|
1
|
Brunt EM, Wong VW, Nobili V, Day CP,
Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA
and Rinella ME: Nonalcoholic fatty liver disease. Nat Rev Dis
Primers. 1:150802015. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Gusdon AM, Song KX and Qu S: Nonalcoholic
fatty liver disease: Pathogenesis and therapeutics from a
mitochondria-centric perspective. Oxid Med Cell Longev.
2014:6370272014. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Zhu JZ, Dai YN, Wang YM, Zhou QY, Yu CH
and Li YM: Prevalence of nonalcoholic fatty liver disease and
economy. Dig Dis Sci 2015. Nov;60:3194–3202. 2015. View Article : Google Scholar
|
|
4
|
Neuschwander-Tetri BA: Non-alcoholic fatty
liver disease. BMC Med. 15:452017. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Stefan N, Häring H and Cusi K:
Non-alcoholic fatty liver disease: Causes, diagnosis,
cardiometabolic consequences, and treatment strategies. Lancet
Diabetes Endocrinol. 7:313–324. 2019. View Article : Google Scholar
|
|
6
|
Manne V, Handa P and Kowdley KV:
Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic
steatohepatitis. Clin Liver Dis. 22:23–37. 2018. View Article : Google Scholar
|
|
7
|
Varela-Rey M, Embade N, Ariz U, Lu SC,
Mato JM and Martínez-Chantar ML: Non-alcoholic steatohepatitis and
animal models: Understanding the human disease. Int J Biochem Cell
Biol. 41:969–976. 2009. View Article : Google Scholar
|
|
8
|
Day CP and James OF: Steatohepatitis: A
tale of two 'hits'? Gastroenterology. 114:842–845. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Friedman SL, Neuschwander-Tetri BA,
Rinella M and Sanyal AJ: Mechanisms of NAFLD development and
therapeutic strategies. Nat Med. 24:908–922. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Buzzetti E, Pinzani M and Tsochatzis E:
The multiple-hit pathogenesis of non-alcoholic fatty liver disease
(NAFLD). Metabolism. 65:1038–1048. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Schuppan D and Schattenberg JM:
Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic
approaches. J Gastroenterol Hepatol. 28(Suppl 1): S68–S76. 2013.
View Article : Google Scholar
|
|
12
|
Cortez-Pinto H, de Moura MC and Day CP:
Non-alcoholic steatohepatitis: From cell biology to clinical
practice. J Hepatol. 44:197–208. 2006. View Article : Google Scholar
|
|
13
|
Younossi ZM, Blissett D, Blissett R, Henry
L, Stepanova M, Younossi Y, Racila A, Hunt S and Beckerman R: The
economic and clinical burden of nonalcoholic fatty liver disease in
the United States and Europe. Hepatology. 64:1577–1586. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wong RJ, Aguilar M, Cheung R, Perumpail
RB, Harrison SA, Younossi ZM and Ahmed A: Nonalcoholic
steatohepatitis is the second leading etiology of liver disease
among adults awaiting liver transplantation in the United States.
Gastroenterology. 148:547–555. 2015. View Article : Google Scholar
|
|
15
|
Kiselyov K and Muallem S: ROS and
intracellular ion channels. Cell Calcium. 60:108–114. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Guéguinou M, Chantôme A, Fromont G,
Bougnoux P, Vandier C and Potier-Cartereau M: KCa and Ca(2+)
channels: The complex thought. Biochim Biophys Acta.
1843:2322–2333. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Ramírez A, Vázquez-Sánchez AY,
Carrión-Robalino N and Camacho J: Ion channels and oxidative stress
as a potential link for the diagnosis or treatment of liver
diseases. Oxid Med Cell Longev. 2016:39287142016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ali ES, Rychkov GY and Barritt GJ:
Targeting Ca2+ signaling in the initiation, promotion
and progression of hepatocellular carcinoma. Cancers (Basel).
