|
1
|
Birzniece V and Ho KKY: Mechanisms in
endocrinology: Paracrine and endocrine control of the growth
hormone axis by estrogen. Eur J Endocrinol. 184:R269–R278. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Caputo M, Pigni S, Agosti E, Daffara T,
Ferrero A, Filigheddu N and Prodam F: Regulation of GH and GH
signaling by nutrients. Cells. 10:13762021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Donato J Jr, Wasinski F, Furigo IC,
Metzger M and Frazão R: Central regulation of metabolism by growth
hormone. Cells. 10:1292021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Huang Z, Huang L, Waters MJ and Chen C:
Insulin and growth hormone balance: Implications for obesity.
Trends Endocrinol Metab. 31:642–654. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Roelfsema F, Yang RJ, Bowers CY and
Veldhuis JD: Modulating effects of progesterone on spontaneous
nocturnal and ghrelin-induced GH secretion in postmenopausal women.
J Clin Endocrinol Metab. 104:2385–2394. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Cuny T, Graillon T, Defilles C, Datta R,
Zhang S, Figarella-Branger D, Dufour H, Mougel G and Brue T:
Characterization of the ability of a, second-generation SST-DA
chimeric molecule, TBR-065, to suppress GH secretion from human
GH-secreting adenoma cells. Pituitary. 24:351–358. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Boguszewski MCS, Carlsson M, Lindberg A,
Dahlgren J, Aydin F, Camacho-Hübner C and Hokken-Koelega ACS:
Near-adult height after growth hormone treatment in children born
prematurely-data from KIGS. J Clin Endocrinol Metab.
105:dgaa2032020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hjelholt AJ, Charidemou E, Griffin JL,
Pedersen SB, Gudiksen A, Pilegaard H, Jessen N, Møller N and
Jørgensen JOL: Insulin resistance induced by growth hormone is
linked to lipolysis and associated with suppressed pyruvate
dehydrogenase activity in skeletal muscle: A 2x2 factorial,
randomised, crossover study in human individuals. Diabetologia.
63:2641–2653. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Binder G: Short stature due to SHOX
deficiency: Genotype, phenotype, and therapy. Horm Res Paediatr.
75:81–89. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Donato B and Ferreira MJ: Cardiovascular
risk in turner syndrome. Rev Port Cardiol (Engl Ed). 37:607–621.
2018.In English, Portuguese. View Article : Google Scholar
|
|
11
|
Muscogiuri G, Formoso G, Pugliese G,
Ruggeri RM, Scarano E and Colao A: RESTARE: Prader-Willi syndrome:
An uptodate on endocrine and metabolic complications. Rev Endocr
Metab Disord. 20:239–250. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Roberts AE, Allanson JE, Tartaglia M and
Gelb BD: Noonan syndrome. Lancet. 381:333–342. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Verkauskiene R, Petraitiene I and
Albertsson Wikland K: Puberty in children born small for
gestational age. Horm Res Paediatr. 80:69–77. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Guevara-Aguirre J, Guevara A, Palacios I,
Pérez M, Prócel P and Terán E: GH and GHR signaling in human
disease. Growth Horm IGF Res. 38:34–38. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Boguszewski CL: Individual sensitivity to
growth hormone replacement in adults. Rev Endocr Metab Disord.
22:117–14. 2021. View Article : Google Scholar
|
|
16
|
Gasco V, Caputo M, Lanfranco F, Ghigo E
and Grottoli S: Management of GH treatment in adult GH deficiency.
Best Pract Res Clin Endocrinol Metab. 31:13–24. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tritos NA and Klibanski A: Effects of
growth hormone on bone. Prog Mol Biol Transl Sci. 138:193–211.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Beckers A, Petrossians P, Hanson J and
Daly AF: The causes and consequences of pituitary gigantism. Nat
Rev Endocrinol. 14:705–720. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Domene HM and Fierro-Carrión G: Genetic
disorders of GH action pathway. Growth Horm IGF Res. 38:19–23.
2018. View Article : Google Scholar
|
|
20
|
Villares R, Criado G, Juarranz Y,
Lopez-Santalla M, Garcia-Cuesta EM, Rodriguez-Frade JM, Leceta J,
Lucas P, Pablos JL, Martínez-A C, et al: Inhibitory role of growth
hormone in the induction and progression phases of collagen-induced
arthritis. Front Immunol. 9:11652018. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Kopchick JJ, Berryman DE, Puri V, Lee KY
and Jorgensen JOL: The effects of growth hormone on adipose tissue:
Old observations, new mechanisms. Nat Rev Endocrinol. 16:135–146.
