Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
September-2022 Volume 50 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
September-2022 Volume 50 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of Ca2+ channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review)

  • Authors:
    • Xingyue Chen
    • Li Zhang
    • Liming Zheng
    • Biguang Tuo
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Digestive Disease Hospital, Affiliated Hospital of Zunyi Medical University, Zunyi, Guizhou 563003, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 113
    |
    Published online on: July 4, 2022
       https://doi.org/10.3892/ijmm.2022.5169
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Non‑alcoholic fatty liver disease (NAFLD) is a clinically progressive illness that can advance from simple fatty liver to non-alcoholic hepatitis and liver fibrosis. Cirrhosis and hepatocellular carcinoma are two of the most common diseases caused by NAFLD. As there are no early disease biomarkers and no US Food and Drug Administration‑approved medications, treatment for NAFLD is still focused on altering lifestyle and dietary habits, which makes it difficult to treat effectively. As a result, a novel treatment is urgently needed to prevent NAFLD progression. Calcium (Ca2+) channels regulate intracellular Ca2+ homeostasis via the mediation of Ca2+ flow. Previous studies have reported that Ca2+ channel expression varies throughout the development and progression of NAFLD, which results in the dysregulation of intracellular Ca2+ homeostasis, endoplasmic reticulum stress, mitochondrial dysfunction and autophagy suppression, all of which contribute to NAFLD progression. Several types of Ca2+ channels (including two‑pore segment channel 2, transient receptor potential, inositol triphosphate receptor, voltage‑dependent anion channel 1, store‑operated Ca2+ entry, purinergic receptor X7 and potassium Ca2+‑activated channel subfamily N member 4) have been identified as potential targets for preventing NAFLD development and controlling intracellular Ca2+ homeostasis. To achieve this, these channels can be blocked or activated, which exerts anti‑steatotic, anti‑inflammatory, anti‑fibrotic and other effects, which ultimately prevents the development of NAFLD. In the present review NAFLD therapeutics and the treatments that target Ca2+ channels that are currently being developed were examined.
View Figures

Figure 1

Figure 2

View References

1 

Brunt EM, Wong VW, Nobili V, Day CP, Sookoian S, Maher JJ, Bugianesi E, Sirlin CB, Neuschwander-Tetri BA and Rinella ME: Nonalcoholic fatty liver disease. Nat Rev Dis Primers. 1:150802015. View Article : Google Scholar : PubMed/NCBI

2 

Gusdon AM, Song KX and Qu S: Nonalcoholic fatty liver disease: Pathogenesis and therapeutics from a mitochondria-centric perspective. Oxid Med Cell Longev. 2014:6370272014. View Article : Google Scholar : PubMed/NCBI

3 

Zhu JZ, Dai YN, Wang YM, Zhou QY, Yu CH and Li YM: Prevalence of nonalcoholic fatty liver disease and economy. Dig Dis Sci 2015. Nov;60:3194–3202. 2015. View Article : Google Scholar

4 

Neuschwander-Tetri BA: Non-alcoholic fatty liver disease. BMC Med. 15:452017. View Article : Google Scholar : PubMed/NCBI

5 

Stefan N, Häring H and Cusi K: Non-alcoholic fatty liver disease: Causes, diagnosis, cardiometabolic consequences, and treatment strategies. Lancet Diabetes Endocrinol. 7:313–324. 2019. View Article : Google Scholar

6 

Manne V, Handa P and Kowdley KV: Pathophysiology of nonalcoholic fatty liver disease/nonalcoholic steatohepatitis. Clin Liver Dis. 22:23–37. 2018. View Article : Google Scholar

7 

Varela-Rey M, Embade N, Ariz U, Lu SC, Mato JM and Martínez-Chantar ML: Non-alcoholic steatohepatitis and animal models: Understanding the human disease. Int J Biochem Cell Biol. 41:969–976. 2009. View Article : Google Scholar