12:27552020. View Article : Google Scholar
|
|
19
|
Ben-Moshe S and Itzkovitz S: Spatial
heterogeneity in the mammalian liver. Nat Rev Gastroenterol
Hepatol. 16:395–410. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Garcin I and Tordjmann T: Calcium
signalling and liver regeneration. Int J Hepatol. 2012:6306702012.
View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Taira Z, Ueda Y, Monmasu H, Yamase D,
Miyake S and Shiraishi M: Characteristics of intracellular
Ca2+ signals consisting of two successive peaks in
hepatocytes during liver regeneration after 70% partial hepatectomy
in rats. J Exp Pharmacol. 8:21–33. 2016. View Article : Google Scholar :
|
|
22
|
Berridge MJ, Bootman MD and Roderick HL:
Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev
Mol Cell Biol. 4:517–529. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Wu L, Lian W and Zhao L: Calcium signaling
in cancer progression and therapy. FEBS J. 288:6187–6205. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Oliva-Vilarnau N, Hankeova S, Vorrink SU,
Mkrtchian S, Andersson ER and Lauschke VM: Calcium signaling in
liver injury and regeneration. Front Med (Lausanne). 5:1922018.
View Article : Google Scholar
|
|
25
|
Bartlett P, Gaspers L, Pierobon N and
Thomas A: Calcium-dependent regulation of glucose homeostasis in
the liver. Cell Calcium. 55:306–316. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chen CC, Hsu LW, Chen KD, Chiu KW, Chen CL
and Huang KT: Emerging roles of calcium signaling in the
development of non-alcoholic fatty liver disease. Int J Mol Sci.
23:2562021. View Article : Google Scholar
|
|
27
|
Wang J, He W, Tsai PJ, Chen PH, Ye M, Guo
J and Su Z: Mutual interaction between endoplasmic reticulum and
mitochondria in nonalcoholic fatty liver disease. Lipids Health
Dis. 19:722020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Arruda A, Pers B, Parlakgul G, Güney E,
Goh T, Cagampan E, Lee GY, Goncalves RL and Hotamisligil GS:
Defective STIM-mediated store operated Ca2+ entry in
hepatocytes leads to metabolic dysfunction in obesity. Elife.
6:e299682017. View Article : Google Scholar
|
|
29
|
Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck
TJ, Ellisman MH, Stauderman KA and Cahalan MD: STIM1 is a Ca2+
sensor that activates CRAC channels and migrates from the Ca2+
store to the plasma membrane. Nature. 437:902–905. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Park SW, Zhou Y, Lee J, Lee J and Ozcan U:
Sarco(endo)plasmic reticulum Ca2+-ATPase 2b is a major regulator of
endoplasmic reticulum stress and glucose homeostasis in obesity.
Proc Natl Acad Sci USA. 107:19320–19325. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Egnatchik RA, Leamy AK, Jacobson DA,
Shiota M and Young JD: ER calcium release promotes mitochondrial
dysfunction and hepatic cell lipotoxicity in response to palmitate
overload. Mol Metab. 3:544–553. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Fu S, Yang L, Li P, Hofmann O, Dicker L,
Hide W, Lin X, Watkins SM, Ivanov AR and Hotamisligil GS: Aberrant
lipid metabolism disrupts calcium homeostasis causing liver
endoplasmic reticulum stress in obesity. Nature. 473:528–531. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Amaya M and Nathanson M: Calcium signaling
in the liver. Compr Physiol. 3:515–539. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Szabadkai G, Bianchi K, Várnai P, De
Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto
R: Chaperone-mediated coupling of endoplasmic reticulum and
mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Masarone M, Rosato V, Dallio M, Gravina
AG, Aglitti A, Loguercio C, Federico A and Persico M: Role of
oxidative stress in pathophysiology of nonalcoholic fatty liver
disease. Oxid Med Cell Longev. 2018:95476132018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Luzio JP, Hackmann Y, Dieckmann NM and
Griffiths GM: The biogenesis of lysosomes and lysosome-related
organelles. Cold Spring Harb Perspect Biol. 6:a0168402014.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Singh R, Kaushik S, Wang Y, Xiang Y, Novak
