You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Akbari M, Kirkwood TBL and Bohr VA: Mitochondria in the signaling pathways that control longevity and health span. Ageing Res Rev. 54:1009402019. View Article : Google Scholar : PubMed/NCBI | |
|
Bock FJ and Tait SWG: Mitochondria as multifaceted regulators of cell death. Nat Rev Mol Cell Biol. 21:85–100. 2020. View Article : Google Scholar | |
|
Chakrabarty RP and Chandel NS: Mitochondria as signaling organelles control mammalian stem cell fate. Cell Stem Cell. 28:394–408. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Hood DA, Memme JM, Oliveira AN and Triolo M: Maintenance of skeletal muscle mitochondria in health, exercise, and aging. Annu Rev Physiol. 81:19–41. 2019. View Article : Google Scholar | |
|
Li L, Conradson DM, Bharat V, Kim MJ, Hsieh CH, Minhas PS, Papakyrikos AM, Durairaj AS, Ludlam A, Andreasson KI, et al: A mitochondrial membrane-bridging machinery mediates signal transduction of intramitochondrial oxidation. Nat Metab. 3:1242–1258. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Martínez-Reyes I and Chandel NS: Mitochondrial TCA cycle metabolites control physiology and disease. Nat Commun. 11:1022020. View Article : Google Scholar : PubMed/NCBI | |
|
Kim Hong HT, Bich Phuong TT, Thu Thuy NT, Wheatley MD and Cushman JC: Simultaneous chloroplast, mitochondria isolation and mitochondrial protein preparation for two-dimensional electrophoresis analysis of ice plant leaves under well watered and water-deficit stressed treatments. Protein Expr Purif. 155:86–94. 2019. View Article : Google Scholar | |
|
Boussardon C and Keech O: Cell type-specific isolation of mitochondria in Arabidopsis. Methods Mol Biol. 2363:13–23. 2022. View Article : Google Scholar | |
|
Elekofehinti OO, Kamdem JP, Saliu TP, Famusiwa CD, Boligon A and Teixeira Rocha JB: Improvement of mitochondrial function by Tapinanthus globifer (A.Rich.) Tiegh. Against hepatotoxic agent in isolated rat's liver mitochondria. J Ethnopharmacol. 242:1120262019. View Article : Google Scholar : PubMed/NCBI | |
|
Gäbelein CG, Feng Q, Sarajlic E, Zambelli T, Guillaume-Gentil O, Kornmann B and Vorholt JA: Mitochondria transplantation between living cells. PLoS Biol. 20:e30015762022. View Article : Google Scholar : PubMed/NCBI | |
|
Lee D, Lee YH, Lee KH, Lee BS, Alishir A, Ko YJ, Kang KS and Kim KH: Aviculin isolated from lespedeza cuneata induce apoptosis in breast cancer cells through mitochondria-mediated caspase activation pathway. Molecules. 25:17082020. View Article : Google Scholar : | |
|
Léger JL, Jougleux JL, Savadogo F, Pichaud N and Boudreau LH: Rapid isolation and purification of functional platelet mitochondria using a discontinuous percoll gradient. Platelets. 31:258–264. 2020. View Article : Google Scholar | |
|
Léger JL, Pichaud N and Boudreau LH: Purification of functional platelet mitochondria using a discontinuous percoll gradient. Methods Mol Biol. 2276:57–66. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liao PC, Bergamini C, Fato R, Pon LA and Pallotti F: Isolation of mitochondria from cells and tissues. Methods Cell Biol. 155:3–31. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lin YT, Chen ST, Chang JC, Teoh RJ, Liu CS and Wang GJ: Green extraction of healthy and additive free mitochondria with a conventional centrifuge. Lab Chip. 19:3862–3869. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Long Q, Huang L, Huang K and Yang Q: Assessing mitochondrial bioenergetics in isolated mitochondria from mouse heart tissues using oroboros 2k-oxygraph. Methods Mol Biol. 1966:237–246. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rahman MH, Xiao Q, Zhao S, Wei AC and Ho YP: Extraction of functional mitochondria based on membrane stiffness. Methods Mol Biol. 2276:343–355. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ramezani M, Samiei F and Pourahmad J: Anti-glioma effect of pseudosynanceia melanostigma venom on isolated mitochondria from glioblastoma cells. Asian Pac J Cancer Prev. 22:2295–2302. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ruzzenente B and Metodiev MD: Linear density sucrose gradients to study mitoribosomal biogenesis in tissue-specific knockout mice. Methods Mol Biol. 2224:47–60. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Cao L, Li Y, Liu H, Zhang M, Ma H, Wang B, Yuan X and Liu Q: Gracillin isolated from reineckia carnea induces apoptosis of A549 cells via the mitochondrial pathway. Drug Des Devel Ther. 15:233–243. 2021. View Article : Google Scholar : | |
|
Chandra K, Kumar V, Werner SE and Odom TW: Separation of stabilized MOPS gold nanostars by density gradient centrifugation. ACS Omega. 2:4878–4884. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen BY, Sung CW, Chen C, Cheng CM, Lin DP, Huang CT and Hsu MY: Advances in exosomes technology. Clin Chim Acta. 493:14–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Écija-Arenas Á, Román-Pizarro V and Fernández-Romero JM: Luminescence continuous flow system for monitoring the efficiency of hybrid liposomes separation using multiphase density gradient centrifugation. Talanta. 222:1215322021. View Article : Google Scholar | |
|
Hu P, Fabyanic E, Kwon DY, Tang S, Zhou Z and Wu H: Dissecting cell-type composition and activity-dependent transcriptional state in mammalian brains by massively parallel single-nucleus RNA-Seq. Mol Cell. 68:1006–1015.e7. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jerri HA, Sheehan WP, Snyder CE and Velegol D: Prolonging density gradient stability. Langmuir. 26:4725–4731. 2010. View Article : Google Scholar | |
|
Johnson ME, Montoro Bustos AR and Winchester MR: Practical utilization of spICP-MS to study sucrose density gradient centrifugation for the separation of nanoparticles. Anal Bioanal Chem. 408:7629–7640. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Pužar Dominkuš P, Stenovec M, Sitar S, Lasič E, Zorec R, Plemenitaš A, Žagar E, Kreft M and Lenassi M: PKH26 labeling of extracellular vesicles: Characterization and cellular internalization of contaminating PKH26 nanoparticles. Biochim Biophys Acta Biomembr. 1860:1350–1361. 2018. View Article : Google Scholar | |
|
Wang J, Shen T, Huang X, Kumar GR, Chen X, Zeng Z, Zhang R, Chen R, Li T, Zhang T, et al: Serum hepatitis B virus RNA is encapsidated pregenome RNA that may be associated with persistence of viral infection and rebound. J Hepatol. 65:700–710. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Sugiura A, Nagashima S, Tokuyama T, Amo T, Matsuki Y, Ishido S, Kudo Y, McBride HM, Fukuda T, Matsushita N, et al: MITOL regulates endoplasmic reticulum-mitochondria contacts via Mitofusin2. Mol Cell. 51:20–34. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Xiong B, Cheng J, Qiao Y, Zhou R, He Y and Yeung ES: Separation of nanorods by density gradient centrifugation. J Chromatogr A. 1218:3823–3829. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Xu K, Zhou B, Chen T, Huang Y, Li Q, Wen F, Ge W, Wang J, Yu S, et al: A circulating extracellular vesicles-based novel screening tool for colorectal cancer revealed by shotgun and data-independent acquisition mass spectrometry. J Extracell Vesicles. 9:17502022020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu J, Liu B, Wang Z, Wang D, Ni H, Zhang L and Wang Y: Exosomes from nicotine-stimulated macrophages accelerate atherosclerosis through miR-21-3p/PTEN-mediated VSMC migration and proliferation. Theranostics. 9:6901–6919. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Qattan AT, Mulvey C, Crawford M, Natale DA and Godovac-Zimmermann J: Quantitative organelle proteomics of MCF-7 breast cancer cells reveals multiple subcellular locations for proteins in cellular functional processes. J Proteome Res. 9:495–508. 2010. View Article : Google Scholar | |
|
Hassani M, Hellebrekers P, Chen N, van Aalst C, Bongers S, Hietbrink F, Koenderman L and Vrisekoop N: On the origin of low-density neutrophils. J Leukoc Biol. 107:809–818. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Shi W, Wang Y, Zhang C, Jin H, Zeng Z, Wei L, Tian Y, Zhang D and Sun G: Isolation and purification of immune cells from the liver. Int Immunopharmacol. 85:1066322020. View Article : Google Scholar : PubMed/NCBI | |
|
Grist TM, Canon CL, Fishman EK, Kohi MP and Mossa-Basha M: Short-, mid-, and long-term strategies to manage the shortage of iohexol. Radiology. 304:289–293. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liang S, Su M, Liu B, Liu R, Zheng H, Qiu W and Zhang Z: Evaluation of blood induced influence for high-definition intravascular ultrasound (HD-IVUS). IEEE Trans Ultrason Ferroelectr Freq Control. 69:98–105. 2022. View Article : Google Scholar | |
|
Warwick J and Holness J: Measurement of glomerular filtration rate. Semin Nucl Med. 52:453–466. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Elgamal S, Cocucci E, Sass EJ, Mo XM, Blissett AR, Calomeni EP, Rogers KA, Woyach JA, Bhat SA, Muthusamy N, et al: Optimizing extracellular vesicles' isolation from chronic lymphocytic leukemia patient plasma and cell line supernatant. JCI Insight. 6:e1379372021. View Article : Google Scholar | |
|
Inoue T, Kusumoto S, Iio E, Ogawa S, Suzuki T, Yagi S, Kaneko A, Matsuura K, Aoyagi K and Tanaka Y: Clinical efficacy of a novel, high-sensitivity HBcrAg assay in the management of chronic hepatitis B and HBV reactivation. J Hepatol. 75:302–310. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Tóth EÁ, Turiák L, Visnovitz T, Cserép C, Mázló A, Sódar BW, Försönits AI, Petővári G, Sebestyén A, Komlósi Z, et al: Formation of a protein corona on the surface of extracellular vesicles in blood plasma. J Extracell Vesicles. 10:e121402021. View Article : Google Scholar : PubMed/NCBI | |
|
Veerman RE, Teeuwen L, Czarnewski P, Güclüler Akpinar G, Sandberg A, Cao X, Pernemalm M, Orre LM, Gabrielsson S and Eldh M: Molecular evaluation of five different isolation methods for extracellular vesicles reveals different clinical applicability and subcellular origin. J Extracell Vesicles. 10:e121282021. View Article : Google Scholar : PubMed/NCBI | |
|
Cartuche L, Reyes-Batlle M, Sifaoui I, Arberas-Jiménez I, Piñero JE, Fernández JJ, Lorenzo-Morales J and Díaz-Marrero AR: Antiamoebic activities of indolocarbazole metabolites isolated from streptomyces sanyensis cultures. Mar Drugs. 17:5882019. View Article : Google Scholar : | |
|
Jiang S, Zhang E, Ruan H, Ma J, Zhao X, Zhu Y, Xiu X, Han N, Li J, Zhang H, et al: Actinomycin V induces apoptosis associated with mitochondrial and PI3K/AKT pathways in human CRC cells. Mar Drugs. 19:5992021. View Article : Google Scholar : PubMed/NCBI | |
|
Li K, Liang Z, Chen W, Luo X, Fang W, Liao S, Lin X, Yang B, Wang J, Tang L, et al: Iakyricidins A-D, antiproliferative piericidin analogues bearing a carbonyl group or cyclic skeleton from streptomyces iakyrus SCSIO NS104. J Org Chem. 84:12626–12631. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Zhu H, Wu W, Shen Y, Lin X, Wu Y, Liu L, Tang J, Zhou Y, Sun F and Lin HW: Neoantimycin F, a streptomyces-derived natural product induces mitochondria-related apoptotic death in human non-small cell lung cancer cells. Front Pharmacol. 10:10422019. View Article : Google Scholar : | |
|