2020. View Article : Google Scholar :
|
|
22
|
Shukur HH, Hussain-Alkhateeb L, Farholt S,
Nørregaard O, Jørgensen AP and Hoybye C: Effects of growth hormone
treatment on sleep-related parameters in adults with Prader-Willi
syndrome. J Clin Endocrinol Metab. 106:e3634–e3643. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Devesa J and Caicedo D: The role of growth
hormone on ovarian functioning and ovarian angiogenesis. Front
Endocrinol (Lausanne). 10:4502019. View Article : Google Scholar
|
|
24
|
Gong Y, Luo S, Fan P, Zhu H, Li Y and
Huang W: Growth hormone activates PI3K/Akt signaling and inhibits
ROS accumulation and apoptosis in granulosa cells of patients with
polycystic ovary syndrome. Reprod Biol Endocrinol. 18:1212020.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Tesarik J, Galán-Lázaro M, Conde-López C,
Chiara-Rapisarda AM and Mendoza-Tesarik R: The effect of GH
administration on oocyte and zygote quality in young women with
repeated implantation failure after IVF. Front Endocrinol
(Lausanne). 11:5195722020. View Article : Google Scholar
|
|
26
|
Subramani R, Nandy SB, Pedroza DA and
Lakshmanaswamy R: Role of growth hormone in breast cancer.
Endocrinology. 158:1543–1555. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Coker-Gurkan A, Celik M, Ugur M, Arisan
ED, Obakan-Yerlikaya P, Durdu ZB and Palavan-Unsal N: Curcumin
inhibits autocrine growth hormone-mediated invasion and metastasis
by targeting NF-κB signaling and polyamine metabolism in breast
cancer cells. Amino Acids. 50:1045–1069. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Zhu X, Li Y, Xu G and Fu C: Growth hormone
receptor promotes breast cancer progression via the BRAF/MEK/ERK
signaling pathway. FEBS Open Bio. 10:1013–1020. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Zhang N, Ng AS, Cai S, Li Q, Yang L and
Kerr D: Novel therapeutic strategies: Targeting
epithelial-mesenchymal transition in colorectal cancer. Lancet
Oncol. 22:e358–e368. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Lambert AW and Weinberg RA: Linking EMT
programmes to normal and neoplastic epithelial stem cells. Nat Rev
Cancer. 21:325–338. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Yang J, Antin P, Berx G, Blanpain C,
Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori
G, et al: Guidelines and definitions for research on
epithelial-mesenchymal transition. Nat Rev Mol Cell Biol.
21:341–352. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Baskari S, Govatati S, Madhuri V,
Nallabelli N, K PM, Naik S, Poornachandar, Balka S, Tamanam RR and
Devi VR: Influence of autocrine growth hormone on NF-κB activation
leading to epithelial-mesenchymal transition of mammary carcinoma.
Tumour Biol. 39:10104283177191212017. View Article : Google Scholar
|
|
33
|
Chesnokova V and Melmed S: Growth hormone
in the tumor microenvironment. Arch Endocrinol Metab. 63:568–575.
2019. View Article : Google Scholar
|
|
34
|
Brittain AL, Basu R, Qian Y and Kopchick
JJ: Growth hormone and the epithelial-to-mesenchymal transition. J
Clin Endocrinol Metab. 102:3662–3673. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Chen YJ, You ML, Chong QY, Pandey V,
Zhuang QS, Liu DX, Ma L, Zhu T and Lobie PE: Autocrine human growth
hormone promotes invasive and cancer stem cell-like behavior of
hepatocellular carcinoma cells by STAT3 dependent inhibition of
CLAUDIN-1 expression. Int J Mol Sci. 18:12742017. View Article : Google Scholar :
|
|
36
|
Neggers SJ, Muhammad A and van der Lely
AJ: Pegvisomant treatment in acromegaly. Neuroendocrinology.
103:59–65. 2016. View Article : Google Scholar
|
|
37
|
Tritos NA and Biller BM: Pegvisomant: A
growth hormone receptor antagonist used in the treatment of
acromegaly. Pituitary. 20:129–135. 2017. View Article : Google Scholar
|
|
38
|
Kuhn E and Chanson P: Cabergoline in
acromegaly. Pituitary. 20:121–128. 2017. View Article : Google Scholar
|
|
39
|
Chanson P: Medical treatment of acromegaly
with dopamine agonists or somatostatin analogs. Neuroendocrinology.
103:50–58. 2016. View Article : Google Scholar
|
|
40
|
Maffezzoni F, Formenti AM, Mazziotti G,
Frara S and Giustina A: Current and future medical treatments for
patients with acromegaly. Expert Opin Pharmacother. 17:1631–1642.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Wang JW, Li Y, Mao ZG, Hu B, Jiang XB,
Song BB, Wang X, Zhu YH and Wang HJ: Clinical applications of
somatostatin analogs for growth hormone-secreting pituitary
adenomas. Patient Prefer Adherence. 8:43–51. 2014.PubMed/NCBI
|
|
42
|
Colao A, Grasso LFS, Giustina A, Melmed S,
Chanson P, Pereira AM and Pivonello R: Acromegaly. Nat Rev Dis
Primers. 5:202019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Valea A, Ghervan C, Carsote M, Morar A,
Iacob I, Tomesc F, Pop DD and Georgescu C: Effects of combination
therapy: Somatostatin analogues and dopamine agonists on GH and
IGF1 levels in acromegaly. Clujul Med. 88:310–313. 2015.
|
|
44
|
Augustine RA, Ladyman SR, Bouwer GT,
Alyousif Y, Sapsford TJ, Scott V, Kokay IC, Grattan DR and Brown
CH: Prolactin regulation of oxytocin neurone activity in pregnancy
and lactation. J Physiol. 595:3591–3605. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Chen Z, Luo J, Zhang C, Ma Y, Sun S, Zhang
T and Loor JJ: Mechanism of prolactin inhibition of miR-135b via
methylation in goat mammary epithelial cells. J Cell Physiol.
