|
1
|
Grundy SM, Brewer HB Jr, Cleeman JI, Smith
SC Jr and Lenfant C; American Heart Association: National Heart,
Lung, and Blood Institute: Definition of metabolic syndrome: Report
of the national heart, lung, and blood institute/American heart
association conference on scientific issues related to definition.
Circulation. 109:433–438. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Pite H, Aguiar L, Morello J, Monteiro EC,
Alves AC, Bourbon M and Morais-Almeida M: Metabolic dysfunction and
asthma: Current perspectives. J Asthma Allergy. 13:237–247. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
O'Neill S and O'Driscoll L: Metabolic
syndrome: A closer look at the growing epidemic and its associated
pathologies. Obes Rev. 16:1–12. 2015. View Article : Google Scholar
|
|
4
|
ASMBS Clinical Issues Committee: Bariatric
surgery in class I obesity (body mass index 30-35
kg/m2). Surg Obes Relat Dis. 9:e1–e10. 2013. View Article : Google Scholar
|
|
5
|
Hill JO, Wyatt HR and Peters JC: Energy
balance and obesity. Circulation. 126:126–132. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Zatterale F, Longo M, Naderi J, Raciti GA,
Desiderio A, Miele C and Beguinot F: Chronic adipose tissue
inflammation linking obesity to insulin resistance and type 2
diabetes. Front Physiol. 10:16072020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Zafar U, Khaliq S, Ahmad HU, Manzoor S and
Lone KP: Metabolic syndrome: An update on diagnostic criteria,
pathogenesis, and genetic links. Hormones (Athens). 17:299–313.
2018. View Article : Google Scholar
|
|
8
|
Halpern A, Pepe RB, Monegaglia AP, Beyruti
M, de Melo ME and Mancini MC: Efficacy and tolerability of the
association of sibutramine and orlistat for six months in
overweight and obese patients. J Obes. 2010:6025372010. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Francini-Pesenti F, Spinella P and Calò
LA: Potential role of phytochemicals in metabolic syndrome
prevention and therapy. Diabetes Metab Syndr Obes. 12:1987–2002.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Liu QY, Wang YT and Lin LG: New insights
into the anti-obesity activity of xanthones from Garcinia
mangostana. Food Funct. 6:383–393. 2015. View Article : Google Scholar
|
|
11
|
John OD, Brown L and Panchal SK: Garcinia
fruits: Their potential to combat metabolic syndrome.
Nutraceuticals and Natural Product Derivatives: Disease Prevention
& Drug Discovery. Ullah MF and Ahmad A: John Wiley & Sons,
Inc; Hoboken, NJ: pp. 39–80. 2019
|
|
12
|
John OD, Mouatt P, Panchal SK and Brown L:
Rind from purple mangosteen (Garcinia mangostana) attenuates
diet-induced physiological and metabolic changes in obese rats.
Nutrients. 13:3192021. View Article : Google Scholar :
|
|
13
|
Ee GC, Daud S, Taufiq-Yap YH, Ismail NH
and Rahmani M: Xanthones from Garcinia mangostana (Guttiferae). Nat
Prod Res. 20:1067–1073. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Khamthong N and Hutadilok-Towatana N:
Phytoconstituents and biological activities of Garcinia dulcis
(Clusiaceae): A review. Nat Prod Commun. 12:453–460.
2017.PubMed/NCBI
|
|
15
|
Ngoupayo J, Tabopda TK and Ali MS:
Antimicrobial and immunomodulatory properties of prenylated
xanthones from twigs of Garcinia staudtii. Bioorg Med Chem.
17:5688–5695. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Kijjoa A, Gonzalez MJ, Pinto MM,
Nascimento MS, Campos N, Mondranondra IO, Silva AM, Eaton G and
Herz W: Cytotoxicity of prenylated xanthones and other constituents
from the wood of Garcinia merguensis. Planta Med. 74:864–866. 2008.
View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Fatma Sri W, Daud Ahmad Israf A, Nordin Hj
L and Dachriyanus: Anti-inflammatory activity of isolated compounds
from the stem bark of Garcinia cowa Roxb. Pharmacogn J. 9:55–57.
2017.
|
|
18
|
Phuwapraisirisan P, Udomchotphruet S,
Surapinit S and Tip-Pyang S: Antioxidant xanthones from Cratoxylum
cochinchinense. Nat Prod Res. 20:1332–1337. 2006. View Article : Google Scholar
|
|
19
|
Ibrahim MY, Hashim NM, Mohan S, Abdulla
MA, Abdelwahab SI, Arbab IA, Yahayu M, Ali LZ and Ishag OE:
α-Mangostin from Cratoxylum arborescens: An in vitro and in vivo
toxicological evaluation. Arab J Chem. 8:129–137. 2015. View Article : Google Scholar
|
|
20
|
Thaweboon S, Thaweboon B, Nisalak P and
Kaypetch R: Inhibitory effect of Cratoxylum formosum gum on candida
glabrata and its α-mangostin content. MATEC Web Conf. 65:030042016.
View Article : Google Scholar
|
|
21
|
Lenta BN, Kamdem LM, Ngouela S, Tantangmo
F, Devkota KP, Boyom FF, Rosenthal PJ and Tsamo E: Antiplasmodial
constituents from the fruit pericarp of Pentadesma butyracea.
