, Liu L, Jia Y, Yao H and Ma F:
Overexpression of the long non-coding RNA Oprm1 alleviates
apoptosis from cerebral ischemia-reperfusion injury through the
Oprm1/miR-155/GATA3 axis. Artif Cells Nanomed Biotechnol.
47:2431–2439. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Yao P, Li YL, Chen Y, Shen W, Wu KY and Xu
WH: Overexpression of long non-coding RNA Rian attenuates cell
apoptosis from cerebral ischemia-reperfusion injury via
Rian/miR-144-3p/GATA3 signaling. Gene. 737:1444112020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Yu S, Yu M, He X, Wen L, Bu Z and Feng J:
KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7
pathway in cerebral ischemic stroke. Aging Cell. 18:e129402019.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Tan X, Guo W, Peng Z, Gu C, Xiang P, Tu Y,
Fei H, Liu X, Lu Y, Li M, et al: LncRNA-Malat1 down-regulates
miR-211-5p expression to promote neuronal damage from cerebral
ischemia reperfusion injury. Biochem Pharmacol. 192:1146942021.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Meng S, Wang B and Li W: LncRNA MALAT1
improves cerebral ischemia-reperfusion injury and cognitive
dysfunction by regulating miR-142-3p/SIRT1 axis. Int J Neurosci.
1:192021.Epub ahead of print.
|
|
54
|
Zhang G, Wang Q, Su D and Xie Y: Long
non-coding RNAMALAT1 knockdown alleviates cerebral
ischemia/reperfusion injury of rats through regulating the
miR-375/PDE4D axis. Front Neurol. 11:5787652020. View Article : Google Scholar
|
|
55
|
Jia Y, Yi L, Li Q, Liu T and Yang S:
LncRNA MALAT1 aggravates oxygen-glucose
deprivation/reoxygenation-induced neuronal endoplasmic reticulum
stress and apoptosis via the miR-195a-5p/HMGA1 axis. Biol Res.
54:82021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hu Y, Ye C, Cheng S and Chen J: Propofol
downregulates lncRNA MALAT1 to alleviate cerebral
ischemia-reperfusion injury. Inflammation. 44:2580–2591. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shi YL, Wang Q and Wei JC: Influence of
lncRNA-MALAT1 on neuronal apoptosis in rats with cerebral
infarction through regulating the ERK/MAPK signaling pathway. Eur
Rev Med Pharmacol Sci. 23:8039–8048. 2019.PubMed/NCBI
|
|
58
|
Wang LQ and Zhou HJ: LncRNA MALAT1
promotes high glucose-induced inflammatory response of microglial
cells via provoking MyD88/IRAK1/TRAF6 signaling. Sci Rep.
8:83462018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Jin J, Wang H, Zheng X, Xie S, Zheng L and
Zhan R: Inhibition of LncRNA MALAT1 attenuates cerebral ischemic
reperfusion injury via regulating AQP4 expression. Eur Neurol.
83:581–590. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yang L, Wang L, Wang J and Liu P: Long
non-coding RNA Gm11974 aggravates oxygen-glucose
deprivation-induced injury via miR-122-5p/SEMA3A axis in ischaemic
stroke. Metab Brain Dis. 36:2059–2069. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Luo HC, Yi TZ, Huang FG, Wei Y, Luo XP and
Luo QS: Role of long noncoding RNA MEG3/miR-378/GRB2 axis in
neuronal autophagy and neurological functional impairment in
ischemic stroke. J Biol Chem. 295:14125–14139. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li TH, Sun HW, Song LJ, Yang B, Zhang P,
Yan DM, Liu XZ and Luo YR: Long non-coding RNA MEG3 regulates
autophagy after cerebral ischemia/reperfusion injury. Neural Regen
Res. 17:824–831. 2022. View Article : Google Scholar
|
|
63
|
Zhang F, Wang Z, Sun B, Huang Y, Chen C,
Hu J, Li L, Xia P and Ye Z: Propofol rescued astrocytes from
LPS-induced inflammatory response via blocking LncRNA-MEG3/NF-κB
axis. Curr Neurovasc Res. Mar 16–2022.Epub ahead of print.