Rawat PS, Jaiswal A, Khurana A, Bhatti JS and Navik U: Doxorubicin-induced cardiotoxicity: An update on the molecular mechanism and novel therapeutic strategies for effective management. Biomed Pharmacother. 139:1117082021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q, Raoof M, Chen Y, Sumi Y, Sursal T, Junger W, Brohi K, Itagaki K and Hauser CJ: Circulating mitochondrial DAMPs cause inflammatory responses to injury. Nature. 464:104–107. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Deng X, Liu J, Liu L, Sun X, Huang J and Dong J: Drp1-mediated mitochondrial fission contributes to baicalein-induced apoptosis and autophagy in lung cancer via activation of AMPK signaling pathway. Int J Biol Sci. 16:1403–1416. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ma ZJ, Lu L, Yang JJ, Wang XX, Su G, Wang ZL, Chen GH, Sun HM, Wang MY and Yang Y: Lariciresinol induces apoptosis in HepG2 cells via mitochondrial-mediated apoptosis pathway. Eur J Pharmacol. 821:1–10. 2018. View Article : Google Scholar | |
|
Ke H, Dass S, Morrisey JM, Mather MW and Vaidya AB: The mitochondrial ribosomal protein L13 is critical for the structural and functional integrity of the mitochondrion in plasmodium falciparum. J Biol Chem. 293:8128–8137. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Galvan DL, Green NH and Danesh FR: The hallmarks of mitochondrial dysfunction in chronic kidney disease. Kidney Int. 92:1051–1057. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wiemerslage L and Lee D: Quantification of mitochondrial morphology in neurites of dopaminergic neurons using multiple parameters. J Neurosci Methods. 262:56–65. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Labarta E, de Los Santos MJ, Escribá MJ, Pellicer A and Herraiz S: Mitochondria as a tool for oocyte rejuvenation. Fertil Steril. 111:219–226. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Li WQ, Wang Z, Hao S, He H, Wan Y, Zhu C, Sun LP, Cheng G and Zheng SY: Mitochondria-targeting polydopamine nanoparticles to deliver doxorubicin for overcoming drug resistance. ACS Appl Mater Interfaces. 9:16793–16802. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lin Y, Liu J, Bai R, Shi J, Zhu X, Liu J, Guo J, Zhang W, Liu H and Liu Z: Mitochondria-inspired nanoparticles with microenvironment-adapting capacities for on-demand drug delivery after ischemic injury. ACS Nano. 14:11846–11859. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Smith GM and Gallo G: The role of mitochondria in axon development and regeneration. Dev Neurobiol. 78:221–237. 2018. View Article : Google Scholar : | |
|
Bastian C, Day J, Politano S, Quinn J, Brunet S and Baltan S: Preserving mitochondrial structure and motility promotes recovery of white matter after ischemia. Neuromolecular Med. 21:484–492. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bhargava P and Schnellmann RG: Mitochondrial energetics in the kidney. Nat Rev Nephrol. 13:629–646. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Granata C, Jamnick NA and Bishop DJ: Training-induced changes in mitochondrial content and respiratory function in human skeletal muscle. Sports Med. 48:1809–1828. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hammond K, Ryadnov MG and Hoogenboom BW: Atomic force microscopy to elucidate how peptides disrupt membranes. Biochim Biophys Acta Biomembr. 1863:1834472021. View Article : Google Scholar | |
|
Heath GR, Kots E, Robertson JL, Lansky S, Khelashvili G, Weinstein H and Scheuring S: Localization atomic force microscopy. Nature. 594:385–390. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Müller DJ, Dumitru AC, Lo Giudice C, Gaub HE, Hinterdorfer P, Hummer G, De Yoreo JJ, Dufrêne YF and Alsteens D: Atomic force microscopy-based force spectroscopy and multiparametric imaging of biomolecular and cellular systems. Chem Rev. 121:11701–11725. 2021. View Article : Google Scholar | |
|
Vogt N: Atomic force microscopy in super-resolution. Nat Methods. 18:8592021. View Article : Google Scholar : PubMed/NCBI | |
|
Kolossov VL, Sivaguru M, Huff J, Luby K, Kanakaraju K and Gaskins HR: Airyscan super-resolution microscopy of mitochondrial morphology and dynamics in living tumor cells. Microsc Res Tech. 81:115–128. 2018. View Article : Google Scholar | |
|
Rocha EM, De Miranda B and Sanders LH: Alpha-synuclein: Pathology, mitochondrial dysfunction and neuroinflammation in Parkinson's disease. Neurobiol Dis. 109:249–257. 2018. View Article : Google Scholar | |
|
Szymański J, Janikiewicz J, Michalska B, Patalas-Krawczyk P, Perrone M, Ziółkowski W, Duszyński J, Pinton P, Dobrzyń A and Więckowski MR: Interaction of mitochondria with the endoplasmic reticulum and plasma membrane in calcium homeostasis, lipid trafficking and mitochondrial structure. Int J Mol Sci. 18:15762017. View Article : Google Scholar | |
|
Adam N, Beattie TL and Riabowol K: Fluorescence microscopy methods for examining telomeres during cell aging. Ageing Res Rev. 68:1013202021. View Article : Google Scholar : PubMed/NCBI | |
|
Huang L, Chen H, Luo Y, Rivenson Y and Ozcan A: Recurrent neural network-based volumetric fluorescence microscopy. Light Sci Appl. 10:622021. View Article : Google Scholar : PubMed/NCBI | |
|
Thiele JC, Helmerich DA, Oleksiievets N, Tsukanov R, Butkevich E, Sauer M, Nevskyi O and Enderlein J: Confocal fluorescence-lifetime single-molecule localization microscopy. ACS Nano. 14:14190–14200. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Zong H, Zong C, Tan Y, Zhang M, Zhan Y and Cheng JX: Fluorescence-detected mid-infrared photothermal microscopy. J Am Chem Soc. 143:11490–11499. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Alexander JF, Seua AV, Arroyo LD, Ray PR, Wangzhou A, Heiβ-Lückemann L, Schedlowski M, Price TJ, Kavelaars A and Heijnen CJ: Nasal administration of mitochondria reverses chemotherapy-induced cognitive deficits. Theranostics. 11:3109–3130. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dumitru AC, Stommen A, Koehler M, Cloos AS, Yang J, Leclercqz A, Tyteca D and Alsteens D: Probing PIEZO1 localization upon activation using high-resolution atomic force and confocal microscopy. Nano Lett. 21:4950–4958. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Han X, Su Y, Glidewell M, Daniels JS, Liu J, Sengupta T, Rey-Suarez I, Fischer R, Patel A, et al: Multiview confocal super-resolution microscopy. Nature. 600:279–284. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yordanov S, Neuhaus K, Hartmann R, Díaz-Pascual F, Vidakovic L, Singh PK and Drescher K: Single-objective high-resolution confocal light sheet fluorescence microscopy for standard biological sample geometries. Biomed Opt Express. 12:3372–3391. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao Y, Raghuram A, Kim HK, Hielscher AH, Robinson JT and Veeraraghavan A: High resolution, deep imaging using confocal time-of-flight diffuse optical tomography. IEEE Trans Pattern Anal Mach Intell. 43:2206–2219. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Dalecká M, Sabó J, Backová L, Rösel D, Brábek J, Benda A and Tolde O: Invadopodia structure in 3D environment resolved by near-infrared branding protocol combining correlative confocal and FIB-SEM microscopy. Int J Mol Sci. 22:78052021. View Article : Google Scholar : PubMed/NCBI | |
|
Guo R, Barnea I and Shaked NT: Limited-angle tomographic phase microscopy utilizing confocal scanning fluorescence microscopy. Biomed Opt Express. 12:1869–1881. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lamers MM, van der Vaart J, Knoops K, Riesebosch S, Breugem TI, Mykytyn AZ, Beumer J, Schipper D, Bezstarosti K, Koopman CD, et al: An organoid-derived bronchioalveolar model for SARS-CoV-2 infection of human alveolar type II-like cells. EMBO J. 40:e1059122021. View Article : Google Scholar | |
|
Messal HA, Almagro J, Zaw Thin M, Tedeschi A, Ciccarelli A, Blackie L, Anderson KI, Miguel-Aliaga I, van Rheenen J and Behrens A: Antigen retrieval and clearing for whole-organ immunofluorescence by FLASH. Nat Protoc. 16:239–262. 2021. View Article : Google Scholar | |
|
Miyashita L, Foley G, Gill I, Gillmore G, Grigg J and Wertheim D: Confocal microscopy 3D imaging of diesel particulate matter. Environ Sci Pollut Res Int. 28:30384–30389. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Restall BS, Kedarisetti P, Haven NJM, Martell MT and Zemp RJ: Multimodal 3D photoacoustic remote sensing and confocal fluorescence microscopy imaging. J Biomed Opt. 26:0965012021. View Article : Google Scholar : | |
|
Rodriguez-Gallardo S, Kurokawa K, Sabido-Bozo S, Cortes-Gomez A, Perez-Linero AM, Aguilera-Romero A, Lopez S, Waga M, Nakano A and Muñiz M: Assay for dual cargo sorting into endoplasmic reticulum exit sites imaged by 3D super-resolution confocal live imaging microscopy (SCLIM). PLoS One. 16:e02581112021. View Article : Google Scholar : PubMed/NCBI | |
|
Durand MJ, Ait-Aissa K, Levchenko V, Staruschenko A, Gutterman DD and Beyer AM: Visualization and quantification of mitochondrial structure in the endothelium of intact arteries. Cardiovasc Res. 115:1546–1556. 2019. View Article : Google Scholar : | |
|
Bartolák-Suki E and Suki B: Tuning mitochondrial structure and function to criticality by fluctuation-driven mechanotransduction. Sci Rep. 10:4072020. View Article : Google Scholar : PubMed/NCBI | |
|
Chandhok G, Lazarou M and Neumann B: Structure, function, and regulation of mitofusin-2 in health and disease. Biol Rev Camb Philos Soc. 93:933–949. 2018. View Article : Google Scholar | |
|
Kowaltowski AJ, Menezes-Filho SL, Assali EA, Gonçalves IG, Cabral-Costa JV, Abreu P, Miller N, Nolasco P, Laurindo FRM, Bruni-Cardoso A and Shirihai OS: Mitochondrial morphology regulates organellar Ca2+ uptake and changes cellular Ca2+ homeostasis. FASEB J. 33:13176–13188. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Csordás G, Weaver D and Hajnóczky G: Endoplasmic reticulum-mitochondrial contactology: Structure and signaling functions. Trends Cell Biol. 28:523–540. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xie LL, Shi F, Tan Z, Li Y, Bode AM and Cao Y: Mitochondrial network structure homeostasis and cell death. Cancer Sci. 109:3686–3694. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Correia-Álvarez E, Keating JE, Glish G, Tarran R and Sassano MF: Reactive oxygen species, mitochondrial membrane potential, and cellular membrane potential are predictors of E-liquid induced cellular toxicity. Nicotine Tob Res. 22(Suppl 1): S4–S13. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Long Q, Wu H, Li W, Qi J, Wu Y, Xiang G, Tang H, Yang L, Chen K, et al: Topology-dependent, bifurcated mitochondrial quality control under starvation. Autophagy. 16:562–574. 2020. View Article : Google Scholar : | |
|
Du R, Bei H, Jia L, Huang C, Chen Q, Wang J, Wu F, Chen J and Bo H: A low-cost, accurate method for detecting reticulocytes at different maturation stages based on changes in the mitochondrial membrane potential. J Pharmacol Toxicol Methods. 101:1066642020. View Article : Google Scholar | |
|
Ganta KK, Mandal A and Chaubey B: Depolarization of mitochondrial membrane potential is the initial event in non-nucleoside reverse transcriptase inhibitor efavirenz induced cytotoxicity. Cell Biol Toxicol. 33:69–82. 2017. View Article : Google Scholar | |
|
Dreier DA, Denslow ND and Martyniuk CJ: Computational in vitro toxicology uncovers chemical structures impairing mitochondrial membrane potential. J Chem Inf Model. 59:702–712. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JY, Lim W, Ham J, Kim J, You S and Song G: Ivermectin induces apoptosis of porcine trophectoderm and uterine luminal epithelial cells through loss of mitochondrial membrane potential, mitochondrial calcium ion overload, and reactive oxygen species generation. Pestic Biochem Physiol. 159:144–153. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Tao L, Liu X, Da W, Tao Z and Zhu Y: Pycnogenol achieves neuroprotective effects in rats with spinal cord injury by stabilizing the mitochondrial membrane potential. Neurol Res. 42:597–604. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Haider SZ, Mohanraj N, Markandeya YS, Joshi PG and Mehta B: Picture perfect: Imaging mitochondrial membrane potential changes in retina slices with minimal stray fluorescence. Exp Eye Res. 202:1083182021. View Article : Google Scholar | |