Planta Med. 77:377–379. 2011. View Article : Google Scholar
|
|
22
|
Ghasemzadeh A, Jaafar HZE, Baghdadi A and
Tayebi-Meigooni A: Alpha-mangostin-rich extracts from mangosteen
pericarp: Optimization of green extraction protocol and evaluation
of biological activity. Molecules. 23:18522018. View Article : Google Scholar :
|
|
23
|
Pedraza-Chaverri J, Cárdenas-Rodríguez N,
Orozco-Ibarra M and Pérez-Rojas JM: Medicinal properties of
mangosteen (Garcinia mangostana). Food Chem Toxicol. 46:3227–3239.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Choi YH, Bae JK, Chae HS, Kim YM, Sreymom
Y, Han L, Jang HY and Chin YW: α-Mangostin regulates hepatic
steatosis and obesity through SirT1-AMPK and PPARγ pathways in
high-fat diet-induced obese mice. J Agric Food Chem. 63:8399–8406.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Kim HM, Kim YM, Huh JH, Lee ES, Kwon MH,
Lee BR, Ko HJ and Chung CH: α-Mangostin ameliorates hepatic
steatosis and insulin resistance by inhibition C-C chemokine
receptor 2. PLoS One. 12:e01792042017. View Article : Google Scholar
|
|
26
|
Vien LC, Chinnappan S and Mogana R:
Antioxidant activity of Garcinia mangostana L and alpha mangostin:
A review. Res J Pharm Technol. 14:4466–4470. 2021. View Article : Google Scholar
|
|
27
|
Pan T, Chen R, Wu D, Cai N, Shi X, Li B
and Pan J: Alpha-mangostin suppresses interleukin-1β-induced
apoptosis in rat chondrocytes by inhibiting the NF-κB signaling
pathway and delays the progression of osteoarthritis in a rat
model. Int Immunopharmacol. 52:156–162. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chae HS, Oh SR, Lee HK, Joo SH and Chin
YW: Mangosteen xanthones, α-and γ-mangostins, inhibit allergic
mediators in bone marrow-derived mast cell. Food Chem. 134:397–400.
2012. View Article : Google Scholar
|
|
29
|
Li P, Tian W and Ma X: Alpha-mangostin
inhibits intracellular fatty acid synthase and induces apoptosis in
breast cancer cells. Mol Cancer. 13:1382014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Yang A, Liu C, Wu J, Kou X and Shen R: A
review on α-mangostin as a potential multi-target-directed ligand
for Alzheimer's disease. Eur J Pharmacol. 897:1739502021.
View Article : Google Scholar
|
|
31
|
Rodniem S, Tiyao V, Nilbu-Nga C, Poonkhum
R, Pongmayteegul S and Pradidarcheep W: Protective effect of
alpha-mangostin on thioacetamide-induced liver fibrosis in rats as
revealed by morpho-functional analysis. Histol Histopathol.
34:419–430. 2019.
|
|
32
|
Sampath PD and Vijayaragavan K:
Ameliorative prospective of alpha-mangostin, a xanthone derivative
from Garcinia mangostana against beta-adrenergic
cathecola-mine-induced myocardial toxicity and anomalous cardiac
TNF-α and COX-2 expressions in rats. Exp Toxicol Pathol.
60:357–364. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Sivaranjani M, Prakash M, Gowrishankar S,
Rathna J, Pandian SK and Ravi AV: In vitro activity of
alpha-mangostin in killing and eradicating Staphylococcus
epidermidis RP62A biofilms. Appl Microbiol Biotechnol.
101:3349–3359. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Kaomongkolgit R, Jamdee K and Chaisomboon
N: Antifungal activity of alpha-mangostin against Candida albicans.
J Oral Sci. 51:401–406. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zhang KJ, Gu QL, Yang K, Ming XJ and Wang
JX: Anticarcinogenic effects of α-mangostin: A review. Planta Med.
83:188–202. 2017.
|
|
36
|
Chen G, Li Y, Wang W and Deng L:
Bioactivity and pharmacological properties of α-mangostin from the
mangosteen fruit: A review. Expert Opin Ther Pat. 28:415–427. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Ibrahim MY, Hashim NM, Mariod AA, Mohan S,
Abdulla MA, Abdelwahab SI and Arbab IA: α-Mangostin from Garcinia
mangostana Linn: An updated review of its pharmacological
properties. Arab J Chem. 9:317–329. 2016. View Article : Google Scholar
|
|
38
|
Jindarat S: Xanthones from mangosteen
(Garcinia mangostana): Multi-targeting pharmacological properties.
J Med Assoc Thai. 97(Suppl 2): S196–S201. 2014.PubMed/NCBI
|
|
39
|
Tousian Shandiz H, Razavi BM and
Hosseinzadeh H: Review of Garcinia mangostana and its xanthones in
metabolic syndrome and related complications. Phytother Res.
31:1173–1182. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang MH, Zhang KJ, Gu QL, Bi XL and Wang
JX: Pharmacology of mangostins and their derivatives: A
comprehensive review. Chin J Nat Med. 15:81–93. 2017.PubMed/NCBI
|
|
41
|
Abuzaid AS, Sukandar E, Kurniati NF and
Adnyana IK: Preventive effect on obesity of mangosteen (Garcinia
mangostana L.) pericarp ethanolic extract by reduction of fatty
acid synthase level in monosodium glutamate and high-calorie
diet-induced male wistar rats. Asian J Pharm Clin Res. 9:257–260.
2016.
|
|
42
|
Li D, Liu Q, Lu X, Li Z, Wang C, Leung CH,
Wang Y, Peng C and Lin L: α-Mangostin remodels visceral adipose
tissue inflammation to ameliorate age-related metabolic disorders
in mice. Aging (Albany NY). 11:11084–11110. 2019. View Article : Google Scholar
|
|
43
|
Tsai SY, Chung PC, Owaga EE, Tsai IJ, Wang
PY, Tsai JI, Yeh TS and Hsieh RH: Alpha-mangostin from mangosteen
(Garcinia mangostana Linn.) pericarp extract reduces high fat-diet
induced hepatic steatosis in rats by regulating mitochondria
function and apoptosis. Nutr Metab (Lond). 13:882016. View Article : Google Scholar
|
|
44
|
Muhamad Adyab NS, Rahmat A, Abdul Kadir
NAA, Jaafar H, Shukri R and Ramli NS: Mangosteen (Garcinia
mangostana) flesh supplementation attenuates biochemical and
morphological changes in the liver and kidney of high fat
diet-induced obese rats. BMC Complement Altern Med. 19:3442019.
