Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October-2022 Volume 50 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2022 Volume 50 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
    • Supplementary_Data3.pdf
    • Supplementary_Data4.mp4
Article Open Access

Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis

  • Authors:
    • Weifan Lin
    • Xiangwan Lu
    • Hang Yang
    • Linxuan Huang
    • Wuheng Huang
    • Yuluan Tang
    • Situn Liu
    • Hua Wang
    • Yan Zhang
  • View Affiliations / Copyright

    Affiliations: MOE Key Laboratory of Gene Function and Regulation, School of Life Sciences, Sun Yat‑sen University, Guangzhou, Guangdong 510006, P.R. China, Department of Oral and Maxillofacial Surgery, Guanghua School of Stomatology, Guanghua Hospital of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
    Copyright: © Lin et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 124
    |
    Published online on: August 16, 2022
       https://doi.org/10.3892/ijmm.2022.5180
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Cancer heterogeneity has been proposed to be one of the main causes of metastatic dissemination and therapy failure. However, the underlying mechanisms of this phenomenon remain poorly understood. Melanoma is an aggressive malignancy with a high heterogeneity and metastatic potential. Therefore, the present study investigated the possible association between cancer heterogeneity and metastasis in melanoma. In total, two novel Chinese oral mucosal melanoma (COMM) cell lines, namely COMM‑1 and COMM‑2, were established for exploring methods into preventing the loss of cellular heterogeneity caused by long‑term cell culture. Each cell line was grown under two different models of culture, which yielded two subtypes, one exhibited an adhesive morphology (COMM‑AD), whereas the other was grown in suspension (COMM‑SUS). Compared with the COMM‑AD cells, the COMM‑SUS cells exhibited higher metastatic capacities and autofluorescence. Further investigations indicated that the COMM‑SUS cells exhibited metabolic reprogramming by taking up lactate produced by COMM‑AD cells at increased levels to accumulate NADH through monocarboxylate transporter 1, whilst also increasing NADPH levels through the pentose phosphate pathway (PPP). Additionally, increased NADH and NADPH levels in the COMM‑SUS cells, coupled with the upregulation of the anti‑ferroptotic proteins, glutathione peroxidase 4 and ferrop-tosis suppressor protein 1, enabled them to resist ferroptotic cell death induced by oxidative stress during hematogenous dissemination. The inhibition of ferroptosis was found to substantially increase the metastatic capacity of COMM‑AD cells. Furthermore, suppressing lactate uptake and impairing PPP activation significantly decreased the metastatic potential of the COMM‑SUS cells. Thus, the present study on metabolic heterogeneity in COMM cells potentially provides a novel perspective for exploring this mechanism underlying cancer metastasis.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Spencer KR and Mehnert JM: Mucosal melanoma: Epidemiology, biology and treatment. Cancer Treat Res. 167:295–320. 2016. View Article : Google Scholar

2 

Nassar KW and Tan AC: The mutational landscape of mucosal melanoma. Semin Cancer Biol. 61:139–148. 2020. View Article : Google Scholar :

3 

Merkel EA and Gerami P: Malignant melanoma of sun-protected sites: A review of clinical, histological, and molecular features. Lab Invest. 97:630–635. 2017. View Article : Google Scholar : PubMed/NCBI

4 

Ascierto PA, Accorona R, Botti G, Farina D, Fossati P, Gatta G, Gogas H, Lombardi D, Maroldi R, Nicolai P, et al: Mucosal melanoma of the head and neck. Crit Rev Oncol Hematol. 112:136–152. 2017. View Article : Google Scholar : PubMed/NCBI

5 

Davis LE, Shalin SC and Tackett AJ: Current state of melanoma diagnosis and treatment. Cancer Biol Ther. 20:1366–1379. 2019. View Article : Google Scholar : PubMed/NCBI

6 

Yde SS, Sjoegren P, Heje M and Stolle LB: Mucosal melanoma: A literature review. Curr Oncol Rep. 20:282018. View Article : Google Scholar : PubMed/NCBI

7 

Poh A: First oncolytic viral therapy for melanoma. Cancer Discov. 6:62016. View Article : Google Scholar