View Article : Google Scholar
|
|
64
|
Chen C, Huang Y, Xia P, Zhang F, Li L,
Wang E, Guo Q and Ye Z: Long noncoding RNA Meg3 mediates
ferroptosis induced by oxygen and glucose deprivation combined with
hyperglycemia in rat brain microvascular endothelial cells, through
modulating the p53/GPX4 axis. Eur J Histochem. 65:32242021.
View Article : Google Scholar :
|
|
65
|
Li H, Tang C and Wang D: LncRNA H19
promotes inflammatory response induced by cerebral
ischemia-reperfusion injury through regulating the miR-138-5p-p65
axis. Biochem Cell Biol. 98:525–536. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Xu J, Wang C, Meng F and Xu P: Long
non-coding RNA H19 inhibition ameliorates oxygen-glucose
deprivation-induced cell apoptosis and inflammatory cytokine
expression by regulating the microRNA-29b/SIRT1/PGC-1α axis. Mol
Med Rep. 23:1312021. View Article : Google Scholar
|
|
67
|
Huang Y, Deng L, Zeng L, Bao S, Ye K, Li
C, Hou X, Yao Y, Li D and Xiong Z: Silencing of H19 alleviates
oxygen-glucose deprivation/reoxygenation-triggered injury through
the regulation of the miR-1306-5p/BCL2L13 axis. Metab Brain Dis.
36:2461–2472. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Gao N, Tang H, Gao L, Tu GL, Luo H and Xia
Y: LncRNA H19 aggravates cerebral ischemia/reperfusion injury by
functioning as a ceRNA for miR-19a-3p to target PTEN. Neuroscience.
437:117–129. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Wang J, Cao B, Han D, Sun M and Feng J:
Long non-coding RNA H19 induces cerebral ischemia reperfusion
injury via activation of autophagy. Aging Dis. 8:71–84. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Chen H and Li X: LncRNA ROR is involved in
cerebral hypoxia/reoxygenation-induced injury in PC12 cells via
regulating miR-135a-5p/ROCK1/2. Am J Transl Res. 11:6145–6158.
2019.PubMed/NCBI
|
|
71
|
Zhou Q, An Y and Tang Y: Long noncoding
RNA-regulator of reprogramming alleviates hypoxia-induced cerebral
injury in mice model and human via modulating apoptosis complexes.
J Integr Neurosci. 18:431–437. 2019. View Article : Google Scholar
|
|
72
|
Yin WL, Yin WG, Huang BS and Wu LX: LncRNA
SNHG12 inhibits miR-199a to upregulate SIRT1 to attenuate cerebral
ischemia/reperfusion injury through activating AMPK signaling
pathway. Neurosci Lett. 690:188–195. 2019. View Article : Google Scholar
|
|
73
|
Deng Y, Chen D, Wang L, Gao F, Jin B, Lv
H, Zhang G, Sun X, Liu L, Mo D, et al: Silencing of long noncoding
RNA nespas aggravates microglial cell death and neuroinflammation
in ischemic stroke. Stroke. 50:1850–1858. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Yao X, Yao R, Huang F and Yi J: LncRNA
SNHG12 as a potent autophagy inducer exerts neuroprotective effects
against cerebral ischemia/reperfusion injury. Biochem Biophys Res
Commun. 514:490–496. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Wu Y, Huang Y, Cai J, Zhang D, Liu S and
Pang B: LncRNA SNHG12 improves cerebral ischemic-reperfusion injury
by activating SIRT1/FOXO3a pathway through I nhibition of autophagy
and oxidative stress. Curr Neurovasc Res. 17:394–401. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Zhong Y, Yu C and Qin W: LncRNA SNHG14
promotes inflammatory response induced by cerebral
ischemia/reperfusion injury through regulating miR-136-5p/ROCK1.
