Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
July-2022 Volume 50 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
July-2022 Volume 50 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review)

  • Authors:
    • Junjie Liu
    • Tianhao Yang
    • Zishen Huang
    • Huifang Chen
    • Yinshan Bai
  • View Affiliations / Copyright

    Affiliations: School of Life Science and Engineering, Foshan University, Foshan, Guangdong 528225, P.R. China
  • Article Number: 92
    |
    Published online on: May 19, 2022
       https://doi.org/10.3892/ijmm.2022.5148
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

MicroRNAs (miRNAs/miRs) are a type of endogenous non‑coding small RNA that regulates gene expression. miRNAs regulate gene expression at the post‑transcriptional level by targeting the 3'‑untranslated region (3'UTR) of cytoplasmic messenger RNAs (mRNAs). Recent research has confirmed the presence of mature miRNAs in the nucleus, which bind nascent RNA transcripts, gene promoter or enhancer regions, and regulate gene expression via epigenetic pathways. Some miRNAs have been shown to function as oncogenes or tumor suppressor genes by modulating molecular pathways involved in human cancers. Notably, a novel molecular mechanism underlying the dysregulation of miRNA expression in cancer has recently been discovered, indicating that miRNAs may be involved in tumorigenesis via a nuclear function that influences gene transcription and epigenetic states, elucidating their potential therapeutic implications. The present review article discusses the import of nuclear miRNAs, nucleus‑cytoplasm transport mechanisms and the nuclear functions of miRNAs in cancer. In addition, some software tools for predicting miRNA binding sites are also discussed. Nuclear miRNAs supplement miRNA regulatory networks in cancer as a non‑canonical aspect of miRNA action. Further research into this aspect may be critical for understanding the role of nuclear miRNAs in the development of human cancers.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Huang V and Li LC: miRNA goes nuclear. RNA Biol. 9:269–273. 2012. View Article : Google Scholar

2 

Syeda ZA, Langden SS, Munkhzul C, Lee M and Song SJ: Regulatory mechanism of microRNA expression in cancer. Int J Mol Sci. 21:17232020. View Article : Google Scholar

3 

Bhat IP, Rather TB, Bhat GA, Maqbool I, Akhtar K, Rashid G, Parray FQ, Besina S and Mudassar S: TEAD4 nuclear localization and regulation by miR-4269 and miR-1343-3p in colorectal carcinoma. Pathol Res Pract. 231:1537912022. View Article : Google Scholar

4 

Zheng T, Zhou Y, Xu X, Qi X, Liu J, Pu Y, Zhang S, Gao X, Luo X, Li M, et al: MiR-30c-5p loss-induced PELI1 accumulation regulates cell proliferation and migration via activating PI3K/AKT pathway in papillary thyroid carcinoma. J Transl Med. 20:202022. View Article : Google Scholar : PubMed/NCBI

5 

Li L, Wei D, Zhang J, Deng R, Tang J and Su D: MiR-641 inhibited cell proliferation and induced apoptosis by targeting NUCKS1/PI3K/AKT signaling pathway in breast cancer. Comput Math Methods Med. 2022:52038392022.PubMed/NCBI

6 

Mirzaei S, Zarrabi A, Asnaf SE, Hashemi F, Zabolian A, Hushmandi K, Raei M, Goharrizi MASB, Makvandi P, Samarghandian S, et al: The role of microRNA-338-3p in cancer: Growth, invasion, chemoresistance, and mediators. Life Sci. 268:1190052021. View Article : Google Scholar

7 

El Fatimy R, Zhang Y, Deforzh E, Ramadas M, Saravanan H, Wei Z, Rabinovsky R, Teplyuk NM, Uhlmann EJ and Krichevsky AM: A nuclear function for an oncogenic microRNA as a modulator of snRNA and splicing. Mol Cancer. 21:172022. View Article : Google Scholar : PubMed/NCBI

8 

Luo X, Dong J, He X, Shen L, Long C, Liu F, Liu X, Lin T, He D and Wei G: MiR-155-5p exerts tumor-suppressing functions in Wilms tumor by targeting IGF2 via the PI3K signaling pathway. Biomed Pharmacother. 125:1098802020. View Article : Google Scholar : PubMed/NCBI

9 

Gong R and Jiang Y: Non-coding RNAs in pancreatic ductal adenocarcinoma. Front Oncol. 10:3092020. View Article : Google Scholar

10 

Gregorova J, Vychytilova-Faltejskova P and Sevcikova S: Epigenetic regulation of MicroRNA clusters and families during tumor development. Cancers (Basel). 13:13332021. View Article : Google Scholar : PubMed/NCBI

11 

O'Brien J, Hayder H, Zayed Y and Peng C: Overview of microRNA biogenesis, mechanisms of actions, and circulation. Front Endocrinol (Lausanne). 9:4022018. View Article : Google Scholar