View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chae HS, Kim YM, Bae JK, Sorchhann S, Yim
S, Han L, Paik JH, Choi YH and Chin YW: Mangosteen extract
attenuates the metabolic disorders of high-fat-fed mice by
activating AMPK. J Med Food. 19:148–154. 2016. View Article : Google Scholar
|
|
46
|
Mohamed SM, Mohammed DS, Abd Elhaliem NG,
Elbadry MI and Abu-Dief EE: Mangosteen can improve steatohepatitis
through modulating inflammatory and autophagy/apoptosis cell
injury: An animal model study. Cytol Genet. 55:480–490. 2021.
View Article : Google Scholar
|
|
47
|
Klop B, Elte JWF and Cabezas MC:
Dyslipidemia in obesity: Mechanisms and potential targets.
Nutrients. 5:1218–1240. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Taher M, Mohamed Amiroudine MZ, Tengku
Zakaria TM, Susanti D, Ichwan SJ, Kaderi MA, Ahmed QU and Zakaria
ZA: α-Mangostin improves glucose uptake and inhibits adipocytes
differentiation in 3T3-L1 cells via PPARγ, GLUT4, and leptin
expressions. Evid Based Complementary Altern Med. 2015:7402382015.
View Article : Google Scholar
|
|
49
|
Chae HS, Kim EY, Han L, Kim NR, Lam B,
Paik JH, Yoon KD, Choi YH and Chin YW: Xanthones with pancreatic
lipase inhibitory activity from the pericarps of Garcinia
mangostana L.(Guttiferae). Eur J Lipid Sci Technol. 118:1416–1421.
2016. View Article : Google Scholar
|
|
50
|
Cantó C, Gerhart-Hines Z, Feige JN,
Lagouge M, Noriega L, Milne JC, Elliott PJ, Puigserver P and Auwerx
J: AMPK regulates energy expenditure by modulating NAD+ metabolism
and SIRT1 activity. Nature. 458:1056–1060. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Fu Z, R Gilbert E and Liu D: Regulation of
insulin synthesis and secretion and pancreatic Beta-cell
dysfunction in diabetes. Curr Diabetes Rev. 9:25–53. 2013.
View Article : Google Scholar
|
|
52
|
Lee D, Kim YM, Jung K, Chin YW and Kang
KS: Alpha-mangostin improves insulin secretion and protects INS-1
cells from streptozotocin-induced damage. Int J Mol Sci.
19:14842018. View Article : Google Scholar :
|
|
53
|
Langlais P, Yi Z, Finlayson J, Luo M,
Mapes R, De Filippis E, Meyer C, Plummer E, Tongchinsub P, Mattern
M and Mandarino LJ: Global IRS-1 phosphorylation analysis in
insulin resistance. Diabetologia. 54:2878–2889. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
De Meyts P: The insulin receptor and its
signal transduction network. Endotext [Internet]. MDText.com, Inc. South Dartmouth, MA: 2016
|
|
55
|
Taniguchi CM, Emanuelli B and Kahn CR:
Critical nodes in signalling pathways: Insights into insulin
action. Nat Rev Mol Cell Biol. 7:85–96. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Okada S, Crosson S, Mori M, Saltiel AR and
Pessin JE: Insulin action, post-receptor mechanisms. Encyclopedia
of Endocrine Diseases. Martini L: Elsevier; pp. 14–22. 2004,
View Article : Google Scholar
|
|
57
|
Accili D and Arden KC: FoxOs at the
crossroads of cellular metabolism, differentiation, and
transformation. Cell. 117:421–426. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Zhang Y, Mei H, Shan W, Shi L, Chang X,
Zhu Y, Chen F and Han X: Lentinan protects pancreatic β cells from
STZ-induced damage. J Cell Mol Med. 20:1803–1812. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Luo Y and Lei M: α-Mangostin protects
against high-glucose induced apoptosis of human umbilical vein
endothelial cells. Biosci Rep. 37:BSR201707792017. View Article : Google Scholar
|
|
60
|
Volpe CMO, Villar-Delfino PH, Dos Anjos
PMF and Nogueira-Machado JA: Cellular death, reactive oxygen
species (ROS) and diabetic complications. Cell Death Dis.
9:1192018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Husen SA, Salamun, Ansori ANM, Joko R,
Susilo K, Hayaza S and Winarni D: The effect of alpha-mangostin in
glucose level, cholesterol level and diameter of the islets of
langerhans of STZ-induced diabetic mice. In: Proceedings of the 2nd
International Conference Postgraduate School (ICPS 2018); Science
and Technology Publications, Lda; pp. 561–566. 2018
|
|
62
|
Kurniawati M, Mahdi C and Aulanni'am A:
The effect of juice mangosteen rind (Garcinia mangostana L.) to
blood sugar levels and histological of pancreatic rats with the
induction of streptozotocin. J Pure App Chem Res. 3:1–6. 2014.
View Article : Google Scholar
|
|
63
|
Jariyapongskul A, Areebambud C, Suksamrarn
S and Mekseepralard CJBri: Alpha-mangostin attenuation of
hyperglycemia-induced ocular hypoperfusion and blood retinal
barrier leakage in the early stage of type 2 diabetes rats. Biomed
Res Int. 2015:7858262015. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Paul S, Ali A and Katare R: Molecular
complexities underlying the vascular complications of diabetes
mellitus-a comprehensive review. J Diabetes Complications.
