Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2022 Volume 50 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2022 Volume 50 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.pdf
Review Open Access

An update on the functional roles of long non‑coding RNAs in ischemic injury (Review)

  • Authors:
    • Yanqun Cao
    • Jia Liu
    • Quzhe Lu
    • Kai Huang
    • Baolin Yang
    • James Reilly
    • Na Jiang
    • Xinhua Shu
    • Lei Shang
  • View Affiliations / Copyright

    Affiliations: School of Basic Medical Sciences, Shaoyang University, Shaoyang, Hunan 422000, P.R. China, Department of Human Anatomy, School of Basic Medicine, Nanchang University, Nanchang, Jiangxi 330006, P.R. China, Department of Biological and Biomedical Sciences, Glasgow Caledonian University, Glasgow G4 0BA, UK, Affiliated Eye Hospital of Nanchang University, Jiangxi Research Institute of Ophthalmology and Visual Science, Jiangxi Clinical Research Center for Ophthalmic Disease, Nanchang, Jiangxi 330006, P.R. China
    Copyright: © Cao et al. This is an open access article distributed under the terms of Creative Commons Attribution License [CC BY 4.0].
  • Article Number: 91
    |
    Published online on: May 18, 2022
       https://doi.org/10.3892/ijmm.2022.5147
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Ischemic injuries result from ischemia and hypoxia in cells. Tissues and organs receive an insufficient supply of nutrients and accumulate metabolic waste, which leads to the development of inflammation, fibrosis and a series of other issues. Ischemic injuries in the brain, heart, kidneys, lungs and other organs can cause severe adverse effects. Acute renal ischemia induces acute renal failure, heart ischemia induces myocardial infarction and cerebral ischemia induces cerebrovascular accidents, leading to loss of movement, consciousness and possibly, life‑threatening disabilities. Existing evidence suggests that long non‑coding RNAs (lncRNAs) are regulatory sequences involved in transcription, post‑transcription, epigenetic regulation and multiple physiological processes. lncRNAs have been shown to be differentially expressed following ischemic injury, with the severity of the ischemic injury being affected by the upregulation or downregulation of certain types of lncRNA. The present review article provides an extensive summary of the functional roles of lncRNAs in ischemic injury, with a focus on the brain, heart, kidneys and lungs. The present review mainly summarizes the functional roles of lncRNA MALAT1, lncRNA MEG3, lncRNA H19, lncRNA TUG1, lncRNA NEAT1, lncRNA AK139328 and lncRNA CAREL, among which lncRNA MALAT1, in particular, plays a crucial role in ischemic injury and is currently a hot research topic.
View Figures

Figure 1

Figure 2

View References

1 

Akbari G: Role of zinc supplementation on ischemia/reperfusion injury in various organs. Biol Trace Elem Res. 196:1–9. 2020. View Article : Google Scholar

2 

Akella A, Bhattarai S and Dharap A: Long noncoding RNAs in the pathophysiology of ischemic stroke. Neuromolecular Med. 21:474–483. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Haddad G, Kölling M, Wegmann UA, Dettling A, Seeger H, Schmitt R, Soerensen-Zender I, Haller H, Kistler AD, Dueck A, et al: Renal AAV2-mediated overexpression of long non-coding RNA H19 attenuates ischemic acute kidney injury through sponging of microRNA-30a-5p. J Am Soc Nephrol. 32:323–341. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Frangogiannis NG: Pathophysiology of myocardial infarction. Compr Physiol. 5:1841–1875. 2015. View Article : Google Scholar : PubMed/NCBI

5 

Zhang L and Wang H: Long non-coding RNA in CNS injuries: A new target for therapeutic intervention. Mol Ther Nucleic Acids. 17:754–766. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Kumar MM and Goyal R: LncRNA as a therapeutic target for angiogenesis. Curr Top Med Chem. 17:1750–1757. 2017. View Article : Google Scholar :

7 

Das A, Samidurai A and Salloum FN: Deciphering non-coding RNAs in cardiovascular health and disease. Front Cardiovasc Med. 5:732018. View Article : Google Scholar : PubMed/NCBI

8 

Zhou J, Chen H and Fan Y: Systematic analysis of the expression profile of non-coding RNAs involved in ischemia/reperfusion-induced acute kidney injury in mice using RNA sequencing. Oncotarget. 8:100196–100215. 2017. View Article : Google Scholar : PubMed/NCBI

9 

Li J, Hao M, Yang B, Shi T, Zhang Y, Feng J and Chen J: Long non-coding RNAs expression profile and functional analysis of acute ischemic stroke. Medicine (Baltimore). 99:e229642020. View Article : Google Scholar

10 

Wang Y, Pan WY, Ge JS, Wang XD, Chen W, Luo X and Wang YL: A review of the relationship between long noncoding RNA and post-stroke injury repair. J Int Med Res. 47:4619–4624. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Su M, Hu X, Lin J, Zhang L, Sun W, Zhang J, Tian Y and Qiu W: Identification of candidate genes involved in renal ischemia/reperfusion injury. DNA Cell Biol. 38:256–262. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Wei L, Li J, Han Z, Chen Z and Zhang Q: Silencing of lncRNA MALAT1 prevents inflammatory injury after lung transplant ischemia-reperfusion by downregulation of IL-8 via p300. Mol Ther Nucleic Acids. 18:285–297. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Ali T and Grote P: Beyond the RNA-dependent function of LncRNA genes. Elife. 9:e605832020. View Article : Google Scholar : PubMed/NCBI

14 

Uszczynska-Ratajczak B, Lagarde J, Frankish A, Guigó R and Johnson R: Towards a complete map of the human long non-coding RNA transcriptome. Nat Rev Genet. 19:535–548. 2018. View Article : Google Scholar : PubMed/NCBI

15 

Fang S, Zhang L, Guo J, Niu Y, Wu Y, Li H, Zhao L, Li X, Teng X, Sun X, et al: NONCODEV5: A comprehensive annotation database for long non-coding RNAs. Nucleic Acids Res. 46(D1): D308–D314. 2018. View Article : Google Scholar :