Cancer Gene Ther. 26:234–247. 2019. View Article : Google Scholar
|
|
77
|
Deng Z, Ou H, Ren F, Guan Y, Huan Y, Cai H
and Sun B: LncRNA SNHG14 promotes OGD/R-induced neuron injury by
inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22
mouse hippocampal neuronal cells. Biol Res. 53:382020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Bu X, Zhao Y, Chang M and Ge X:
Downregulation of lncRNA SNHG14 alleviates neurons injury by
modulating the miR-181c-5p/BMF axis in ischemic stroke. Brain Res
Bull. 174:379–388. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhang G, Li T, Chang X and Xing J: Long
noncoding RNA SNHG14-promotes ischemic brain injury via regulating
miR-199b/AQP4 axis. Neurochem Res. 46:1280–1290. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Deng W, Fan C, Shen R, Wu Y, Du R and Teng
J: Long noncoding MIAT acting as a ceRNA to sponge microRNA-204-5p
to participate in cerebral microvascular endothelial cell injury
after cerebral ischemia through regulating HMGB1. J Cell Physiol.
235:4571–4586. 2020. View Article : Google Scholar
|
|
81
|
Guo X, Wang Y, Zheng D, Cheng X and Sun Y:
LncRNA-MIAT promotes neural cell autophagy and apoptosis in
ischemic stroke by up-regulating REDD1. Brain Res. 1763:1474362021.
View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang H, Liao S, Li H, Chen Y and Yu J:
Long non-coding RNA TUG1 sponges Mir-145a-5p to regulate microglial
polarization after oxygen-glucose deprivation. Front Mol Neurosci.
12:2152019. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Xiang P, Hu J, Wang H, Luo Y, Gu C, Tan X,
Tu Y, Guo W, Chen L, Gao L, et al: miR-204-5p is sponged by TUG1 to
aggravate neuron damage induced by focal cerebral ischemia and
reperfusion injury through upregulating COX2. Cell Death Discov.
8:892022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Shan W, Chen W, Zhao X, Pei A, Chen M, Yu
Y, Zheng Y and Zhu S: Long noncoding RNA TUG1 contributes to
cerebral ischaemia/reperfusion injury by sponging mir-145 to
up-regulate AQP4 expression. J Cell Mol Med. 24:250–259. 2020.
View Article : Google Scholar
|
|
85
|
Li L, Zhang Q, Wang Y, Yin S, Chi S, Han F
and Wang W: Knockdown of lncRNA TUG1 attenuates cerebral
ischemia/reperfusion injury through regulating miR-142-3p.
Biofactors. 47:819–827. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Qiao P, Yan H and Wang J: EGb761 protects
brain microvascular endothelial cells against oxygen-glucose
deprivation-induced injury through lncRNA Rmst/miR-150 axis.
Neurochem Res. 45:2398–2408. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Hou XX and Cheng H: Long non-coding RNA
RMST silencing protects against middle cerebral artery occlusion
(MCAO)-induced ischemic stroke. Biochem Biophys Res Commun.
495:2602–2608. 2018. View Article : Google Scholar
|
|
88
|
Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, He
S, Cen B, Liao W and Ji A: LncRNA-N1LR enhances neuroprotection
against ischemic stroke probably by inhibiting p53 phosphorylation.
Mol Neurobiol. 54:7670–7685. 2017. View Article : Google Scholar
|
|
89
|
Lejay A, Fang F, John R, Van JA, Barr M,
Thaveau F, Chakfe N, Geny B and Scholey JW: Ischemia reperfusion
injury, ischemic conditioning and diabetes mellitus. J Mol Cell
Cardiol. 91:11–22. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Yu SY, Dong B, Fang ZF, Hu XQ, Tang L and
Zhou SH: Knockdown of lncRNA AK139328 alleviates myocardial
ischaemia/reperfusion injury in diabetic mice via modulating
miR-204-3p and inhibiting autophagy. J Cell Mol Med. 22:4886–4898.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Cai B, Ma W, Ding F, Zhang L, Huang Q,
Wang X, Hua B, Xu J, Li J, Bi C, et al: The long noncoding RNA
CAREL controls cardiac regeneration. J Am Coll Cardiol. 72:534–550.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Zhao J, Chen F, Ma W and Zhang P:
Suppression of long noncoding RNA NEAT1 attenuates hypoxia-induced
cardiomyocytes injury by targeting miR-378a-3p. Gene.