34:1076132020. View Article : Google Scholar
|
|
65
|
Djeujo FM, Francesconi V, Gonella M,
Ragazzi E, Tonelli M and Froldi G: Anti-α-glucosidase and
antiglycation activities of α-mangostin and new xanthenone
derivatives: Enzymatic kinetics and mechanistic insights through in
vitro studies. Molecules. 27:5472022. View Article : Google Scholar
|
|
66
|
Kumar V, Bhatt PC, Kaithwas G, Rashid M,
Al-abbasi F, Khan J, Anwar F and Verma A: α-Mangostin mediated
pharmacological modulation of hepatic carbohydrate metabolism in
diabetes induced Wistar rat. Beni-Suef Univ J Basic Appl Sci.
5:255–276. 2016.
|
|
67
|
Watanabe M, Gangitano E, Francomano D,
Addessi E, Toscano R, Costantini D, Tuccinardi D, Mariani S,
Basciani S, Spera G, et al: Mangosteen extract shows a potent
insulin sensitizing effect in obese female patients: A prospective
randomized controlled pilot study. Nutrients. 10:5862018.
View Article : Google Scholar :
|
|
68
|
Ratwita W, Sukandar EY, Adnyana IK and
Kurniati NF: Alpha mangostin and xanthone from Mangosteen (Garcinia
mangostana L.) role on glucose tolerance and glucose transporter-4
in diabetes mellitus. Int J Pharmacogn Phytochem Res. 9:1206–1212.
2017.
|
|
69
|
Rusman JRA, Sundari SA, Nuriliani A and
Saragih HT: Ameliorative effect of Mangosteen (Garcinia mangostana
L.) peel infusion on the histopathological structures of the liver
and kidney of rats (Rattus norvegicus Berkenhout, 1769) after
H2O2 induction. Vet World. 14:1579–1587.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Hassan AA, Moustafa EM, EL-Khashab IH and
Mansour SZ: Mangosteen hinders gamma radiation-mediated oxidative
stress and liver injury by down-regulating TNF-α/NF-κB and
pro-fibrotic factor TGF-β1 inducing inflammatory signaling. Dose
Response. 19:155932582110251902021. View Article : Google Scholar
|
|
71
|
Yan XT, Sun YS, Ren S, Zhao LC, Liu WC,
Chen C, Wang Z and Li W: Dietary α-mangostin provides protective
effects against acetaminophen-induced hepatotoxicity in mice via
Akt/mTOR-mediated inhibition of autophagy and apoptosis. Int J Mol
Sci. 19:13352018. View Article : Google Scholar
|
|
72
|
Fu T, Li H, Zhao Y, Cai E, Zhu H, Li P and
Liu J: Hepatoprotective effect of α-mangostin against
lipopolysaccharide/d-galactosamine-induced acute liver failure in
mice. Biomed Pharmacother. 106:896–901. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Abood WN, Bradosty SW, Shaikh FK, Salehen
N, Farghadani R, Agha FS, Al-Medhtiy MH, Kamil TDA, Agha S, Abdulla
MA, et al: Garcinia mangostana peel extracts exhibit
hepatoprotective activity against thioacetamide-induced liver
cirrhosis in rats. J Funct Foods. 74:1042002020. View Article : Google Scholar
|
|
74
|
Dewidar B, Meyer C, Dooley S and
Meindl-Beinker N: TGF-β in hepatic stellate cell activation and
liver fibrogenesis-updated 2019. Cells. 8:14192019. View Article : Google Scholar
|
|
75
|
Seki S, Kitada T, Yamada T, Sakaguchi H,
Nakatani K and Wakasa K: In situ detection of lipid peroxidation
and oxidative DNA damage in non-alcoholic fatty liver diseases. J
Hepatol. 37:56–62. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Yang L, Li P, Fu S, Calay ES and
Hotamisligil GS: Defective hepatic autophagy in obesity promotes ER
stress and causes insulin resistance. Cell Metab. 11:467–478. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Inami Y, Yamashina S, Izumi K, Ueno T,
Tanida I, Ikejima K and Watanabe S: Hepatic steatosis inhibits
autophagic proteolysis via impairment of autophagosomal
acidification and cathepsin expression. Biochem Biophys Res Commun.
412:618–625. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sinha RA, You SH, Zhou J, Siddique MM, Bay
BH, Zhu X, Privalsky ML, Cheng SY, Stevens RD, Summers SA, et al:
Thyroid hormone stimulates hepatic lipid catabolism via activation
of autophagy. J Clin Invest. 122:2428–2438. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Jiang M, Huang S, Duan W, Liu Q and Lei M:
Alpha-mangostin improves endothelial dysfunction in db/db mice
through inhibition of aSMase/ceramide pathway. J Cell Mol Med.
25:3601–3609. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Rahmaniah R, Yuyuntia Y, Soetikno V,
Arozal W, Antarianto RD and Louisa M: Alpha mangostin inhibits
hepatic stellate cells activation through TGF-β/smad and AKT
signaling pathways: An in vitro study in LX2. Drug Res (Stuttg).
8:153–158. 2018.
|
|
81
|
Shibata MA, Harada-Shiba M, Shibata E,
Tosa H, Matoba Y, Hamaoka H, Iinuma M and Kondo Y: Crude
α-mangostin suppresses the development of atherosclerotic lesions
in apoe-deficient mice by a possible M2 macrophage-mediated
mechanism. Int J Mol Sci. 20:17222019. View Article : Google Scholar
|
|
82
|
Lestari N, Louisa M, Soetikno V, Suwana
AG, Ramadhan PA, Akmal T and Arozal W: Alpha mangostin inhibits the
proliferation and activation of acetaldehyde induced hepatic
stellate cells through TGF-β and ERK 1/2 pathways. J Toxicol.