16 

Quinn JJ and Chang HY: Unique features of long non-coding RNA biogenesis and function. Nat Rev Genet. 17:47–62. 2016. View Article : Google Scholar

17 

Bridges MC, Daulagala AC and Kourtidis A: LNCcation: lncRNA localization and function. J Cell Biol. 220:e2020090452021. View Article : Google Scholar : PubMed/NCBI

18 

Statello L, Guo CJ, Chen LL and Huarte M: Gene regulation by long non-coding RNAs and its biological functions. Nat Rev Mol Cell Biol. 22:96–118. 2021. View Article : Google Scholar

19 

Charles Richard JL and Eichhorn PJA: Platforms for investigating LncRNA functions. SLAS Technol. 23:493–506. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Wang SW, Liu Z and Shi ZS: Non-coding RNA in acute ischemic stroke: Mechanisms, biomarkers and therapeutic targets. Cell Transplant. 27:1763–1777. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Yang J, Chen M, Cao RY, Li Q and Zhu F: The role of circular RNAs in cerebral ischemic diseases: Ischemic stroke and cerebral ischemia/reperfusion injury. Adv Exp Med Biol. 1087:309–325. 2018. View Article : Google Scholar : PubMed/NCBI

22 

Li ZX, Zhu QN, Zhang HB, Hu Y, Wang G and Zhu YS: MALAT1: A potential biomarker in cancer. Cancer Manag Res. 10:6757–6768. 2018. View Article : Google Scholar : PubMed/NCBI

23 

Liu S, Yan G, Zhang J and Yu L: Knockdown of long noncoding RNA (lncRNA) metastasis-associated lung adenocarcinoma transcript 1 (MALAT1) inhibits proliferation, migration, and invasion and promotes apoptosis by targeting miR-124 in retinoblastoma. Oncol Res. 26:581–591. 2018. View Article : Google Scholar

24 

Lelli A, Nolan KA, Santambrogio S, Gonçalves AF, Schönenberger MJ, Guinot A, Frew IJ, Marti HH, Hoogewijs D and Wenger RH: Induction of long noncoding RNA MALAT1 in hypoxic mice. Hypoxia (Auckl). 3:45–52. 2015.

25 

Zhang X, Tang X, Liu K, Hamblin MH and Yin KJ: Long noncoding RNA Malat1 regulates cerebrovascular pathologies in ischemic stroke. J Neurosci. 37:1797–1806. 2017. View Article : Google Scholar : PubMed/NCBI

26 

Zhang T, Wang H, Li Q, Fu J, Huang J and Zhao Y: MALAT1 activates the P53 signaling pathway by regulating MDM2 to promote ischemic stroke. Cell Physiol Biochem. 50:2216–2228. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Guo D, Ma J, Yan L, Li T, Li Z, Han X and Shui S: Down-regulation of lncrna MALAT1 attenuates neuronal cell death through suppressing beclin1-dependent autophagy by regulating Mir-30a in cerebral ischemic stroke. Cell Physiol Biochem. 43:182–194. 2017. View Article : Google Scholar : PubMed/NCBI

28 

Wang H, Zheng X, Jin J, Zheng L, Guan T, Huo Y, Xie S, Wu Y and Chen W: LncRNA MALAT1 silencing protects against cerebral ischemia-reperfusion injury through miR-145 to regulate AQP4. J Biomed Sci. 27:402020. View Article : Google Scholar : PubMed/NCBI

29 

Cao DW, Liu MM, Duan R, Tao YF, Zhou JS, Fang WR, Zhu JR, Niu L and Sun JG: The lncRNA Malat1 functions as a ceRNA to contribute to berberine-mediated inhibition of HMGB1 by sponging miR-181c-5p in poststroke inflammation. Acta Pharmacol Sin. 41:22–33. 2020. View Article : Google Scholar :

30 

Zhang L, Yang H, Li WJ and Liu YH: LncRNA MALAT1 promotes OGD-induced apoptosis of brain microvascular endothelial cells by sponging miR-126 to repress PI3K/Akt signaling pathway. Neurochem Res. 45:2091–2099. 2020. View Article : Google Scholar : PubMed/NCBI

31 

Ruan W, Li J, Xu Y, Wang Y, Zhao F, Yang X, Jiang H, Zhang L, Saavedra JM, Shi L and Pang T: MALAT1 Up-regulator polydatin protects brain microvascular integrity and ameliorates stroke through C/EBPβ/MALAT1/CREB/PGC-1α/PPARγ pathway. Cell Mol Neurobiol. 39:265–286. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Li Z, Li J and Tang N: Long noncoding RNA Malat1 is a potent autophagy inducer protecting brain microvascular endothelial cells against oxygen-glucose deprivation/reoxygenation-induced injury by sponging miR-26b and upregulating ULK2 expression. Neuroscience. 354:1–10. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Al-Rugeebah A, Alanazi M and Parine NR: MEG3: An oncogenic long non-coding RNA in different cancers. Pathol Oncol Res. 25:859–874. 2019. View Article : Google Scholar : PubMed/NCBI

34 

You D and You H: Repression of long non-coding RNA MEG3 restores nerve growth and alleviates neurological impairment after cerebral ischemia-reperfusion injury in a rat model. Biomed Pharmacother. 111:1447–1457. 2019. View Article : Google Scholar : PubMed/NCBI

35 

Liang J, Wang Q, Li JQ, Guo T and Yu D: Long non-coding RNA MEG3 promotes cerebral ischemia-reperfusion injury through increasing pyroptosis by targeting miR-485/AIM2 axis. Exp Neurol. 325:1131392020. View Article : Google Scholar

36 

Han L, Dong Z, Liu N, Xie F and Wang N: Maternally expressed gene 3 (MEG3) enhances PC12 cell hypoxia injury by targeting MiR-147. Cell Physiol Biochem. 43:2457–2469. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Deng D and Liang H: Silencing MEG3 protects PC12 cells from hypoxic injury by targeting miR-21. Artif Cells Nanomed Biotechnol. 48:610–619. 2020. View Article : Google Scholar : PubMed/NCBI

38 

Zhou XM, Liu J, Wang Y and Zhang MH: Silencing of long noncoding RNA MEG3 enhances cerebral protection of dexmedetomidine against hypoxic-ischemic brain damage in neonatal mice by binding to miR-129-5p. J Cell Biochem: Nov. 28:2018.Epub ahead of print.