12 

Yang YL, Chang YH, Li CJ, Huang YH, Tsai MC, Chu PY and Lin HY: New insights into the role of miR-29a in hepatocellular carcinoma: Implications in mechanisms and theragnostics. J Pers Med. 11:2192021. View Article : Google Scholar : PubMed/NCBI

13 

Kobayashi H and Tomari Y: RISC assembly: Coordination between small RNAs and Argonaute proteins. Biochim Biophys Acta. 1859:71–81. 2016. View Article : Google Scholar

14 

Zhang J, Zhou W, Liu Y, Liu T, Li C and Wang L: Oncogenic role of microRNA-532-5p in human colorectal cancer via targeting of the 5′UTR of RUNX3. Oncol Lett. 15:7215–7220. 2018.

15 

Liu M, Roth A, Yu M, Morris R, Bersani F, Rivera MN, Lu J, Shioda T, Vasudevan S, Ramaswamy S, et al: The IGF2 intronic miR-483 selectively enhances transcription from IGF2 fetal promoters and enhances tumorigenesis. Genes Dev. 27:2543–2548. 2013. View Article : Google Scholar : PubMed/NCBI

16 

Xu W, San LA, Wang Z and Liu Y: Identifying microRNA targets in different gene regions. BMC Bioinformatics. 15 (Suppl 7):S42014. View Article : Google Scholar : PubMed/NCBI

17 

Li Z, Lan X, Han R, Wang J, Huang Y, Sun J, Guo W and Chen H: MiR-2478 inhibits TGFβ1 expression by targeting the transcriptional activation region downstream of the TGFβ1 promoter in dairy goats. Sci Rep. 7:426272017. View Article : Google Scholar : PubMed/NCBI

18 

Guo D, Barry L, Lin SSH, Huang V and Li LC: RNAa in action: From the exception to the norm. RNA Biol. 11:1221–1225. 2014. View Article : Google Scholar

19 

Stavast CJ and Erkeland SJ: The non-canonical aspects of microRNAs: Many roads to gene regulation. Cells Basel. 8:14652019. View Article : Google Scholar

20 

Fan L, Lai R, Ma N, Dong Y, Li Y, Wu Q, Qiao J, Lu H, Gong L, Tao Z, et al: MiR-552-3p modulates transcriptional activities of FXR and LXR to ameliorate hepatic glycolipid metabolism disorder. J Hepatol. 74:8–19. 2021. View Article : Google Scholar

21 

Liu H, Lei C, He Q, Pan Z, Xiao D and Tao Y: Nuclear functions of mammalian microRNAs in gene regulation, immunity and cancer. Mol Cancer. 17:642018. View Article : Google Scholar : PubMed/NCBI

22 

Liu L, Tian YC, Mao G, Zhang YG and Han L: MiR-675 is frequently overexpressed in gastric cancer and enhances cell proliferation and invasion via targeting a potent anti-tumor gene PITX1. Cell Signal. 62:1093522019. View Article : Google Scholar

23 

Majid S, Dar AA, Saini S, Yamamura S, Hirata H, Tanaka Y, Deng G and Dahiya R: MicroRNA-205-directed transcriptional activation of tumor suppressor genes in prostate cancer. Cancer. 116:5637–5649. 2010. View Article : Google Scholar : PubMed/NCBI

24 

Kumar R and Xi Y: MicroRNA, epigenetic machinery and lung cancer. Thorac Cancer. 2:35–44. 2011. View Article : Google Scholar : PubMed/NCBI

25 

Place RF, Li LC, Pookot D, Noonan EJ and Dahiya R: MicroRNA-373 induces expression of genes with complementary promoter sequences. Proc Natl Acad Sci USA. 105:1608–1613. 2008. View Article : Google Scholar : PubMed/NCBI

26 

Xiang X, Mei H, Qu H, Zhao X, Li D, Song H, Jiao W, Pu J, Huang K, Zheng L and Tong Q: MiRNA-584-5p exerts tumor suppressive functions in human neuroblastoma through repressing transcription of matrix metalloproteinase 14. Biochim Biophys Acta. 1852:1743–1754. 2015. View Article : Google Scholar

27 

Bai B, Liu H and Laiho M: Small RNA expression and deep sequencing analyses of the nucleolus reveal the presence of nucleolus-associated microRNAs. FEBS Open Bio. 4:441–449. 2014. View Article : Google Scholar : PubMed/NCBI

28 

Catalanotto C, Cogoni C and Zardo G: MicroRNA in control of gene expression: An overview of nuclear functions. Int J Mol Sci. 17:17122016. View Article : Google Scholar

29 

Saito Y, Liang G, Egger G, Friedman JM, Chuang JC, Coetzee GA and Jones PA: Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell. 9:435–443. 2006. View Article : Google Scholar