2018:53604962018. View Article : Google Scholar
|
|
83
|
Chae HS, Kim HJ, Ko HJ, Lee CH, Choi YH
and Chin YW: Transcriptome analysis illuminates a hub role of
SREBP2 in cholesterol metabolism by α-mangostin. ACS Omega.
5:31126–31136. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Boonprom P, Boonla O, Chayaburakul K,
Welbat JU, Pannangpetch P, Kukongviriyapan U, Kukongviriyapan V,
Pakdeechote P and Prachaney P: Garcinia mangostana pericarp extract
protects against oxidative stress and cardiovascular remodeling via
suppression of p47phox and iNOS in nitric oxide
deficient rats. Ann Anat. 212:27–36. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Sampath PD and Kannan V: Mitigation of
mitochondrial dysfunction and regulation of eNOS expression during
experimental myocardial necrosis by alpha-mangostin, a xanthonic
derivative from Garcinia mangostana. Drug Chem Toxicol. 32:344–352.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Jittiporn K, Moongkarndi P, Samer J and
Suvitayavat W: Protective effect of α-mangostin on high glucose
induced endothelial cell apoptosis. Walailak J Sci Technol.
15:579–587. 2018. View Article : Google Scholar
|
|
87
|
Tousian H, Razavi BM and Hosseinzadeh H:
Alpha-mangostin decreased cellular senescence in human umbilical
vein endothelial cells. Daru. 28:45–55. 2020. View Article : Google Scholar :
|
|
88
|
Fang Z, Luo W and Luo Y: Protective effect
of α-mangostin against CoCl2-induced apoptosis by suppressing
oxidative stress in H9C2 rat cardiomyoblasts. Mol Med Rep.
17:6697–6704. 2018.PubMed/NCBI
|
|
89
|
Chen LG, Yang LL and Wang CC:
Anti-inflammatory activity of mangostins from Garcinia mangostana.
Food Chem Toxicol. 46:688–693. 2008. View Article : Google Scholar
|
|
90
|
Förstermann U, Xia N and Li H: Roles of
vascular oxidative stress and nitric oxide in the pathogenesis of
atherosclerosis. Circ Res. 120:713–735. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Chaurasia B and Summers SA:
Ceramides-lipotoxic inducers of metabolic disorders. Trends
Endocrinol Metab. 26:538–550. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Okudaira C, Ikeda Y, Kondo S, Furuya S,
Hirabayashi Y, Koyano T, Saito Y and Umezawa K: Inhibition of
acidic sphingomyelinase by xanthone compounds isolated from
Garcinia speciosa. J Enzyme Inhib. 15:129–138. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Idris-Khodja N, Ouerd S, Mian MOR,
Gornitsky J, Barhoumi T, Paradis P and Schiffrin EL: Endothelin-1
overexpression exaggerates diabetes-induced endothelial dysfunction
by altering oxidative stress. Am J Hypertens. 29:1245–1251. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Schneider JG, Tilly N, Hierl T, Sommer U,
Hamann A, Dugi K, Leidig-Bruckner G and Kasperk C: Elevated plasma
endothelin-1 levels in diabetes mellitus. Am J Hypertens.
15:967–972. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Eisvand F, Imenshahidi M, Ghasemzadeh
Rahbardar M, Tabatabaei Yazdi SA, Rameshrad M, Razavi BM and
Hosseinzadeh H: Cardioprotective effects of alpha-mangostin on
doxorubicin-induced cardiotoxicity in rats. Phytother Res.
36:506–524. 2022. View Article : Google Scholar
|
|
96
|
Wu Y, Pan N, An Y, Xu M, Tan L and Zhang
L: Diagnostic and prognostic biomarkers for myocardial infarction.
Front Cardiovasc Med. 7:6172772021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Aydin S, Ugur K, Aydin S, Sahin İ and
Yardim M: Biomarkers in acute myocardial infarction: Current
perspectives. Vasc Health Risk Manag. 15:1–10. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Soetikno V, Murwantara A, Andini P,
Charlie F, Lazarus G, Louisa M and Arozal W: Alpha-mangostin
improves cardiac hypertrophy and fibrosis and associated
biochemical parameters in high-fat/high-glucose diet and low-dose
streptozotocin injection-induced type 2 diabetic rats. J Exp
Pharmacol. 12:27–38. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Ismail AMZ, Sargowo D, Tjahjono CT, Widito
S, Rizal A and Rahimah AF: The role of Garcinia mangostana pericarp
extract as antioxidant to inhibit atherosclerosis process in high
risk framingham score patient; original article. Heart Sci J.
2:25–29. 2021. View Article : Google Scholar
|
|
100
|
Adiputro DL, Khotimah H, Widodo MA,
Romdoni R and Sargowo D: Effects of ethanolic extracts of Garcinia
mangostana fruit pericap on oxidant-antioxidant status and foam
cells in atherosclerotic rats. Oxid Antioxid Med Sci. 2:61–64.
2013. View Article : Google Scholar
|
|
101
|
Wihastuti TA, Widodo MA, Heriansyah T and
Sari NAK: Study of the inhibition effect of ethanolic extract of
mangosteen pericarp on atherogenesis in hypercholesterolemic rat.
Asian Pac J Trop Dis. 5:830–834. 2015. View Article : Google Scholar
|
|
102
|
Wihastuti TA, Aini FN, Tjahjono CT and
Heriansyah T: Dietary ethanolic extract of mangosteen pericarp
reduces VCAM-1, perivascular adipose tissue and aortic intimal
medial thickness in hypercholesterolemic rat model. Open Access
Maced J Med Sci. 7:3158–3163. 2019. View Article : Google Scholar
|
|
103
|
Mittal M, Siddiqui MR, Tran K, Reddy SP
and Malik AB: Reactive oxygen species in inflammation and tissue
injury. Antioxid Redox Signal. 20:1126–1167. 2014. View Article : Google Scholar :
|
|
104
|
He F, Antonucci L and Karin M: NRF2 as a
regulator of cell metabolism and inflammation in cancer.