39 

Zhong L, Liu P, Fan J and Luo Y: Long non-coding RNA H19: Physiological functions and involvements in central nervous system disorders. Neurochem Int. 148:1050722021. View Article : Google Scholar : PubMed/NCBI

40 

Zhu H, Wang L, Chen J, Shen H and Chen Z: Mechanisms underlying abnormal expression of lncRNA H19 in neonatal hypoxic-ischemic encephalopathy. Am J Perinatol. Oct 27–2020.Epub ahead of print.

41 

Fang H, Li HF, Pan Q, Yang M, Zhang FX, Wang RR, Wang QY and Zhang JP: Long noncoding RNA H19 overexpression protects against hypoxic-ischemic brain damage by inhibiting miR-107 and up-regulating vascular endothelial growth factor. Am J Pathol. 191:503–514. 2021. View Article : Google Scholar : PubMed/NCBI

42 

Hu S, Zheng J, Du Z and Wu G: Knock down of lncRNA H19 promotes axon sprouting and functional recovery after cerebral ischemic stroke. Brain Res. 1732:1466812020. View Article : Google Scholar : PubMed/NCBI

43 

Xiao Z, Qiu Y, Lin Y, Medina R, Zhuang S, Rosenblum JS, Cui J, Li Z, Zhang X and Guo L: Blocking lncRNA H19-miR-19a-Id2 axis attenuates hypoxia/ischemia induced neuronal injury. Aging (Albany NY). 11:3585–3600. 2019. View Article : Google Scholar

44 

Du J, Li W and Wang B: Long non-coding RNA TUG1 aggravates cerebral ischemia and reperfusion injury by sponging miR-493-3p/miR-410-3p. Open Med (Wars). 16:919–930. 2021. View Article : Google Scholar

45 

Yin M, Chen WP, Yin XP, Tu JL, Hu N and Li ZY: LncRNA TUG1 demethylated by TET2 promotes NLRP3 expression, contributes to cerebral ischemia/reperfusion inflammatory injury. ASN Neuro. 13:175909142110032472021. View Article : Google Scholar : PubMed/NCBI

46 

Cai J, Shangguan S, Li G, Cai Y, Chen Y, Ma G, Miao Z, Liu L and Deng Y: Knockdown of lncRNA Gm11974 protect against cerebral ischemic reperfusion through miR-766-3p/NR3C2 axis. Artif Cells Nanomed Biotechnol. 47:3847–3853. 2019. View Article : Google Scholar : PubMed/NCBI

47 

Gai HY, Wu C, Zhang Y and Wang D: Long non-coding RNA CHRF modulates the progression of cerebral ischemia/reperfusion injury via miR-126/SOX6 signaling pathway. Biochem Biophys Res Commun. 514:550–557. 2019. View Article : Google Scholar : PubMed/NCBI

48 

Li EY, Zhao PJ, Jian J, Yin BQ, Sun ZY, Xu CX, Tang YC and Wu H: LncRNA MIAT overexpression reduced neuron apoptosis in a neonatal rat model of hypoxic-ischemic injury through miR-211/GDNF. Cell Cycle. 18:156–166. 2019. View Article : Google Scholar :

49 

Jing H, Liu L, Jia Y, Yao H and Ma F: Overexpression of the long non-coding RNA Oprm1 alleviates apoptosis from cerebral ischemia-reperfusion injury through the Oprm1/miR-155/GATA3 axis. Artif Cells Nanomed Biotechnol. 47:2431–2439. 2019. View Article : Google Scholar : PubMed/NCBI

50 

Yao P, Li YL, Chen Y, Shen W, Wu KY and Xu WH: Overexpression of long non-coding RNA Rian attenuates cell apoptosis from cerebral ischemia-reperfusion injury via Rian/miR-144-3p/GATA3 signaling. Gene. 737:1444112020. View Article : Google Scholar : PubMed/NCBI

51 

Yu S, Yu M, He X, Wen L, Bu Z and Feng J: KCNQ1OT1 promotes autophagy by regulating miR-200a/FOXO3/ATG7 pathway in cerebral ischemic stroke. Aging Cell. 18:e129402019. View Article : Google Scholar : PubMed/NCBI

52 

Tan X, Guo W, Peng Z, Gu C, Xiang P, Tu Y, Fei H, Liu X, Lu Y, Li M, et al: LncRNA-Malat1 down-regulates miR-211-5p expression to promote neuronal damage from cerebral ischemia reperfusion injury. Biochem Pharmacol. 192:1146942021. View Article : Google Scholar : PubMed/NCBI

53 

Meng S, Wang B and Li W: LncRNA MALAT1 improves cerebral ischemia-reperfusion injury and cognitive dysfunction by regulating miR-142-3p/SIRT1 axis. Int J Neurosci. 1:192021.Epub ahead of print.