8 

Killock D: Skin cancer: T-VEC oncolytic viral therapy shows promise in melanoma. Nat Rev Clin Oncol. 12:4382015. View Article : Google Scholar : PubMed/NCBI

9 

Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA Jr and Kinzler KW: Cancer genome landscapes. Science. 339:1546–1558. 2013. View Article : Google Scholar : PubMed/NCBI

10 

Chambers AF, Groom AC and MacDonald IC: Dissemination and growth of cancer cells in metastatic sites. Nat Rev Cancer. 2:563–572. 2002. View Article : Google Scholar : PubMed/NCBI

11 

Suhail Y, Cain MP, Vanaja K, Kurywchak PA, Levchenko A, Kalluri R and Kshitiz: Systems biology of cancer metastasis. Cell Syst. 9:109–127. 2019. View Article : Google Scholar : PubMed/NCBI

12 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

13 

Mou Y, Wang J, Wu J, He D, Zhang C, Duan C and Li B: Ferroptosis, a new form of cell death: Opportunities and challenges in cancer. J Hematol Oncol. 12:342019. View Article : Google Scholar : PubMed/NCBI

14 

Piskounova E, Agathocleous M, Murphy MM, Hu Z, Huddlestun SE, Zhao Z, Leitch AM, Johnson TM, DeBerardinis RJ and Morrison SJ: Oxidative stress inhibits distant metastasis by human melanoma cells. Nature. 527:186–191. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Li D and Li Y: The interaction between ferroptosis and lipid metabolism in cancer. Signal Transduct Target Ther. 5:1082020. View Article : Google Scholar : PubMed/NCBI

16 

Zhang Z, Lu M, Chen C, Tong X, Li Y, Yang K, Lv H, Xu J and Qin L: Holo-lactoferrin: The link between ferroptosis and radiotherapy in triple-negative breast cancer. Theranostics. 11:3167–3182. 2021. View Article : Google Scholar : PubMed/NCBI

17 

Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI

18 

Bersuker K, Hendricks JM, Li Z, Magtanong L, Ford B, Tang PH, Roberts MA, Tong B, Maimone TJ, Zoncu R, et al: The CoQ oxidoreductase FSP1 acts parallel to GPX4 to inhibit ferroptosis. Nature. 575:688–692. 2019. View Article : Google Scholar : PubMed/NCBI

19 

Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, et al: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 547:453–457. 2017. View Article : Google Scholar : PubMed/NCBI

20 

Tsoi J, Robert L, Paraiso K, Galvan C, Sheu KM, Lay J, Wong DJL, Atefi M, Shirazi R, Wang X, et al: Multi-stage differentiation defines melanoma subtypes with differential vulnerability to drug-induced iron-dependent oxidative stress. Cancer Cell. 33:890–904.e5. 2018. View Article : Google Scholar : PubMed/NCBI

21 

Ursini F and Maiorino M: Lipid peroxidation and ferroptosis: The role of GSH and GPx4. Free Radic Biol Med. 152:175–185. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Faubert B, Li KY, Cai L, Hensley CT, Kim J, Zacharias LG, Yang C, Do QN, Doucette S, Burguete D, et al: Lactate metabolism in human lung tumors. Cell. 171:358–371.e9. 2017. View Article : Google Scholar : PubMed/NCBI

23 

Hui S, Ghergurovich JM, Morscher RJ, Jang C, Teng X, Lu W, Esparza LA, Reya T, Le Zhan Yanxiang, Guo J, et al: Glucose feeds the TCA cycle via circulating lactate. Nature. 551:115–118. 2017. View Article : Google Scholar : PubMed/NCBI

24 

Wu M, Zhang X, Zhang W, Chiou YS, Qian W, Liu X, Zhang M, Yan H, Li S, Li T, et al: Cancer stem cell regulated phenotypic plasticity protects metastasized cancer cells from ferroptosis. Nat Commun. 13:13712022. View Article : Google Scholar : PubMed/NCBI

25 

Ohshima K and Morii E: Metabolic reprogramming of cancer cells during tumor progression and metastasis. Metabolites. 11:282021. View Article : Google Scholar : PubMed/NCBI