Carcinogenesis. 41:405–416. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Fang Y, Su T, Qiu X, Mao P, Xu Y, Hu Z,
Zhang Y, Zheng X, Xie P and Liu Q: Protective effect of
alpha-mangostin against oxidative stress induced-retinal cell
death. Sci Rep. 6:210182016. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Taguchi K and Yamamoto M: The KEAP1-NRF2
system in cancer. Front Oncol. 7:852017. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chang CC, Chen CW, Owaga E, Lee WT, Liu TN
and Hsieh RH: Mangosteen concentrate drink supplementation promotes
antioxidant status and lactate clearance in rats after exercise.
Nutrients. 12:14472020. View Article : Google Scholar :
|
|
108
|
Lazarus G, Alexander S, Kusuma GO, Wijaya
K and Soetikno V: Antioxidative activities of alpha-mangostin in
high-fat/high-glucose diet and streptozotocin-induced
insulin-resistant rodents. J Appl Pharm Sci. 10:035–039. 2020.
|
|
109
|
Harliansyah H, Rahmah NA and Kuslestari K:
α-Mangosteen as An Oxidative Inhibitor in Hepatocellular Carcinoma.
Indones J Cancer Chemoprevention. 12:106–113. 2021. View Article : Google Scholar
|
|
110
|
Sanghvi VR, Leibold J, Mina M, Mohan P,
Berishaj M, Li Z, Miele MM, Lailler N, Zhao C, de Stanchina E, et
al: The oncogenic action of NRF2 depends on de-glycation by
fructosamine-3-kinase. Cell. 178:807–819.e21. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Reyes-Fermín LM, Avila-Rojas SH,
Aparicio-Trejo OE, Tapia E, Rivero I and Pedraza-Chaverri J: The
protective effect of alpha-mangostin against cisplatin-induced cell
death in LLC-PK1 cells is associated to mitochondrial function
preservation. Antioxidants (Basel). 8:1332019. View Article : Google Scholar
|
|
112
|
Chuang CJ, Wang M, Yeh JH, Chen TC, Tsou
SC, Lee YJ, Chang YY and Lin HW: The protective effects of
α-mangostin attenuate sodium iodate-induced cytotoxicity and
oxidative injury via mediating SIRT-3 inactivation via the
PI3K/AKT/PGC-1α pathway. Antioxidants (Basel). 10:18702021.
View Article : Google Scholar
|
|
113
|
Ruankham W, Suwanjang W, Phopin K,
Songtawee N, Prachayasittikul V and Prachayasittikul S: Modulatory
effects of alpha-mangostin mediated by SIRT1/3-FOXO3a pathway in
oxidative stress-induced neuronal cells. Front Nutr. 8:7144632022.
View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Zhang J, Xiang H, Liu J, Chen Y, He RR and
Liu B: Mitochondrial sirtuin 3: New emerging biological function
and therapeutic target. Theranostics. 10:8315–8342. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Hotamisligil GS, Shargill NS and
Spiegelman BM: Adipose expression of tumor necrosis factor-alpha:
Direct role in obesity-linked insulin resistance. Science.
259:87–91. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Halberg N, Wernstedt-Asterholm I and
Scherer PE: The adipocyte as an endocrine cell. Endocrinol Metab
Clin North Am. 37:753–768. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Cinti S, Mitchell G, Barbatelli G, Murano
I, Ceresi E, Faloia E, Wang S, Fortier M, Greenberg AS and Obin MS:
Adipocyte death defines macrophage localization and function in
adipose tissue of obese mice and humans. J Lipid Res. 46:2347–2355.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Trayhurn P and Wood IS: Adipokines:
Inflammation and the pleiotropic role of white adipose tissue. Br J
Nutr. 92:347–355. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Ellulu MS, Patimah I, Khaza'ai H, Rahmat A
and Abed Y: Obesity and inflammation: The linking mechanism and the
complications. Arch Med Sci. 13:851–863. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Chen L, Deng H, Cui H, Fang J, Zuo Z, Deng
J, Li Y, Wang X and Zhao L: Inflammatory responses and
inflammation-associated diseases in organs. Oncotarget.
9:7204–7218. 2017. View Article : Google Scholar
|
|
121
|
Yin P, Zou W, Li J, Jin N, Gao Q and Liu
F: Using high-throughput sequencing to explore the
anti-inflammatory effects of α-mangostin. Sci Rep. 9:156262019.
View Article : Google Scholar
|
|
122
|
Zou W, Yin P, Shi Y, Jin N, Gao Q, Li J
and Liu F: A novel biological role of α-mangostin via TAK1-NF-κB
pathway against inflammatory. Inflammation. 42:103–112. 2019.
View Article : Google Scholar
|
|
123
|
Mohan S, Syam S, Abdelwahab SI and
Thangavel N: An anti-inflammatory molecular mechanism of action of
α-mangostin, the major xanthone from the pericarp of Garcinia
mangostana: an in silico, in vitro and in vivo approach. Food
Funct. 9:3860–3871. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Dong BM, Abano JB and Egan TM: Nitric
oxide ventilation of rat lungs from non-heart-beating donors
improves posttransplant function. Am J Transplant. 9:2707–2715.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Widowati W, Darsono L, Suherman J, Fauziah
N, Maesaroh M and Erawijantari PP: Anti-inflammatory effect of
mangosteen (Garcinia mangostana L.) peel extract and its compounds
in LPS-induced RAW264.7 cells. Nat Prod Sci. 22:147–153. 2016.