30 

Bartel DP: MicroRNAs: Genomics, biogenesis, mechanism, and function. Cell. 116:281–297. 2004. View Article : Google Scholar

31 

Bartel DP: MicroRNAs: Target recognition and regulatory functions. Cell. 136:215–233. 2009. View Article : Google Scholar

32 

Lai .Eric C: Micro RNAs are complementary to 3′UTR sequence motifs that mediate negative post-transcriptional regulation. Nat Genet. 30:363–364. 2002. View Article : Google Scholar

33 

Lee Y, Ahn C, Han J, Choi H, Kim J, Yim J, Lee J, Provost P, Rådmark O, Kim S and Kim VN: The nuclear RNase III Drosha initiates microRNA processing. Nature. 425:415–419. 2003. View Article : Google Scholar : PubMed/NCBI

34 

Yi R, Qin Y, Macara IG and Cullen BR: Exportin-5 mediates the nuclear export of pre-microRNAs and short hairpin RNAs. Gene Dev. 17:3011–3016. 2003. View Article : Google Scholar : PubMed/NCBI

35 

Gagnon KT, Li L, Chu Y, Janowski BA and Corey DR: RNAi factors are present and active in human cell nuclei. Cell Rep. 6:211–221. 2014. View Article : Google Scholar : PubMed/NCBI

36 

Weinmann L, Höck J, Ivacevic T, Ohrt T, Mutze J, Schwille P, Kremmer E, Benes V, Urlaub H and Meister G: Importin 8 is a gene silencing factor that targets argonaute proteins to distinct mRNAs. Cell. 136:496–507. 2009. View Article : Google Scholar

37 

Wei Y, Li L, Wang D, Zhang CY and Zen K: Importin 8 regulates the transport of mature microRNAs into the cell nucleus. J Biol Chem. 289:10270–10275. 2014. View Article : Google Scholar : PubMed/NCBI

38 

Azmi AS, Uddin MH and Mohammad RM: The nuclear export protein XPO1-from biology to targeted therapy. Nat Rev Clin Oncol. 18:152–169. 2021. View Article : Google Scholar

39 

Nishi K, Nishi A, Nagasawa T and Ui-Tei K: Human TNRC6A is an argonaute-navigator protein for microRNA-mediated gene silencing in the nucleus. RNA. 19:17–35. 2013. View Article : Google Scholar : PubMed/NCBI

40 

Daniel S, Schindler SG, Johannes D, Elisabeth K, Janina P, Stefan H, Reinhard D and Gunter M: Importin-β facilitates nuclear import of human GW proteins and balances cytoplasmic gene silencing protein levels. Nucleic Acids Res. 43:7447–7461. 2015. View Article : Google Scholar : PubMed/NCBI

41 

Behm-Ansmant I, Rehwinkel J, Doerks T, Stark A, Bork P and Izaurralde E: MRNA degradation by miRNAs and GW182 requires both CCR4:NOT deadenylase and DCP1:DCP2 decapping complexes. Genes Dev. 20:1885–1898. 2006. View Article : Google Scholar : PubMed/NCBI

42 

Nishi K, Takahashi T, Suzawa M, Miyakawa T, Nagasawa T, Ming Y, Tanokura M and Ui-Tei K: Control of the localization and function of a miRNA silencing component TNRC6A by argonaute protein. Nucleic Acids Res. 43:9856–9873. 2015.PubMed/NCBI

43 

Hicks JA, Li L, Matsui M, Chu Y, Volkov O, Johnson KC and Corey DR: Human GW182 paralogs are the central organizers for RNA-Mediated control of transcription. Cell Rep. 20:1543–1552. 2017. View Article : Google Scholar : PubMed/NCBI

44 

Castanotto D, Lingeman R, Riggs AD and Rossi JJ: CRM1 mediates nuclear-cytoplasmic shuttling of mature microRNAs. Proc Natl Acad Sci USA. 106:21655–21659. 2009. View Article : Google Scholar : PubMed/NCBI

45 

Kalantari R, Hicks JA, Li L, Gagnon KT, Sridhara V, Lemoff A, Mirzaei H and Corey DR: Stable association of RNAi machinery is conserved between the cytoplasm and nucleus of human cells. RNA. 22:1085–1098. 2016. View Article : Google Scholar : PubMed/NCBI

46 

Kuhn CD and Joshua-Tor L: Eukaryotic argonautes come into focus. Trends Biochem Sci. 38:263–271. 2013. View Article : Google Scholar

47 

Ryazansky S, Kulbachinskiy A and Aravin AA: The expanded universe of prokaryotic argonaute proteins. mBio. 9:e01935–18. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Peters L and Meister G: Argonaute proteins: Mediators of RNA silencing. Mol Cell. 26:611–623. 2007. View Article : Google Scholar

49 

Hutvagner G and Simard MJ: Argonaute proteins: Key players in RNA silencing. Nat Rev Mol Cell Biol. 9:22–32. 2008. View Article : Google Scholar