233:651–662. 2018. View Article : Google Scholar
|
|
46
|
Borba VV, Zandman-Goddard G and Shoenfeld
Y: Prolactin and autoimmunity. Front Immunol. 9:732018. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
García-Rizo C, Vázquez-Bourgon J, Labad J,
Ortiz García de la Foz V, Gómez-Revuelta M, Juncal Ruiz M and
Crespo-Facorro B: Prolactin, metabolic and immune parameters in
naïve subjects with a first episode of psychosis. Prog
Neuropsychopharmacol Biol Psychiatry. 110:1103322021. View Article : Google Scholar
|
|
48
|
Bernard V, Young J and Binart N:
Prolactin-a pleiotropic factor in health and disease. Nat Rev
Endocrinol. 15:356–365. 2019. View Article : Google Scholar
|
|
49
|
Bernard V, Young J, Chanson P and Binart
N: New insights in prolactin: Pathological implications. Nat Rev
Endocrinol. 11:265–275. 2015. View Article : Google Scholar
|
|
50
|
Moghbeli M: Genetics of recurrent
pregnancy loss among Iranian population. Mol Genet Genomic Med.
7:e8912019. View Article : Google Scholar :
|
|
51
|
Kavarthapu R and Dufau ML: Essential role
of endogenous prolactin and CDK7 in estrogen-induced upregulation
of the prolactin receptor in breast cancer cells. Oncotarget.
8:27353–27363. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Ezoe K, Miki T, Ohata K, Fujiwara N,
Yabuuchi A, Kobayashi T and Kato K: Prolactin receptor expression
and its role in trophoblast outgrowth in human embryos. Reprod
Biomed Online. 42:699–707. 2021. View Article : Google Scholar
|
|
53
|
Mestre Citrinovitz AC, Langer L,
Strowitzki T and Germeyer A: Resveratrol enhances decidualization
of human endometrial stromal cells. Reproduction. 159:453–463.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Napso T, Yong HEJ, Lopez-Tello J and
Sferruzzi-Perri AN: The role of placental hormones in mediating
maternal adaptations to support pregnancy and lactation. Front
Physiol. 9:10912018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Kalu E, Bhaskaran S, Thum MY, Vishwanatha
R, Croucher C, Sherriff E, Ford B and Bansal AS: Serial estimation
of Th1:th2 cytokines profile in women undergoing in-vitro
fertilization-embryo transfer. Am J Reprod Immunol. 59:206–211.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Soh MC and Moretto M: The use of biologics
for autoimmune rheumatic diseases in fertility and pregnancy.
Obstet Med. 13:5–13. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Borba VV, Zandman-Goddard G and Shoenfeld
Y: Prolactin and autoimmunity: The hormone as an inflammatory
cytokine. Best Pract Res Clin Endocrinol Metab. 33:1013242019.
View Article : Google Scholar
|
|
58
|
Proietto S, Cortasa SA, Corso MC, Inserra
PIF, Charif SE, Schmidt AR, Di Giorgio NP, Lux-Lantos V, Vitullo
AD, Dorfman VB and Halperin J: Prolactin is a strong candidate for
the regulation of luteal steroidogenesis in vizcachas (Lagostomus
maximus). Int J Endocrinol. 2018:19106722018. View Article : Google Scholar :
|
|
59
|
Trott JF, Schennink A, Petrie WK, Manjarin
R, VanKlompenberg MK and Hovey RC: Triennial lactation symposium:
Prolactin: The multifaceted potentiator of mammary growth and
function. J Anim Sci. 90:1674–1686. 2012. View Article : Google Scholar
|
|
60
|
Chen Y, Moutal A, Navratilova E,
Kopruszinski C, Yue X, Ikegami M, Chow M, Kanazawa I, Bellampalli
SS, Xie J, et al: The prolactin receptor long isoform regulates
nociceptor sensitization and opioid-induced hyperalgesia
selectively in females. Sci Transl Med. 12:eaay75502020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Anderson MG, Zhang Q, Rodriguez LE,
Hecquet CM, Donawho CK, Ansell PJ, Ansell PJ and Reilly EB:
ABBV-176, a PRLR antibody drug conjugate with a potent DNA-damaging
PBD cytotoxin and enhanced activity with PARP inhibition. BMC
Cancer. 21:6812021. View Article : Google Scholar
|
|
62
|
Li D, San M, Zhang J, Yang A, Xie W, Chen
Y, Lu X, Zhang Y, Zhao M, Feng X and Zheng Y: Oxytocin receptor
induces mammary tumorigenesis through prolactin/p-STAT5 pathway.
Cell Death Dis. 12:5882021. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Borcherding DC, Hugo ER, Fox SR, Jacobson
EM, Hunt BG, Merino EJ and Ben-Jonathan N: Suppression of breast
cancer by small molecules that block the prolactin receptor.