View Article : Google Scholar
|
|
126
|
Franceschelli S, Pesce M, Ferrone A,
Patruno A, Pasqualone L, Carlucci G, Ferrone V, Carlucci M, de
Lutiis MA, Grilli A, et al: A novel biological role of α-mangostin
in modulating inflammatory response through the activation of
SIRT-1 signaling pathway. J Cell Physiol. 231:2439–2451. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Sugiyanto Z, Yohan B, Hadisaputro S,
Dharmana E, Suharti C, Winarto, Djamiatun K, Rahmi FL and Sasmono
RT: Inhibitory effect of alpha-mangostin to dengue virus
replication and cytokines expression in human peripheral blood
mononuclear cells. Nat Prod Bioprospect. 9:345–349. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Yin Q, Wu YJ, Pan S, Wang DD, Tao MQ, Pei
WY and Zuo J: Activation of cholinergic anti-inflammatory pathway
in peripheral immune cells involved in therapeutic actions of
α-mangostin on collagen-induced arthritis in rats. Drug Des Devel
Ther. 14:1983–1993. 2020. View Article : Google Scholar :
|
|
129
|
Tarasuk M, Songprakhon P, Chimma P,
Sratongno P, Na-Bangchang K and Yenchitsomanus PT: Alpha-mangostin
inhibits both dengue virus production and cytokine/chemokine
expression. Virus Res. 240:180–189. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Yongpitakwattana P, Morchang A, Panya A,
Sawasdee N and Yenchitsomanus PT: Alpha-mangostin inhibits dengue
virus production and pro-inflammatory cytokine/chemokine expression
in dendritic cells. Arch Virol. 166:1623–1632. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Herrera-Aco DR, Medina-Campos ON,
Pedraza-Chaverri J, Sciutto-Conde E, Rosas-Salgado G and
Fragoso-González G: Alpha-mangostin: Anti-inflammatory and
antioxidant effects on established collagen-induced arthritis in
DBA/1J mice. Food Chem Toxicol. 124:300–315. 2019. View Article : Google Scholar
|
|
132
|
Zuo J, Yin Q, Wang YW, Li Y, Lu LM, Xiao
ZG, Wang GD and Luan JJ: Inhibition of NF-κB pathway in
fibroblast-like synoviocytes by α-mangostin implicated in
protective effects on joints in rats suffering from
adjuvant-induced arthritis. Int Immunopharmacol. 56:78–89. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Pan T, Wu D, Cai N, Chen R, Shi X, Li B
and Pan J: Alpha-mangostin protects rat articular chondrocytes
against IL-1β-induced inflammation and slows the progression of
osteoarthritis in a rat model. Int Immunopharmacol. 52:34–43. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Xu Y, Zhou H and Cai L: Alpha-mangostin
attenuates oxidative stress and inflammation in adjuvant-induced
arthritic rats. Trop J Pharm Res. 16:2611–2616. 2017. View Article : Google Scholar
|
|
135
|
Wen H, Gris D, Lei Y, Jha S, Zhang L,
Huang MT, Brickey WJ and Ting JP: Fatty acid-induced NLRP3-ASC
inflammasome activation interferes with insulin signaling. Nat
Immunol. 12:408–415. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Duan Y, Zeng L, Zheng C, Song B, Li F,
Kong X and Xu K: Inflammatory links between high fat diets and
diseases. Front Immunol. 9:26492018. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Nava Catorce M, Acero G, Pedraza-Chaverri
J, Fragoso G, Govezensky T and Gevorkian G: Alpha-mangostin
attenuates brain inflammation induced by peripheral
lipopolysaccharide administration in C57BL/6J mice. J Neuroimmunol.
297:20–27. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Yang Z, Yin Q, Olatunji OJ, Li Y, Pan S,
Wang DD and Zuo J: Activation of cholinergic anti-inflammatory
pathway involved in therapeutic actions of α-mangostin on
lipopolysaccharide-induced acute lung injury in rats. Int J
Immunopathol Pharmacol. 34:20587384209549412020. View Article : Google Scholar
|
|
139
|
Tatiya-Aphiradee N, Chatuphonprasert W and
Jarukamjorn K: Anti-inflammatory effect of Garcinia mangostana
Linn. pericarp extract in methicillin-resistant Staphylococcus
aureus-induced superficial skin infection in mice. Biomed
Pharmacother. 111:705–713. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Lim YK, Yoo SY, Jang YY, Lee BC, Lee DS
and Kook JK: Anti-inflammatory and in vitro bone formation effects
of Garcinia mangostana L. and propolis extracts. Food Sci
Biotechnol. 29:539–548. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Xie Z, Sintara M, Chang T and Ou B: Daily
consumption of a mangosteen-based drink improves in vivo
antioxidant and anti-inflammatory biomarkers in healthy adults: A
randomized, double-blind, placebo-controlled clinical trial. Food
Sci Nutr. 3:342–348. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Chitchumroonchokchai C, Thomas-Ahner JM,
Li J, Riedl KM, Nontakham J, Suksumrarn S, Clinton SK, Kinghorn AD
and Failla ML: Anti-tumorigenicity of dietary α-mangostin in an
HT-29 colon cell xenograft model and the tissue distribution of
xanthones and their phase II metabolites. Mol Nutr Food Res.
57:203–211. 2013. View Article : Google Scholar
|
|
143
|
Nelli GB, K AS and Kilari EK: Antidiabetic
effect of α-mangostin and its protective role in sexual dysfunction
of streptozotocin induced diabetic male rats. Syst Biol Reprod Med.
59:319–328. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Choi YH, Han SY, Kim YJ, Kim YM and Chin
YW: Absorption, tissue distribution, tissue metabolism and safety
of α-mangostin in mangosteen extract using mouse models. Food Chem
Toxicol. 66:140–146. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Kittipaspallop W, Taepavarapruk P,
Chanchao C and Pimtong W: Acute toxicity and teratogenicity of
α-mangostin in zebrafish embryos. Exp Biol Med (Maywood).