I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates
lipid metabolism. Nature. 458:1131–1135. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Lin CW, Zhang H, Li M, Xiong X, Chen X,
Chen X, Dong XC and Yin XM: Pharmacological promotion of autophagy
alleviates steatosis and injury in alcoholic and non-alcoholic
fatty liver conditions in mice. J Hepatol. 58:993–999. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Ali ES, Rychkov GY and Barritt GJ:
Deranged hepatocyte intracellular Ca2+ homeostasis and
the progression of non-alcoholic fatty liver disease to
hepatocellular carcinoma. Cell Calcium. 82:1020572019. View Article : Google Scholar
|
|
40
|
Miyagawa K, Oe S, Honma Y, Izumi H, Baba R
and Harada M: Lipid-induced endoplasmic reticulum stress impairs
selective autophagy at the step of autophagosome-lysosome fusion in
hepatocytes. Am J Pathol. 186:1861–1873. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Koo JH and Han CY: Signaling nodes
associated with endoplasmic reticulum stress during NAFLD
progression. Biomolecules. 11:2422021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ali ES and Petrovsky N: Calcium signaling
as a therapeutic target for liver steatosis. Trends Endocrinol
Metab. 30:270–281. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Grimm C, Holdt LM, Chen CC, Hassan S,
Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, et al:
High susceptibility to fatty liver disease in two-pore channel
2-deficient mice. Nat Commun. 5:46992014. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Li Q, Li L, Wang F, Chen J, Zhao Y, Wang
P, Nilius B, Liu D and Zhu Z: Dietary capsaicin prevents
nonalcoholic fatty liver disease through transient receptor
potential vanilloid 1-mediated peroxisome proliferator-activate
receptor delta activation. Pflugers Arch. 465:1303–1316. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Li L, Chen J, Ni Y, Feng X, Zhao Z, Wang
P, Sun J, Yu H, Yan Z, Liu D, et al: TRPV1 activation prevents
nonalcoholic fatty liver through UCP2 upregulation in mice.
Pflugers Arch. 463:727–732. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Wang K, Tan W, Liu X, Deng L, Huang L,
Wang X and Gao X: New insight and potential therapy for NAFLD:
CYP2E1 and flavonoids. Biomed Pharmacother. 137:1113262021.
View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Seth RK, Das S, Dattaroy D,
Chandrashekaran V, Alhasson F, Michelotti G, Nagarkatti M,
Nagarkatti P, Diehl AM, Bell PD, et al: TRPV4 activation of
endothelial nitric oxide synthase resists nonalcoholic fatty liver
disease by blocking CYP2E1-mediated redox toxicity. Free Radic Biol
Med. 102:260–273. 2017. View Article : Google Scholar
|
|
48
|
Feng Q, Liu C, Gao W, Geng XL and Dai N:
Salidroside-mitigated inflammatory injury of hepatocytes with
non-alcoholic fatty liver disease via inhibition TRPM2 ion channel
activation. Diabetes Metab Syndr Obes. 12:2755–2763. 2019.
View Article : Google Scholar
|
|
49
|
Ali ES, Rychkov GY and Barritt GJ: TRPM2
non-selective cation channels in liver injury mediated by reactive
oxygen species. Antioxidants (Basel). 10:12432021. View Article : Google Scholar
|
|
50
|
Yu T, Zheng E, Li Y, Li Y, Xia J, Ding Q,
Hou Z, Ruan XZ, Zhao L and Chen Y: Src-mediated Tyr353
phosphorylation of IP3R1 promotes its stability and causes
apoptosis in palmitic acid-treated hepatocytes. Exp Cell Res.
399:1124382021. View Article : Google Scholar
|
|
51
|
Feriod CN, Oliveira AG, Guerra MT, Nguyen
L, Richards KM, Jurczak MJ, Ruan HB, Camporez JP, Yang X, Shulman
GI, et al: Hepatic inositol 1,4,5 trisphosphate receptor type 1
mediates fatty liver. Hepatol Commun. 1:23–35. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Khamphaya T, Chukijrungroat N,
Saengsirisuwan V, Mitchell-Richards KA, Robert ME, Mennone A,
Ananthanarayanan M, Nathanson MH and Weerachayaphorn J:
Nonalcoholic fatty liver disease impairs expression of the type II
inositol 1,4,5-trisphosphate receptor. Hepatology. 67:560–574.