54 

Zhang G, Wang Q, Su D and Xie Y: Long non-coding RNAMALAT1 knockdown alleviates cerebral ischemia/reperfusion injury of rats through regulating the miR-375/PDE4D axis. Front Neurol. 11:5787652020. View Article : Google Scholar

55 

Jia Y, Yi L, Li Q, Liu T and Yang S: LncRNA MALAT1 aggravates oxygen-glucose deprivation/reoxygenation-induced neuronal endoplasmic reticulum stress and apoptosis via the miR-195a-5p/HMGA1 axis. Biol Res. 54:82021. View Article : Google Scholar : PubMed/NCBI

56 

Hu Y, Ye C, Cheng S and Chen J: Propofol downregulates lncRNA MALAT1 to alleviate cerebral ischemia-reperfusion injury. Inflammation. 44:2580–2591. 2021. View Article : Google Scholar : PubMed/NCBI

57 

Shi YL, Wang Q and Wei JC: Influence of lncRNA-MALAT1 on neuronal apoptosis in rats with cerebral infarction through regulating the ERK/MAPK signaling pathway. Eur Rev Med Pharmacol Sci. 23:8039–8048. 2019.PubMed/NCBI

58 

Wang LQ and Zhou HJ: LncRNA MALAT1 promotes high glucose-induced inflammatory response of microglial cells via provoking MyD88/IRAK1/TRAF6 signaling. Sci Rep. 8:83462018. View Article : Google Scholar : PubMed/NCBI

59 

Jin J, Wang H, Zheng X, Xie S, Zheng L and Zhan R: Inhibition of LncRNA MALAT1 attenuates cerebral ischemic reperfusion injury via regulating AQP4 expression. Eur Neurol. 83:581–590. 2020. View Article : Google Scholar : PubMed/NCBI

60 

Yang L, Wang L, Wang J and Liu P: Long non-coding RNA Gm11974 aggravates oxygen-glucose deprivation-induced injury via miR-122-5p/SEMA3A axis in ischaemic stroke. Metab Brain Dis. 36:2059–2069. 2021. View Article : Google Scholar : PubMed/NCBI

61 

Luo HC, Yi TZ, Huang FG, Wei Y, Luo XP and Luo QS: Role of long noncoding RNA MEG3/miR-378/GRB2 axis in neuronal autophagy and neurological functional impairment in ischemic stroke. J Biol Chem. 295:14125–14139. 2020. View Article : Google Scholar : PubMed/NCBI

62 

Li TH, Sun HW, Song LJ, Yang B, Zhang P, Yan DM, Liu XZ and Luo YR: Long non-coding RNA MEG3 regulates autophagy after cerebral ischemia/reperfusion injury. Neural Regen Res. 17:824–831. 2022. View Article : Google Scholar

63 

Zhang F, Wang Z, Sun B, Huang Y, Chen C, Hu J, Li L, Xia P and Ye Z: Propofol rescued astrocytes from LPS-induced inflammatory response via blocking LncRNA-MEG3/NF-κB axis. Curr Neurovasc Res. Mar 16–2022.Epub ahead of print. View Article : Google Scholar

64 

Chen C, Huang Y, Xia P, Zhang F, Li L, Wang E, Guo Q and Ye Z: Long noncoding RNA Meg3 mediates ferroptosis induced by oxygen and glucose deprivation combined with hyperglycemia in rat brain microvascular endothelial cells, through modulating the p53/GPX4 axis. Eur J Histochem. 65:32242021. View Article : Google Scholar :

65 

Li H, Tang C and Wang D: LncRNA H19 promotes inflammatory response induced by cerebral ischemia-reperfusion injury through regulating the miR-138-5p-p65 axis. Biochem Cell Biol. 98:525–536. 2020. View Article : Google Scholar : PubMed/NCBI

66 

Xu J, Wang C, Meng F and Xu P: Long non-coding RNA H19 inhibition ameliorates oxygen-glucose deprivation-induced cell apoptosis and inflammatory cytokine expression by regulating the microRNA-29b/SIRT1/PGC-1α axis. Mol Med Rep. 23:1312021. View Article : Google Scholar

67 

Huang Y, Deng L, Zeng L, Bao S, Ye K, Li C, Hou X, Yao Y, Li D and Xiong Z: Silencing of H19 alleviates oxygen-glucose deprivation/reoxygenation-triggered injury through the regulation of the miR-1306-5p/BCL2L13 axis. Metab Brain Dis. 36:2461–2472. 2021. View Article : Google Scholar : PubMed/NCBI

68 

Gao N, Tang H, Gao L, Tu GL, Luo H and Xia Y: LncRNA H19 aggravates cerebral ischemia/reperfusion injury by functioning as a ceRNA for miR-19a-3p to target PTEN. Neuroscience. 437:117–129. 2020. View Article : Google Scholar : PubMed/NCBI

69 

Wang J, Cao B, Han D, Sun M and Feng J: Long non-coding RNA H19 induces cerebral ischemia reperfusion injury via activation of autophagy. Aging Dis. 8:71–84. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Chen H and Li X: LncRNA ROR is involved in cerebral hypoxia/reoxygenation-induced injury in PC12 cells via regulating miR-135a-5p/ROCK1/2. Am J Transl Res. 11:6145–6158. 2019.PubMed/NCBI

71 

Zhou Q, An Y and Tang Y: Long noncoding RNA-regulator of reprogramming alleviates hypoxia-induced cerebral injury in mice model and human via modulating apoptosis complexes. J Integr Neurosci. 18:431–437. 2019. View Article : Google Scholar

72 

Yin WL, Yin WG, Huang BS and Wu LX: LncRNA SNHG12 inhibits miR-199a to upregulate SIRT1 to attenuate cerebral ischemia/reperfusion injury through activating AMPK signaling pathway. Neurosci Lett. 690:188–195. 2019. View Article : Google Scholar

73 

Deng Y, Chen D, Wang L, Gao F, Jin B, Lv H, Zhang G, Sun X, Liu L, Mo D, et al: Silencing of long noncoding RNA nespas aggravates microglial cell death and neuroinflammation in ischemic stroke. Stroke. 50:1850–1858. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Yao X, Yao R, Huang F and Yi J: LncRNA SNHG12 as a potent autophagy inducer exerts neuroprotective effects against cerebral ischemia/reperfusion injury. Biochem Biophys Res Commun. 514:490–496. 2019. View Article : Google Scholar : PubMed/NCBI

75 

Wu Y, Huang Y, Cai J, Zhang D, Liu S and Pang B: LncRNA SNHG12 improves cerebral ischemic-reperfusion injury by activating SIRT1/FOXO3a pathway through I nhibition of autophagy and oxidative stress. Curr Neurovasc Res. 17:394–401. 2020. View Article : Google Scholar : PubMed/NCBI