8 

Day CP and James OF: Steatohepatitis: A tale of two 'hits'? Gastroenterology. 114:842–845. 1998. View Article : Google Scholar : PubMed/NCBI

9 

Friedman SL, Neuschwander-Tetri BA, Rinella M and Sanyal AJ: Mechanisms of NAFLD development and therapeutic strategies. Nat Med. 24:908–922. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Buzzetti E, Pinzani M and Tsochatzis E: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 65:1038–1048. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Schuppan D and Schattenberg JM: Non-alcoholic steatohepatitis: Pathogenesis and novel therapeutic approaches. J Gastroenterol Hepatol. 28(Suppl 1): S68–S76. 2013. View Article : Google Scholar

12 

Cortez-Pinto H, de Moura MC and Day CP: Non-alcoholic steatohepatitis: From cell biology to clinical practice. J Hepatol. 44:197–208. 2006. View Article : Google Scholar

13 

Younossi ZM, Blissett D, Blissett R, Henry L, Stepanova M, Younossi Y, Racila A, Hunt S and Beckerman R: The economic and clinical burden of nonalcoholic fatty liver disease in the United States and Europe. Hepatology. 64:1577–1586. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Wong RJ, Aguilar M, Cheung R, Perumpail RB, Harrison SA, Younossi ZM and Ahmed A: Nonalcoholic steatohepatitis is the second leading etiology of liver disease among adults awaiting liver transplantation in the United States. Gastroenterology. 148:547–555. 2015. View Article : Google Scholar

15 

Kiselyov K and Muallem S: ROS and intracellular ion channels. Cell Calcium. 60:108–114. 2016. View Article : Google Scholar : PubMed/NCBI

16 

Guéguinou M, Chantôme A, Fromont G, Bougnoux P, Vandier C and Potier-Cartereau M: KCa and Ca(2+) channels: The complex thought. Biochim Biophys Acta. 1843:2322–2333. 2014. View Article : Google Scholar : PubMed/NCBI

17 

Ramírez A, Vázquez-Sánchez AY, Carrión-Robalino N and Camacho J: Ion channels and oxidative stress as a potential link for the diagnosis or treatment of liver diseases. Oxid Med Cell Longev. 2016:39287142016. View Article : Google Scholar : PubMed/NCBI

18 

Ali ES, Rychkov GY and Barritt GJ: Targeting Ca2+ signaling in the initiation, promotion and progression of hepatocellular carcinoma. Cancers (Basel). 12:27552020. View Article : Google Scholar

19 

Ben-Moshe S and Itzkovitz S: Spatial heterogeneity in the mammalian liver. Nat Rev Gastroenterol Hepatol. 16:395–410. 2019. View Article : Google Scholar : PubMed/NCBI

20 

Garcin I and Tordjmann T: Calcium signalling and liver regeneration. Int J Hepatol. 2012:6306702012. View Article : Google Scholar : PubMed/NCBI

21 

Taira Z, Ueda Y, Monmasu H, Yamase D, Miyake S and Shiraishi M: Characteristics of intracellular Ca2+ signals consisting of two successive peaks in hepatocytes during liver regeneration after 70% partial hepatectomy in rats. J Exp Pharmacol. 8:21–33. 2016. View Article : Google Scholar :

22 

Berridge MJ, Bootman MD and Roderick HL: Calcium signalling: Dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol. 4:517–529. 2003. View Article : Google Scholar : PubMed/NCBI

23 

Wu L, Lian W and Zhao L: Calcium signaling in cancer progression and therapy. FEBS J. 288:6187–6205. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Oliva-Vilarnau N, Hankeova S, Vorrink SU, Mkrtchian S, Andersson ER and Lauschke VM: Calcium signaling in liver injury and regeneration. Front Med (Lausanne). 5:1922018. View Article : Google Scholar