731:1443242020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Rui PF, Wang JH and Xu J: Long non-coding
NEAT1 weakens the protective role of sevoflurane on myocardial
ischemia/reperfusion injury by mediating the microRNA-140/RhoA
axis. J Biol Regul Homeost Agents. 35:933–944. 2021.PubMed/NCBI
|
|
94
|
Wei Q, Zhou HY, Shi XD, Cao HY and Qin L:
Long noncoding RNA NEAT1 promotes myocardiocyte apoptosis and
suppresses proliferation through regulation of miR-129-5p. J
Cardiovasc Pharmacol. 74:535–541. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Ruan Z, Wang S, Yu W and Deng F: LncRNA
NEAT1 aggravates diabetic myocardial ischemia-reperfusion injury
through regulating PINK1 by targeting miR-27b. Int J Cardiol.
286:1362019. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Wang SM, Liu GQ, Xian HB, Si JL, Qi SX and
Yu YP: LncRNA NEAT1 alleviates sepsis-induced myocardial injury by
regulating the TLR2/NF-κB signaling pathway. Eur Rev Med Pharmacol
Sci. 23:4898–4907. 2019.PubMed/NCBI
|
|
97
|
Gidlöf O, Bader K, Celik S, Grossi M,
Nakagawa S, Hirose T, Metzler B, Olde B and Erlinge D: Inhibition
of the long non-coding RNA NEAT1-protects cardiomyocytes from
hypoxia in vitro via decreased pri-miRNA processing. Cell Death
Dis. 11:6772020. View Article : Google Scholar
|
|
98
|
Zhang BF, Chen J and Jiang H: LncRNA H19
ameliorates myocardial ischemia-reperfusion injury by targeting
miR-22-3P. Int J Cardiol. 278:2242019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang BF, Jiang H, Chen J, Hu Q, Yang S,
Liu XP and Liu G: LncRNA H19 ameliorates myocardial
infarction-induced myocardial injury and maladaptive cardiac
remodelling by regulating KDM3A. J Cell Mol Med. 24:1099–1115.
2020. View Article : Google Scholar
|
|
100
|
Luo H, Wang J, Liu D, Zang S, Ma N, Zhao
L, Zhang L, Zhang X and Qiao C: The lncRNA H19/miR-675 axis
regulates myocardial ischemic and reperfusion injury by targeting
PPARα. Mol Immunol. 105:46–54. 2019. View Article : Google Scholar
|
|
101
|
Zhang X, Cheng L, Xu L, Zhang Y, Yang Y,
Fu Q, Mi W and Li H: The lncRNA, H19 mediates the protective effect
of hypoxia postconditioning against hypoxia-reoxygenation injury to
senescent cardiomyocytes by targeting microRNA-29b-3p. Shock.
52:249–256. 2019. View Article : Google Scholar
|
|
102
|
Choong OK, Chen CY, Zhang J, Lin JH, Lin
PJ, Ruan SC, Kamp TJ and Hsieh PCH: Hypoxia-induced H19/YB-1
cascade modulates cardiac remodeling after infarction.
Theranostics. 9:6550–6567. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Chen C, Liu M, Tang Y, Sun H, Lin X, Liang
P and Jiang B: LncRNA H19 is involved in myocardial ischemic
preconditioning via increasing the stability of nucleolin protein.
J Cell Physiol. 235:5985–5994. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Su Q, Liu Y, Lv XW, Dai RX, Yang XH and
Kong BH: LncRNA TUG1 mediates ischemic myocardial injury by
targeting miR-132-3p/HDAC3 axis. Am J Physiol Heart Circ Physiol.
318:H332–H344. 2020. View Article : Google Scholar
|
|
105
|
Su Q, Liu Y, Lv XW, Ye ZL, Sun YH, Kong BH
and Qin ZB: Inhibition of lncRNA TUG1 upregulates miR-142-3p to
ameliorate myocardial injury during ischemia and reperfusion via
targeting HMGB1- and Rac1-induced autophagy. J Mol Cell Cardiol.