26 

Icard P, Shulman S, Farhat D, Steyaert JM, Alifano M and Lincet H: How the Warburg effect supports aggressiveness and drug resistance of cancer cells? Drug Resist Updat. 38:1–11. 2018. View Article : Google Scholar : PubMed/NCBI

27 

Brooks GA: The science and translation of lactate shuttle theory. Cell Metab. 27:757–785. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Payen VL, Mina E, Van Hée VF, Porporato PE and Sonveaux P: Monocarboxylate transporters in cancer. Mol Metab. 33:48–66. 2020. View Article : Google Scholar :

29 

Pucino V, Certo M, Bulusu V, Cucchi D, Goldmann K, Pontarini E, Haas R, Smith J, Headland SE, Blighe K, et al: Lactate buildup at the site of chronic inflammation promotes disease by inducing CD4+ T cell metabolic rewiring. Cell Metab. 30:1055–1074.e8. 2019. View Article : Google Scholar

30 

Pisarsky L, Bill R, Fagiani E, Dimeloe S, Goosen RW, Hagmann J, Hess C and Christofori G: Targeting metabolic symbiosis to overcome resistance to anti-angiogenic therapy. Cell Rep. 15:1161–1174. 2016. View Article : Google Scholar : PubMed/NCBI

31 

García-Cañaveras JC, Chen L and Rabinowitz JD: The tumor metabolic microenvironment: Lessons from lactate. Cancer Res. 79:3155–3162. 2019. View Article : Google Scholar : PubMed/NCBI

32 

Tasdogan A, Faubert B, Ramesh V, Ubellacker JM, Shen B, Solmonson A, Murphy MM, Gu Z, Gu W, Martin M, et al: Metabolic heterogeneity confers differences in melanoma metastatic potential. Nature. 577:115–120. 2020. View Article : Google Scholar

33 

Zhang G, Zhang Y, Dong D, Wang F, Ma X, Guan F and Sun L: MCT1 regulates aggressive and metabolic phenotypes in bladder cancer. J Cancer. 9:2492–2501. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Felmlee MA, Jones RS, Rodriguez-Cruz V, Follman KE and Morris ME: Monocarboxylate transporters (SLC16): Function, regulation, and role in health and disease. Pharmacol Rev. 72:466–485. 2020. View Article : Google Scholar : PubMed/NCBI

35 

Rabinowitz JD and Enerbäck S: Lactate: The ugly duckling of energy metabolism. Nat Metab. 2:566–571. 2020. View Article : Google Scholar : PubMed/NCBI

36 

Gao HJ, Zhao MC, Zhang YJ, Zhou DS, Xu L, Li GB, Chen MS and Liu J: Monocarboxylate transporter 4 predicts poor prognosis in hepatocellular carcinoma and is associated with cell proliferation and migration. J Cancer Res Clin Oncol. 141:1151–1162. 2015. View Article : Google Scholar

37 

Wang Y, Li Y, Jiang L, Ren X, Cheng B and Xia J: Prognostic value of glycolysis markers in head and neck squamous cell carcinoma: A meta-analysis. Aging (Albany NY). 13:7284–7299. 2021. View Article : Google Scholar

38 

Pertega-Gomes N, Felisbino S, Massie CE, Vizcaino JR, Coelho R, Sandi C, Simoes-Sousa S, Jurmeister S, Ramos-Montoya A, Asim M, et al: A glycolytic phenotype is associated with prostate cancer progression and aggressiveness: A role for monocarboxylate transporters as metabolic targets for therapy. J Pathol. 236:517–530. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Wilde L, Roche M, Domingo-Vidal M, Tanson K, Philp N, Curry J and Martinez-Outschoorn U: Metabolic coupling and the reverse Warburg effect in cancer: Implications for novel biomarker and anticancer agent development. Semin Oncol. 44:198–203. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Huhta H, Helminen O, Palomäki S, Kauppila JH, Saarnio J, Lehenkari PP and Karttunen TJ: Intratumoral lactate metabolism in Barrett's esophagus and adenocarcinoma. Oncotarget. 8:228942017. View Article : Google Scholar : PubMed/NCBI