50 

Siomi MC, Sato K, Pezic D and Aravin AA: PIWI-interacting small RNAs: The vanguard of genome defence. Nat Rev Mol Cell Biol. 12:246–258. 2011. View Article : Google Scholar

51 

Sasaki T, Shiohama A, Minoshima S and Shimizu N: Identification of eight members of the argonaute family in the human genome. Genomics. 82:323–330. 2003. View Article : Google Scholar : PubMed/NCBI

52 

Faehnle CR, Elkayam E, Haase AD, Hannon GJ and Joshua-Tor L: The making of a slicer: Activation of human argonaute-1. Cell Rep. 3:1901–1909. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Schirle NT, Sheu-Gruttadauria J, Chandradoss SD, Joo C and MacRae IJ: Water-mediated recognition of t1-adenosine anchors argonaute2 to microRNA targets. Elife. 4:e076462015. View Article : Google Scholar

54 

Park MS, Phan HD, Busch F, Hinckley SH, Brackbill JA, Wysocki VH and Nakanishi K: Human argonaute3 has slicer activity. Nucleic Acids Res. 45:11867–11877. 2017. View Article : Google Scholar : PubMed/NCBI

55 

Kwak PB and Tomari Y: The N domain of argonaute drives duplex unwinding during RISC assembly. Nat Struct Mol Biol. 19:145–151. 2012. View Article : Google Scholar

56 

Czech B and Hannon GJ: Small RNA sorting: Matchmaking for argonautes. Nat Rev Genet. 12:19–31. 2011. View Article : Google Scholar

57 

Yoda M, Kawamata T, Paroo Z, Ye X, Iwasaki S, Liu Q and Tomari Y: ATP-dependent human RISC assembly pathways. Nat Struct Mol Biol. 17:17–23. 2010. View Article : Google Scholar

58 

Liu J, Carmell MA, Rivas FV, Marsden CG, Thomson JM, Song JJ, Hammond SM, Joshua-Tor L and Hannon GJ: Argonaute2 is the catalytic engine of mammalian RNAi. Science. 305:1437–1441. 2004. View Article : Google Scholar : PubMed/NCBI

59 

Huang V and Li LC: Demystifying the nuclear function of argonaute proteins. RNA Biol. 11:18–24. 2014. View Article : Google Scholar

60 

Huntzinger E and Izaurralde E: Gene silencing by microRNAs: Contributions of translational repression and mRNA decay. Nat Rev Genet. 12:99–110. 2011. View Article : Google Scholar

61 

Younger ST and Corey DR: Transcriptional gene silencing in mammalian cells by miRNA mimics that target gene promoters. Nucleic Acids Res. 39:5682–5691. 2011. View Article : Google Scholar : PubMed/NCBI

62 

Zhang T, Tan P, Wang L, Jin N, Li Y, Zhang L, Yang H, Hu Z, Zhang L, Hu C, et al: RNALocate: A resource for RNA subcellular localizations. Nucleic Acids Res. 45:D135–D138. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Piriyapongsa J, Bootchai C, Ngamphiw C and Tongsima S: MicroPIR2: A comprehensive database for human-mouse comparative study of microRNA-promoter interactions. Database (Oxford). 2014:bau1152014. View Article : Google Scholar : PubMed/NCBI

64 

Lukasik A, Wójcikowski M and Zielenkiewicz P: Tools4miRs-one place to gather all the tools for miRNA analysis. Bioinformatics. 32:2722–2724. 2016. View Article : Google Scholar : PubMed/NCBI

65 

Parveen A, Gretz N and Dweep H: Obtaining miRNA-target interaction information from miRWalk2.0. Curr Protoc Bioinformatics. 55:12.15.1–12.15.27. 2016. View Article : Google Scholar

66 

Liu Q, Wang J, Zhao Y, Li CI, Stengel KR, Acharya P, Johnston G, Hiebert SW and Shyr Y: Identification of active miRNA promoters from nuclear run-on RNA sequencing. Nucleic Acids Res. 45:e1212017. View Article : Google Scholar : PubMed/NCBI

67 

Jeffries CD, Fried HM and Perkins DO: Nuclear and cytoplasmic localization of neural stem cell microRNAs. RNA. 17:675–86. 2011. View Article : Google Scholar : PubMed/NCBI

68 

Wong JJ, Ritchie W, Gao D, Lau KA, Gonzalez M, Choudhary A, Taft RJ, Rasko JE and Holst J: Identification of nuclear-enriched miRNAs during mouse granulopoiesis. J Hematol Oncol. 7:422014. View Article : Google Scholar

69 

Li ZF, Liang YM, Lau PN, Shen W, Wang DK, Cheung WT, Xue CJ, Poon LM and Lam YW: Dynamic localisation of mature microRNAs in human nucleoli is influenced by exogenous genetic materials. PLoS One. 8:e708692013. View Article : Google Scholar : PubMed/NCBI