25 

Bartlett P, Gaspers L, Pierobon N and Thomas A: Calcium-dependent regulation of glucose homeostasis in the liver. Cell Calcium. 55:306–316. 2014. View Article : Google Scholar : PubMed/NCBI

26 

Chen CC, Hsu LW, Chen KD, Chiu KW, Chen CL and Huang KT: Emerging roles of calcium signaling in the development of non-alcoholic fatty liver disease. Int J Mol Sci. 23:2562021. View Article : Google Scholar

27 

Wang J, He W, Tsai PJ, Chen PH, Ye M, Guo J and Su Z: Mutual interaction between endoplasmic reticulum and mitochondria in nonalcoholic fatty liver disease. Lipids Health Dis. 19:722020. View Article : Google Scholar : PubMed/NCBI

28 

Arruda A, Pers B, Parlakgul G, Güney E, Goh T, Cagampan E, Lee GY, Goncalves RL and Hotamisligil GS: Defective STIM-mediated store operated Ca2+ entry in hepatocytes leads to metabolic dysfunction in obesity. Elife. 6:e299682017. View Article : Google Scholar

29 

Zhang SL, Yu Y, Roos J, Kozak JA, Deerinck TJ, Ellisman MH, Stauderman KA and Cahalan MD: STIM1 is a Ca2+ sensor that activates CRAC channels and migrates from the Ca2+ store to the plasma membrane. Nature. 437:902–905. 2005. View Article : Google Scholar : PubMed/NCBI

30 

Park SW, Zhou Y, Lee J, Lee J and Ozcan U: Sarco(endo)plasmic reticulum Ca2+-ATPase 2b is a major regulator of endoplasmic reticulum stress and glucose homeostasis in obesity. Proc Natl Acad Sci USA. 107:19320–19325. 2010. View Article : Google Scholar : PubMed/NCBI

31 

Egnatchik RA, Leamy AK, Jacobson DA, Shiota M and Young JD: ER calcium release promotes mitochondrial dysfunction and hepatic cell lipotoxicity in response to palmitate overload. Mol Metab. 3:544–553. 2014. View Article : Google Scholar : PubMed/NCBI

32 

Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR and Hotamisligil GS: Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 473:528–531. 2011. View Article : Google Scholar : PubMed/NCBI

33 

Amaya M and Nathanson M: Calcium signaling in the liver. Compr Physiol. 3:515–539. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Szabadkai G, Bianchi K, Várnai P, De Stefani D, Wieckowski MR, Cavagna D, Nagy AI, Balla T and Rizzuto R: Chaperone-mediated coupling of endoplasmic reticulum and mitochondrial Ca2+ channels. J Cell Biol. 175:901–911. 2006. View Article : Google Scholar : PubMed/NCBI

35 

Masarone M, Rosato V, Dallio M, Gravina AG, Aglitti A, Loguercio C, Federico A and Persico M: Role of oxidative stress in pathophysiology of nonalcoholic fatty liver disease. Oxid Med Cell Longev. 2018:95476132018. View Article : Google Scholar : PubMed/NCBI

36 

Luzio JP, Hackmann Y, Dieckmann NM and Griffiths GM: The biogenesis of lysosomes and lysosome-related organelles. Cold Spring Harb Perspect Biol. 6:a0168402014. View Article : Google Scholar : PubMed/NCBI

37 

Singh R, Kaushik S, Wang Y, Xiang Y, Novak I, Komatsu M, Tanaka K, Cuervo AM and Czaja MJ: Autophagy regulates lipid metabolism. Nature. 458:1131–1135. 2009. View Article : Google Scholar : PubMed/NCBI

38 

Lin CW, Zhang H, Li M, Xiong X, Chen X, Chen X, Dong XC and Yin XM: Pharmacological promotion of autophagy alleviates steatosis and injury in alcoholic and non-alcoholic fatty liver conditions in mice. J Hepatol. 58:993–999. 2013. View Article : Google Scholar : PubMed/NCBI