76 

Zhong Y, Yu C and Qin W: LncRNA SNHG14 promotes inflammatory response induced by cerebral ischemia/reperfusion injury through regulating miR-136-5p/ROCK1. Cancer Gene Ther. 26:234–247. 2019. View Article : Google Scholar

77 

Deng Z, Ou H, Ren F, Guan Y, Huan Y, Cai H and Sun B: LncRNA SNHG14 promotes OGD/R-induced neuron injury by inducing excessive mitophagy via miR-182-5p/BINP3 axis in HT22 mouse hippocampal neuronal cells. Biol Res. 53:382020. View Article : Google Scholar : PubMed/NCBI

78 

Bu X, Zhao Y, Chang M and Ge X: Downregulation of lncRNA SNHG14 alleviates neurons injury by modulating the miR-181c-5p/BMF axis in ischemic stroke. Brain Res Bull. 174:379–388. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Zhang G, Li T, Chang X and Xing J: Long noncoding RNA SNHG14-promotes ischemic brain injury via regulating miR-199b/AQP4 axis. Neurochem Res. 46:1280–1290. 2021. View Article : Google Scholar : PubMed/NCBI

80 

Deng W, Fan C, Shen R, Wu Y, Du R and Teng J: Long noncoding MIAT acting as a ceRNA to sponge microRNA-204-5p to participate in cerebral microvascular endothelial cell injury after cerebral ischemia through regulating HMGB1. J Cell Physiol. 235:4571–4586. 2020. View Article : Google Scholar

81 

Guo X, Wang Y, Zheng D, Cheng X and Sun Y: LncRNA-MIAT promotes neural cell autophagy and apoptosis in ischemic stroke by up-regulating REDD1. Brain Res. 1763:1474362021. View Article : Google Scholar : PubMed/NCBI

82 

Wang H, Liao S, Li H, Chen Y and Yu J: Long non-coding RNA TUG1 sponges Mir-145a-5p to regulate microglial polarization after oxygen-glucose deprivation. Front Mol Neurosci. 12:2152019. View Article : Google Scholar : PubMed/NCBI

83 

Xiang P, Hu J, Wang H, Luo Y, Gu C, Tan X, Tu Y, Guo W, Chen L, Gao L, et al: miR-204-5p is sponged by TUG1 to aggravate neuron damage induced by focal cerebral ischemia and reperfusion injury through upregulating COX2. Cell Death Discov. 8:892022. View Article : Google Scholar : PubMed/NCBI

84 

Shan W, Chen W, Zhao X, Pei A, Chen M, Yu Y, Zheng Y and Zhu S: Long noncoding RNA TUG1 contributes to cerebral ischaemia/reperfusion injury by sponging mir-145 to up-regulate AQP4 expression. J Cell Mol Med. 24:250–259. 2020. View Article : Google Scholar

85 

Li L, Zhang Q, Wang Y, Yin S, Chi S, Han F and Wang W: Knockdown of lncRNA TUG1 attenuates cerebral ischemia/reperfusion injury through regulating miR-142-3p. Biofactors. 47:819–827. 2021. View Article : Google Scholar : PubMed/NCBI

86 

Qiao P, Yan H and Wang J: EGb761 protects brain microvascular endothelial cells against oxygen-glucose deprivation-induced injury through lncRNA Rmst/miR-150 axis. Neurochem Res. 45:2398–2408. 2020. View Article : Google Scholar : PubMed/NCBI

87 

Hou XX and Cheng H: Long non-coding RNA RMST silencing protects against middle cerebral artery occlusion (MCAO)-induced ischemic stroke. Biochem Biophys Res Commun. 495:2602–2608. 2018. View Article : Google Scholar

88 

Wu Z, Wu P, Zuo X, Yu N, Qin Y, Xu Q, He S, Cen B, Liao W and Ji A: LncRNA-N1LR enhances neuroprotection against ischemic stroke probably by inhibiting p53 phosphorylation. Mol Neurobiol. 54:7670–7685. 2017. View Article : Google Scholar

89 

Lejay A, Fang F, John R, Van JA, Barr M, Thaveau F, Chakfe N, Geny B and Scholey JW: Ischemia reperfusion injury, ischemic conditioning and diabetes mellitus. J Mol Cell Cardiol. 91:11–22. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Yu SY, Dong B, Fang ZF, Hu XQ, Tang L and Zhou SH: Knockdown of lncRNA AK139328 alleviates myocardial ischaemia/reperfusion injury in diabetic mice via modulating miR-204-3p and inhibiting autophagy. J Cell Mol Med. 22:4886–4898. 2018. View Article : Google Scholar : PubMed/NCBI

91 

Cai B, Ma W, Ding F, Zhang L, Huang Q, Wang X, Hua B, Xu J, Li J, Bi C, et al: The long noncoding RNA CAREL controls cardiac regeneration. J Am Coll Cardiol. 72:534–550. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Zhao J, Chen F, Ma W and Zhang P: Suppression of long noncoding RNA NEAT1 attenuates hypoxia-induced cardiomyocytes injury by targeting miR-378a-3p. Gene. 731:1443242020. View Article : Google Scholar : PubMed/NCBI

93 

Rui PF, Wang JH and Xu J: Long non-coding NEAT1 weakens the protective role of sevoflurane on myocardial ischemia/reperfusion injury by mediating the microRNA-140/RhoA axis. J Biol Regul Homeost Agents. 35:933–944. 2021.PubMed/NCBI

94 

Wei Q, Zhou HY, Shi XD, Cao HY and Qin L: Long noncoding RNA NEAT1 promotes myocardiocyte apoptosis and suppresses proliferation through regulation of miR-129-5p. J Cardiovasc Pharmacol. 74:535–541. 2019. View Article : Google Scholar : PubMed/NCBI

95 

Ruan Z, Wang S, Yu W and Deng F: LncRNA NEAT1 aggravates diabetic myocardial ischemia-reperfusion injury through regulating PINK1 by targeting miR-27b. Int J Cardiol. 286:1362019. View Article : Google Scholar : PubMed/NCBI