Cancers (Basel). 13:26622021. View Article : Google Scholar
|
|
64
|
O'Leary KA, Rugowski DE, Shea MP, Sullivan
R, Moser AR and Schuler LA: Prolactin synergizes with canonical Wnt
signals to drive development of ER+ mammary tumors via activation
of the Notch pathway. Cancer Lett. 503:231–239. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Campbell KM, O'Leary KA, Rugowski DE,
Mulligan WA, Barnell EK, Skidmore ZL, Krysiak K, Griffith M,
Schuler LA and Griffith OL: A spontaneous aggressive ERα+ mammary
tumor model is driven by Kras activation. Cell Rep.
28:1526–1537.e4. 2019. View Article : Google Scholar
|
|
66
|
MacDonald TM, Thomas LN, Daze E, Marignani
P, Barnes PJ and Too CK: Prolactin-inducible EDD E3 ubiquitin
ligase promotes TORC1 signalling, anti-apoptotic protein
expression, and drug resistance in breast cancer cells. Am J Cancer
Res. 9:1484–1503. 2019.PubMed/NCBI
|
|
67
|
Chen X, Wu D, Zheng Y, Liu X and Wang J:
Preparation of a growth hormone receptor/prolactin receptor
bispecific antibody antagonist which exhibited anti-cancer
activity. Front Pharmacol. 11:5984232020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Dandawate P, Kaushik G, Ghosh C, Standing
D, Ali Sayed AA, Choudhury S, Subramaniam D, Manzardo A, Banerjee
T, Santra S, et al: Diphenylbutylpiperidine antipsychotic drugs
inhibit prolactin receptor signaling to reduce growth of pancreatic
ductal adenocarcinoma in mice. Gastroenterology. 158:1433–1449.e27.
2020. View Article : Google Scholar
|
|
69
|
Ramirez-Hernandez G, Adan-Castro E,
Diaz-Lezama N, Ruiz-Herrera X, Martinez de la Escalera G, Macotela
Y and Clapp C: Global deletion of the prolactin receptor aggravates
streptozotocin-induced diabetes in mice. Front Endocrinol
(Lausanne). 12:6196962021. View Article : Google Scholar
|
|
70
|
Wen Y, Wang Y, Chelariu-Raicu A, Stur E,
Liu Y, Corvigno S, Bartsch F, Redfern L, Zand B, Kang Y, et al:
Blockade of the short form of prolactin receptor induces
FOXO3a/EIF-4EBP1-mediated cell death in uterine cancer. Mol Cancer
Ther. 19:1943–1954. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Asad AS, Nicola Candia AJ, Gonzalez N,
Zuccato CF, Seilicovich A and Candolfi M: The role of the prolactin
receptor pathway in the pathogenesis of glioblastoma: What do we
know so far? Expert Opin Ther Targets. 24:1121–1133. 2020.
View Article : Google Scholar
|
|
72
|
Boutillon F, Pigat N, Sala LS, Reyes-Gomez
E, Moriggl R, Guidotti JE and Goffin V: STAT5a/b deficiency delays,
but does not prevent, prolactin-driven prostate tumorigenesis in
mice. Cancers (Basel). 11:9292019. View Article : Google Scholar
|
|
73
|
ivero-Segura NA, Flores-Soto E, García de
la Cadena S, Coronado-Mares I, Gomez-Verjan JC, Ferreira DG,
Cabrera-Reyes EA, Lopes LV, Massieu L and Cerbón M:
Prolactin-induced neuroprotection against glutamate excitotoxicity
is mediated by the reduction of [Ca2+]i overload and NF-κB
activation. PLoS One. 12:e01769102017. View Article : Google Scholar
|
|
74
|
Yousefvand S, Hadjzadeh MA, Vafaee F and
Dolatshad H: The protective effects of prolactin on brain injury.
Life Sci. 263:1185472020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Lopez-Vicchi F, De Winne C, Brie B,
Sorianello E, Ladyman SR and Becu-Villalobos D: Metabolic functions
of prolactin: Physiological and pathological aspects. J
Neuroendocrinol. 32:e128882020. View Article : Google Scholar
|
|
76
|
Charoenphandhu N and Krishnamra N:
Prolactin is an important regulator of intestinal calcium
transport. Can J Physiol Pharmacol. 85:569–581. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ponce AJ, Galván-Salas T, Lerma-Alvarado
RM, Ruiz-Herrera X, Hernández-Cortés T, Valencia-Jiménez R,
Cárdenas-Rodríguez LE, Martínez de la Escalera G, Clapp C and
Macotela Y: Low prolactin levels are associated with visceral
adipocyte hypertrophy and insulin resistance in humans. Endocrine.