70 

Sahu I, Hebalkar R, Kar S, Sreevidya TS, Gutti U and Gutti RK: Systems biology approach to study the role of miRNA in promoter targeting during megakaryopoiesis. Exp Cell Res. 366:192–198. 2018. View Article : Google Scholar : PubMed/NCBI

71 

Liao JY, Ma LM, Guo YH, Zhang YC, Zhou H, Shao P, Chen YQ and Qu LH: Deep sequencing of human nuclear and cytoplasmic small RNAs reveals an unexpectedly complex subcellular distribution of miRNAs and tRNA 3′trailers. PLoS One. 5:e105632010. View Article : Google Scholar : PubMed/NCBI

72 

Politz JCR, Hogan EM and Pederson T: MicroRNAs with a nucleolar location. RNA. 15:1705–1715. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Tang R, Li L, Zhu D, Hou D, Cao T, Gu H, Zhang J, Chen J, Zhang CY and Zen K: Mouse miRNA-709 directly regulates miRNA-15a/16-1 biogenesis at the posttranscriptional level in the nucleus: Evidence for a microRNA hierarchy system. Cell Res. 22:504–515. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Toms D, Pan B, Bai Y and Li J: Small RNA sequencing reveals distinct nuclear microRNAs in pig granulosa cells during ovarian follicle growth. J Ovarian Res. 14:542021. View Article : Google Scholar : PubMed/NCBI

75 

Sato K and Siomi MC: The piRNA pathway in Drosophila ovarian germ and somatic cells. Proc Jpn Acad Ser B Phys Biol Sci. 96:32–42. 2020. View Article : Google Scholar

76 

Gunawardane LS, Saito K, Nishida KM, Miyoshi K, Kawamura Y, Nagami T, Siomi H and Siomi MC: A slicer-mediated mechanism for repeat-associated siRNA 59 end formation in drosophila. Science. 315:1587–1590. 2007. View Article : Google Scholar : PubMed/NCBI

77 

Brennecke J, Aravin AA, Stark A, Dus M, Kellis M, Sachidanandam R and Hannon GJ: Discrete small RNA-generating loci as master regulators of transposon activity in drosophila. Cell. 128:1089–1103. 2007. View Article : Google Scholar

78 

Yu Y, Gu J, Jin Y, Luo Y, Preall JB, Ma J, Czech B and Hannon GJ: Panoramix enforces piRNA-dependent cotranscriptional silencing. Science. 350:339–342. 2015. View Article : Google Scholar : PubMed/NCBI

79 

Sienski G, Donertas D and Brennecke J: Transcriptional silencing of transposons by Piwi and maelstrom and its impact on chromatin state and gene expression. Cell. 151:964–980. 2012. View Article : Google Scholar

80 

Watanabe T, Tomizawa S, Mitsuya K, Totoki Y, Yamamoto Y, Kuramochi-Miyagawa S, Iida N, Hoki Y, Murphy PJ, Toyoda A, et al: Role for piRNAs and noncoding RNA in de novo DNA methylation of the imprinted mouse Rasgrf1 locus. Science. 332:848–852. 2011. View Article : Google Scholar : PubMed/NCBI

81 

Zhang N, Hu G, Myers TG and Williamson PR: Protocols for the analysis of microRNA expression, biogenesis, and function in immune cells. Curr Protoc Immunol. 126:e782019. View Article : Google Scholar

82 

Fu Y, Zhang L, Zhang R, Xu S, Wang H, Jin Y and Wu Z: Enterovirus 71 suppresses miR-17-92 cluster through up-regulating methylation of the miRNA promoter. Front Microbiol. 10:6252019. View Article : Google Scholar

83 

Younger ST, Pertsemlidis A and Corey DR: Predicting potential miRNA target sites within gene promoters. Bioorg Med Chem Lett. 19:3791–3794. 2009. View Article : Google Scholar

84 

Chellini L, Frezza V and Paronetto MP: Dissecting the transcriptional regulatory networks of promoter-associated noncoding RNAs in development and cancer. J Exp Clin Cancer Res. 39:512020. View Article : Google Scholar : PubMed/NCBI

85 

Zhang Y and Zhang H: RNAa induced by TATA box-targeting microRNAs. Adv Exp Med Biol. 983:91–111. 2017. View Article : Google Scholar

86 

Xiao M, Li J, Li W, Wang Y, Wu F, Xi Y, Zhang L, Ding C, Luo H, Li Y, et al: MicroRNAs activate gene transcription epigenetically as an enhancer trigger. RNA Biol. 14:1326–1334. 2017. View Article : Google Scholar