133:12–25. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yang D, Yu J, Liu HB, Yan XQ, Hu J, Yu Y,
Guo J, Yuan Y and Du ZM: The long non-coding RNA TUG1-miR-9a-5p
axis contributes to ischemic injuries by promoting cardiomyocyte
apoptosis via targeting KLF5. Cell Death Dis. 10:9082019.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Song T, Wang P and Xin L: LncRNA TUG1
Contributes to hypoxia-induced myocardial cell injury through
downregulating miR-29a-3p in AC16 cells. J Cardiovasc Pharmacol.
76:533–539. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Cai X, Wang S, Hong L, Yu S, Li B, Zeng H,
Yang X, Zhang P and Shao L: Long noncoding RNA taurine-upregulated
gene 1 knockdown protects cardiomyocytes against
hypoxia/reoxygenation-induced injury through regulating
miR-532-5p/Sox8 axis. J Cardiovasc Pharmacol. 76:556–563. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Wang S, Yao T, Deng F, Yu W, Song Y, Chen
J and Ruan Z: LncRNA MALAT1 promotes oxygen-glucose deprivation and
reoxygenation induced cardiomyocytes injury through sponging
miR-20b to enhance beclin1-mediated autophagy. Cardiovasc Drugs
Ther. 33:675–686. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Yu SY, Dong B, Tang L and Zhou SH: LncRNA
MALAT1 sponges miR-133 to promote NLRP3 inflammasome expression in
ischemia-reperfusion injured heart. Int J Cardiol. 254:502018.
View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Tian H, Wu M, Zhou P, Huang C, Ye C and
Wang L: The long non-coding RNA MALAT1 is increased in renal
ischemia-reperfusion injury and inhibits hypoxia-induced
inflammation. Ren Fail. 40:527–533. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Xu XZ, Luo B, Xiao Y and Zheng WQ: Effects
of lncRNA MALAT1-mediated β-catenin signaling pathway on myocardial
cell apoptosis in rats with myocardial ischemia/reperfusion injury.
Eur Rev Med Pharmacol Sci. 23:9557–9565. 2019.PubMed/NCBI
|
|
113
|
Shu L, Zhang W, Huang C, Huang G, Su G and
Xu J: lncRNA ANRIL protects H9c2 cells against hypoxia-induced
injury through targeting the miR-7-5p/SIRT1 axis. J Cell Physiol.
235:1175–1183. 2020. View Article : Google Scholar
|
|
114
|
Li L, Zhang M, Chen W, Wang R, Ye Z, Wang
Y, Li X and Cai C: LncRNA-HOTAIR inhibition aggravates oxidative
stress-induced H9c2 cells injury through suppression of MMP2 by
miR-125. Acta Biochim Biophys Sin (Shanghai). 50:996–1006. 2018.
View Article : Google Scholar
|
|
115
|
Du J, Yang ST, Liu J, Zhang KX and Leng
JY: Silence of LncRNA GAS5 protects cardiomyocytes H9c2 against
hypoxic injury via sponging miR-142-5p. Mol Cells. 42:397–405.
2019.PubMed/NCBI
|
|
116
|
Liu CY, Zhang YH, Li RB, Zhou LY, An T,
Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, et al: LncRNA CAIF
inhibits autophagy and attenuates myocardial infarction by blocking
p53-mediated myocardin transcription. Nat Commun. 9:292018.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Li Z, Zhang Y, Ding N, Zhao Y, Ye Z, Shen
L, Yi H and Zhu Y: Inhibition of lncRNA XIST improves myocardial
I/R injury by targeting miR-133a through inhibition of autophagy
and regulation of SOCS2. Mol Ther Nucleic Acids. 18:764–773. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Li Y, Li J, Zhang P, Jiang X, Pan Z, Zheng
W and Lin H: LncRNA-LET relieves hypoxia-induced injury in H9c2
cells through regulation of miR-138. J Cell Biochem. 121:259–268.