67:331–343. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Tatum RC, McGowan CM and Ireland JL:
Efficacy of pergolide for the management of equine pituitary pars
intermedia dysfunction: A systematic review. Vet J. 266:1055622020.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Harris K, Murphy KE, Horn D, MacGilivray J
and Yudin MH: Safety of cabergoline for postpartum lactation
inhibition or suppression: A systematic review. J Obstet Gynaecol
Can. 42:308–315.e20. 2020. View Article : Google Scholar
|
|
80
|
Krysiak R and Okopień B: Sexual
functioning in hyperprolactinemic patients treated with cabergoline
or bromocriptine. Am J Ther. 26:e433–e440. 2019. View Article : Google Scholar
|
|
81
|
Khalil G, Khan FA, Jamal QM, Saleem A,
Masroor H and Abbas K: Change in insulin sensitivity and lipid
profile after dopamine agonist therapy in patients with
prolactinoma. Cureus. 13:e178242021.PubMed/NCBI
|
|
82
|
Peuskens J, Pani L, Detraux J and De Hert
M: The effects of novel and newly approved antipsychotics on serum
prolactin levels: A comprehensive review. CNS Drugs. 28:421–453.
2014.PubMed/NCBI
|
|
83
|
Drobnis EZ and Nangia AK: Psychotropics
and male reproduction. Adv Exp Med Biol. 1034:63–101. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Safer DJ, Calarge CA and Safer AM:
Prolactin serum concentrations during aripiprazole treatment in
youth. J Child Adolesc Psychopharmacol. 23:282–289. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Davis JR and McNeilly AS: Is pituitary
gene therapy realistic? Clin Endocrinol (Oxf). 55:427–433. 2001.
View Article : Google Scholar
|
|
86
|
Filatov M, Khramova Y, Parshina E, Bagaeva
T and Semenova M: Influence of gonadotropins on ovarian follicle
growth and development in vivo and in vitro. Zygote. 25:235–243.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Ulloa-Aguirre A and Lira-Albarran S:
Clinical applications of gonadotropins in the male. Prog Mol Biol
Transl Sci. 143:121–174. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Das N and Kumar TR: Molecular regulation
of follicle-stimulating hormone synthesis, secretion and action. J
Mol Endocrinol. 60:R131–R155. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Casarini L, Santi D, Brigante G and Simoni
M: Two hormones for one receptor: Evolution, biochemistry, actions,
and pathophysiology of LH and hCG. Endocr Rev. 39:549–592. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Troppmann B, Kleinau G, Krause G and
Gromoll J: Structural and functional plasticity of the luteinizing
hormone/choriogonadotrophin receptor. Hum Reprod Update.
19:583–602. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Son WY, Das M, Shalom-Paz E and Holzer H:
Mechanisms of follicle selection and development. Minerva Ginecol.
63:89–102. 2011.PubMed/NCBI
|
|
92
|
Themmen APN and Huhtaniemi IT: Mutations
of gonadotropins and gonadotropin receptors: Elucidating the
physiology and pathophysiology of pituitary-gonadal function.
Endocr Rev. 21:551–583. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Duan J, Xu P, Cheng X, Mao C, Croll T, He
X, Shi J, Luan X, Yin W, You E, et al: Structures of full-length
glycoprotein hormone receptor signalling complexes. Nature.
598:688–692. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Jiang X, Dias JA and He X: Structural
biology of glycoprotein hormones and their receptors: Insights to
signaling. Mol Cell Endocrinol. 382:424–451. 2014. View Article : Google Scholar
|
|
95
|
Abbara A, Clarke SA and Dhillo WS:
Clinical potential of kisspeptin in reproductive health. Trends Mol
Med. 27:807–823. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Skorupskaite K and Anderson RA:
Hypothalamic neurokinin signalling and its application in
reproductive medicine. Pharmacol Ther. 230:1079602022. View Article : Google Scholar
|
|
97
|
Messina A, Pulli K, Santini S, Acierno J,
Känsäkoski J, Cassatella D, Xu C, Casoni F, Malone SA, Ternier G,
et al: Neuron-derived neurotrophic factor is mutated in congenital
hypogonadotropic hypogonadism. Am J Hum Genet. 106:58–70. 2020.
View Article : Google Scholar :
|
|
98
|
Vanacker C, Defazio RA, Sykes CM and
Moenter SM: A role for glial fibrillary acidic protein
(GFAP)-expressing cells in the regulation of gonadotropin-releasing
hormone (GnRH) but not arcuate kisspeptin neuron output in male
mice. Elife. 10:e682052021. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Uenoyama Y, Nagae M, Tsuchida H, Inoue N
and Tsukamura H: Role of KNDy neurons expressing kisspeptin,
neurokinin B, and dynorphin A as a GnRH pulse generator controlling
mammalian reproduction. Front Endocrinol (Lausanne). 12:7246322021.
View Article : Google Scholar
|
|
100
|
Hughes CHK and Murphy BD: Nuclear
receptors: Key regulators of somatic cell functions in the
ovulatory process. Mol Aspects Med. 78:1009372021. View Article : Google Scholar
|
|
101
|
Abreu AP, Toro CA, Song YB, Navarro VM,
Bosch MA, Eren A, Liang JN, Carroll RS, Latronico AC, Rønnekleiv
OK, et al: MKRN3 inhibits the reproductive axis through actions in
kisspeptin-expressing neurons. J Clin Invest. 130:4486–4500.