41 

Hu Y and Zeng F: Expressions of GPR81, MCT1 and MCT4 in squamous carcinoma and their clinical significance. Zhong Nan Da Xue Xue Bao Yi Xue Ban. 43:950–956. 2018.In Chinese. PubMed/NCBI

42 

Nakayama Y, Torigoe T, Inoue Y, Minagawa N, Izumi H, Kohno K and Yamaguchi K: Prognostic significance of monocarboxylate transporter 4 expression in patients with colorectal cancer. Exp Ther Med. 3:25–30. 2012. View Article : Google Scholar : PubMed/NCBI

43 

Hubert CG, Rivera M, Spangler LC, Wu Q, Mack SC, Prager BC, Couce M, McLendon RE, Sloan AE and Rich JN: A three-dimensional organoid culture system derived from human glioblastomas recapitulates the hypoxic gradients and cancer stem cell heterogeneity of tumors found in vivo. Cancer Res. 76:2465–2477. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Post Y, Puschhof J, Beumer J, Kerkkamp HM, de Bakker MA, Slagboom J, de Barbanson B, Wevers NR, Spijkers XM, Olivier T, et al: Snake venom gland organoids. Cell. 180:233–247.e21. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Boretto M, Maenhoudt N, Luo X, Hennes A, Boeckx B, Bui B, Heremans R, Perneel L, Kobayashi H, Van Zundert I, et al: Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat Cell Biol. 21:1041–1051. 2019. View Article : Google Scholar : PubMed/NCBI

46 

Haider N, Dutt P, van de Kooij B, Ho J, Palomero L, Pujana MA, Yaffe M and Stambolic V: NEK10 tyrosine phosphorylates p53 and controls its transcriptional activity. Oncogene. 39:5252–5266. 2020. View Article : Google Scholar : PubMed/NCBI

47 

Livak KJ and Schmittgen TD: Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001. View Article : Google Scholar

48 

Park E and Chung SW: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 10:8222019. View Article : Google Scholar : PubMed/NCBI

49 

Ding CC, Rose J, Sun T, Wu J, Chen PH, Lin CC, Yang WH, Chen KY, Lee H, Xu E, et al: MESH1 is a cytosolic NADPH phosphatase that regulates ferroptosis. Nat Metab. 2:270–277. 2020. View Article : Google Scholar : PubMed/NCBI

50 

Zheng J and Conrad M: The metabolic underpinnings of ferroptosis. Cell Metab. 32:920–937. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Dagogo-Jack I and Shaw AT: Tumour heterogeneity and resistance to cancer therapies. Nat Rev Clin Oncol. 15:81–94. 2018. View Article : Google Scholar

52 

Burrell RA, McGranahan N, Bartek J and Swanton C: The causes and consequences of genetic heterogeneity in cancer evolution. Nature. 501:338–345. 2013. View Article : Google Scholar : PubMed/NCBI

53 

Zheng H, Pomyen Y, Hernandez MO, Li C, Livak F, Tang W, Dang H, Greten TF, Davis JL, Zhao Y, et al: Single-cell analysis reveals cancer stem cell heterogeneity in hepatocellular carcinoma. Hepatology. 68:127–140. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Wang DC and Wang X: Systems heterogeneity: An integrative way to understand cancer heterogeneity. Semin Cell Dev Biol. 64:1–4. 2017. View Article : Google Scholar

55 

Hitomi M, Chumakova AP, Silver DJ, Knudsen AM, Pontius WD, Murphy S, Anand N, Kristensen BW and Lathia JD: Asymmetric cell division promotes therapeutic resistance in glioblastoma stem cells. JCI Insight. 6:e1305102021. View Article : Google Scholar :

56 

Marjanovic ND, Weinberg RA and Chaffer CL: Cell plasticity and heterogeneity in cancer. Clin Chem. 59:168–179. 2013. View Article : Google Scholar

57 

Gerlach C, Rohr JC, Perié L, van Rooij N, van Heijst JW, Velds A, Urbanus J, Naik SH, Jacobs H, Beltman JB, et al: Heterogeneous differentiation patterns of individual CD8+ T cells. Science. 340:635–639. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Bergers G and Fendt SM: The metabolism of cancer cells during metastasis. Nat Rev Cancer. 21:162–180. 2021. View Article : Google Scholar : PubMed/NCBI