|
Zhang G, Yang W, Zou P, Jiang F, Zeng Y, Chen Q, Sun L, Yang H, Zhou N, Wang X, et al: Mitochondrial functionality modifies human sperm acrosin activity, acrosome reaction capability and chromatin integrity. Hum Reprod. 34:3–11. 2019. View Article : Google Scholar | |
|
Sakthivel R, Malar DS and Devi KP: Phytol shows anti-angiogenic activity and induces apoptosis in A549 cells by depolarizing the mitochondrial membrane potential. Biomed Pharmacother. 105:742–752. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Alyasin A, Momeni HR and Mahdieh M: Aquaporin3 expression and the potential role of aquaporins in motility and mitochondrial membrane potential in human spermatozoa. Andrologia. 52:e135882020. View Article : Google Scholar : PubMed/NCBI | |
|
Alpert NM, Guehl N, Ptaszek L, Pelletier-Galarneau M, Ruskin J, Mansour MC, Wooten D, Ma C, Takahashi K, Zhou Y, et al: Quantitative in vivo mapping of myocardial mitochondrial membrane potential. PLoS One. 13:e01909682018. View Article : Google Scholar : PubMed/NCBI | |
|
Kuwahara Y, Roudkenar MH, Suzuki M, Urushihara Y and Fukumoto M, Saito Y and Fukumoto M: The Involvement of mitochondrial membrane potential in cross-resistance between radiation and docetaxel. Int J Radiat Oncol Biol Phys. 96:556–565. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Marcondes NA, Terra SR, Lasta CS, Hlavac NRC, Dalmolin ML, Lacerda LA, Faulhaber GAM and González FHD: Comparison of JC-1 and MitoTracker probes for mitochondrial viability assessment in stored canine platelet concentrates: A flow cytometry study. Cytometry A. 95:214–218. 2019. View Article : Google Scholar | |
|
Poznanski RR, Cacha LA, Ali J, Rizvi ZH, Yupapin P, Salleh SH and Bandyopadhyay A: Induced mitochondrial membrane potential for modeling solitonic conduction of electrotonic signals. PLoS One. 12:e01836772017. View Article : Google Scholar : PubMed/NCBI | |
|
Georgakopoulos ND, Wells G and Campanella M: The pharmacological regulation of cellular mitophagy. Nat Chem Biol. 13:136–146. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Bikas A, Jensen K, Patel A, Costello J, Kaltsas G, Hoperia V, Wartofsky L, Burman K and Vasko V: Mitotane induces mitochondrial membrane depolarization and apoptosis in thyroid cancer cells. Int J Oncol. 55:7–20. 2019.PubMed/NCBI | |
|
Gloria A, Wegher L, Carluccio A, Valorz C, Robbe D and Contri A: Factors affecting staining to discriminate between bull sperm with greater and lesser mitochondrial membrane potential. Anim Reprod Sci. 189:51–59. 2018. View Article : Google Scholar | |
|
Saraf KK, Kumaresan A, Chhillar S, Nayak S, Lathika S, Datta TK, Gahlot SC, Karan P, Verma K and Mohanty TK: Spermatozoa with high mitochondrial membrane potential and low tyrosine phosphorylation preferentially bind to oviduct explants in the water buffalo (Bubalus bubalis). Anim Reprod Sci. 180:30–36. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Cano M, Datta S, Wang L, Liu T, Flores-Bellver M, Sachdeva M, Sinha D and Handa JT: Nrf2 deficiency decreases NADPH from impaired IDH shuttle and pentose phosphate pathway in retinal pigmented epithelial cells to magnify oxidative stress-induced mitochondrial dysfunction. Aging Cell. 20:e134442021. View Article : Google Scholar : PubMed/NCBI | |
|
El Manaa W, Duplan E, Goiran T, Lauritzen I, Vaillant Beuchot L, Lacas-Gervais S, Morais VA, You H, Qi L and Salazar M: et al Transcription- and phosphorylation-dependent control of a functional interplay between XBP1s and PINK1 governs mitophagy and potentially impacts Parkinson disease pathophysiology. Autophagy. 17:4363–4385. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Franco-Iborra S, Plaza-Zabala A, Montpeyo M, Sebastian D, Vila M and Martinez-Vicente M: Mutant HTT (huntingtin) impairs mitophagy in a cellular model of Huntington disease. Autophagy. 17:672–689. 2021. View Article : Google Scholar : | |
|
Hamilton K, Krause K, Badr A, Daily K, Estfanous S, Eltobgy M, Khweek AA, Anne MNK, Carafice C, Baetzhold D, et al: Defective immunometabolism pathways in cystic fibrosis macrophages. J Cyst Fibros. 20:664–672. 2021. View Article : Google Scholar : | |
|
Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA and Kirshenbaum LA: Mitochondrial autophagy and cell survival is regulated by the circadian clock gene in cardiac myocytes during ischemic stress. Autophagy. 17:3794–3812. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rovini A, Heslop K, Hunt EG, Morris ME, Fang D, Gooz M, Gerencser AA and Maldonado EN: Quantitative analysis of mitochondrial membrane potential heterogeneity in unsynchronized and synchronized cancer cells. FASEB J. 35:e211482021. View Article : Google Scholar | |
|
Samuvel DJ, Li L, Krishnasamy Y, Gooz M, Takemoto K, Woster PM, Lemasters JJ and Zhong Z: Mitochondrial depolarization after acute ethanol treatment drives mitophagy in living mice. Autophagy. 1–15. 2022.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Q and Hutt KJ: Evaluation of mitochondria in mouse oocytes following cisplatin exposure. J Ovarian Res. 14:652021. View Article : Google Scholar : PubMed/NCBI | |
|
Yazdankhah M, Ghosh S, Shang P, Stepicheva N, Hose S, Liu H, Chamling X, Tian S, Sullivan MLG, Calderon MJ, et al: BNIP3L-mediated mitophagy is required for mitochondrial remodeling during the differentiation of optic nerve oligodendrocytes. Autophagy. 17:3140–3159. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Young VC and Artigas P: Displacement of the Na+/K+ pump's transmembrane domains demonstrates conserved conformational changes in P-type 2 ATPases. Proc Natl Acad Sci USA. 118:e20193171182021. View Article : Google Scholar | |
|
Cui Y, Duan W, Jin Y, Wo F, Xi F and Wu J: Graphene quantum dot-decorated luminescent porous silicon dressing for theranostics of diabetic wounds. Acta Biomater. 131:544–554. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kambe Y and Yamaoka T: Initial immune response to a FRET-based MMP sensor-immobilized silk fibroin hydrogel in vivo. Acta Biomater. 130:199–210. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Feng R, Guo L, Fang J, Jia Y, Wang X, Wei Q and Yu X: Construction of the FRET pairs for the visualization of mitochondria membrane potential in dual emission colors. Anal Chem. 91:3704–3709. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lee H, Kim SJ, Shin H and Kim YP: Collagen-immobilized extracellular FRET reporter for visualizing protease activity secreted by living cells. ACS Sens. 5:655–664. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Chu H, Yang J, Sun Y, Ma P and Song D: Construction of a magnetic-fluorescent-plasmonic nanosensor for the determination of MMP-2 activity based on SERS-fluorescence dual-mode signals. Biosens Bioelectron. 212:1143892022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhan Y, Ling S, Huang H, Zhang Y, Chen G, Huang S, Li C, Guo W and Wang Q: Rapid unperturbed-tissue analysis for intraoperative cancer diagnosis using an enzyme-activated NIR-II nanoprobe. Angew Chem Int Ed Engl. 60:2637–2642. 2021. View Article : Google Scholar | |
|
Wang C, Wang G, Li X, Wang K, Fan J, Jiang K, Guo Y and Zhang H: Highly sensitive fluorescence molecular switch for the ratio monitoring of trace change of mitochondrial membrane potential. Anal Chem. 89:11514–11519. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rao M, Jaber BL and Balakrishnan VS: Chronic kidney disease and acquired mitochondrial myopathy. Curr Opin Nephrol Hypertens. 27:113–120. 2018. View Article : Google Scholar | |
|
Zhu SC, Chen C, Wu YN, Ahmed M, Kitmitto A, Greenstein AS, Kim SJ, Shao YF and Zhang YH: Cardiac complex II activity is enhanced by fat and mediates greater mitochondrial oxygen consumption following hypoxic re-oxygenation. Pflugers Arch. 472:367–374. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Kurhaluk N, Lukash O, Nosar V, Portnychenko A, Portnichenko V, Wszedybyl-Winklewska M and Winklewski PJ: Liver mitochondrial respiratory plasticity and oxygen uptake evoked by cobalt chloride in rats with low and high resistance to extreme hypobaric hypoxia. Can J Physiol Pharmacol. 97:392–399. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Acetoze G, Champagne J, Ramsey JJ and Rossow HA: Liver mitochondrial oxygen consumption and efficiency of milk production in lactating Holstein cows supplemented with copper, manganese and zinc. J Anim Physiol Anim Nutr (Berl). 102:e787–e797. 2018. View Article : Google Scholar | |
|
Kalyanaraman B, Cheng G, Hardy M, Ouari O, Lopez M, Joseph J, Zielonka J and Dwinell MB: A review of the basics of mitochondrial bioenergetics, metabolism, and related signaling pathways in cancer cells: Therapeutic targeting of tumor mitochondria with lipophilic cationic compounds. Redox Biol. 14:316–327. 2018. View Article : Google Scholar | |
|
Banh RS, Iorio C, Marcotte R, Xu Y, Cojocari D, Rahman AA, Pawling J, Zhang W, Sinha A, Rose CM, et al: PTP1B controls non-mitochondrial oxygen consumption by regulating RNF213 to promote tumour survival during hypoxia. Nat Cell Biol. 18:803–813. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Campos JC, Queliconi BB, Bozi LHM, Bechara LRG, Dourado PMM, Andres AM, Jannig PR, Gomes KMS, Zambelli VO, Rocha-Resende C, et al: Exercise reestablishes autophagic flux and mitochondrial quality control in heart failure. Autophagy. 13:1304–1317. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Rossow HA, Acetoze G, Champagne J and Ramsey JJ: Measuring liver mitochondrial oxygen consumption and proton leak kinetics to estimate mitochondrial respiration in holstein dairy cattle. J Vis Exp. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Morimoto N, Hashimoto S, Yamanaka M, Nakano T, Satoh M, Nakaoka Y, Iwata H, Fukui A, Morimoto Y and Shibahara H: Mitochondrial oxygen consumption rate of human embryos declines with maternal age. J Assist Reprod Genet. 37:1815–1821. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Darr CR, Cortopassi GA, Datta S, Varner DD and Meyers SA: Mitochondrial oxygen consumption is a unique indicator of stallion spermatozoal health and varies with cryopreservation media. Theriogenology. 86:1382–1392. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Müller ME, Vikstrom S, König M, Schlichting R, Zarfl C, Zwiener C and Escher BI: Mitochondrial toxicity of selected micropollutants, their mixtures, and surface water samples measured by the oxygen consumption rate in cells. Environ Toxicol Chem. 38:1000–1011. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Thomas LW and Ashcroft M: Exploring the molecular interface between hypoxia-inducible factor signalling and mitochondria. Cell Mol Life Sci. 76:1759–1777. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Espinosa JA, Pohan G, Arkin MR and Markossian S: Real-time assessment of mitochondrial toxicity in HepG2 cells using the Seahorse extracellular flux analyzer. Curr Protoc. 1:e752021. View Article : Google Scholar : PubMed/NCBI | |
|
Fu Y, Wang D, Wang H, Cai M, Li C, Zhang X, Chen H, Hu Y, Zhang X, Ying M, et al: TSPO deficiency induces mitochondrial dysfunction, leading to hypoxia, angiogenesis, and a growth-promoting metabolic shift toward glycolysis in glioblastoma. Neuro Oncol. 22:240–252. 2020. | |
|