2020.PubMed/NCBI
|
|
102
|
Li M, Chen Y, Liao B, Tang J, Zhong J and
Lan D: The role of kisspeptin and MKRN3 in the diagnosis of central
precocious puberty in girls. Endocr Connect. 10:1147–1154. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Sertorio MN, Estadella D, Ribeiro DA and
Pisani LP: Could parental high-fat intake program the reproductive
health of male offspring? A review. Crit Rev Food Sci Nutr. 1–8.
2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Santoro N, Schauer IE, Kuhn K, Fought AJ,
Babcock-Gilbert S and Bradford AP: Gonadotropin response to insulin
and lipid infusion reproduces the reprometabolic syndrome of
obesity in eumenorrheic lean women: A randomized crossover trial.
Fertil Steril. 116:566–574. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Hsueh AJ and He J: Gonadotropins and their
receptors: Coevolution, genetic variants, receptor imaging, and
functional antagonists. Biol Reprod. 99:3–12. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Chu YL, Xu YR, Yang WX and Sun Y: The role
of FSH and TGF-β superfamily in follicle atresia. Aging (Albany
NY). 10:305–321. 2018. View Article : Google Scholar
|
|
107
|
Smitz J, Wolfenson C, Chappel S and Ruman
J: Follicle-stimulating hormone: A review of form and function in
the treatment of infertility. Reprod Sci. 23:706–716. 2016.
View Article : Google Scholar
|
|
108
|
di Clemente N, Racine C, Pierre A and
Taieb J: Anti-Müllerian hormone in female reproduction. Endocr Rev.
42:753–782. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Mills EG, Yang L, Nielsen MF, Kassem M,
Dhillo WS and Comninos AN: The relationship between bone and
reproductive hormones beyond estrogens and androgens. Endocr Rev.
42:691–719. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhu D, Li X, Macrae VE, Simoncini T and Fu
X: Extragonadal effects of follicle-stimulating hormone on
osteoporosis and cardiovascular disease in women during menopausal
transition. Trends Endocrinol Metab. 29:571–580. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Chin KY: The relationship between
follicle-stimulating hormone and bone health: Alternative
explanation for bone loss beyond oestrogen? Int J Med Sci.
15:1373–1383. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Liu WX, Zhang YJ, Wang YF, Klinger FG, Tan
SJ, Farini D, De Felici M, Shen W and Cheng SF: Protective
mechanism of luteinizing hormone and follicle-stimulating hormone
against nicotine-induced damage of mouse early folliculogenesis.
Front Cell Dev Biol. 9:7233882021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Kumariya S, Ubba V, Jha RK and Gayen JR:
Autophagy in ovary and polycystic ovary syndrome: Role, dispute and
future perspective. Autophagy. 17:2706–2733. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Guo Y, Zhao M, Bo T, Ma S, Yuan Z, Chen W,
He Z, Hou X, Liu J, Zhang Z, et al: Blocking FSH inhibits hepatic
cholesterol biosynthesis and reduces serum cholesterol. Cell Res.
29:151–166. 2019. View Article : Google Scholar :
|
|
115
|
Veldhuis-Vlug AG, Woods GN, Sigurdsson S,
Ewing SK, Le PT, Hue TF, Vittinghoff E, Xu K, Gudnason V,
Sigurdsson G, et al: Serum FSH is associated with BMD, bone marrow
adiposity, and body composition in the AGES-Reykjavik study of
older adults. J Clin Endocrinol Metab. 106:e1156–e1169. 2021.
View Article : Google Scholar :
|
|
116
|
Wu KC, Ewing SK, Li X, Sigurðsson S,
Guðnason V, Kado DM, Hue TF, Woods GN, Veldhuis-Vlug AG,
Vittinghoff E, et al: FSH level and changes in bone mass and body
composition in older women and men. J Clin Endocrinol Metab.
106:2876–2889. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Bloise E, Ciarmela P, Dela Cruz C, Luisi
S, Petraglia F and Reis FM: Activin A in mammalian physiology.
Physiol Rev. 99:739–780. 2019. View Article : Google Scholar
|
|
118
|
Bernard DJ, Smith CL and Brûlé E: A tale
of two proteins: Betaglycan, IGSF1, and the continuing search for
the inhibin B receptor. Trends Endocrinol Metab. 31:37–45. 2020.
View Article : Google Scholar
|
|
119
|
Peng YJ, Yu H, Hao X, Dong W, Yin X, Lin
M, Zheng J and Zhou BO: Luteinizing hormone signaling restricts
hematopoietic stem cell expansion during puberty. EMBO J.
37:e989842018. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Del Castillo LM, Buigues A, Rossi V,
Soriano MJ, Martinez J, De Felici M, Lamsira HK, Di Rella F,
Klinger FG, Pellicer A and Herraiz S: The cyto-protective effects
of LH on ovarian reserve and female fertility during exposure to
gonadotoxic alkylating agents in an adult mouse model. Hum Reprod.
36:2514–2528. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Xi G, An L, Wang W, Hao J, Yang Q, Ma L,
Lu J, Wang Y, Wang W, Zhao W, et al: The mRNA-destabilizing protein
tristetraprolin targets 'meiosis arrester' Nppc mRNA in mammalian
preovulatory follicles. Proc Natl Acad Sci USA.