2018. View Article : Google Scholar
|
|
53
|
Smedlund K, Dube P and Vazquez G: Early
steatohepatitis in hyperlipidemic mice with endothelial-specific
gain of TRPC3 function precedes changes in aortic atherosclerosis.
Physiol Genomics. 48:644–649. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Zhu Y, Zhang C, Xu F, Zhao M, Bergquist J,
Yang C, Liu X, Tan Y, Wang X, Li S, et al: System biology analysis
reveals the role of voltage-dependent anion channel in
mitochondrial dysfunction during non-alcoholic fatty liver disease
progression into hepatocellular carcinoma. Cancer Sci.
111:4288–4302. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Ali ES, Rychkov GY and Barritt GJ:
Metabolic disorders and cancer: Hepatocyte store-operated
Ca2+ channels in nonalcoholic fatty liver disease. Adv
Exp Med Biol. 993:595–621. 2017. View Article : Google Scholar
|
|
56
|
Wilson CH, Ali ES, Scrimgeour N, Martin
AM, Hua J, Tallis GA, Rychkov GY and Barritt GJ: Steatosis inhibits
liver cell store-operated Ca2+ entry and reduces ER
Ca2+ through a protein kinase C-dependent mechanism.
Biochem J. 466:379–390. 2015. View Article : Google Scholar
|
|
57
|
Zhang B, Yang W, Zou Y, Li M, Guo H, Zhang
H, Xia C and Xu C: NEFA-sensitive Orai1 expression in regulation of
de novo lipogenesis. Cell Physiol Biochem. 47:1310–1317. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang B, Li M, Zou Y, Guo H, Zhang B, Xia
C, Zhang H, Yang W and Xu C: NFκB/Orai1 facilitates endoplasmic
reticulum stress by oxidative stress in the pathogenesis of
non-alcoholic fatty liver disease. Front Cell Dev Biol. 7:2022019.
View Article : Google Scholar
|
|
59
|
Chatterjee S, Rana R, Corbett J, Kadiiska
MB, Goldstein J and Mason RP: P2X7 receptor-NADPH oxidase axis
mediates protein radical formation and Kupffer cell activation in
carbon tetrachloride-mediated steatohepatitis in obese mice. Free
Radic Biol Med. 52:1666–1679. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Das S, Seth RK, Kumar A, Kadiiska MB,
Michelotti G, Diehl AM and Chatterjee S: Purinergic receptor X7 is
a key modulator of metabolic oxidative stress-mediated autophagy
and inflammation in experimental nonalcoholic steatohepatitis. Am J
Physiol Gastrointest Liver Physiol. 305:G950–G963. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Freise C, Heldwein S, Erben U, Hoyer J,
Köhler R, Jöhrens K, Patsenker E, Ruehl M, Seehofer D, Stickel F
and Somasundaram R: K+-channel inhibition reduces portal
perfusion pressure in fibrotic rats and fibrosis associated
characteristics of hepatic stellate cells. Liver Int. 35:1244–1252.
2015. View Article : Google Scholar
|
|
62
|
Paka L, Smith DE, Jung D, McCormack S,
Zhou P, Duan B, Li JS, Shi J, Hao YJ, Jiang K, et al:
Anti-steatotic and anti-fibrotic effects of the KCa3.1 channel
inhibitor, senicapoc, in non-alcoholic liver disease. World J
Gastroenterol. 23:4181–4190. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Morgan AJ and Galione A: Two-pore channels
(TPCs): Current controversies. Bioessays. 36:173–183. 2014.
View Article : Google Scholar
|
|
64
|
Patel S and Kilpatrick BS: Two-pore
channels and disease. Biochim Biophys Acta Mol Cell Res.