Gu X, Ma Y, Liu Y and Wan Q: Measurement of mitochondrial respiration in adherent cells by Seahorse XF96 cell mito stress Test. STAR Protoc. 2:1002452021. View Article : Google Scholar : PubMed/NCBI | |
|
Eagleson KL, Villaneuva M, Southern RM and Levitt P: Proteomic and mitochondrial adaptations to early-life stress are distinct in juveniles and adults. Neurobiol Stress. 13:1002512020. View Article : Google Scholar : PubMed/NCBI | |
|
Maremanda KP, Sundar IK and Rahman I: Role of inner mitochondrial protein OPA1 in mitochondrial dysfunction by tobacco smoking and in the pathogenesis of COPD. Redox Biol. 45:1020552021. View Article : Google Scholar : PubMed/NCBI | |
|
Nishida M, Yamashita N, Ogawa T, Koseki K, Warabi E, Ohue T, Komatsu M, Matsushita H, Kakimi K, Kawakami E, et al: Mitochondrial reactive oxygen species trigger metformin-dependent antitumor immunity via activation of Nrf2/mTORC1/p62 axis in tumor-infiltrating CD8T lymphocytes. J Immunother Cancer. 9:e0029542021. View Article : Google Scholar : PubMed/NCBI | |
|
Nishida Y, Nawaz A, Kado T, Takikawa A, Igarashi Y, Onogi Y, Wada T, Sasaoka T, Yamamoto S, Sasahara M, et al: Astaxanthin stimulates mitochondrial biogenesis in insulin resistant muscle via activation of AMPK pathway. J Cachexia Sarcopenia Muscle. 11:241–258. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sabogal-Guáqueta AM, Hobbie F, Keerthi A, Oun A, Kortholt A, Boddeke E and Dolga A: Linalool attenuates oxidative stress and mitochondrial dysfunction mediated by glutamate and NMDA toxicity. Biomed Pharmacother. 118:1092952019. View Article : Google Scholar : PubMed/NCBI | |
|
Tian T, Zhang Y, Wu T, Yang L, Chen C, Li N, Li Y, Xu S, Fu Z, Cui X, et al: miRNA profiling in the hippocampus of attention-deficit/hyperactivity disorder rats. J Cell Biochem. 120:3621–3629. 2019. View Article : Google Scholar | |
|
Ooi K, Hu L, Feng Y, Han C, Ren X, Qian X, Huang H, Chen S, Shi Q, Lin H, et al: Sigma-1 receptor activation suppresses microglia M1 polarization via regulating endoplasmic reticulum-mitochondria contact and mitochondrial functions in stress-induced hypertension rats. Mol Neurobiol. 58:6625–6646. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Shetty T, Park B and Corson TW: Measurement of mitochondrial respiration in the murine retina using a Seahorse extracellular flux analyzer. STAR Protoc. 2:1005332021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang SH, Zhu XL, Wang F, Chen SX, Chen ZT, Qiu Q, Liu WH, Wu MX, Deng BQ, Xie Y, et al: LncRNA H19 governs mitophagy and restores mitochondrial respiration in the heart through Pink1/Parkin signaling during obesity. Cell Death Dis. 12:5572021. View Article : Google Scholar : PubMed/NCBI | |
|
Andersen JV, Jakobsen E, Waagepetersen HS and Aldana BI: Distinct differences in rates of oxygen consumption and ATP synthesis of regionally isolated non-synaptic mouse brain mitochondria. J Neurosci Res. 97:961–974. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hubbard WB, Joseph B, Spry M, Vekaria HJ, Saatman KE and Sullivan PG: Acute mitochondrial impairment underlies prolonged cellular dysfunction after repeated mild traumatic brain injuries. J Neurotrauma. 36:1252–1263. 2019. View Article : Google Scholar | |
|
McAlpin BR, Mahalingam R, Singh AK, Dharmaraj S, Chrisikos TT, Boukelmoune N, Kavelaars A and Heijnen CJ: HDAC6 inhibition reverses long-term doxorubicin-induced cognitive dysfunction by restoring microglia homeostasis and synaptic integrity. Theranostics. 12:603–619. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Raut S, Patel R and Al-Ahmad AJ: Presence of a mutation in PSEN1 or PSEN2 gene is associated with an impaired brain endothelial cell phenotype in vitro. Fluids Barriers CNS. 18:32021. View Article : Google Scholar : PubMed/NCBI | |
|
Algieri C, Trombetti F, Pagliarani A, Ventrella V and Nesci S: The mitochondrial F1FO -ATPase exploits the dithiol redox state to modulate the permeability transition pore. Arch Biochem Biophys. 712:1090272021. View Article : Google Scholar | |
|
Sun C, Liu X, Wang B, Wang Z, Liu Y, Di C, Si J, Li H, Wu Q, Xu D, et al: Endocytosis-mediated mitochondrial transplantation: Transferring normal human astrocytic mitochondria into glioma cells rescues aerobic respiration and enhances radiosensitivity. Theranostics. 9:3595–3607. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun JY, Zhao SJ, Wang HB, Hou YJ, Mi QJ, Yang MF, Yuan H, Ni QB, Sun BL and Zhang ZY: Ifenprodil improves long-term neurologic deficits through antagonizing glutamate-induced excitotoxicity after experimental subarachnoid hemorrhage. Transl Stroke Res. 12:1067–1080. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Boyman L, Karbowski M and Lederer WJ: Regulation of mitochondrial ATP production: Ca2+ signaling and quality control. Trends Mol Med. 26:21–39. 2020. View Article : Google Scholar | |
|
Bravo-Sagua R, Parra V, López-Crisosto C, Díaz P, Quest AF and Lavandero S: Calcium transport and signaling in mitochondria. Compr Physiol. 7:623–634. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Marchi S, Patergnani S, Missiroli S, Morciano G, Rimessi A, Wieckowski MR, Giorgi C and Pinton P: Mitochondrial and endoplasmic reticulum calcium homeostasis and cell death. Cell Calcium. 69:62–72. 2018. View Article : Google Scholar | |
|
Chow J, Rahman J, Achermann JC, Dattani MT and Rahman S: Mitochondrial disease and endocrine dysfunction. Nat Rev Endocrinol. 13:92–104. 2017. View Article : Google Scholar | |
|
Cieluch A, Uruska A and Zozulinska-Ziolkiewicz D: Can we prevent mitochondrial dysfunction and diabetic cardiomyopathy in type 1 diabetes mellitus? Pathophysiology and treatment options. Int J Mol Sci. 21:28522020. View Article : Google Scholar : | |
|
Ding XW, Robinson M, Li R, Aldhowayan H, Geetha T and Babu JR: Mitochondrial dysfunction and beneficial effects of mitochondria-targeted small peptide SS-31 in diabetes mellitus and Alzheimer's disease. Pharmacol Res. 171:1057832021. View Article : Google Scholar : PubMed/NCBI | |
|
Fisher JJ, Vanderpeet CL, Bartho LA, McKeating DR, Cuffe JSM, Holland OJ and Perkins AV: Mitochondrial dysfunction in placental trophoblast cells experiencing gestational diabetes mellitus. J Physiol. 599:1291–1305. 2021. View Article : Google Scholar | |
|
Jelenik T and Roden M: Mitochondrial plasticity in obesity and diabetes mellitus. Antioxid Redox Signal. 19:258–268. 2013. View Article : Google Scholar : | |
|
Rovira-Llopis S, Bañuls C, Diaz-Morales N, Hernandez-Mijares A, Rocha M and Victor VM: Mitochondrial dynamics in type 2 diabetes: Pathophysiological implications. Redox Biol. 11:637–645. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao H, Li T, Wang K, Zhao F, Chen J, Xu G, Zhao J, Li T, Chen L, Li L, et al: AMPK-mediated activation of MCU stimulates mitochondrial Ca2+ entry to promote mitotic progression. Nat Cell Biol. 21:476–486. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Calvo-Rodriguez M, Hou SS, Snyder AC, Kharitonova EK, Russ AN, Das S, Fan Z, Muzikansky A, Garcia-Alloza M, Serrano-Pozo A, et al: Increased mitochondrial calcium levels associated with neuronal death in a mouse model of Alzheimer's disease. Nat Commun. 11:21462020. View Article : Google Scholar : PubMed/NCBI | |
|
Bhatti JS, Bhatti GK and Reddy PH: Mitochondrial dysfunction and oxidative stress in metabolic disorders-a step towards mitochondria based therapeutic strategies. Biochim Biophys Acta Mol Basis Dis. 1863:1066–1077. 2017. View Article : Google Scholar | |
|
Guo Q, Bi J, Wang H and Zhang X: Mycobacterium tuberculosis ESX-1-secreted substrate protein EspC promotes mycobacterial survival through endoplasmic reticulum stress-mediated apoptosis. Emerg Microbes Infect. 10:19–36. 2021. View Article : Google Scholar : | |
|
Galla L, Vajente N, Pendin D, Pizzo P, Pozzan T and Greotti E: Generation and characterization of a new FRET-Based Ca2+ sensor targeted to the nucleus. Int J Mol Sci. 22:99452021. View Article : Google Scholar | |
|
Isshiki M, Nishimoto M, Mizuno R and Fujita T: FRET-based sensor analysis reveals caveolae are spatially distinct Ca2+ stores in endothelial cells. Cell Calcium. 54:395–403. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Laskaratou D, Fernández GS, Coucke Q, Fron E, Rocha S, Hofkens J, Hendrix J and Mizuno H: Quantification of FRET-induced angular displacement by monitoring sensitized acceptor anisotropy using a dim fluorescent donor. Nat Commun. 12:25412021. View Article : Google Scholar : PubMed/NCBI | |
|
Nagai T, Ibata K, Park ES, Kubota M, Mikoshiba K and Miyawaki A: A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat Biotechnol. 20:87–90. 2002. View Article : Google Scholar | |
|
Ucar H, Watanabe S, Noguchi J, Morimoto Y, Iino Y, Yagishita S, Takahashi N and Kasai H: Mechanical actions of dendritic-spine enlargement on presynaptic exocytosis. Nature. 600:686–689. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yoon S, Pan Y, Shung K and Wang Y: FRET-based Ca2+ biosensor single cell imaging interrogated by high-frequency ultrasound. Sensors (Basel). 20. pp. 49982020, View Article : Google Scholar | |
|
Chen J, Qiu M, Zhang S, Li B, Li D, Huang X, Qian Z, Zhao J, Wang Z and Tang D: A calcium phosphate drug carrier loading with 5-fluorouracil achieving a synergistic effect for pancreatic cancer therapy. J Colloid Interface Sci. 605:263–273. 2022. View Article : Google Scholar | |
|
Fan Y and Simmen T: Mechanistic connections between endoplasmic reticulum (ER) Redox Control And Mitochondrial Metabolism. Cells. 8:10712019. View Article : Google Scholar : | |
|
Shoshan-Barmatz V, Nahon-Crystal E, Shteinfer-Kuzmine A and Gupta R: VDAC1, mitochondrial dysfunction, and Alzheimer's disease. Pharmacol Res. 131:87–101. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Country MW and Jonz MG: Mitochondrial KATP channels stabilize intracellular Ca2+ during hypoxia in retinal horizontal cells of goldfish (Carassius auratus). J Exp Biol. 224:jeb2426342021. View Article : Google Scholar : PubMed/NCBI | |
|
Davidson SM, Padró T, Bollini S, Vilahur G, Duncker DJ, Evans PC, Guzik T, Hoefer IE, Waltenberger J, Wojta J and Weber C: Progress in cardiac research: From rebooting cardiac regeneration to a complete cell atlas of the heart. Cardiovasc Res. 117:2161–2174. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Leduc-Gaudet JP, Hussain SNA, Barreiro E and Gouspillou G: Mitochondrial dynamics and mitophagy in skeletal muscle health and aging. Int J Mol Sci. 22:81792021. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Chen J, Liu M, Chen Y, Wu Y, Li Q, Ma T, Gao J, Xia Y, Fan M, et al: Protective effect of HINT2 on mitochondrial function via repressing MCU complex activation attenuates cardiac microvascular ischemia-reperfusion injury. Basic Res Cardiol. 116:652021. View Article : Google Scholar : PubMed/NCBI | |
|
Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, von Haehling S, Jamialahmadi T and Sahebkar A: Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 12:237–251. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Nakamura T, Ogawa M, Kojima K, Takayanagi S, Ishihara S, Hattori K, Naguro I and Ichijo H: The mitochondrial Ca2+ uptake regulator, MICU1, is involved in cold stress-induced ferroptosis. EMBO Rep. 22:e515322021. View Article : Google Scholar | |
|