39 

Ali ES, Rychkov GY and Barritt GJ: Deranged hepatocyte intracellular Ca2+ homeostasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium. 82:1020572019. View Article : Google Scholar

40 

Miyagawa K, Oe S, Honma Y, Izumi H, Baba R and Harada M: Lipid-induced endoplasmic reticulum stress impairs selective autophagy at the step of autophagosome-lysosome fusion in hepatocytes. Am J Pathol. 186:1861–1873. 2016. View Article : Google Scholar : PubMed/NCBI

41 

Koo JH and Han CY: Signaling nodes associated with endoplasmic reticulum stress during NAFLD progression. Biomolecules. 11:2422021. View Article : Google Scholar : PubMed/NCBI

42 

Ali ES and Petrovsky N: Calcium signaling as a therapeutic target for liver steatosis. Trends Endocrinol Metab. 30:270–281. 2019. View Article : Google Scholar : PubMed/NCBI

43 

Grimm C, Holdt LM, Chen CC, Hassan S, Müller C, Jörs S, Cuny H, Kissing S, Schröder B, Butz E, et al: High susceptibility to fatty liver disease in two-pore channel 2-deficient mice. Nat Commun. 5:46992014. View Article : Google Scholar : PubMed/NCBI

44 

Li Q, Li L, Wang F, Chen J, Zhao Y, Wang P, Nilius B, Liu D and Zhu Z: Dietary capsaicin prevents nonalcoholic fatty liver disease through transient receptor potential vanilloid 1-mediated peroxisome proliferator-activate receptor delta activation. Pflugers Arch. 465:1303–1316. 2013. View Article : Google Scholar : PubMed/NCBI

45 

Li L, Chen J, Ni Y, Feng X, Zhao Z, Wang P, Sun J, Yu H, Yan Z, Liu D, et al: TRPV1 activation prevents nonalcoholic fatty liver through UCP2 upregulation in mice. Pflugers Arch. 463:727–732. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Wang K, Tan W, Liu X, Deng L, Huang L, Wang X and Gao X: New insight and potential therapy for NAFLD: CYP2E1 and flavonoids. Biomed Pharmacother. 137:1113262021. View Article : Google Scholar : PubMed/NCBI

47 

Seth RK, Das S, Dattaroy D, Chandrashekaran V, Alhasson F, Michelotti G, Nagarkatti M, Nagarkatti P, Diehl AM, Bell PD, et al: TRPV4 activation of endothelial nitric oxide synthase resists nonalcoholic fatty liver disease by blocking CYP2E1-mediated redox toxicity. Free Radic Biol Med. 102:260–273. 2017. View Article : Google Scholar

48 

Feng Q, Liu C, Gao W, Geng XL and Dai N: Salidroside-mitigated inflammatory injury of hepatocytes with non-alcoholic fatty liver disease via inhibition TRPM2 ion channel activation. Diabetes Metab Syndr Obes. 12:2755–2763. 2019. View Article : Google Scholar

49 

Ali ES, Rychkov GY and Barritt GJ: TRPM2 non-selective cation channels in liver injury mediated by reactive oxygen species. Antioxidants (Basel). 10:12432021. View Article : Google Scholar

50 

Yu T, Zheng E, Li Y, Li Y, Xia J, Ding Q, Hou Z, Ruan XZ, Zhao L and Chen Y: Src-mediated Tyr353 phosphorylation of IP3R1 promotes its stability and causes apoptosis in palmitic acid-treated hepatocytes. Exp Cell Res. 399:1124382021. View Article : Google Scholar