1865:1678–1686. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Bishnoi M, Khare P, Brown L and Panchal
SK: Transient receptor potential (TRP) channels: A metabolic TR(i)P
to obesity prevention and therapy. Obes Rev. 19:1269–1292. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhu Z, Luo Z, Ma S and Liu D: TRP channels
and their implications in metabolic diseases. Pflugers Arch.
461:211–223. 2011. View Article : Google Scholar
|
|
67
|
Nilius B and Owsianik G: The transient
receptor potential family of ion channels. Genome Biol. 12:2182011.
View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Venkatachalam K and Montell C: TRP
channels. Annu Rev Biochem. 76:387–417. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao
TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ, et al: Activation of
transient receptor potential vanilloid type-1 channel prevents
adipogenesis and obesity. Circ Res. 100:1063–1070. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Uchida K, Dezaki K, Yoneshiro T, Watanabe
T, Yamazaki J, Saito M, Yada T, Tominaga M and Iwasaki Y:
Involvement of thermosensitive TRP channels in energy metabolism. J
Physiol Sci. 67:549–560. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Park HW and Lee JH: Calcium channel
blockers as potential therapeutics for obesity-associated autophagy
defects and fatty liver pathologies. Autophagy. 10:2385–2386. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Polyzos SA, Kountouras J and Mantzoros CS:
Obesity and nonalcoholic fatty liver disease: From pathophysiology
to therapeutics. Metabolism. 92:82–97. 2019. View Article : Google Scholar
|
|
73
|
Li J, Li X, Liu D, Zhang S, Tan N, Yokota
H and Zhang P: Phosphorylation of eIF2α signaling pathway
attenuates obesity-induced non-alcoholic fatty liver disease in an
ER stress and autophagy-dependent manner. Cell Death Dis.
11:10692020. View Article : Google Scholar
|
|
74
|
Baffy G: Uncoupling protein-2 and
non-alcoholic fatty liver disease. Front Biosci. 10:2082–2096.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Panchal SK, Bliss E and Brown L: Capsaicin
in metabolic syndrome. Nutrients. 10:6302018. View Article : Google Scholar :
|
|
76
|
Yang L, Li P, Fu S, Calay E and
Hotamisligil GS: Defective hepatic autophagy in obesity promotes ER
stress and causes insulin resistance. Cell Metab. 11:467–478. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Everaerts W, Nilius B and Owsianik G: The
vanilloid transient receptor potential channel TRPV4: From
structure to disease. Prog Biophys Mol Biol. 103:2–17. 2010.
View Article : Google Scholar
|
|
78
|
Ye L, Kleiner S, Wu J, Sah R, Gupta RK,
Banks AS, Cohen P, Khandekar MJ, Boström P, Mepani RJ, et al: TRPV4
is a regulator of adipose oxidative metabolism, inflammation, and
energy homeostasis. Cell. 151:96–110. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Zhan L, Yang Y, Ma TT, Huang C, Meng XM,
Zhang L and Li J: Transient receptor potential vanilloid 4 inhibits
rat HSC-T6 apoptosis through induction of autophagy. Mol Cell
Biochem. 402:9–22. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Song Y, Zhan L, Yu M, Huang C, Meng X, Ma
T, Zhang L and Li J: TRPV4 channel inhibits TGF-β1-induced
proliferation of hepatic stellate cells. PLoS One. 9:e1011792014.
View Article : Google Scholar
|
|
81
|
Fonfria E, Murdock PR, Cusdin FS, Benham
CD, Kelsell RE and McNulty S: Tissue distribution profiles of the
human TRPM cation channel family. J Recept Signal Transduct Res.
26:159–178. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Kheradpezhouh E, Ma L, Morphett A, Barritt
GJ and Rychkov GY: TRPM2 channels mediate acetaminophen-induced
liver damage. Proc Natl Acad Sci USA. 111:3176–3181. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Vanderheyden V, Devogelaere B, Missiaen L,
De Smedt H, Bultynck G and Parys JB: Regulation of inositol
1,4,5-trisphosphate-induced Ca2+ release by reversible
phosphorylation and dephosphorylation. Biochim Biophys Acta.