Chen M, Mu L, Wang S, Cao X, Liang S, Wang Y, She G, Yang J, Wang Y and Shi W: A single silicon nanowire-based ratiometric biosensor for Ca2+ at various locations in a neuron. ACS Chem Neurosci. 11:1283–1290. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Y, Fang Y, Ye Y, Xu X, Wang B, Gu J, Aschner M, Chen J and Lu R: Anti-cancer effects of 3,3'-diindolylmethane on human hepatocellular carcinoma cells is enhanced by calcium ionophore: The role of cytosolic Ca2+ and p38 MAPK. Front Pharmacol. 10:11672019. View Article : Google Scholar | |
|
Mata-Martínez E, Sánchez-Tusie AA, Darszon A, Mayorga LS, Treviño CL and De Blas GA: Epac activation induces an extracellular Ca2+-independent Ca2+ wave that triggers acrosome reaction in human spermatozoa. Andrology. 9:1227–1241. 2021. View Article : Google Scholar | |
|
Wacquier B, Combettes L and Dupont G: Dual dynamics of mitochondrial permeability transition pore opening. Sci Rep. 10:39242020. View Article : Google Scholar : PubMed/NCBI | |
|
Nesci S, Trombetti F, Ventrella V and Pagliarani A: From the Ca2+-activated F1FO-ATPase to the mitochondrial permeability transition pore: An overview. Biochimie. 152:85–93. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Cui Y, Pan M, Ma J, Song X, Cao W and Zhang P: Recent progress in the use of mitochondrial membrane permeability transition pore in mitochondrial dysfunction-related disease therapies. Mol Cell Biochem. 476:493–506. 2021. View Article : Google Scholar | |
|
Chinopoulos C: Mitochondrial permeability transition pore: Back to the drawing board. Neurochem Int. 117:49–54. 2018. View Article : Google Scholar | |
|
Briston T, Selwood DL, Szabadkai G and Duchen MR: Mitochondrial permeability transition: A molecular lesion with multiple drug targets. Trends Pharmacol Sci. 40:50–70. 2019. View Article : Google Scholar | |
|
Rottenberg H and Hoek JB: The path from mitochondrial ROS to aging runs through the mitochondrial permeability transition pore. Aging Cell. 16:943–955. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou B, Kreuzer J, Kumsta C, Wu L, Kamer KJ, Cedillo L, Zhang Y, Li S, Kacergis MC, Webster CM, et al: Mitochondrial permeability uncouples elevated autophagy and lifespan extension. Cell. 177:299–314.e16. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Baines CP and Gutiérrez-Aguilar M: The still uncertain identity of the channel-forming unit(s) of the mitochondrial permeability transition pore. Cell Calcium. 73:121–130. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ying Z, Xiang G, Zheng L, Tang H, Duan L, Lin X, Zhao Q, Chen K, Wu Y, Xing G, et al: Short-term mitochondrial permeability transition pore opening modulates histone lysine methylation at the early phase of somatic cell reprogramming. Cell Metab. 28:935–945.e5. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Burke PJ: Mitochondria, bioenergetics and apoptosis in cancer. Trends Cancer. 3:857–870. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Pérez MJ, Ponce DP, Aranguiz A, Behrens MI and Quintanilla RA: Mitochondrial permeability transition pore contributes to mitochondrial dysfunction in fibroblasts of patients with sporadic Alzheimer's disease. Redox Biol. 19:290–300. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kalani K, Yan SF and Yan SS: Mitochondrial permeability transition pore: A potential drug target for neurodegeneration. Drug Discov Today. 23:1983–1989. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Naryzhnaya NV, Maslov LN and Oeltgen PR: Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res. 80:1013–1030. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Shah SS, Lannon H, Dias L, Zhang JY, Alper SL, Pollak MR and Friedman DJ: APOL1 kidney risk variants induce cell death via mitochondrial translocation and opening of the mitochondrial permeability transition pore. J Am Soc Nephrol. 30:2355–2368. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gao G, Wang Z, Lu L, Duan C, Wang X and Yang H: Morphological analysis of mitochondria for evaluating the toxicity of α-synuclein in transgenic mice and isolated preparations by atomic force microscopy. Biomed Pharmacother. 96:1380–1388. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ghosh P, Bhoumik A, Saha S, Mukherjee S, Azmi S, Ghosh JK and Dungdung SR: Spermicidal efficacy of VRP, a synthetic cationic antimicrobial peptide, inducing apoptosis and membrane disruption. J Cell Physiol. 233:1041–1050. 2018. View Article : Google Scholar | |
|
Jiang S, Zu Y, Wang Z, Zhang Y and Fu Y: Involvement of mitochondrial permeability transition pore opening in 7-xylosyl-10-deacetylpaclitaxel-induced apoptosis. Planta Med. 77:1005–1012. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Tricaud N, Gautier B, Berthelot J, Gonzalez S and Van Hameren G: Traumatic and diabetic schwann cell demyelination is triggered by a transient mitochondrial calcium release through voltage dependent anion channel 1. Biomedicines. 10:14472022. View Article : Google Scholar : PubMed/NCBI | |
|
Mukherjee R, Mareninova OA, Odinokova IV, Huang W, Murphy J, Chvanov M, Javed MA, Wen L, Booth DM, Cane MC, et al: Mechanism of mitochondrial permeability transition pore induction and damage in the pancreas: Inhibition prevents acute pancreatitis by protecting production of ATP. Gut. 65:1333–1346. 2016. View Article : Google Scholar | |
|
Urbani A, Giorgio V, Carrer A, Franchin C, Arrigoni G, Jiko C, Abe K, Maeda S, Shinzawa-Itoh K, Bogers JFM, et al: Purified F-ATP synthase forms a Ca2+-dependent high-conductance channel matching the mitochondrial permeability transition pore. Nat Commun. 10:43412019. View Article : Google Scholar | |
|
Aqawi M, Sionov RV, Gallily R, Friedman M and Steinberg D: Anti-bacterial properties of cannabigerol toward streptococcus mutans. Front Microbiol. 12:6564712021. View Article : Google Scholar : | |
|
Asperti M, Bellini S, Grillo E, Gryzik M, Cantamessa L, Ronca R, Maccarinelli F, Salvi A, De Petro G, Arosio P, et al: H-ferritin suppression and pronounced mitochondrial respiration make hepatocellular carcinoma cells sensitive to RSL3-induced ferroptosis. Free Radic Biol Med. 169:294–303. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Daniyal M, Liu Y, Yang Y, Xiao F, Fan J, Yu H, Qiu Y, Liu B, Wang W and Yuhui Q: Anti-gastric cancer activity and mechanism of natural compound 'Heilaohulignan C' isolated from Kadsura coccinea. Phytother Res. 35:3977–3987. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Datki Z, Acs E, Balazs E, Sovany T, Csoka I, Zsuga K, Kalman J and Galik-Olah Z: Exogenic production of bioactive filamentous biopolymer by monogonant rotifers. Ecotoxicol Environ Saf. 208:1116662021. View Article : Google Scholar : PubMed/NCBI | |
|
Ge Y, Wang C, Zhang W, Lai S, Wang D and Wang L: Coassembly behavior and rheological properties of a β-hairpin peptide with dicarboxylates. Langmuir. 37:11657–11664. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
He A, Wang L, Wang Q, Luan W and Qi F: Protective effects of micronized fat against ultraviolet B-induced photoaging. Plast Reconstr Surg. 145:712–720. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Q, Su DY, Wang ZZ, Liu C, Sun YN, Cheng H, Li XM and Yan B: Retina as a window to cerebral dysfunction following studies with circRNA signature during neurodegeneration. Theranostics. 11:1814–1827. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kirk NM, Vieson MD, Selting KA and Reinhart JM: Cytotoxicity of cultured canine primary hepatocytes exposed to itraconazole is decreased by pre-treatment with glutathione. Front Vet Sci. 8:6217322021. View Article : Google Scholar : PubMed/NCBI | |
|
Lan HY, An P, Liu QP, Chen YY, Yu YY, Luan X, Tang JY and Zhang H: Aidi injection induces apoptosis of hepatocellular carcinoma cells through the mitochondrial pathway. J Ethnopharmacol. 274:1140732021. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Sun G, Chen B, Xu L, Ye Y, He J, Bao Z, Zhao P, Miao Z, Zhao L, et al: Nuclear receptor coactivator 4-mediated ferritinophagy contributes to cerebral ischemia-induced ferroptosis in ischemic stroke. Pharmacol Res. 174:1059332021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu X, Xing S, Xu Y, Chen R, Lin C and Guo L: 3-Amino-1,2,4-triazole-derived graphitic carbon nitride for photodynamic therapy. Spectrochim Acta A Mol Biomol Spectrosc. 250:1193632021. View Article : Google Scholar : PubMed/NCBI | |
|
Suo L, Liu C, Zhang QY, Yao MD, Ma Y, Yao J, Jiang Q and Yan B: METTL3-mediated N 6-methyladenosine modification governs pericyte dysfunction during diabetes-induced retinal vascular complication. Theranostics. 12:277–289. 2022. View Article : Google Scholar : | |
|
Panel M, Ruiz I, Brillet R, Lafdil F, Teixeira-Clerc F, Nguyen CT, Calderaro J, Gelin M, Allemand F, Guichou JF, et al: Small-molecule inhibitors of cyclophilins block opening of the mitochondrial permeability transition pore and protect mice from hepatic ischemia/reperfusion injury. Gastroenterology. 157:1368–1382. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Winquist RJ and Gribkoff VK: Targeting putative components of the mitochondrial permeability transition pore for novel therapeutics. Biochem Pharmacol. 177:1139952020. View Article : Google Scholar : PubMed/NCBI | |
|
Yu CH, Davidson S, Harapas CR, Hilton JB, Mlodzianoski MJ, Laohamonthonkul P, Louis C, Low RRJ, Moecking J, De Nardo D, et al: TDP-43 triggers mitochondrial DNA release via mPTP to activate cGAS/STING in ALS. Cell. 183:636–649.e18. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wu S and Zou MH: AMPK, mitochondrial function, and cardiovascular disease. Int J Mol Sci. 21:49872020. View Article : Google Scholar : | |
|
Lee P, Chandel NS and Simon MC: Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 21:268–283. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Tan KY, Li CY, Li YF, Fei J, Yang B, Fu YJ and Li F: Real-time monitoring ATP in mitochondrion of living cells: A specific fluorescent probe for ATP by dual recognition sites. Anal Chem. 89:1749–1756. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Arai S, Kriszt R, Harada K, Looi LS, Matsuda S, Wongso D, Suo S, Ishiura S, Tseng YH, Raghunath M, et al: RGB-color intensiometric indicators to visualize spatiotemporal dynamics of ATP in single cells. Angew Chem Int Ed Engl. 57:10873–10878. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Potter M, Newport E and Morten KJ: The Warburg effect: 80 Years on. Biochem Soc Trans. 44:1499–1505. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Nesci S, Pagliarani A, Algieri C and Trombetti F: Mitochondrial F-type ATP synthase: multiple enzyme functions revealed by the membrane-embedded FO structure. Crit Rev Biochem Mol Biol. 55:309–321. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Schönfeld P and Wojtczak L: Short- and medium-chain fatty acids in energy metabolism: The cellular perspective. J Lipid Res. 57:943–954. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chistiakov DA, Shkurat TP, Melnichenko AA, Grechko AV and Orekhov AN: The role of mitochondrial dysfunction in cardiovascular disease: A brief review. Ann Med. 50:121–127. 2018. View Article : Google Scholar | |
|
Costa R, Peruzzo R, Bachmann M, Montà GD, Vicario M, Santinon G, Mattarei A, Moro E, Quintana-Cabrera R, Scorrano L, et al: Impaired mitochondrial ATP production downregulates Wnt signaling via ER stress induction. Cell Rep. 28:1949–1960.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rambold AS and Pearce EL: Mitochondrial dynamics at the interface of immune cell metabolism and function. Trends Immunol. 39:6–18. 2018. View Article : Google Scholar | |
|