118:e20183451182021. View Article : Google Scholar
|
|
122
|
Dalle IA, Paranal R, Zarka J, Paul S,
Sasaki K, Li W, Ning J, Short NJ, Ohanian M, Cortes JE, et al:
Impact of luteinizing hormone suppression on hematopoietic recovery
after intensive chemotherapy in patients with leukemia.
Haematologica. 106:1097–1105. 2021.
|
|
123
|
Elias HK and Van den Brink MRM: New option
for improving hematological recovery: Suppression of luteinizing
hormone. Haematologica. 106:929–931. 2021.
|
|
124
|
Navarro VM: Metabolic regulation of
kisspeptin-the link between energy balance and reproduction. Nat
Rev Endocrinol. 16:407–420. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Duffy DM, Ko C, Jo M, Brannstrom M and
Curry TE: Ovulation: Parallels with inflammatory processes. Endocr
Rev. 40:369–416. 2019. View Article : Google Scholar :
|
|
126
|
Rossi V, Lispi M, Longobardi S, Mattei M,
Di Rella F, Salustri A, De Felici M and Klinger FG: LH prevents
cisplatin-induced apoptosis in oocytes and preserves female
fertility in mouse. Cell Death Differ. 24:72–82. 2017. View Article : Google Scholar :
|
|
127
|
Li X, Zhou L, Peng G, Liao M, Zhang L, Hu
H, Long L, Tang X, Qu H, Shao J, et al: Pituitary P62 deficiency
leads to female infertility by impairing luteinizing hormone
production. Exp Mol Med. 53:1238–1249. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Blair JA, Bhatta S, McGee H and Casadesus
G: Luteinizing hormone: Evidence for direct action in the CNS. Horm
Behav. 76:57–62. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Burnham VL and Thornton JE: Luteinizing
hormone as a key player in the cognitive decline of Alzheimer's
disease. Horm Behav. 76:48–56. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Natanzon Y, Goode EL and Cunningham JM:
Epigenetics in ovarian cancer. Semin Cancer Biol. 51:160–169. 2018.
View Article : Google Scholar :
|
|
131
|
Kossaï M, Leary A, Scoazec JY and Genestie
C: Ovarian cancer: A heterogeneous disease. Pathobiology. 85:41–49.
2018. View Article : Google Scholar
|
|
132
|
Cheung J, Lokman NA, Abraham RD,
Macpherson AM, Lee E, Grutzner F, Ghinea N, Oehler MK and
Ricciardelli C: Reduced gonadotrophin receptor expression is
associated with a more aggressive ovarian cancer phenotype. Int J
Mol Sci. 22:712020. View Article : Google Scholar
|
|
133
|
Wang Z and Dong C: Gluconeogenesis in
cancer: Function and regulation of PEPCK, FBPase, and G6Pase.
Trends Cancer. 5:30–45. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
MacLean DM and Jayaraman V: Acid-sensing
ion channels are tuned to follow high-frequency stimuli. J Physiol.
594:2629–2645. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Wu J, Leng T, Jing L, Jiang N, Chen D, Hu
Y, Xiong ZG and Zha XM: Two di-leucine motifs regulate trafficking
and function of mouse ASIC2a. Mol Brain. 9:92016. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Dong HW, Wang K, Chang XX, Jin FF, Wang Q,
Jiang XF, Liu JR, Wu YH and Yang C: Beta-ionone-inhibited
proliferation of breast cancer cells by inhibited COX-2 activity.
Arch Toxicol. 93:2993–3003. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Echizen K, Hirose O, Maeda Y and Oshima M:
Inflammation in gastric cancer: Interplay of the
COX-2/prostaglandin E2 and Toll-like receptor/MyD88 pathways.
Cancer Sci. 107:391–397. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Davenport JR, Cai Q, Ness RM, Milne G,
Zhao Z, Smalley WE, Zheng W and Shrubsole MJ: Evaluation of
pro-inflammatory markers plasma C-reactive protein and urinary
prostaglandin-E2 metabolite in colorectal adenoma risk. Mol
Carcinog. 55:1251–1261. 2016. View Article : Google Scholar :
|
|
139
|
Feng D, Zhao T, Yan K, Liang H, Liang J,
Zhou Y, Zhao W and Ling B: Gonadotropins promote human ovarian
cancer cell migration and invasion via a cyclooxygenase 2-dependent
pathway. Oncol Rep. 38:1091–1098. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Lau MT, Wong AS and Leung PC:
Gonadotropins induce tumor cell migration and invasion by
increasing cyclooxygenases expression and prostaglandin E(2)
production in human ovarian cancer cells. Endocrinology.
151:2985–2993. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Li S, Ji X, Wang R and Miao Y:
Follicle-stimulating hormone promoted pyruvate kinase isozyme type
M2-induced glycolysis and proliferation of ovarian cancer cells.
Arch Gynecol Obstet. 299:1443–1451. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Zhang J, Zhang J, Wei Y, Li Q and Wang Q:
ACTL6A regulates follicle-stimulating hormone-driven glycolysis in
ovarian cancer cells via PGK1. Cell Death Dis. 10:8112019.