96 

Wang SM, Liu GQ, Xian HB, Si JL, Qi SX and Yu YP: LncRNA NEAT1 alleviates sepsis-induced myocardial injury by regulating the TLR2/NF-κB signaling pathway. Eur Rev Med Pharmacol Sci. 23:4898–4907. 2019.PubMed/NCBI

97 

Gidlöf O, Bader K, Celik S, Grossi M, Nakagawa S, Hirose T, Metzler B, Olde B and Erlinge D: Inhibition of the long non-coding RNA NEAT1-protects cardiomyocytes from hypoxia in vitro via decreased pri-miRNA processing. Cell Death Dis. 11:6772020. View Article : Google Scholar

98 

Zhang BF, Chen J and Jiang H: LncRNA H19 ameliorates myocardial ischemia-reperfusion injury by targeting miR-22-3P. Int J Cardiol. 278:2242019. View Article : Google Scholar : PubMed/NCBI

99 

Zhang BF, Jiang H, Chen J, Hu Q, Yang S, Liu XP and Liu G: LncRNA H19 ameliorates myocardial infarction-induced myocardial injury and maladaptive cardiac remodelling by regulating KDM3A. J Cell Mol Med. 24:1099–1115. 2020. View Article : Google Scholar

100 

Luo H, Wang J, Liu D, Zang S, Ma N, Zhao L, Zhang L, Zhang X and Qiao C: The lncRNA H19/miR-675 axis regulates myocardial ischemic and reperfusion injury by targeting PPARα. Mol Immunol. 105:46–54. 2019. View Article : Google Scholar

101 

Zhang X, Cheng L, Xu L, Zhang Y, Yang Y, Fu Q, Mi W and Li H: The lncRNA, H19 mediates the protective effect of hypoxia postconditioning against hypoxia-reoxygenation injury to senescent cardiomyocytes by targeting microRNA-29b-3p. Shock. 52:249–256. 2019. View Article : Google Scholar

102 

Choong OK, Chen CY, Zhang J, Lin JH, Lin PJ, Ruan SC, Kamp TJ and Hsieh PCH: Hypoxia-induced H19/YB-1 cascade modulates cardiac remodeling after infarction. Theranostics. 9:6550–6567. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Chen C, Liu M, Tang Y, Sun H, Lin X, Liang P and Jiang B: LncRNA H19 is involved in myocardial ischemic preconditioning via increasing the stability of nucleolin protein. J Cell Physiol. 235:5985–5994. 2020. View Article : Google Scholar : PubMed/NCBI

104 

Su Q, Liu Y, Lv XW, Dai RX, Yang XH and Kong BH: LncRNA TUG1 mediates ischemic myocardial injury by targeting miR-132-3p/HDAC3 axis. Am J Physiol Heart Circ Physiol. 318:H332–H344. 2020. View Article : Google Scholar

105 

Su Q, Liu Y, Lv XW, Ye ZL, Sun YH, Kong BH and Qin ZB: Inhibition of lncRNA TUG1 upregulates miR-142-3p to ameliorate myocardial injury during ischemia and reperfusion via targeting HMGB1- and Rac1-induced autophagy. J Mol Cell Cardiol. 133:12–25. 2019. View Article : Google Scholar : PubMed/NCBI

106 

Yang D, Yu J, Liu HB, Yan XQ, Hu J, Yu Y, Guo J, Yuan Y and Du ZM: The long non-coding RNA TUG1-miR-9a-5p axis contributes to ischemic injuries by promoting cardiomyocyte apoptosis via targeting KLF5. Cell Death Dis. 10:9082019. View Article : Google Scholar : PubMed/NCBI

107 

Song T, Wang P and Xin L: LncRNA TUG1 Contributes to hypoxia-induced myocardial cell injury through downregulating miR-29a-3p in AC16 cells. J Cardiovasc Pharmacol. 76:533–539. 2020. View Article : Google Scholar : PubMed/NCBI

108 

Cai X, Wang S, Hong L, Yu S, Li B, Zeng H, Yang X, Zhang P and Shao L: Long noncoding RNA taurine-upregulated gene 1 knockdown protects cardiomyocytes against hypoxia/reoxygenation-induced injury through regulating miR-532-5p/Sox8 axis. J Cardiovasc Pharmacol. 76:556–563. 2020. View Article : Google Scholar : PubMed/NCBI

109 

Wang S, Yao T, Deng F, Yu W, Song Y, Chen J and Ruan Z: LncRNA MALAT1 promotes oxygen-glucose deprivation and reoxygenation induced cardiomyocytes injury through sponging miR-20b to enhance beclin1-mediated autophagy. Cardiovasc Drugs Ther. 33:675–686. 2019. View Article : Google Scholar : PubMed/NCBI

110 

Yu SY, Dong B, Tang L and Zhou SH: LncRNA MALAT1 sponges miR-133 to promote NLRP3 inflammasome expression in ischemia-reperfusion injured heart. Int J Cardiol. 254:502018. View Article : Google Scholar : PubMed/NCBI

111 

Tian H, Wu M, Zhou P, Huang C, Ye C and Wang L: The long non-coding RNA MALAT1 is increased in renal ischemia-reperfusion injury and inhibits hypoxia-induced inflammation. Ren Fail. 40:527–533. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Xu XZ, Luo B, Xiao Y and Zheng WQ: Effects of lncRNA MALAT1-mediated β-catenin signaling pathway on myocardial cell apoptosis in rats with myocardial ischemia/reperfusion injury. Eur Rev Med Pharmacol Sci. 23:9557–9565. 2019.PubMed/NCBI

113 

Shu L, Zhang W, Huang C, Huang G, Su G and Xu J: lncRNA ANRIL protects H9c2 cells against hypoxia-induced injury through targeting the miR-7-5p/SIRT1 axis. J Cell Physiol. 235:1175–1183. 2020. View Article : Google Scholar

114 

Li L, Zhang M, Chen W, Wang R, Ye Z, Wang Y, Li X and Cai C: LncRNA-HOTAIR inhibition aggravates oxidative stress-induced H9c2 cells injury through suppression of MMP2 by miR-125. Acta Biochim Biophys Sin (Shanghai). 50:996–1006. 2018. View Article : Google Scholar