Roger AJ, Muñoz-Gómez SA and Kamikawa R: The origin and diversification of mitochondria. Curr Biol. 27:R1177–R1192. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Guntur AR, Gerencser AA, Le PT, DeMambro VE, Bornstein SA, Mookerjee SA, Maridas DE, Clemmons DE, Brand MD and Rosen CJ: Osteoblast-like MC3T3-E1 cells prefer glycolysis for ATP production but adipocyte-like 3T3-L1 cells prefer oxidative phosphorylation. J Bone Miner Res. 33:1052–1065. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Depaoli MR, Karsten F, Madreiter-Sokolowski CT, Klec C, Gottschalk B, Bischof H, Eroglu E, Waldeck-Weiermair M, Simmen T, Graier WF and Malli R: Real-time imaging of mitochondrial ATP dynamics reveals the metabolic setting of single cells. Cell Rep. 25:501–512.e3. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Hampl V, Čepička I and Eliáš M: Was the mitochondrion necessary to start eukaryogenesis? Trends Microbiol. 27:96–104. 2019. View Article : Google Scholar | |
|
Beamer E, Conte G and Engel T: ATP release during seizures-a critical evaluation of the evidence. Brain Res Bull. 151:65–73. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Buckel W, Hetzel M and Kim J: ATP-driven electron transfer in enzymatic radical reactions. Curr Opin Chem Biol. 8:462–467. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Chen H and Zhang YPJ: Enzymatic regeneration and conservation of ATP: Challenges and opportunities. Crit Rev Biotechnol. 41:16–33. 2021. View Article : Google Scholar | |
|
Dorr BM and Fuerst DE: Enzymatic amidation for industrial applications. Curr Opin Chem Biol. 43:127–133. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Finley D and Prado MA: The proteasome and its network: Engineering for adaptability. Cold Spring Harb Perspect Biol. 12:a0339852020. View Article : Google Scholar | |
|
Hammler D, Marx A and Zumbusch A: Fluorescencelifetime-sensitive probes for monitoring ATP cleavage. Chemistry. 24:15329–15335. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ishida A, Yamada Y and Kamidate T: Colorimetric method for enzymatic screening assay of ATP using Fe(III)-xylenol orange complex formation. Anal Bioanal Chem. 392:987–994. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Midelfort CF and Rose IA: A stereochemical method for detection of ATP terminal phosphate transfer in enzymatic reactions. Glutamine synthetase J Biol Chem. 251:5881–5887. 1976. View Article : Google Scholar | |
|
Ušaj M, Moretto L, Vemula V, Salhotra A and Månsson A: Single molecule turnover of fluorescent ATP by myosin and actomyosin unveil elusive enzymatic mechanisms. Commun Biol. 4:642021. View Article : Google Scholar : PubMed/NCBI | |
|
Vasta JD, Corona CR, Wilkinson J, Zimprich CA, Hartnett JR, Ingold MR, Zimmerman K, Machleidt T, Kirkland TA, Huwiler KG, et al: Quantitative, wide-spectrum kinase profiling in live cells for assessing the effect of cellular ATP on target engagement. Cell Chem Biol. 25:206–214.e11. 2018. View Article : Google Scholar : | |
|
Klier PEZ, Martin JG and Miller EW: Imaging reversible mitochondrial membrane potential dynamics with a masked rhodamine voltage reporter. J Am Chem Soc. 143:4095–4099. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mita M, Sugawara I, Harada K, Ito M, Takizawa M, Ishida K, Ueda H, Kitaguchi T and Tsuboi T: Development of red genetically encoded biosensor for visualization of intracellular glucose dynamics. Cell Chem Biol. 29:98–108.e4. 2022. View Article : Google Scholar | |
|
Murata O, Shindo Y, Ikeda Y, Iwasawa N, Citterio D, Oka K and Hiruta Y: Near-infrared fluorescent probes for imaging of intracellular Mg2+ and application to multi-color imaging of Mg2+, ATP, and mitochondrial membrane potential. Anal Chem. 92:966–974. 2020. View Article : Google Scholar | |
|
Billingham LK, Stoolman JS, Vasan K, Rodriguez AE, Poor TA, Szibor M, Jacobs HT, Reczek CR, Rashidi A, Zhang P, et al: Mitochondrial electron transport chain is necessary for NLRP3 inflammasome activation. Nat Immunol. 23:692–704. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Fernström J, Mellon SH, McGill MA, Picard M, Reus VI, Hough CM, Lin J, Epel ES, Wolkowitz OM and Lindqvist D: Blood-based mitochondrial respiratory chain function in major depression. Transl Psychiatry. 11:5932021. View Article : Google Scholar : PubMed/NCBI | |
|
Spinelli JB, Rosen PC, Sprenger HG, Puszynska AM, Mann JL, Roessler JM, Cangelosi AL, Henne A, Condon KJ, Zhang T, et al: Fumarate is a terminal electron acceptor in the mammalian electron transport chain. Science. 374:1227–1237. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Vercellino I and Sazanov LA: The assembly, regulation and function of the mitochondrial respiratory chain. Nat Rev Mol Cell Biol. 23:141–161. 2022. View Article : Google Scholar | |
|
Colaço HG, Barros A, Neves-Costa A, Seixas E, Pedroso D, Velho T, Willmann KL, Faisca P, Grabmann G, Yi HS, et al: Tetracycline antibiotics induce host-dependent disease tolerance to infection. Immunity. 54:53–67.e7. 2021. View Article : Google Scholar : | |
|
Dennerlein S, Wang C and Rehling P: Plasticity of mitochondrial translation. Trends Cell Biol. 27:712–721. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Diebold LP, Gil HJ, Gao P, Martinez CA, Weinberg SE and Chandel NS: Mitochondrial complex III is necessary for endothelial cell proliferation during angiogenesis. Nat Metab. 1:158–171. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Flønes IH, Ricken G, Klotz S, Lang A, Ströbel T, Dölle C, Kovacs GG and Tzoulis C: Mitochondrial respiratory chain deficiency correlates with the severity of neuropathology in sporadic Creutzfeldt-Jakob disease. Acta Neuropathol Commun. 8:502020. View Article : Google Scholar : PubMed/NCBI | |
|
Manczak M, Kandimalla R, Yin X and Reddy PH: Mitochondrial division inhibitor 1 reduces dynamin-related protein 1 and mitochondrial fission activity. Hum Mol Genet. 28:177–199. 2019. View Article : Google Scholar : | |
|
Markevich NI, Galimova MH and Markevich LN: Hysteresis and bistability in the succinate-CoQ reductase activity and reactive oxygen species production in the mitochondrial respiratory complex II. Redox Biol. 37:1016302020. View Article : Google Scholar : PubMed/NCBI | |
|
Mazat JP, Devin A and Ransac S: Modelling mitochondrial ROS production by the respiratory chain. Cell Mol Life Sci. 77:455–465. 2020. View Article : Google Scholar | |
|
Timón-Gómez A, Garlich J, Stuart RA, Ugalde C and Barrientos A: Distinct roles of mitochondrial HIGD1A and HIGD2A in respiratory complex and supercomplex biogenesis. Cell Rep. 31:1076072020. View Article : Google Scholar : PubMed/NCBI | |
|
Grünewald A, Kumar KR and Sue CM: New insights into the complex role of mitochondria in Parkinson's disease. Prog Neurobiol. 177:73–93. 2019. View Article : Google Scholar | |
|
Ansó E, Weinberg SE, Diebold LP, Thompson BJ, Malinge S, Schumacker PT, Liu X, Zhang Y, Shao Z, Steadman M, et al: The mitochondrial respiratory chain is essential for haematopoietic stem cell function. Nat Cell Biol. 19:614–625. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wang HW, Zhu SQ, Liu J, Miao CY, Zhang Y and Zhou BH: Fluoride-induced renal dysfunction via respiratory chain complex abnormal expression and fusion elevation in mice. Chemosphere. 238:1246072020. View Article : Google Scholar | |
|
Weiland D, Brachvogel B, Hornig-Do HT, Neuhaus JFG, Holzer T, Tobin DJ, Niessen CM, Wiesner RJ and Baris OR: Imbalance of mitochondrial respiratory chain complexes in the epidermis induces severe skin inflammation. J Invest Dermatol. 138:132–140. 2018. View Article : Google Scholar | |
|
Weinberg SE, Singer BD, Steinert EM, Martinez CA, Mehta MM, Martínez-Reyes I, Gao P, Helmin KA, Abdala-Valencia H, Sena LA, et al: Mitochondrial complex III is essential for suppressive function of regulatory T cells. Nature. 565:495–499. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu M, Gu J, Zong S, Guo R, Liu T and Yang M: Research journey of respirasome. Protein Cell. 11:318–338. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Yamada S, Ozaki H and Noguchi K: The mitochondrial respiratory chain maintains the photosynthetic electron flow in Arabidopsis thaliana leaves under high-light stress. Plant Cell Physiol. 61:283–295. 2020. View Article : Google Scholar | |
|
Yamashita K, Miyazaki T, Fukuda Y, Mitsuyama J, Saijo T, Shimamura S, Yamamoto K, Imamura Y, Izumikawa K, Yanagihara K, et al: The novel arylamidine T-2307 selectively disrupts yeast mitochondrial function by inhibiting respiratory chain complexes. Antimicrob Agents Chemother. 63:e00374–19. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fernandez-Vizarra E and Zeviani M: Mitochondrial disorders of the OXPHOS system. FEBS Lett. 595:1062–1106. 2021. View Article : Google Scholar | |
|
Hernansanz-Agustín P, Choya-Foces C, Carregal-Romero S, Ramos E, Oliva T, Villa-Piña T, Moreno L, Izquierdo-Álvarez A, Cabrera-García JD, Cortés A, et al: Na+ controls hypoxic signalling by the mitochondrial respiratory chain. Nature. 586:287–291. 2020. View Article : Google Scholar | |
|
Kobayashi A, Azuma K, Ikeda K and Inoue S: Mechanisms underlying the regulation of mitochondrial respiratory chain complexes by nuclear steroid receptors. Int J Mol Sci. 21:66832020. View Article : Google Scholar : | |
|
Martínez-Reyes I, Cardona LR, Kong H, Vasan K, McElroy GS, Werner M, Kihshen H, Reczek CR, Weinberg SE, Gao P, et al: Mitochondrial ubiquinol oxidation is necessary for tumour growth. Nature. 585:288–292. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Castellana S, Biagini T, Petrizzelli F, Parca L, Panzironi N, Caputo V, Vescovi AL, Carella M and Mazza T: MitImpact 3: Modeling the residue interaction network of the respiratory chain subunits. Nucleic Acids Res. 49(D1): D1282–D1288. 2021. View Article : Google Scholar : | |
|
Wang M, Ren X, Wang L, Lu X, Han L, Zhang X and Feng J: A functional analysis of mitochondrial respiratory chain cytochrome bc1 complex in gaeumannomyces tritici by RNA silencing as a possible target of carabrone. Mol Plant Pathol. 21:1529–1544. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mirali S, Botham A, Voisin V, Xu C, St-Germain J, Sharon D, Hoff FW, Qiu Y, Hurren R, Gronda M, et al: The mitochondrial peptidase, neurolysin, regulates respiratory chain supercomplex formation and is necessary for AML viability. Sci Transl Med. 12:eaaz82642020. View Article : Google Scholar : PubMed/NCBI | |
|
Heyman E, Daussin F, Wieczorek V, Caiazzo R, Matran R, Berthon P, Aucouturier J, Berthoin S, Descatoire A, Leclair E, et al: Muscle oxygen supply and use in type 1 diabetes, from ambient air to the mitochondrial respiratory chain: Is there a limiting step? Diabetes Care. 43:209–218. 2020. View Article : Google Scholar | |
|
Lobo-Jarne T, Pérez-Pérez R, Fontanesi F, Timón-Gómez A, Wittig I, Peñas A, Serrano-Lorenzo P, García-Consuegra I, Arenas J, Martín MA, et al: Multiple pathways coordinate assembly of human mitochondrial complex IV and stabilization of respiratory supercomplexes. EMBO J. 39:e1039122020. View Article : Google Scholar : PubMed/NCBI | |
|
Mohanraj K, Wasilewski M, Benincá C, Cysewski D, Poznanski J, Sakowska P, Bugajska Z, Deckers M, Dennerlein S, Fernandez-Vizarra E, et al: Inhibition of proteasome rescues a pathogenic variant of respiratory chain assembly factor COA7. EMBO Mol Med. 11:e95612019. View Article : Google Scholar : PubMed/NCBI | |
|
Formosa LE, Dibley MG, Stroud DA and Ryan MT: Building a complex complex: Assembly of mitochondrial respiratory chain complex I. Semin Cell Dev Biol. 76:154–162. 2018. View Article : Google Scholar | |
|
Gao M, Yi J, Zhu J, Minikes AM, Monian P, Thompson CB and Jiang X: Role of mitochondria in ferroptosis. Mol Cell. 73:354–363.e3. 2019. View Article : Google Scholar : | |