51 

Feriod CN, Oliveira AG, Guerra MT, Nguyen L, Richards KM, Jurczak MJ, Ruan HB, Camporez JP, Yang X, Shulman GI, et al: Hepatic inositol 1,4,5 trisphosphate receptor type 1 mediates fatty liver. Hepatol Commun. 1:23–35. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Khamphaya T, Chukijrungroat N, Saengsirisuwan V, Mitchell-Richards KA, Robert ME, Mennone A, Ananthanarayanan M, Nathanson MH and Weerachayaphorn J: Nonalcoholic fatty liver disease impairs expression of the type II inositol 1,4,5-trisphosphate receptor. Hepatology. 67:560–574. 2018. View Article : Google Scholar

53 

Smedlund K, Dube P and Vazquez G: Early steatohepatitis in hyperlipidemic mice with endothelial-specific gain of TRPC3 function precedes changes in aortic atherosclerosis. Physiol Genomics. 48:644–649. 2016. View Article : Google Scholar : PubMed/NCBI

54 

Zhu Y, Zhang C, Xu F, Zhao M, Bergquist J, Yang C, Liu X, Tan Y, Wang X, Li S, et al: System biology analysis reveals the role of voltage-dependent anion channel in mitochondrial dysfunction during non-alcoholic fatty liver disease progression into hepatocellular carcinoma. Cancer Sci. 111:4288–4302. 2020. View Article : Google Scholar : PubMed/NCBI

55 

Ali ES, Rychkov GY and Barritt GJ: Metabolic disorders and cancer: Hepatocyte store-operated Ca2+ channels in nonalcoholic fatty liver disease. Adv Exp Med Biol. 993:595–621. 2017. View Article : Google Scholar

56 

Wilson CH, Ali ES, Scrimgeour N, Martin AM, Hua J, Tallis GA, Rychkov GY and Barritt GJ: Steatosis inhibits liver cell store-operated Ca2+ entry and reduces ER Ca2+ through a protein kinase C-dependent mechanism. Biochem J. 466:379–390. 2015. View Article : Google Scholar

57 

Zhang B, Yang W, Zou Y, Li M, Guo H, Zhang H, Xia C and Xu C: NEFA-sensitive Orai1 expression in regulation of de novo lipogenesis. Cell Physiol Biochem. 47:1310–1317. 2018. View Article : Google Scholar : PubMed/NCBI

58 

Zhang B, Li M, Zou Y, Guo H, Zhang B, Xia C, Zhang H, Yang W and Xu C: NFκB/Orai1 facilitates endoplasmic reticulum stress by oxidative stress in the pathogenesis of non-alcoholic fatty liver disease. Front Cell Dev Biol. 7:2022019. View Article : Google Scholar

59 

Chatterjee S, Rana R, Corbett J, Kadiiska MB, Goldstein J and Mason RP: P2X7 receptor-NADPH oxidase axis mediates protein radical formation and Kupffer cell activation in carbon tetrachloride-mediated steatohepatitis in obese mice. Free Radic Biol Med. 52:1666–1679. 2012. View Article : Google Scholar : PubMed/NCBI

60 

Das S, Seth RK, Kumar A, Kadiiska MB, Michelotti G, Diehl AM and Chatterjee S: Purinergic receptor X7 is a key modulator of metabolic oxidative stress-mediated autophagy and inflammation in experimental nonalcoholic steatohepatitis. Am J Physiol Gastrointest Liver Physiol. 305:G950–G963. 2013. View Article : Google Scholar : PubMed/NCBI

61 

Freise C, Heldwein S, Erben U, Hoyer J, Köhler R, Jöhrens K, Patsenker E, Ruehl M, Seehofer D, Stickel F and Somasundaram R: K+-channel inhibition reduces portal perfusion pressure in fibrotic rats and fibrosis associated characteristics of hepatic stellate cells. Liver Int. 35:1244–1252. 2015. View Article : Google Scholar

62 

Paka L, Smith DE, Jung D, McCormack S, Zhou P, Duan B, Li JS, Shi J, Hao YJ, Jiang K, et al: Anti-steatotic and anti-fibrotic effects of the KCa3.1 channel inhibitor, senicapoc, in non-alcoholic liver disease. World J Gastroenterol. 23:4181–4190. 2017. View Article : Google Scholar : PubMed/NCBI