2020. View Article : Google Scholar
|
|
119
|
Li T, Tian H, Li J, Zuo A, Chen J, Xu D,
Guo Y and Gao H: Overexpression of lncRNA Gm2691 attenuates
apoptosis and inflammatory response after myocardial infarction
through PI3K/Akt signaling pathway. IUBMB Life. 71:1561–1570. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Chen L, Zhang D, Yu L and Dong H:
Targeting MIAT reduces apoptosis of cardiomyocytes after
ischemia/reperfusion injury. Bioengineered. 10:121–132. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Kong F, Jin J, Lv X, Han Y, Liang X, Gao Y
and Duan X: RETRACTED: Long noncoding RNA RMRP upregulation
aggravates myocardial ischemia-reperfusion injury by sponging
miR-206 to target ATG3 expression. Biomed Pharmacother.
109:716–725. 2019. View Article : Google Scholar
|
|
122
|
Ong SB, Katwadi K, Kwek XY, Ismail NI,
Chinda K, Ong SG and Hausenloy DJ: Non-coding RNAs as therapeutic
targets for preventing myocardial ischemia-reperfusion injury.
Expert Opin Ther Targets. 22:247–261. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Basile DP, Donohoe D, Roethe K and Osborn
JL: Renal ischemic injury results in permanent damage to
peritubular capillaries and influences long-term function. Am J
Physiol Renal Physiol. 281:F887–F899. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Tao Q, Tianyu W, Jiangqiao Z, Zhongbao C,
Xiaoxiong M, Long Z and Jilin Z: Expression analysis of long
non-coding RNAs in a renal ischemia-reperfusion injury model. Acta
Cir Bras. 34:e2019004032019. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Liu F, Yang Y, Liu T, Deng J, Zhang H, Luo
D and Lou YL: Analysis of differentially expressed long noncoding
RNA in renal ischemia-reperfusion injury. Kidney Blood Press Res.
45:686–701. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Kölling M, Genschel C, Kaucsar T, Hübner
A, Rong S, Schmitt R, Sörensen-Zender I, Haddad G, Kistler A,
Seeger H, et al: Hypoxia-induced long non-coding RNA Malat1 is
dispensable for renal ischemia/reperfusion-injury. Sci Rep.
8:34382018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Puthanveetil P, Gutschner T and Lorenzen
J: MALAT1: A therapeutic candidate for a broad spectrum of vascular
and cardiorenal complications. Hypertens Res. 43:372–379. 2020.
View Article : Google Scholar
|
|
128
|
Jiang X, Li D, Shen W, Shen X and Liu Y:
LncRNA NEAT1 promotes hypoxia-induced renal tubular epithelial
apoptosis through downregulating miR-27a-3p. J Cell Biochem.
120:16273–16282. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Geng X, Song N, Zhao S, Xu J, Liu Y, Fang
Y, Liang M, Xu X and Ding X: LncRNA GAS5 promotes apoptosis as a
competing endogenous RNA for miR-21 via thrombospondin 1 in
ischemic AKI. Cell Death Discov. 6:192020. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Xu Y, Niu Y, Li H and Pan G:
Downregulation of lncRNA TUG1 attenuates inflammation and apoptosis
of renal tubular epithelial cell induced by ischemia-reperfusion by
sponging miR-449b-5p via targeting HMGB1 and MMP2. Inflammation.