59 

Yu L, Chen X, Wang L and Chen S: The sweet trap in tumors: Aerobic glycolysis and potential targets for therapy. Oncotarget. 7:38908–38926. 2016. View Article : Google Scholar : PubMed/NCBI

60 

Brisson L, Bański P, Sboarina M, Dethier C, Danhier P, Fontenille MJ, Van Hée VF, Vazeille T, Tardy M, Falces J, et al: Lactate dehydrogenase B controls lysosome activity and autophagy in cancer. Cancer Cell. 30:418–431. 2016. View Article : Google Scholar : PubMed/NCBI

61 

Kennedy KM, Scarbrough PM, Ribeiro A, Richardson R, Yuan H, Sonveaux P, Landon CD, Chi JT, Pizzo S, Schroeder T and Dewhirst MW: Catabolism of exogenous lactate reveals it as a legitimate metabolic substrate in breast cancer. PLoS One. 8:e751542013. View Article : Google Scholar : PubMed/NCBI

62 

Silva A, Antunes B, Batista A, Pinto-Ribeiro F, Baltazar F and Afonso J: In vivo anticancer activity of AZD3965: A systematic review. Molecules. 27:1812021. View Article : Google Scholar

63 

Polański R, Hodgkinson CL, Fusi A, Nonaka D, Priest L, Kelly P, Trapani F, Bishop PW, White A, Critchlow SE, et al: Activity of the monocarboxylate transporter 1 inhibitor AZD3965 in small cell lung cancer. Clin Cancer Res. 20:926–937. 2014. View Article : Google Scholar

64 

Benyahia Z, Blackman MC, Hamelin L, Zampieri LX, Capeloa T, Bedin ML, Vazeille T, Schakman O and Sonveaux P: In vitro and in vivo characterization of MCT1 inhibitor AZD3965 confirms preclinical safety compatible with breast cancer treatment. Cancers (Basel). 13. pp. 5692021, View Article : Google Scholar

65 

Beloueche-Babari M, Wantuch S, Casals Galobart T, Koniordou M, Parkes HG, Arunan V, Chung YL, Eykyn TR, Smith PD and Leach MO: MCT1 inhibitor AZD3965 increases mitochondrial metabolism, facilitating combination therapy and noninvasive magnetic resonance spectroscopy. Cancer Res. 77:5913–5924. 2017. View Article : Google Scholar : PubMed/NCBI

66 

Wang G, Wang JJ, Yin PH, Xu K, Wang YZ, Shi F, Gao J and Fu XL: New strategies for targeting glucose metabolism-mediated acidosis for colorectal cancer therapy. J Cell Physiol. 234:348–368. 2018. View Article : Google Scholar : PubMed/NCBI

67 

Fan J, Ye J, Kamphorst JJ, Shlomi T, Thompson CB and Rabinowitz JD: Quantitative flux analysis reveals folate-dependent NADPH production. Nature. 510:298–302. 2014. View Article : Google Scholar : PubMed/NCBI

68 

Pavlova NN and Thompson CB: The emerging hallmarks of cancer metabolism. Cell Metab. 23:27–47. 2016. View Article : Google Scholar : PubMed/NCBI

69 

Lewis C A, Parker SJ, Fiske BP, McCloskey D, Gui D Y, Green CR, Vokes NI, Feist AM, Vander Heiden MG and Metallo CM: Tracing compartmentalized NADPH metabolism in the cytosol and mitochondria of mammalian cells. Mol Cell. 55:253–263. 2014. View Article : Google Scholar : PubMed/NCBI

70 

Wang X, Liu Z, Sun J, Song X, Bian M, Wang F, Yan F and Yu Z: Inhibition of NADPH oxidase 4 attenuates lymphangiogenesis and tumor metastasis in breast cancer. FASEB J. 35:e215312021.PubMed/NCBI

71 

Lu YX, Ju HQ, Liu ZX, Chen DL, Wang Y, Zhao Q, Wu QN, Zeng ZL, Qiu HB, Hu PS, et al: ME1 regulates NADPH homeostasis to promote gastric cancer growth and metastasis. Cancer Res. 78:1972–1985. 2018. View Article : Google Scholar : PubMed/NCBI