115 

Du J, Yang ST, Liu J, Zhang KX and Leng JY: Silence of LncRNA GAS5 protects cardiomyocytes H9c2 against hypoxic injury via sponging miR-142-5p. Mol Cells. 42:397–405. 2019.PubMed/NCBI

116 

Liu CY, Zhang YH, Li RB, Zhou LY, An T, Zhang RC, Zhai M, Huang Y, Yan KW, Dong YH, et al: LncRNA CAIF inhibits autophagy and attenuates myocardial infarction by blocking p53-mediated myocardin transcription. Nat Commun. 9:292018. View Article : Google Scholar : PubMed/NCBI

117 

Li Z, Zhang Y, Ding N, Zhao Y, Ye Z, Shen L, Yi H and Zhu Y: Inhibition of lncRNA XIST improves myocardial I/R injury by targeting miR-133a through inhibition of autophagy and regulation of SOCS2. Mol Ther Nucleic Acids. 18:764–773. 2019. View Article : Google Scholar : PubMed/NCBI

118 

Li Y, Li J, Zhang P, Jiang X, Pan Z, Zheng W and Lin H: LncRNA-LET relieves hypoxia-induced injury in H9c2 cells through regulation of miR-138. J Cell Biochem. 121:259–268. 2020. View Article : Google Scholar

119 

Li T, Tian H, Li J, Zuo A, Chen J, Xu D, Guo Y and Gao H: Overexpression of lncRNA Gm2691 attenuates apoptosis and inflammatory response after myocardial infarction through PI3K/Akt signaling pathway. IUBMB Life. 71:1561–1570. 2019. View Article : Google Scholar : PubMed/NCBI

120 

Chen L, Zhang D, Yu L and Dong H: Targeting MIAT reduces apoptosis of cardiomyocytes after ischemia/reperfusion injury. Bioengineered. 10:121–132. 2019. View Article : Google Scholar : PubMed/NCBI

121 

Kong F, Jin J, Lv X, Han Y, Liang X, Gao Y and Duan X: RETRACTED: Long noncoding RNA RMRP upregulation aggravates myocardial ischemia-reperfusion injury by sponging miR-206 to target ATG3 expression. Biomed Pharmacother. 109:716–725. 2019. View Article : Google Scholar

122 

Ong SB, Katwadi K, Kwek XY, Ismail NI, Chinda K, Ong SG and Hausenloy DJ: Non-coding RNAs as therapeutic targets for preventing myocardial ischemia-reperfusion injury. Expert Opin Ther Targets. 22:247–261. 2018. View Article : Google Scholar : PubMed/NCBI

123 

Basile DP, Donohoe D, Roethe K and Osborn JL: Renal ischemic injury results in permanent damage to peritubular capillaries and influences long-term function. Am J Physiol Renal Physiol. 281:F887–F899. 2001. View Article : Google Scholar : PubMed/NCBI

124 

Tao Q, Tianyu W, Jiangqiao Z, Zhongbao C, Xiaoxiong M, Long Z and Jilin Z: Expression analysis of long non-coding RNAs in a renal ischemia-reperfusion injury model. Acta Cir Bras. 34:e2019004032019. View Article : Google Scholar : PubMed/NCBI

125 

Liu F, Yang Y, Liu T, Deng J, Zhang H, Luo D and Lou YL: Analysis of differentially expressed long noncoding RNA in renal ischemia-reperfusion injury. Kidney Blood Press Res. 45:686–701. 2020. View Article : Google Scholar : PubMed/NCBI

126 

Kölling M, Genschel C, Kaucsar T, Hübner A, Rong S, Schmitt R, Sörensen-Zender I, Haddad G, Kistler A, Seeger H, et al: Hypoxia-induced long non-coding RNA Malat1 is dispensable for renal ischemia/reperfusion-injury. Sci Rep. 8:34382018. View Article : Google Scholar : PubMed/NCBI

127 

Puthanveetil P, Gutschner T and Lorenzen J: MALAT1: A therapeutic candidate for a broad spectrum of vascular and cardiorenal complications. Hypertens Res. 43:372–379. 2020. View Article : Google Scholar

128 

Jiang X, Li D, Shen W, Shen X and Liu Y: LncRNA NEAT1 promotes hypoxia-induced renal tubular epithelial apoptosis through downregulating miR-27a-3p. J Cell Biochem. 120:16273–16282. 2019. View Article : Google Scholar : PubMed/NCBI

129 

Geng X, Song N, Zhao S, Xu J, Liu Y, Fang Y, Liang M, Xu X and Ding X: LncRNA GAS5 promotes apoptosis as a competing endogenous RNA for miR-21 via thrombospondin 1 in ischemic AKI. Cell Death Discov. 6:192020. View Article : Google Scholar : PubMed/NCBI

130 

Xu Y, Niu Y, Li H and Pan G: Downregulation of lncRNA TUG1 attenuates inflammation and apoptosis of renal tubular epithelial cell induced by ischemia-reperfusion by sponging miR-449b-5p via targeting HMGB1 and MMP2. Inflammation. 43:1362–1374. 2020. View Article : Google Scholar : PubMed/NCBI

131 

Tian X, Ji Y, Liang Y, Zhang J, Guan L and Wang C: LINC00520 targeting miR-27b-3p regulates OSMR expression level to promote acute kidney injury development through the PI3K/AKT signaling pathway. J Cell Physiol. 234:14221–14233. 2019. View Article : Google Scholar : PubMed/NCBI

132 

Lu J, Miao J and Sun J: LncRNA np_5318 promotes renal ischemia-reperfusion injury through the TGF-β/Smad signaling pathway. Exp Ther Med. 19:2833–2840. 2020.PubMed/NCBI

133 

Zhou X, Li Y, Wu C, Yu W and Cheng F: Novel lncRNA XLOC_032768 protects against renal tubular epithelial cells apoptosis in renal ischemia-reperfusion injury by regulating FNDC3B/TGF-β1. Ren Fail. 42:994–1003. 2020. View Article : Google Scholar : PubMed/NCBI