View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Perez-Juarez CE, Arechavaleta-Velasco F,
Mendez C and Díaz-Cueto L: Progranulin expression induced by
follicle-stimulating hormone in ovarian cancer cell lines depends
on the histological subtype. Med Oncol. 37:592020. View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Chen J, Bai M, Ning C, Xie B, Zhang J,
Liao H, Xiong J, Tao X, Yan D, Xi X, et al: Gankyrin facilitates
follicle-stimulating hormone-driven ovarian cancer cell
proliferation through the PI3K/AKT/HIF-1α/cyclin D1 pathway.
Oncogene. 35:2506–2517. 2016. View Article : Google Scholar
|
|
145
|
Zhang M, Zhang M, Wang J, Cai Q, Zhao R,
Yu Y, Tai H, Zhang X and Xu C: Retro-inverso follicle-stimulating
hormone peptide-mediated polyethylenimine complexes for targeted
ovarian cancer gene therapy. Drug Deliv. 25:995–1003. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Zhang MX, Hong SS, Cai QQ, Zhang M, Chen
J, Zhang XY and Xu CJ: Transcriptional control of the MUC16
promoter facilitates follicle-stimulating hormone
peptide-conjugated shRNA nanoparticle-mediated inhibition of
ovarian carcinoma in vivo. Drug Deliv. 25:797–806. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Jiang N, Wu J, Leng T, Yang T, Zhou Y,
Jiang Q, Wang B, Hu Y, Ji YH, Simon RP, et al: Region specific
contribution of ASIC2 to acidosis-and ischemia-induced neuronal
injury. J Cereb Blood Flow Metab. 37:528–540. 2017. View Article : Google Scholar :
|
|
148
|
Liao H, Zhou Q, Gu Y, Duan T and Feng Y:
Luteinizing hormone facilitates angiogenesis in ovarian epithelial
tumor cells and metformin inhibits the effect through the mTOR
signaling pathway. Oncol Rep. 27:1873–1888. 2012.PubMed/NCBI
|
|
149
|
Garrido MP, Bruneau N, Vega M, Selman A,
Tapia JC and Romero C: Follicle-stimulating hormone promotes nerve
growth factor and vascular endothelial growth factor expression in
epithelial ovarian cells. Histol Histopathol. 35:961–971.
2020.PubMed/NCBI
|
|
150
|
Zhang J, Sun YF, Xu YM, Shi BJ, Han Y, Luo
ZY, Zhao ZM, Hao GM and Gao BL: Effect of endometrium thickness on
clinical outcomes in luteal phase short-acting GnRH-a long protocol
and GnRH-Ant protocol. Front Endocrinol (Lausanne). 12:5787832021.
View Article : Google Scholar
|
|
151
|
Sauerbrun-Cutler MT and Alvero R: Short-
and long-term impact of gonadotropin-releasing hormone analogue
treatment on bone loss and fracture. Fertil Steril. 112:799–803.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Tepekoy F, Uysal F, Acar N, Ustunel I and
Akkoyunlu G: The effect of GnRH antagonist cetrorelix on Wnt
signaling members in pubertal and adult mouse ovaries. Histochem
Cell Biol. 152:423–437. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Doroszko M, Chrusciel M, Stelmaszewska J,
Slezak T, Anisimowicz S, Plöckinger U, Quinkler M, Bonomi M,
Wolczynski S, Huhtaniemi I, et al: GnRH antagonist treatment of
malignant adrenocortical tumors. Endocr Relat Cancer. 26:103–117.
2019. View Article : Google Scholar
|
|
154
|
Xu H, Zhao S, Gao X, Wu X, Xia L, Zhang D,
Li J, Zhang A and Xu B: GnRH antagonist protocol with cessation of
cetrorelix on trigger day improves embryological outcomes for
patients with sufficient ovarian reserve. Front Endocrinol
(Lausanne). 12:7588962021. View Article : Google Scholar
|
|
155
|
Practice Committee of the American Society
for Reproductive Medicine. Electronic address: asrm@asrm.org:
Practice Committee of the American Society for Reproductive
Medicine: Evidence-based treatments for couples with unexplained
infertility: A guideline. Fertil Steril. 113:305–322. 2020.
View Article : Google Scholar
|
|
156
|
Krzastek SC, Sharma D, Abdullah N, Sultan
M, Machen GL, Wenzel JL, Ells A, Chen X, Kavoussi M, Costabile RA,
et al: Long-term safety and efficacy of clomiphene citrate for the
treatment of hypogonadism. J Urol. 202:1029–1035. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Miller GD, Moore C, Nair V, Hill B,
Willick SE, Rogol AD and Eichner D:
Hypothalamic-pituitary-testicular axis effects and urinary
detection following clomiphene administration in males. J Clin
Endocrinol Metab. 104:906–914. 2019. View Article : Google Scholar
|
|
158
|
Kirshenbaum M, Haas J, Nahum R, Aizer A,
Yinon Y and Orvieto R: The effect of ovarian stimulation on
endothelial function-A prospective cohort study using peripheral
artery tonometry. J Clin Endocrinol Metab. 105:dgaa6812020.
View Article : Google Scholar : PubMed/NCBI
|