|
Maclean AE, Hertle AP, Ligas J, Bock R, Balk J and Meyer EH: Absence of complex I is associated with diminished respiratory chain function in european mistletoe. Curr Biol. 28:1614–1619.e3. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Senkler J, Rugen N, Eubel H, Hegermann J and Braun HP: Absence of complex I implicates rearrangement of the respiratory chain in European mistletoe. Curr Biol. 28:1606–1613.e4. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Signes A and Fernandez-Vizarra E: Assembly of mammalian oxidative phosphorylation complexes I-V and supercomplexes. Essays Biochem. 62:255–270. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kazak L, Chouchani ET, Stavrovskaya IG, Lu GZ, Jedrychowski MP, Egan DF, Kumari M, Kong X, Erickson BK, Szpyt J, et al: UCP1 deficiency causes brown fat respiratory chain depletion and sensitizes mitochondria to calcium overload-induced dysfunction. Proc Natl Acad Sci USA. 114:7981–7986. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kozlov AV, Lancaster JR Jr, Meszaros AT and Weidinger A: Mitochondria-meditated pathways of organ failure upon inflammation. Redox Biol. 13:170–181. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Letts JA and Sazanov LA: Clarifying the supercomplex: The higher-order organization of the mitochondrial electron transport chain. Nat Struct Mol Biol. 24:800–808. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Guo R, Zong S, Wu M, Gu J and Yang M: Architecture of Human Mitochondrial Respiratory Megacomplex I2III2IV2. Cell. 170:1247–1257.e12. 2017. View Article : Google Scholar | |
|
Jian C, Xu F, Hou T, Sun T, Li J, Cheng H and Wang X: Deficiency of PHB complex impairs respiratory supercomplex formation and activates mitochondrial flashes. J Cell Sci. 130:2620–2630. 2017.PubMed/NCBI | |
|
Ndi M, Marin-Buera L, Salvatori R, Singh AP and Ott M: Biogenesis of the bc1 complex of the mitochondrial respiratory chain. J Mol Biol. 430:3892–3905. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Priesnitz C and Becker T: Pathways to balance mitochondrial translation and protein import. Genes Dev. 32:1285–1296. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Lin KH, Xie A, Rutter JC, Ahn YR, Lloyd-Cowden JM, Nichols AG, Soderquist RS, Koves TR, Muoio DM, MacIver NJ, et al: Systematic dissection of the metabolic-apoptotic interface in AML reveals heme biosynthesis to be a regulator of drug sensitivity. Cell Metab. 29:1217–1231.e7. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Lobo-Jarne T and Ugalde C: Respiratory chain supercomplexes: Structures, function and biogenesis. Semin Cell Dev Biol. 76:179–190. 2018. View Article : Google Scholar : | |
|
Tsai YL, Coady TH, Lu L, Zheng D, Alland I, Tian B, Shneider NA and Manley JL: ALS/FTD-associated protein FUS induces mitochondrial dysfunction by preferentially sequestering respiratory chain complex mRNAs. Genes Dev. 34:785–805. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Balsa E, Soustek MS, Thomas A, Cogliati S, García-Poyatos C, Martín-García E, Jedrychowski M, Gygi SP, Enriquez JA and Puigserver P: ER and nutrient stress promote assembly of respiratory chain supercomplexes through the PERK-eIF2α axis. Mol Cell. 74:877–890e6. 2019. View Article : Google Scholar | |
|
Chinopoulos C: Acute sources of mitochondrial NAD+ during respiratory chain dysfunction. Exp Neurol. 327:1132182020. View Article : Google Scholar | |
|
Cogliati S, Lorenzi I, Rigoni G, Caicci F and Soriano ME: Regulation of mitochondrial electron transport chain assembly. J Mol Biol. 430:4849–4873. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Nagao T, Shintani Y, Hayashi T, Kioka H, Kato H, Nishida Y, Yamazaki S, Tsukamoto O, Yashirogi S, Yazawa I, et al: Higd1a improves respiratory function in the models of mitochondrial disorder. FASEB J. 34:1859–1871. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Vankayala R and Hwang KC: Near-infrared-light-activatable nanomaterial-mediated phototheranostic nanomedicines: An emerging paradigm for cancer treatment. Adv Mater. 30:e17063202018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang S, Zhang Z, Wei S, He F, Li Z, Wang HH, Huang Y and Nie Z: Near-infrared light-controllable MXene hydrogel for tunable on-demand release of therapeutic proteins. Acta Biomater. 130:138–148. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang S, Weinberg S, DeBerge M, Gainullina A, Schipma M, Kinchen JM, Ben-Sahra I, Gius DR, Yvan-Charvet L, Chandel NS, et al: Efferocytosis fuels requirements of fatty acid oxidation and the electron transport chain to polarize macrophages for tissue repair. Cell Metab. 29:443–456.e5. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Luo X, Gong X, Su L, Lin H, Yang Z, Yan X and Gao J: Activatable mitochondria-targeting organoarsenic prodrugs for bioenergetic cancer therapy. Angew Chem Int Ed Engl. 60:1403–1410. 2021. View Article : Google Scholar | |
|
Jiang H, Zhang XW, Liao QL, Wu WT, Liu YL and Huang WH: Electrochemical monitoring of paclitaxel-induced ROS release from mitochondria inside single cells. Small. 15:e19017872019. View Article : Google Scholar : PubMed/NCBI | |
|
Kaplan P, Tatarkova Z, Sivonova MK, Racay P and Lehotsky J: Homocysteine and mitochondria in cardiovascular and cerebrovascular systems. Int J Mol Sci. 21:76982020. View Article : Google Scholar : | |
|
Koch RE, Josefson CC and Hill GE: Mitochondrial function, ornamentation, and immunocompetence. Biol Rev Camb Philos Soc. 92:1459–1474. 2017. View Article : Google Scholar | |
|
Zhang L, Wang X, Cueto R, Effi C, Zhang Y, Tan H, Qin X, Ji Y, Yang X and Wang H: Biochemical basis and metabolic interplay of redox regulation. Redox Biol. 26:1012842019. View Article : Google Scholar : PubMed/NCBI | |
|
Zhu X, Liu G, Bu Y, Zhang J, Wang L, Tian Y, Yu J, Wu Z and Zhou H: In situ monitoring of mitochondria regulating cell viability by the RNA-specific fluorescent photosensitizer. Anal Chem. 92:10815–10821. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Blanco FJ, Valdes AM and Rego-Pérez I: Mitochondrial DNA variation and the pathogenesis of osteoarthritis phenotypes. Nat Rev Rheumatol. 14:327–340. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Fuhrmann DC and Brüne B: Mitochondrial composition and function under the control of hypoxia. Redox Biol. 12:208–215. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lee JH and Paull TT: Mitochondria at the crossroads of ATM-mediated stress signaling and regulation of reactive oxygen species. Redox Biol. 32:1015112020. View Article : Google Scholar : PubMed/NCBI | |
|
Madreiter-Sokolowski CT, Thomas C and Ristow M: Interrelation between ROS and Ca2+ in aging and age-related diseases. Redox Biol. 36:1016782020. View Article : Google Scholar | |
|
Angelova PR, Esteras N and Abramov AY: Mitochondria and lipid peroxidation in the mechanism of neurodegeneration: Finding ways for prevention. Med Res Rev. 41:770–784. 2021. View Article : Google Scholar | |
|
van der Reest J, Nardini Cecchino G, Haigis MC and Kordowitzki P: Mitochondria: Their relevance during oocyte ageing. Ageing Res Rev. 70:1013782021. View Article : Google Scholar : PubMed/NCBI | |
|
Martins WK, Santos NF, Rocha CS, Bacellar IOL, Tsubone TM, Viotto AC, Matsukuma AY, Abrantes ABP, Siani P, Dias LG and Baptista MS: Parallel damage in mitochondria and lysosomes is an efficient way to photoinduce cell death. Autophagy. 15:259–279. 2019. View Article : Google Scholar : | |
|
Kleih M, Böpple K, Dong M, Gaißler A, Heine S, Olayioye MA, Aulitzky WE and Essmann F: Direct impact of cisplatin on mitochondria induces ROS production that dictates cell fate of ovarian cancer cells. Cell Death Dis. 10:8512019. View Article : Google Scholar : PubMed/NCBI | |
|
Sidlauskaite E, Gibson JW, Megson IL, Whitfield PD, Tovmasyan A, Batinic-Haberle I, Murphy MP, Moult PR and Cobley JN: Mitochondrial ROS cause motor deficits induced by synaptic inactivity: Implications for synapse pruning. Redox Biol. 16:344–351. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Yang J, Chen Z, Liu N and Chen Y: Ribosomal protein L10 in mitochondria serves as a regulator for ROS level in pancreatic cancer cells. Redox Biol. 19:158–165. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Erard M, Dupré-Crochet S and Nüße O: Biosensors for spatiotemporal detection of reactive oxygen species in cells and tissues. Am J Physiol Regul Integr Comp Physiol. 314:R667–R683. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang X, Wang L, Carroll SL, Chen J, Wang MC and Wang J: Challenges and opportunities for small-molecule fluorescent probes in redox biology applications. Antioxid Redox Signal. 29:518–540. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ortega-Villasante C, Burén S, Barón-Sola Á, Martínez F and Hernández LE: In vivo ROS and redox potential fluorescent detection in plants: Present approaches and future perspectives. Methods. 109:92–104. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Ortega-Villasante C, Burén S, Blázquez-Castro A, Barón-Sola Á and Hernández LE: Fluorescent in vivo imaging of reactive oxygen species and redox potential in plants. Free Radic Biol Med. 122:202–220. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Dragišić Maksimović J, Mojović M, Vučinić Ž and Maksimović V: Spatial distribution of apoplastic antioxidative constituents in maize root. Physiol Plant. 173:818–828. 2021. View Article : Google Scholar | |
|
Emoto MC, Sato-Akaba H, Hamaue N, Kawanishi K, Koshino H, Shimohama S and Fujii HG: Early detection of redox imbalance in the APPswe/PS1dE9 mouse model of Alzheimer's disease by in vivo electron paramagnetic resonance imaging. Free Radic Biol Med. 172:9–18. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gotham JP, Li R, Tipple TE, Lancaster JR Jr, Liu T and Li Q: Quantitation of spin probe-detectable oxidants in cells using electron paramagnetic resonance spectroscopy: To probe or to trap? Free Radic Biol Med. 154:84–94. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
He L, Li MX, Chen F, Yang SS, Ding J, Ding L and Ren NQ: Novel coagulation waste-based Fe-containing carbonaceous catalyst as peroxymonosulfate activator for pollutants degradation: Role of ROS and electron transfer pathway. J Hazard Mater. 417:1261132021. View Article : Google Scholar : PubMed/NCBI | |
|
Hinoshita M, Abe T, Sato A, Maeda Y and Takeyoshi M: Development of a new photosafety test method based on singlet oxygen generation detected using electron spin resonance. J Appl Toxicol. 41:247–255. 2021. View Article : Google Scholar | |
|
Matsumoto KI, Ueno M, Shoji Y and Nakanishi I: Heavy-ion beam-induced reactive oxygen species and redox reactions. Free Radic Res. 55:450–460. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mendoza C, Désert A, Khrouz L, Páez CA, Parola S and Heinrichs B: Heterogeneous singlet oxygen generation: In-operando visible light EPR spectroscopy. Environ Sci Pollut Res Int. 28:25124–25129. 2021. View Article : Google Scholar | |
|
Okazaki Y, Ishidzu Y, Ito F, Tanaka H, Hori M and Toyokuni S: L-Dehydroascorbate efficiently degrades non-thermal plasma-induced hydrogen peroxide. Arch Biochem Biophys. 700:1087622021. View Article : Google Scholar : PubMed/NCBI | |
|
Prasad A, Manoharan RR, Sedlářová M and Pospíšil P: Free radical-mediated protein radical formation in differentiating monocytes. Int J Mol Sci. 22:99632021. View Article : Google Scholar : PubMed/NCBI | |
|