87 

Zhang Y, Liu W, Chen Y, Liu J, Wu K, Su L, Zhang W, Jiang Y, Zhang X, Zhang Y, et al: A cellular microRNA facilitates regulatory t lymphocyte development by targeting the FOXP3 promoter TATA-box motif. J Immunol. 200:1053–1063. 2017. View Article : Google Scholar

88 

Bai Y, Pan B, Zhan X, Silver H and Li J: MicroRNA 195-5p targets foxo3 promoter region to regulate its expression in granulosa cells. Int J Mol Sci. 22:67212021. View Article : Google Scholar

89 

Cao R and Zhang Y: The functions of E(Z)/EZH2-mediated methylation of lysine 27 in histone H3. Curr Opin Genet Dev. 14:155–164. 2004. View Article : Google Scholar : PubMed/NCBI

90 

Mellor J, Dudek P and Clynes D: A glimpse into the epigenetic landscape of gene regulation. Curr Opin Genet Dev. 18:116–122. 2008. View Article : Google Scholar : PubMed/NCBI

91 

Guo H, Pu M, Tai Y, Chen Y and Ren J: Nuclear miR-30b-5p suppresses TFEB-mediated lysosomal biogenesis and autophagy. Cell Death Differ. 28:320–336. 2020. View Article : Google Scholar : PubMed/NCBI

92 

Li LC: Chromatin remodeling by the small RNA machinery in mammalian cells. Epigenetics. 9:45–52. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Barlak N, Capik O, Kilic A, Sanli F, Aytatli A, Yazici A, Karatas EA, Ortucu S and Karatas OF: MicroRNA-145 transcriptionally regulates semaphorin 3A expression in prostate cancer cells. Cell Biol Int. 45:1082–1090. 2021. View Article : Google Scholar

94 

Song M, Wang Y, Zhou P, Wang J, Xu H and Zheng J: MicroRNA-361-5p aggravates acute pancreatitis by promoting interleukin-17A secretion via impairment of nuclear factor IA-dependent hes1 downregulation. J Med Chem. 64:16541–16552. 2021. View Article : Google Scholar : PubMed/NCBI

95 

Zhang K, Wang YY, Xu Y, Zhang L, Zhu J, Si PC, Wang YW and Ma R: A two-miRNA signature of upregulated miR-185-5p and miR-362-5p as a blood biomarker for breast cancer. Pathol Res Pract. 222:1534582021. View Article : Google Scholar

96 

Van Roosbroeck K and Calin GA: Cancer hallmarks and MicroRNAs: The therapeutic connection. Adv Cancer Res. 135:119–149. 2017. View Article : Google Scholar : PubMed/NCBI

97 

Kolenda T, Przybyla W, Teresiak A, Mackiewicz A and Lamperska KM: The mystery of let-7d-a small RNA with great power. Contemp Oncol (Pozn). 18:293–301. 2014.PubMed/NCBI

98 

Seviour EG, Sehgal V, Lu Y, Luo Z, Moss T, Zhang F, Hill SM, Liu W, Maiti SN, Cooper L, et al: Functional proteomics identifies miRNAs to target a p27/Myc/phospho-Rb signature in breast and ovarian cancer. Oncogene. 35:691–701. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Schmid G, Notaro S, Reimer D, Abdel-Azim S, Duggan-Peer M, Holly J, Fiegl H, Rossler J, Wiedemair A, Concin N, et al: Expression and promotor hypermethylation of miR-34a in the various histological subtypes of ovarian cancer. BMC Cancer. 16:1022016. View Article : Google Scholar : PubMed/NCBI

100 

Wong KY, Yu L and Chim CS: DNA methylation of tumor suppressor miRNA genes: A lesson from the miR-34 family. Epigenomics. 3:83–92. 2011. View Article : Google Scholar : PubMed/NCBI

101 

Yang Z, Fang S, Di Y, Ying W, Tan Y and Gu W: Modulation of NF-κB/miR-21/PTEN pathway sensitizes non-small cell lung cancer to cisplatin. PLoS One. 10:e01215472015. View Article : Google Scholar : PubMed/NCBI

102 

Xu X, Zhu S, Tao Z and Ye S: High circulating miR-18a, miR-20a, and miR-92a expression correlates with poor prognosis in patients with non-small cell lung cancer. Cancer Med. 7:21–31. 2018. View Article : Google Scholar : PubMed/NCBI

103 

Li H, Zhou H, Luo J and Huang J: MicroRNA-17-5p inhibits proliferation and triggers apoptosis in non-small cell lung cancer by targeting transforming growth factor β receptor 2. Exp Ther Med. 13:2715–2722. 2017. View Article : Google Scholar : PubMed/NCBI

104 

Yang Z, Liu C, Wu H, Xie Y and Zhang X: CSB affected on the sensitivity of lung cancer cells to platinum-based drugs through the global decrease of let-7 and miR-29. BMC Cancer. 19:9482019. View Article : Google Scholar : PubMed/NCBI