72 

Tamošiūnas M, Plorina EV, Lange M, Derjabo A, Kuzmina I, Bļizņuks D and Spigulis J: Autofluorescence imaging for recurrence detection in skin cancer postoperative scars. J Biophotonics. 13:e2019001622020. View Article : Google Scholar

73 

Huang TT, Chen KC, Wong TY, Chen CY, Chen WC, Chen YC, Chang MH, Wu DY, Huang TY, Nioka S, et al: Two-channel auto-fluorescence analysis for oral cancer. J Biomed Opt. 24:1–10. 2018. View Article : Google Scholar : PubMed/NCBI

74 

Gulali A, Mustafa S, Ibrahim K, Erkus E, Ozer B, Kocak MZ, Yaman S, Keyif F, Altinordu R, Erkol H and Savli H: Could red cell distribution width be a marker of thyroid cancer? J Coll Physicians Surg Pak. 27:556–558. 2017.

75 

Chamma E, Qiu J, Lindvere-Teene L, Blackmore KM, Majeed S, Weersink R, Dickie CI, Griffin AM, Wunder JS, Ferguson PC and DaCosta RS: Optically-tracked handheld fluorescence imaging platform for monitoring skin response in the management of soft tissue sarcoma. J Biomed Opt. 20:0760112015. View Article : Google Scholar : PubMed/NCBI

76 

Waaijer L, Filipe MD, Simons J, van der Pol CC, de Boorder T, van Diest PJ and Witkamp AJ: Detection of breast cancer precursor lesions by autofluorescence ductoscopy. Breast Cancer. 28:119–129. 2021. View Article : Google Scholar

77 

Borile G, Sandrin D, Filippi A, Anderson KI and Romanato F: Label-free multiphoton microscopy: Much more than fancy images. Int J Mol Sci. 22:26572021. View Article : Google Scholar : PubMed/NCBI

78 

Salvagno GL, Sanchis-Gomar F, Picanza A and Lippi G: Red blood cell distribution width: A simple parameter with multiple clinical applications. Crit Rev Clin Lab Sci. 52:86–105. 2015. View Article : Google Scholar

79 

Ma W, Mao S, Bao M, Wu Y, Guo Y, Liu J, Wang R, Li C, Zhang J, Zhang W and Yao X: Prognostic significance of red cell distribution width in bladder cancer. Transl Androl Urol. 9:295–302. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Wang PF, Song SY, Guo H, Wang TJ, Liu N and Yan CX: Prognostic role of pretreatment red blood cell distribution width in patients with cancer: A meta-analysis of 49 studies. J Cancer. 10:43052019. View Article : Google Scholar : PubMed/NCBI

81 

Han F, Liu Y, Cheng S, Sun Z, Sheng C, Sun X, Shang X, Tian W, Wang X, Li J, et al: Diagnosis and survival values of neutrophil-lymphocyte ratio (NLR) and red blood cell distribution width (RDW) in esophageal cancer. Clin Chim Acta. 488:150–158. 2019. View Article : Google Scholar

82 

Ghosh M, Saha S, Bettke J, Nagar R, Parrales A, Iwakuma T, van der Velden AWM and Martinez LA: Mutant p53 suppresses innate immune signaling to promote tumorigenesis. Cancer Cell. 39:494–508.e5. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Watson MJ, Vignali PDA, Mullett SJ, Overacre-Delgoffe AE, Peralta RM, Grebinoski S, Menk AV, Rittenhouse NL, DePeaux K, Whetstone RD, et al: Metabolic support of tumour-infiltrating regulatory T cells by lactic acid. Nature. 591:645–651. 2021. View Article : Google Scholar : PubMed/NCBI

84 

Karsten E, Breen E, McCracken SA, Clarke S and Herbert BR: Red blood cells exposed to cancer cells in culture have altered cytokine profiles and immune function. Sci Rep. 10:77272020. View Article : Google Scholar : PubMed/NCBI