43:1362–1374. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Tian X, Ji Y, Liang Y, Zhang J, Guan L and
Wang C: LINC00520 targeting miR-27b-3p regulates OSMR expression
level to promote acute kidney injury development through the
PI3K/AKT signaling pathway. J Cell Physiol. 234:14221–14233. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Lu J, Miao J and Sun J: LncRNA np_5318
promotes renal ischemia-reperfusion injury through the TGF-β/Smad
signaling pathway. Exp Ther Med. 19:2833–2840. 2020.PubMed/NCBI
|
|
133
|
Zhou X, Li Y, Wu C, Yu W and Cheng F:
Novel lncRNA XLOC_032768 protects against renal tubular epithelial
cells apoptosis in renal ischemia-reperfusion injury by regulating
FNDC3B/TGF-β1. Ren Fail. 42:994–1003. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Lorenzen JM, Schauerte C, Kielstein JT,
Hübner A, Martino F, Fiedler J, Gupta SK, Faulhaber-Walter R,
Kumarswamy R, Hafer C, et al: Circulating long noncoding RNATapSaki
is a predictor of mortality in critically ill patients with acute
kidney injury. Clin Chem. 61:191–201. 2015. View Article : Google Scholar
|
|
135
|
Shah RJ and Diamond JM: Primary graft
dysfunction (PGD) following lung transplantation. Semin Respir Crit
Care Med. 39:148–154. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Li J, Wei L, Han Z, Chen Z and Zhang Q:
Long non-coding RNA X-inactive specific transcript silencing
ameliorates primary graft dysfunction following lung
transplantation through microRNA-21-dependent mechanism.
EBioMedicine. 52:1026002020. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Arun G, Aggarwal D and Spector DL: MALAT1
long non-coding RNA: Functional implications. Noncoding RNA.
6:222020.
|
|
138
|
Zhang X, Hamblin MH and Yin KJ: The long
noncoding RNA Malat1: Its physiological and pathophysiological
functions. RNA Biol. 14:1705–1714. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Sun Y and Ma L: New insights into long
non-coding RNA MALAT1 in cancer and metastasis. Cancers (Basel).
11:2162019. View Article : Google Scholar
|
|
140
|
Li P, Zhang Y and Liu H: The role of
Wnt/β-catenin pathway in the protection process by dexmedetomidine
against cerebral ischemia/reperfusion injury in rats. Life Sci.
236:1169212019. View Article : Google Scholar
|
|
141
|
Lehwald N, Tao GZ, Jang KY, Sorkin M,
Knoefel WT and Sylvester KG: Wnt-β-catenin signaling protects
against hepatic ischemia and reperfusion injury in mice.
Gastroenterology. 141:707–718. 718.e1–e5. 2011. View Article : Google Scholar
|
|
142
|
Ban Q, Qiao L, Xia H, Xie B, Liu J, Ma Y,
Zhang L, Zhang M, Liu LG, Jiao W, et al: β-catenin regulates
myocardial ischemia/reperfusion injury following heterotopic heart
transplantation in mice by modulating PTEN pathways. Am J Transl
Res. 12:4757–4771. 2020.
|
|
143
|
Xiong ZJ, Zhang Q, Wang DX and Hu L:
Overexpression of TUG1 promotes neuronal death after cerebral
infarction by regulating microRNA-9. Eur Rev Med Pharmacol Sci.
22:7393–7400. 2018.PubMed/NCBI
|
|
144
|
Jia H, Li Z, Chang Y, Fang B, Zhou Y and
Ma H: Downregulation of long noncoding RNA TUG1 attenuates
MTDH-mediated inflammatory damage via targeting miR-29b1-5p after
spinal cord ischemia reperfusion. J Neuropathol Exp Neurol.
80:254–264. 2021. View Article : Google Scholar
|
|
145
|
He Z, Zhao Y, Zhu Y, Wang W, Liu X and Lu
F: Interfering TUG1 attenuates cerebrovascular endothelial
apoptosis and inflammatory injury after cerebral
ischemia/reperfusion via TUG1/miR-410/FOXO3 ceRNA axis. Neurotox
Res. 40:1–13. 2022. View Article : Google Scholar
|
|
146
|
Wu X, Liu Y, Mo S, Wei W, Ye Z and Su Q:
LncRNA TUG1 competitively binds to miR-340 to accelerate myocardial
ischemia-reperfusion injury. FASEB J. 35:e211632021.
|
|
147
|
Chen L, Xu JY and Tan HB: LncRNA TUG1
regulates the development of ischemia-reperfusion mediated acute
kidney injury through miR-494-3p/E-cadherin axis. J Inflamm (Lond).
18:122021. View Article : Google Scholar
|