105 

Kristensen LS, Andersen MS, Stagsted L, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar

106 

Zheng L, Jiao W, Mei H, Song H, Li D, Xiang X, Chen Y, Yang F, Li H, Huang K and Tong Q: MiRNA-337-3p inhibits gastric cancer progression through repressing myeloid zinc finger 1-facilitated expression of matrix metalloproteinase 14. Oncotarget. 7:40314–40328. 2016. View Article : Google Scholar

107 

Zhang L, Zhou Q, Qiu Q, Hou L and Lu Y: CircPLEKHM3 acts as a tumor suppressor through regulation of the miR-9/BRCA1/DNAJB6/KLF4/AKT1 axis in ovarian cancer. Mol Cancer. 18:1442019. View Article : Google Scholar : PubMed/NCBI

108 

Christofides A, Papagregoriou G, Dweep H, Makrides N, Gretz N, Felekkis K and Deltas C: Evidence for miR-548c-5p regulation of FOXC2 transcription through a distal genomic target site in human podocytes. Cell Mol Life Sci. 77:2441–2459. 2020. View Article : Google Scholar

109 

Dharap A, Pokrzywa C, Murali S, Pandi G and Vemuganti R: MicroRNA miR-324-3p induces promoter-mediated expression of RelA gene. PLoS One. 8:e794672013. View Article : Google Scholar : PubMed/NCBI

110 

Huang V: Endogenous miRNAa: MiRNA-mediated gene upregulation. Adv Exp Med Biol. 983:65–79. 2017. View Article : Google Scholar

111 

Huang V, Place RF, Portnoy V, Wang J, Qi Z, Jia Z, Yu A, Shuman M, Yu J and Li LC: Upregulation of Cyclin B1 by miRNA and its implications in cancer. Nucleic Acids Res. 40:1695–1707. 2012. View Article : Google Scholar : PubMed/NCBI

112 

Matsui M, Chu Y, Zhang H, Gagnon KT, Shaikh S, Kuchimanchi S, Manoharan M, Corey DR and Janowski BA: Promoter RNA links transcriptional regulation of inflammatory pathway genes. Nucleic Acids Res. 41:10086–10109. 2013. View Article : Google Scholar : PubMed/NCBI

113 

Turner M, Jiao A and Slack FJ: Autoregulation of lin-4 microRNA transcription by RNA activation (RNAa) in C. Elegans. Cell Cycle. 13:772–781. 2014. View Article : Google Scholar : PubMed/NCBI

114 

Vera H, Yi Q, Ji W, Xiaoling W, Place RF, Guiting L, Lue TF, Long-Cheng L and Dong-Yan J: RNAa is conserved in mammalian cells. PLoS One. 5:e88482010. View Article : Google Scholar : PubMed/NCBI

115 

Qu H, Zheng L, Pu J, Mei H, Xiang X, Zhao X, Li D, Li S, Mao L, Huang K and Tong Q: MiRNA-558 promotes tumorigenesis and aggressiveness of neuroblastoma cells through activating the transcription of heparanase. Hum Mol Genet. 24:2539–2551. 2015. View Article : Google Scholar

116 

Wang C, Chen Z, Ge Q, Hu J, Li F, Hu J, Xu H, Ye Z and Li LC: Up-regulation of p21(WAF1/CIP1) by miRNAs and its implications in bladder cancer cells. FEBS Lett. 588:4654–4664. 2014. View Article : Google Scholar

117 

Zou Q, Liang Y, Luo H and Yu W: MiRNA-mediated RNAa by targeting enhancers. Adv Exp Med Biol. 983:113–125. 2017. View Article : Google Scholar

118 

Huang YP, Qiu LZ and Zhou GP: MicroRNA-939 down-regulates CD2-associated protein by targeting promoter in HEK-293T cells. Renal Failure. 38:508–513. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Mao H, Zhu C, Zong D, Weng C, Yang X, Huang H, Liu D, Feng X and Guang S: The nrde pathway mediates small-RNA-directed histone H3 lysine 27 Trimethylation in Caenorhabditis elegans. Curr Biol. 25:2398–2403. 2015. View Article : Google Scholar

120 

Liu X, Fan Z, Li Y, Li Z, Zhou Z, Yu X, Wan J, Min Z, Yang L and Li D: MicroRNA-196a-5p inhibits testicular germ cell tumor progression via NR6A1/E-cadherin axis. Cancer Med. 9:9107–9122. 2020. View Article : Google Scholar : PubMed/NCBI

121 

Guo F, Gao Y, Sui G, Jiao D, Sun L, Fu Q and Jin C: MiR-375-3p/YWHAZ/β-catenin axis regulates migration, invasion, EMT in gastric cancer cells. Clin Exp Pharmacol Physiol. 46:144–152. 2019. View Article : Google Scholar