85 

Li ZX, Zheng ZQ, Wei ZH, Zhang LL, Li F, Lin L, Liu RQ, Huang XD, Lv JW, Chen FP, et al: Comprehensive characterization of the alternative splicing landscape in head and neck squamous cell carcinoma reveals novel events associated with tumorigenesis and the immune microenvironment. Theranostics. 9:7648–7665. 2019. View Article : Google Scholar : PubMed/NCBI

86 

Diakos CI, Charles KA, McMillan DC and Clarke SJ: Cancer-related inflammation and treatment effectiveness. Lancet Oncol. 15:e493–e503. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Duan Q, Zhang H, Zheng J and Zhang L: Turning cold into hot: Firing up the tumor microenvironment. Trends Cancer. 6:605–618. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Hou J, Karin M and Sun B: Targeting cancer-promoting inflammation-have anti-inflammatory therapies come of age? Nat Rev Clin Oncol. 18:261–279. 2021. View Article : Google Scholar : PubMed/NCBI

89 

Yu Y, Yan Y, Niu F, Wang Y, Chen X, Su G, Liu Y, Zhao X, Qian L, Liu P and Xiong Y: Ferroptosis: A cell death connecting oxidative stress, inflammation and cardiovascular diseases. Cell Death Discov. 7:1932021. View Article : Google Scholar : PubMed/NCBI

90 

Meacham CE and Morrison SJ: Tumour heterogeneity and cancer cell plasticity. Nature. 501:328–337. 2013. View Article : Google Scholar : PubMed/NCBI

91 

Boumahdi S and de Sauvage FJ: The great escape: Tumour cell plasticity in resistance to targeted therapy. Nat Rev Drug Discov. 19:39–56. 2020. View Article : Google Scholar

92 

Zhou B, Zhang JY, Liu XS, Chen HZ, Ai YL, Cheng K, Sun RY, Zhou D, Han J and Wu Q: Tom20 senses iron-activated ROS signaling to promote melanoma cell pyroptosis. Cell Res. 28:1171–1185. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Ubellacker JM, Tasdogan A, Ramesh V, Shen B, Mitchell EC, Martin-Sandoval MS, Gu Z, McCormick ML, Durham AB, Spitz DR, et al: Lymph protects metastasizing melanoma cells from ferroptosis. Nature. 585:113–118. 2020. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Lin W, Lu X, Yang H, Huang L, Huang W, Tang Y, Liu S, Wang H and Zhang Y: Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis. Int J Mol Med 50: 124, 2022.
APA
Lin, W., Lu, X., Yang, H., Huang, L., Huang, W., Tang, Y. ... Zhang, Y. (2022). Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis. International Journal of Molecular Medicine, 50, 124. https://doi.org/10.3892/ijmm.2022.5180
MLA
Lin, W., Lu, X., Yang, H., Huang, L., Huang, W., Tang, Y., Liu, S., Wang, H., Zhang, Y."Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis". International Journal of Molecular Medicine 50.4 (2022): 124.
Chicago
Lin, W., Lu, X., Yang, H., Huang, L., Huang, W., Tang, Y., Liu, S., Wang, H., Zhang, Y."Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis". International Journal of Molecular Medicine 50, no. 4 (2022): 124. https://doi.org/10.3892/ijmm.2022.5180
Copy and paste a formatted citation
x
Spandidos Publications style
Lin W, Lu X, Yang H, Huang L, Huang W, Tang Y, Liu S, Wang H and Zhang Y: Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis. Int J Mol Med 50: 124, 2022.
APA
Lin, W., Lu, X., Yang, H., Huang, L., Huang, W., Tang, Y. ... Zhang, Y. (2022). Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis. International Journal of Molecular Medicine, 50, 124. https://doi.org/10.3892/ijmm.2022.5180
MLA
Lin, W., Lu, X., Yang, H., Huang, L., Huang, W., Tang, Y., Liu, S., Wang, H., Zhang, Y."Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis". International Journal of Molecular Medicine 50.4 (2022): 124.
Chicago
Lin, W., Lu, X., Yang, H., Huang, L., Huang, W., Tang, Y., Liu, S., Wang, H., Zhang, Y."Metabolic heterogeneity protects metastatic mucosal melanomas cells from ferroptosis". International Journal of Molecular Medicine 50, no. 4 (2022): 124. https://doi.org/10.3892/ijmm.2022.5180
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team