243:1212–1219. 2018. View Article : Google Scholar
|
|
146
|
Fajeriyati N, Muchtaridi M and Sopyan I:
Methods For improving alpha-mangostin solubility: A review. Int J
Appl Pharm. 13:47–54. 2021. View Article : Google Scholar
|
|
147
|
Aisha AF, Ismail Z, Abu-Salah KM and Majid
AM: Solid dispersions of α-mangostin improve its aqueous solubility
through self-assembly of nanomicelles. J Pharm Sci. 101:815–825.
2012. View Article : Google Scholar
|
|
148
|
Savjani KT, Gajjar AK and Savjani JK: Drug
solubility: Importance and enhancement techniques. ISRN Pharm.
2012:1957272012.PubMed/NCBI
|
|
149
|
Wathoni N, Rusdin A, Motoyama K, Joni IM,
Lesmana R and Muchtaridi M: Nanoparticle drug delivery systems for
α-mangostin. Nanotechnol Sci Appl. 13:23–36. 2020. View Article : Google Scholar :
|
|
150
|
Li L, Han AR, Kinghorn AD, Frye RF,
Derendorf H and Butterweck V: Pharmacokinetic properties of pure
xanthones in comparison to a mangosteen fruit extract in rats.
Plant Med. 79:646–653. 2013. View Article : Google Scholar
|
|
151
|
Foti RS, Pearson JT, Rock DA, Wahlstrom JL
and Wienkers LC: In vitro inhibition of multiple cytochrome P450
isoforms by xanthone derivatives from mangosteen extract. Drug
Metab Dispos. 37:1848–1855. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Kondo M, Zhang L, Ji H, Kou Y and Ou B:
Bioavailability and antioxidant effects of a xanthone-rich
mangosteen (Garcinia mangostana) product in humans. J Agric Food
Chem. 57:8788–8792. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Singhal S, Hasan N, Nirmal K, Chawla R,
Chawla S, Kalra BS and Dhal A: Bioavailable turmeric extract for
knee osteoarthritis: A randomized, non-inferiority trial versus
paracetamol. Trials. 22:1052021. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Bumrungpert A, Kalpravidh RW, Suksamrarn
S, Chaivisuthangkura A, Chitchumroonchokchai C and Failla ML:
Bioaccessibility, biotransformation, and transport of
alpha-mangostin from Garcinia mangostana (mangosteen) using
simulated digestion and Caco-2 human intestinal cells. Mol Nutr
Food Res. 53(Suppl 1): S54–S61. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Chitchumroonchokchai C, Riedl KM,
Suksumrarn S, Clinton SK, Kinghorn AD and Failla ML: Xanthones in
mangosteen juice are absorbed and partially conjugated by healthy
adults. J Nutr. 142:675–680. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Rukthong P, Sereesongsang N, Kulsirirat T,
Boonnak N and Sathirakul K: In vitro investigation of metabolic
fate of α-mangostin and gartanin via skin permeation by LC-MS/MS
and in silico evaluation of the metabolites by ADMET
predictor™. BMC Complement Med Ther. 20:3592020.
View Article : Google Scholar
|
|
157
|
Thassu D, Pathak Y and Deleers M:
Nanoparticulate drug-delivery systems: An overview Nanoparticulate
drug delivery systems. CRC Press; Boca Raton, FL: pp. 1–31.
2007
|
|
158
|
Usman F, Shah HS, Zaib S, Manee S,
Mudassir J, Khan A, Batiha GE, Abualnaja KM, Alhashmialameer D and
Khan I: Fabrication and biological assessment of antidiabetic
α-mangostin loaded nanosponges: In vitro, in vivo, and in silico
studies. Molecules. 26:66332021. View Article : Google Scholar
|
|
159
|
Sodalee K, Sapsuphan P, Wongsirikul R and
Puttipipatkhachorn S: Preparation and evaluation of alpha-mangostin
solid self-emulsifying drug delivery system. Asian J Pharm Sci.
11:225–226. 2016. View Article : Google Scholar
|
|
160
|
Xu WK, Jiang H, Yang K, Wang YQ, Zhang Q
and Zuo J: Development and in vivo evaluation of self-microemulsion
as delivery system for α-mangostin. Kaohsiung J Med Sci.
33:116–123. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
Mahmudah R, Adnyana IK and Sukandar EY:
Molecular docking studies of α-mangostin, γ-mangostin, and xanthone
on peroxisome proliferator-activated receptor gamma diphenyl
peptidase-4 enzyme, and aldose reductase enzyme as an antidiabetic
drug candidate. J Adv Pharm Technol Res. 12:196–208. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
162
|
Sunitha J, Mahendra J, Mahendra L and
Devaraj N: Molecular docking studies of a-mangostin with oral
cancer targets ARRB1, FLNA, CALM3 and HTT. Bioinformation.
16:625–630. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Herz CT and Kiefer FW: Adipose tissue
browning in mice and humans. J Endocrinol. 241:R97–R109. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Choi H, Kim CS and Yu R: Quercetin
upregulates uncoupling protein 1 in white/brown adipose tissues
through sympathetic stimulation. J Obes Metab Syndr. 27:102–109.
2018. View Article : Google Scholar
|
|
165
|
Wang S, Liang X, Yang Q, Fu X, Zhu M,
Rodgers BD, Jiang Q, Dodson MV and Du M: Resveratrol enhances brown
adipocyte formation and function by activating AMP-activated
protein kinase (AMPK) α1 in mice fed high-fat diet. Mol Nutr Food
Res. 61: View Article : Google Scholar : 2017.
|