63 

Morgan AJ and Galione A: Two-pore channels (TPCs): Current controversies. Bioessays. 36:173–183. 2014. View Article : Google Scholar

64 

Patel S and Kilpatrick BS: Two-pore channels and disease. Biochim Biophys Acta Mol Cell Res. 1865:1678–1686. 2018. View Article : Google Scholar : PubMed/NCBI

65 

Bishnoi M, Khare P, Brown L and Panchal SK: Transient receptor potential (TRP) channels: A metabolic TR(i)P to obesity prevention and therapy. Obes Rev. 19:1269–1292. 2018. View Article : Google Scholar : PubMed/NCBI

66 

Zhu Z, Luo Z, Ma S and Liu D: TRP channels and their implications in metabolic diseases. Pflugers Arch. 461:211–223. 2011. View Article : Google Scholar

67 

Nilius B and Owsianik G: The transient receptor potential family of ion channels. Genome Biol. 12:2182011. View Article : Google Scholar : PubMed/NCBI

68 

Venkatachalam K and Montell C: TRP channels. Annu Rev Biochem. 76:387–417. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Zhang LL, Yan Liu D, Ma LQ, Luo ZD, Cao TB, Zhong J, Yan ZC, Wang LJ, Zhao ZG, Zhu SJ, et al: Activation of transient receptor potential vanilloid type-1 channel prevents adipogenesis and obesity. Circ Res. 100:1063–1070. 2007. View Article : Google Scholar : PubMed/NCBI

70 

Uchida K, Dezaki K, Yoneshiro T, Watanabe T, Yamazaki J, Saito M, Yada T, Tominaga M and Iwasaki Y: Involvement of thermosensitive TRP channels in energy metabolism. J Physiol Sci. 67:549–560. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Park HW and Lee JH: Calcium channel blockers as potential therapeutics for obesity-associated autophagy defects and fatty liver pathologies. Autophagy. 10:2385–2386. 2014. View Article : Google Scholar : PubMed/NCBI

72 

Polyzos SA, Kountouras J and Mantzoros CS: Obesity and nonalcoholic fatty liver disease: From pathophysiology to therapeutics. Metabolism. 92:82–97. 2019. View Article : Google Scholar

73 

Li J, Li X, Liu D, Zhang S, Tan N, Yokota H and Zhang P: Phosphorylation of eIF2α signaling pathway attenuates obesity-induced non-alcoholic fatty liver disease in an ER stress and autophagy-dependent manner. Cell Death Dis. 11:10692020. View Article : Google Scholar

74 

Baffy G: Uncoupling protein-2 and non-alcoholic fatty liver disease. Front Biosci. 10:2082–2096. 2005. View Article : Google Scholar : PubMed/NCBI

75 

Panchal SK, Bliss E and Brown L: Capsaicin in metabolic syndrome. Nutrients. 10:6302018. View Article : Google Scholar :

76 

Yang L, Li P, Fu S, Calay E and Hotamisligil GS: Defective hepatic autophagy in obesity promotes ER stress and causes insulin resistance. Cell Metab. 11:467–478. 2010. View Article : Google Scholar : PubMed/NCBI

77 

Everaerts W, Nilius B and Owsianik G: The vanilloid transient receptor potential channel TRPV4: From structure to disease. Prog Biophys Mol Biol. 103:2–17. 2010. View Article : Google Scholar

78 

Ye L, Kleiner S, Wu J, Sah R, Gupta RK, Banks AS, Cohen P, Khandekar MJ, Boström P, Mepani RJ, et al: TRPV4 is a regulator of adipose oxidative metabolism, inflammation, and energy homeostasis. Cell. 151:96–110. 2012. View Article : Google Scholar : PubMed/NCBI