134 

Lorenzen JM, Schauerte C, Kielstein JT, Hübner A, Martino F, Fiedler J, Gupta SK, Faulhaber-Walter R, Kumarswamy R, Hafer C, et al: Circulating long noncoding RNATapSaki is a predictor of mortality in critically ill patients with acute kidney injury. Clin Chem. 61:191–201. 2015. View Article : Google Scholar

135 

Shah RJ and Diamond JM: Primary graft dysfunction (PGD) following lung transplantation. Semin Respir Crit Care Med. 39:148–154. 2018. View Article : Google Scholar : PubMed/NCBI

136 

Li J, Wei L, Han Z, Chen Z and Zhang Q: Long non-coding RNA X-inactive specific transcript silencing ameliorates primary graft dysfunction following lung transplantation through microRNA-21-dependent mechanism. EBioMedicine. 52:1026002020. View Article : Google Scholar : PubMed/NCBI

137 

Arun G, Aggarwal D and Spector DL: MALAT1 long non-coding RNA: Functional implications. Noncoding RNA. 6:222020.

138 

Zhang X, Hamblin MH and Yin KJ: The long noncoding RNA Malat1: Its physiological and pathophysiological functions. RNA Biol. 14:1705–1714. 2017. View Article : Google Scholar : PubMed/NCBI

139 

Sun Y and Ma L: New insights into long non-coding RNA MALAT1 in cancer and metastasis. Cancers (Basel). 11:2162019. View Article : Google Scholar

140 

Li P, Zhang Y and Liu H: The role of Wnt/β-catenin pathway in the protection process by dexmedetomidine against cerebral ischemia/reperfusion injury in rats. Life Sci. 236:1169212019. View Article : Google Scholar

141 

Lehwald N, Tao GZ, Jang KY, Sorkin M, Knoefel WT and Sylvester KG: Wnt-β-catenin signaling protects against hepatic ischemia and reperfusion injury in mice. Gastroenterology. 141:707–718. 718.e1–e5. 2011. View Article : Google Scholar

142 

Ban Q, Qiao L, Xia H, Xie B, Liu J, Ma Y, Zhang L, Zhang M, Liu LG, Jiao W, et al: β-catenin regulates myocardial ischemia/reperfusion injury following heterotopic heart transplantation in mice by modulating PTEN pathways. Am J Transl Res. 12:4757–4771. 2020.

143 

Xiong ZJ, Zhang Q, Wang DX and Hu L: Overexpression of TUG1 promotes neuronal death after cerebral infarction by regulating microRNA-9. Eur Rev Med Pharmacol Sci. 22:7393–7400. 2018.PubMed/NCBI

144 

Jia H, Li Z, Chang Y, Fang B, Zhou Y and Ma H: Downregulation of long noncoding RNA TUG1 attenuates MTDH-mediated inflammatory damage via targeting miR-29b1-5p after spinal cord ischemia reperfusion. J Neuropathol Exp Neurol. 80:254–264. 2021. View Article : Google Scholar

145 

He Z, Zhao Y, Zhu Y, Wang W, Liu X and Lu F: Interfering TUG1 attenuates cerebrovascular endothelial apoptosis and inflammatory injury after cerebral ischemia/reperfusion via TUG1/miR-410/FOXO3 ceRNA axis. Neurotox Res. 40:1–13. 2022. View Article : Google Scholar

146 

Wu X, Liu Y, Mo S, Wei W, Ye Z and Su Q: LncRNA TUG1 competitively binds to miR-340 to accelerate myocardial ischemia-reperfusion injury. FASEB J. 35:e211632021.

147 

Chen L, Xu JY and Tan HB: LncRNA TUG1 regulates the development of ischemia-reperfusion mediated acute kidney injury through miR-494-3p/E-cadherin axis. J Inflamm (Lond). 18:122021. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X and Shang L: An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 50: 91, 2022.
APA
Cao, Y., Liu, J., Lu, Q., Huang, K., Yang, B., Reilly, J. ... Shang, L. (2022). An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). International Journal of Molecular Medicine, 50, 91. https://doi.org/10.3892/ijmm.2022.5147
MLA
Cao, Y., Liu, J., Lu, Q., Huang, K., Yang, B., Reilly, J., Jiang, N., Shu, X., Shang, L."An update on the functional roles of long non‑coding RNAs in ischemic injury (Review)". International Journal of Molecular Medicine 50.1 (2022): 91.
Chicago
Cao, Y., Liu, J., Lu, Q., Huang, K., Yang, B., Reilly, J., Jiang, N., Shu, X., Shang, L."An update on the functional roles of long non‑coding RNAs in ischemic injury (Review)". International Journal of Molecular Medicine 50, no. 1 (2022): 91. https://doi.org/10.3892/ijmm.2022.5147
Copy and paste a formatted citation
x
Spandidos Publications style
Cao Y, Liu J, Lu Q, Huang K, Yang B, Reilly J, Jiang N, Shu X and Shang L: An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). Int J Mol Med 50: 91, 2022.
APA
Cao, Y., Liu, J., Lu, Q., Huang, K., Yang, B., Reilly, J. ... Shang, L. (2022). An update on the functional roles of long non‑coding RNAs in ischemic injury (Review). International Journal of Molecular Medicine, 50, 91. https://doi.org/10.3892/ijmm.2022.5147
MLA
Cao, Y., Liu, J., Lu, Q., Huang, K., Yang, B., Reilly, J., Jiang, N., Shu, X., Shang, L."An update on the functional roles of long non‑coding RNAs in ischemic injury (Review)". International Journal of Molecular Medicine 50.1 (2022): 91.
Chicago
Cao, Y., Liu, J., Lu, Q., Huang, K., Yang, B., Reilly, J., Jiang, N., Shu, X., Shang, L."An update on the functional roles of long non‑coding RNAs in ischemic injury (Review)". International Journal of Molecular Medicine 50, no. 1 (2022): 91. https://doi.org/10.3892/ijmm.2022.5147
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team