1793:959–970. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Arruda AP, Pers BM, Parlakgül G, Güney E,
Inouye K and Hotamisligil GS: Chronic enrichment of hepatic
endoplasmic reticulum-mitochondria contact leads to mitochondrial
dysfunction in obesity. Nat Med. 20:1427–1435. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Rodrigues MA, Gomes DA, Leite MF, Grant W,
Zhang L, Lam W, Cheng YC, Bennett AM and Nathanson MH:
Nucleoplasmic calcium is required for cell proliferation. J Biol
Chem. 282:17061–17068. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lemasters JJ and Holmuhamedov E:
Voltage-dependent anion channel (VDAC) as mitochondrial
governator-thinking outside the box. Biochim Biophys Acta.
1762:181–190. 2006. View Article : Google Scholar
|
|
87
|
Shoshan-Barmatz V, De Pinto V,
Zweckstetter M, Raviv Z, Keinan N and Arbel N: VDAC, a
multi-functional mitochondrial protein regulating cell life and
death. Mol Aspects Med. 31:227–285. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Pittala S, Krelin Y, Kuperman Y and
Shoshan-Barmatz V: A mitochondrial VDAC1-based peptide greatly
suppresses steatosis and NASH-associated pathologies in a mouse
model. Mol Ther. 27:1848–1862. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Prakriya M and Lewis RS: Store-operated
calcium channels. Physiol Rev. 95:1383–1436. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kappel S, Borgström A, Stoklosa P, Dörr K
and Peinelt C: Store-operated calcium entry in disease: Beyond
STIM/Orai expression levels. Semin Cell Dev Biol. 94:66–73. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Li Y, Ge M, Ciani L, Kuriakose G, Westover
EJ, Dura M, Covey DF, Freed JH, Maxfield FR, Lytton J and Tabas I:
Enrichment of endoplasmic reticulum with cholesterol inhibits
sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in
parallel with increased order of membrane lipids: Implications for
depletion of endoplasmic reticulum calcium stores and apoptosis in
cholesterol-loaded macrophages. J Biol Chem. 279:37030–37039. 2004.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Maus M, Cuk M, Patel B, Lian J, Ouimet M,
Kaufmann U, Yang J, Horvath R, Hornig-Do HT,
Chrzanowska-Lightowlers ZM, et al: Store-operated Ca2+
entry controls induction of lipolysis and the transcriptional
reprogramming to lipid metabolism. Cell Metab. 25:698–712. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Jain S and Jacobson KA: Purinergic
signaling in liver pathophysiology. Front Endocrinol (Lausanne).
12:7184292021. View Article : Google Scholar
|
|
94
|
Jiang M, Cui BW, Wu YL, Zhang Y, Shang Y,
Liu J, Yang HX, Qiao CY, Zhan ZY, Ye H, et al: P2X7R orchestrates
the progression of murine hepatic fibrosis by making a feedback
loop from macrophage to hepatic stellate cells. Toxicol Lett.
333:22–32. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Takenouchi T, Nakai M, Iwamaru Y, Sugama
S, Tsukimoto M, Fujita M, Wei J, Sekigawa A, Sato M, Kojima S, et
al: The activation of P2X7 receptor impairs lysosomal functions and
stimulates the release of autophagolysosomes in microglial cells. J
Immunol. 182:2051–2062. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chatterjee S and Das S: P2X7 receptor as a
key player in oxidative stress-driven cell fate in nonalcoholic
steatohepatitis. Oxid Med Cell Longev. 2015:1724932015. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Wulff H and Castle NA: Therapeutic
potential of KCa3.1 blockers: Recent advances and promising trends.
Expert Rev Clin Pharmacol. 3:385–396. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Alkhouri N, Dixon LJ and Feldstein AE:
Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids
are created equal. Expert Rev Gastroenterol Hepatol. 3:445–451.
2009. View Article : Google Scholar : PubMed/NCBI
|