79 

Zhan L, Yang Y, Ma TT, Huang C, Meng XM, Zhang L and Li J: Transient receptor potential vanilloid 4 inhibits rat HSC-T6 apoptosis through induction of autophagy. Mol Cell Biochem. 402:9–22. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Song Y, Zhan L, Yu M, Huang C, Meng X, Ma T, Zhang L and Li J: TRPV4 channel inhibits TGF-β1-induced proliferation of hepatic stellate cells. PLoS One. 9:e1011792014. View Article : Google Scholar

81 

Fonfria E, Murdock PR, Cusdin FS, Benham CD, Kelsell RE and McNulty S: Tissue distribution profiles of the human TRPM cation channel family. J Recept Signal Transduct Res. 26:159–178. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Kheradpezhouh E, Ma L, Morphett A, Barritt GJ and Rychkov GY: TRPM2 channels mediate acetaminophen-induced liver damage. Proc Natl Acad Sci USA. 111:3176–3181. 2014. View Article : Google Scholar : PubMed/NCBI

83 

Vanderheyden V, Devogelaere B, Missiaen L, De Smedt H, Bultynck G and Parys JB: Regulation of inositol 1,4,5-trisphosphate-induced Ca2+ release by reversible phosphorylation and dephosphorylation. Biochim Biophys Acta. 1793:959–970. 2009. View Article : Google Scholar : PubMed/NCBI

84 

Arruda AP, Pers BM, Parlakgül G, Güney E, Inouye K and Hotamisligil GS: Chronic enrichment of hepatic endoplasmic reticulum-mitochondria contact leads to mitochondrial dysfunction in obesity. Nat Med. 20:1427–1435. 2014. View Article : Google Scholar : PubMed/NCBI

85 

Rodrigues MA, Gomes DA, Leite MF, Grant W, Zhang L, Lam W, Cheng YC, Bennett AM and Nathanson MH: Nucleoplasmic calcium is required for cell proliferation. J Biol Chem. 282:17061–17068. 2007. View Article : Google Scholar : PubMed/NCBI

86 

Lemasters JJ and Holmuhamedov E: Voltage-dependent anion channel (VDAC) as mitochondrial governator-thinking outside the box. Biochim Biophys Acta. 1762:181–190. 2006. View Article : Google Scholar

87 

Shoshan-Barmatz V, De Pinto V, Zweckstetter M, Raviv Z, Keinan N and Arbel N: VDAC, a multi-functional mitochondrial protein regulating cell life and death. Mol Aspects Med. 31:227–285. 2010. View Article : Google Scholar : PubMed/NCBI

88 

Pittala S, Krelin Y, Kuperman Y and Shoshan-Barmatz V: A mitochondrial VDAC1-based peptide greatly suppresses steatosis and NASH-associated pathologies in a mouse model. Mol Ther. 27:1848–1862. 2019. View Article : Google Scholar : PubMed/NCBI

89 

Prakriya M and Lewis RS: Store-operated calcium channels. Physiol Rev. 95:1383–1436. 2015. View Article : Google Scholar : PubMed/NCBI

90 

Kappel S, Borgström A, Stoklosa P, Dörr K and Peinelt C: Store-operated calcium entry in disease: Beyond STIM/Orai expression levels. Semin Cell Dev Biol. 94:66–73. 2019. View Article : Google Scholar : PubMed/NCBI

91 

Li Y, Ge M, Ciani L, Kuriakose G, Westover EJ, Dura M, Covey DF, Freed JH, Maxfield FR, Lytton J and Tabas I: Enrichment of endoplasmic reticulum with cholesterol inhibits sarcoplasmic-endoplasmic reticulum calcium ATPase-2b activity in parallel with increased order of membrane lipids: Implications for depletion of endoplasmic reticulum calcium stores and apoptosis in cholesterol-loaded macrophages. J Biol Chem. 279:37030–37039. 2004. View Article : Google Scholar : PubMed/NCBI