122 

Li J and Zou X: MiR-652 serves as a prognostic biomarker in gastric cancer and promotes tumor proliferation, migration, and invasion via targeting RORA. Cancer Biomark. 26:323–331. 2019. View Article : Google Scholar : PubMed/NCBI

123 

To KK, Leung WW and Ng SS: A novel miR-203-DNMT3b-ABCG2 regulatory pathway predisposing colorectal cancer development. Mol Carcinog. 56:4642016. View Article : Google Scholar : PubMed/NCBI

124 

Wang C, Chen Q, Li S, Li S and Zhao Z: Dual inhibition of PCDH9 expression by miR-215-5p up-regulation in gliomas. Oncotarget. 8:10287–10297. 2016. View Article : Google Scholar

125 

Tan Y, Zhang B, Wu T, Skogerbø G, Zhu X, Guo X, He S and Chen R: Transcriptional inhibiton of Hoxd4 expression by miRNA-10a in human breast cancer cells. BMC Mol Biol. 10:122009. View Article : Google Scholar

126 

Kang MR, Park KH, Yang JO, Lee CW and Kang JS: MiR-6734 up-regulates p21 gene expression and induces cell cycle arrest and apoptosis in colon cancer cells. PLoS One. 11:e1609612016. View Article : Google Scholar

127 

Zhang Y, Fan M, Geng G, Liu B, Huang Z, Luo H, Zhou J, Guo X, Cai W and Zhang H: A novel HIV-1-encoded microRNA enhances its viral replication by targeting the TATA box region. Retrovirology. 11:232014. View Article : Google Scholar : PubMed/NCBI

128 

Li S, Zhu Y, Liang Z, Wang X and Xie L: Up-regulation of p16 by miR-877-3p inhibits proliferation of bladder cancer. Oncotarget. 7:51773–51783. 2016. View Article : Google Scholar

129 

Kim DH, Saetrom P, Snove O Jr and Rossi JJ: MicroRNA-directed transcriptional gene silencing in mammalian cells. Proc Natl Acad Sci USA. 105:16230–16235. 2008. View Article : Google Scholar : PubMed/NCBI

130 

Cui C, Yu J, Huang S, Zhu H and Huang Z: Transcriptional regulation of gene expression by microRNAs as endogenous decoys of transcription factors. Cell Physiol Biochem. 33:1698–1714. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Zardo G, Ciolfi A, Vian L, Starnes LM, Billi M, Racanicchi S, Maresca C, Fazi F, Travaglini L, Noguera N, et al: Polycombs and microRNA-223 regulate human granulopoiesis by transcriptional control of target gene expression. Blood. 119:4034–4046. 2012. View Article : Google Scholar : PubMed/NCBI

132 

Sepramaniam S, Ying LK, Armugam A, Wintour EM and Jeyaseelan K: MicroRNA-130a represses transcriptional activity of aquaporin 4 M1 promoter. J Biol Chem. 287:12006–12015. 2012. View Article : Google Scholar : PubMed/NCBI

133 

Miao L, Yao H, Li C, Pu M, Yao X, Yang H, Qi X, Ren J and Wang Y: A dual inhibition: MicroRNA-552 suppresses both transcription and translation of cytochrome P450 2E1. Biochim Biophys Acta. 1859:650–662. 2016. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Liu J, Yang T, Huang Z, Chen H and Bai Y: Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). Int J Mol Med 50: 92, 2022.
APA
Liu, J., Yang, T., Huang, Z., Chen, H., & Bai, Y. (2022). Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). International Journal of Molecular Medicine, 50, 92. https://doi.org/10.3892/ijmm.2022.5148
MLA
Liu, J., Yang, T., Huang, Z., Chen, H., Bai, Y."Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review)". International Journal of Molecular Medicine 50.1 (2022): 92.
Chicago
Liu, J., Yang, T., Huang, Z., Chen, H., Bai, Y."Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review)". International Journal of Molecular Medicine 50, no. 1 (2022): 92. https://doi.org/10.3892/ijmm.2022.5148
Copy and paste a formatted citation
x
Spandidos Publications style
Liu J, Yang T, Huang Z, Chen H and Bai Y: Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). Int J Mol Med 50: 92, 2022.
APA
Liu, J., Yang, T., Huang, Z., Chen, H., & Bai, Y. (2022). Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review). International Journal of Molecular Medicine, 50, 92. https://doi.org/10.3892/ijmm.2022.5148
MLA
Liu, J., Yang, T., Huang, Z., Chen, H., Bai, Y."Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review)". International Journal of Molecular Medicine 50.1 (2022): 92.
Chicago
Liu, J., Yang, T., Huang, Z., Chen, H., Bai, Y."Transcriptional regulation of nuclear miRNAs in tumorigenesis (Review)". International Journal of Molecular Medicine 50, no. 1 (2022): 92. https://doi.org/10.3892/ijmm.2022.5148
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team