92 

Maus M, Cuk M, Patel B, Lian J, Ouimet M, Kaufmann U, Yang J, Horvath R, Hornig-Do HT, Chrzanowska-Lightowlers ZM, et al: Store-operated Ca2+ entry controls induction of lipolysis and the transcriptional reprogramming to lipid metabolism. Cell Metab. 25:698–712. 2017. View Article : Google Scholar : PubMed/NCBI

93 

Jain S and Jacobson KA: Purinergic signaling in liver pathophysiology. Front Endocrinol (Lausanne). 12:7184292021. View Article : Google Scholar

94 

Jiang M, Cui BW, Wu YL, Zhang Y, Shang Y, Liu J, Yang HX, Qiao CY, Zhan ZY, Ye H, et al: P2X7R orchestrates the progression of murine hepatic fibrosis by making a feedback loop from macrophage to hepatic stellate cells. Toxicol Lett. 333:22–32. 2020. View Article : Google Scholar : PubMed/NCBI

95 

Takenouchi T, Nakai M, Iwamaru Y, Sugama S, Tsukimoto M, Fujita M, Wei J, Sekigawa A, Sato M, Kojima S, et al: The activation of P2X7 receptor impairs lysosomal functions and stimulates the release of autophagolysosomes in microglial cells. J Immunol. 182:2051–2062. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Chatterjee S and Das S: P2X7 receptor as a key player in oxidative stress-driven cell fate in nonalcoholic steatohepatitis. Oxid Med Cell Longev. 2015:1724932015. View Article : Google Scholar : PubMed/NCBI

97 

Wulff H and Castle NA: Therapeutic potential of KCa3.1 blockers: Recent advances and promising trends. Expert Rev Clin Pharmacol. 3:385–396. 2010. View Article : Google Scholar : PubMed/NCBI

98 

Alkhouri N, Dixon LJ and Feldstein AE: Lipotoxicity in nonalcoholic fatty liver disease: Not all lipids are created equal. Expert Rev Gastroenterol Hepatol. 3:445–451. 2009. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen X, Zhang L, Zheng L and Tuo B: Role of Ca<sup>2+</sup> channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review). Int J Mol Med 50: 113, 2022.
APA
Chen, X., Zhang, L., Zheng, L., & Tuo, B. (2022). Role of Ca<sup>2+</sup> channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review). International Journal of Molecular Medicine, 50, 113. https://doi.org/10.3892/ijmm.2022.5169
MLA
Chen, X., Zhang, L., Zheng, L., Tuo, B."Role of Ca<sup>2+</sup> channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review)". International Journal of Molecular Medicine 50.3 (2022): 113.
Chicago
Chen, X., Zhang, L., Zheng, L., Tuo, B."Role of Ca<sup>2+</sup> channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review)". International Journal of Molecular Medicine 50, no. 3 (2022): 113. https://doi.org/10.3892/ijmm.2022.5169
Copy and paste a formatted citation
x
Spandidos Publications style
Chen X, Zhang L, Zheng L and Tuo B: Role of Ca<sup>2+</sup> channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review). Int J Mol Med 50: 113, 2022.
APA
Chen, X., Zhang, L., Zheng, L., & Tuo, B. (2022). Role of Ca<sup>2+</sup> channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review). International Journal of Molecular Medicine, 50, 113. https://doi.org/10.3892/ijmm.2022.5169
MLA
Chen, X., Zhang, L., Zheng, L., Tuo, B."Role of Ca<sup>2+</sup> channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review)". International Journal of Molecular Medicine 50.3 (2022): 113.
Chicago
Chen, X., Zhang, L., Zheng, L., Tuo, B."Role of Ca<sup>2+</sup> channels in non-alcoholic fatty liver disease and their implications for therapeutic strategies (Review)". International Journal of Molecular Medicine 50, no. 3 (2022): 113. https://doi.org/10.3892/ijmm.2022.5169
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team