Yamaguchi M, Ma T, Tadaki D, Hirano-Iwata A, Watanabe Y, Kanetaka H, Fujimori H, Takemoto E and Niwano M: Bactericidal activity of bulk nanobubbles through active oxygen species generation. Langmuir. Aug 2–2021.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang K, Deng R, Teng X, Li Y, Sun Y, Ren X and Li J: Direct visualization of single-nucleotide variation in mtDNA using a CRISPR/Cas9-mediated proximity ligation assay. J Am Chem Soc. 140:11293–11301. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Moriyama M, Koshiba T and Ichinohe T: Influenza A virus M2 protein triggers mitochondrial DNA-mediated antiviral immune responses. Nat Commun. 10:46242019. View Article : Google Scholar : PubMed/NCBI | |
|
Baumann K: mtDNA robs nuclear dNTPs. Nat Rev Mol Cell Biol. 20:6632019. View Article : Google Scholar : PubMed/NCBI | |
|
Lazo S, Noren Hooten N, Green J, Eitan E, Mode NA, Liu QR, Zonderman AB, Ezike N, Mattson MP, Ghosh P and Evans MK: Mitochondrial DNA in extracellular vesicles declines with age. Aging Cell. 20:e132832021. View Article : Google Scholar : | |
|
Li D, Du X, Guo X, Zhan L, Li X, Yin C, Chen C, Li M, Li B, Yang H and Xing J: Site-specific selection reveals selective constraints and functionality of tumor somatic mtDNA mutations. J Exp Clin Cancer Res. 36:1682017. View Article : Google Scholar : PubMed/NCBI | |
|
Medeiros TC and Graef M: Autophagy determines mtDNA copy number dynamics during starvation. Autophagy. 15:178–179. 2019. View Article : Google Scholar | |
|
Fontana GA and Gahlon HL: Mechanisms of replication and repair in mitochondrial DNA deletion formation. Nucleic Acids Res. 48:11244–11258. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wanrooij PH, Tran P, Thompson LJ, Carvalho G, Sharma S, Kreisel K, Navarrete C, Feldberg AL, Watt DL, Nilsson AK, et al: Elimination of rNMPs from mitochondrial DNA has no effect on its stability. Proc Natl Acad Sci USA. 117:14306–14313. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wei W and Chinnery PF: Inheritance of mitochondrial DNA in humans: Implications for rare and common diseases. J Intern Med. 287:634–644. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ignatenko O, Chilov D, Paetau I, de Miguel E, Jackson CB, Capin G, Paetau A, Terzioglu M, Euro L and Suomalainen A: Loss of mtDNA activates astrocytes and leads to spongiotic encephalopathy. Nat Commun. 9:702018. View Article : Google Scholar : PubMed/NCBI | |
|
Kasahara T and Kato T: What can mitochondrial DNA analysis tell us about mood disorders? Biol Psychiatry. 83:731–738. 2018. View Article : Google Scholar | |
|
Larsson NG and Wedell A: Mitochondria in human disease. J Intern Med. 287:589–591. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Bagge EK, Fujimori-Tonou N, Kubota-Sakashita M, Kasahara T and Kato T: Unbiased PCR-free spatio-temporal mapping of the mtDNA mutation spectrum reveals brain region-specific responses to replication instability. BMC Biol. 18:1502020. View Article : Google Scholar : PubMed/NCBI | |
|
Chiang JL, Shukla P, Pagidas K, Ahmed NS, Karri S, Gunn DD, Hurd WW and Singh KK: Mitochondria in ovarian aging and reproductive longevity. Ageing Res Rev. 63:1011682020. View Article : Google Scholar : PubMed/NCBI | |
|
Li H, Slone J, Fei L and Huang T: Mitochondrial DNA variants and common diseases: A mathematical model for the diversity of age-related mtDNA mutations. Cells. 8:6082019. View Article : Google Scholar : | |
|
Nissanka N and Moraes CT: Mitochondrial DNA heteroplasmy in disease and targeted nuclease-based therapeutic approaches. EMBO Rep. 21:e496122020. View Article : Google Scholar : PubMed/NCBI | |
|
West AP and Shadel GS: Mitochondrial DNA in innate immune responses and inflammatory pathology. Nat Rev Immunol. 17:363–375. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Asfaram S, Fakhar M, Mohebali M, Ziaei Hezarjaribi H, Mardani A, Ghezelbash B, Akhoundi B, Zarei Z and Moazeni M: A convenient and sensitive kDNA-PCR for screening of leishmania infantum latent infection among blood donors in a highly endemic focus, northwestern Iran. Acta Parasitol. 67:842–850. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Semerikov VL, Semerikova SA, Khrunyk YY and Putintseva YA: Sequence capture of mitochondrial genome with PCR-generated baits provides new insights into the biogeography of the genus abies mill. Plants (Basel). 11. pp. 7622022, View Article : Google Scholar | |
|
Tay E, Chen SC, Green W, Lopez R and Halliday CL: Development of a real-time PCR assay to identify and distinguish between cryptococcus neoformans and cryptococcus gattii species complexes. J Fungi (Basel). 8:4622022. View Article : Google Scholar | |
|
Wang J, Balciuniene J, Diaz-Miranda MA, McCormick EM, Aref-Eshghi E, Muir AM, Cao K, Troiani J, Moseley A, Fan Z, et al: Advanced approach for comprehensive mtDNA genome testing in mitochondrial disease. Mol Genet Metab. 135:93–101. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang Z, Slone J and Huang T: Next-generation sequencing to characterize mitochondrial genomic DNA heteroplasmy. Curr Protoc. 2:e4122022. View Article : Google Scholar : PubMed/NCBI | |
|
Allouche J, Rachmin I, Adhikari K, Pardo LM, Lee JH, McConnell AM, Kato S, Fan S, Kawakami A, Suita Y, et al: NNT mediates redox-dependent pigmentation via a UVB- and MITF-independent mechanism. Cell. 184:4268–4283.e20. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cornman RS, McKenna JE Jr and Fike JA: Composition and distribution of fish environmental DNA in an adirondack watershed. PeerJ. 9:e105392021. View Article : Google Scholar : PubMed/NCBI | |
|
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S, Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu YP, Acevedo-Arozena A, et al: Guidelines for the use and interpretation of assays for monitoring autophagy (4th edition)1. Autophagy. 17:1–382. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Matsui H, Ito J, Matsui N, Uechi T, Onodera O and Kakita A: Cytosolic dsDNA of mitochondrial origin induces cytotoxicity and neurodegeneration in cellular and zebrafish models of Parkinson's disease. Nat Commun. 12:31012021. View Article : Google Scholar : PubMed/NCBI | |
|
Rhie A, McCarthy SA, Fedrigo O, Damas J, Formenti G, Koren S, Uliano-Silva M, Chow W, Fungtammasan A, Kim J, et al: Towards complete and error-free genome assemblies of all vertebrate species. Nature. 592:737–746. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rossmann MP, Hoi K, Chan V, Abraham BJ, Yang S, Mullahoo J, Papanastasiou M, Wang Y, Elia I, Perlin JR, et al: Cell-specific transcriptional control of mitochondrial metabolism by TIF1γ drives erythropoiesis. Science. 372:716–721. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wiessner M, Maroofian R, Ni MY, Pedroni A, Müller JS, Stucka R, Beetz C, Efthymiou S, Santorelli FM, Alfares AA, et al: Biallelic variants in HPDL cause pure and complicated hereditary spastic paraplegia. Brain. 144:1422–1434. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wong HH, Seet SH, Maier M, Gurel A, Traspas RM, Lee C, Zhang S, Talim B, Loh AYT, Chia CY, et al: Loss of C2orf69 defines a fatal autoinflammatory syndrome in humans and zebrafish that evokes a glycogen-storage-associated mitochondriopathy. Am J Hum Genet. 108:1301–1317. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang DG, Zhao T, Hogstrand C, Ye HM, Xu XJ and Luo Z: Oxidized fish oils increased lipid deposition via oxidative stress-mediated mitochondrial dysfunction and the CREB1-Bcl2-Beclin1 pathway in the liver tissues and hepatocytes of yellow catfish. Food Chem. 360:1298142021. View Article : Google Scholar : PubMed/NCBI | |
|
Borsche M, König IR, Delcambre S, Petrucci S, Balck A, Brüggemann N, Zimprich A, Wasner K, Pereira SL, Avenali M, et al: Mitochondrial damage-associated inflammation highlights biomarkers in PRKN/PINK1 parkinsonism. Brain. 143:3041–3051. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Fernström J, Ohlsson L, Asp M, Lavant E, Holck A, Grudet C, Westrin Å and Lindqvist D: Plasma circulating cell-free mitochondrial DNA in depressive disorders. PLoS One. 16:e02595912021. View Article : Google Scholar : PubMed/NCBI | |
|
Gonçalves VF, Mendes-Silva AP, Koyama E, Vieira E, Kennedy JL and Diniz B: Increased levels of circulating cell-free mtDNA in plasma of late life depression subjects. J Psychiatr Res. 139:25–29. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Zhou K, Guo S, Wang Y, Ji X, Yuan Q, Su L, Guo X, Gu X and Xing J: NGS-based accurate and efficient detection of circulating cell-free mitochondrial DNA in cancer patients. Mol Ther Nucleic Acids. 23:657–666. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Maresca A, Del Dotto V, Romagnoli M, La Morgia C, Di Vito L, Capristo M, Valentino ML and Carelli V; ER-MITO Study Group: Expanding and validating the biomarkers for mitochondrial diseases. J Mol Med (Berl). 98:1467–1478. 2020. View Article : Google Scholar | |
|
Nie S, Lu J, Wang L and Gao M: Pro-inflammatory role of cell-free mitochondrial DNA in cardiovascular diseases. IUBMB Life. 72:1879–1890. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Valenti D, Vacca RA, Moro L and Atlante A: Mitochondria can cross cell boundaries: An overview of the biological relevance, pathophysiological implications and therapeutic perspectives of intercellular mitochondrial transfer. Int J Mol Sci. 22:83122021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong XY, Guo Y and Fan Z: Increased level of free-circulating MtDNA in maintenance hemodialysis patients: Possible role in systemic inflammation. J Clin Lab Anal. 36:e245582022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou G, Li Y, Li S, Liu H, Xu F, Lai X, Zhang Q, Xu J and Wan S: Circulating cell-free mtDNA content as a non-invasive prognostic biomarker in HCC patients receiving TACE and traditional Chinese medicine. Front Genet. 12:7194512021. View Article : Google Scholar : PubMed/NCBI | |
|
Angelova PR, Andruska KM, Midei MG, Barilani M, Atwal P, Tucher O, Milner P, Heerinckx F and Shchepinov MS: RT001 in progressive supranuclear palsy-clinical and in-vitro observations. Antioxidants (Basel). 10. pp. 10212021, View Article : Google Scholar | |
|
Bjørklund G, Tinkov AA, Hosnedlová B, Kizek R, Ajsuvakova OP, Chirumbolo S, Skalnaya MG, Peana M, Dadar M, El-Ansary A, et al: The role of glutathione redox imbalance in autism spectrum disorder: A review. Free Radic Biol Med. 160:149–162. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Blotto BL, Lyra ML, Cardoso MCS, Trefaut Rodrigues M, R Dias I, Marciano-Jr E, Dal Vechio F, Orrico VGD, Brandão RA, Lopes de Assis C, et al: The phylogeny of the casque-headed treefrogs (Hylidae: Hylinae: Lophyohylini). Cladistics. 37:36–72. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Langton AK, Ayer J, Griffiths TW, Rashdan E, Naidoo K, Caley MP, Birch-Machin MA, O'Toole EA, Watson REB and Griffiths CEM: Distinctive clinical and histological characteristics of atrophic and hypertrophic facial photoageing. J Eur Acad Dermatol Venereol. 35:762–768. 2021. View Article : Google Scholar : | |
|
Luo ZL, Sun HY, Wu XB, Cheng L and Ren JD: Epigallocatechin-3-gallate attenuates acute pancreatitis induced lung injury by targeting mitochondrial reactive oxygen species triggered NLRP3 inflammasome activation. Food Funct. 12:5658–5667. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Rebelo AP, Eidhof I, Cintra VP, Guillot-Noel L, Pereira CV, Timmann D, Traschütz A, Schöls L, Coarelli G, Durr A, et al: Biallelic loss-of-function variations in PRDX3 cause cerebellar ataxia. Brain. 144:1467–1481. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wu HC, Rérolle D, Berthier C, Hleihel R, Sakamoto T, Quentin S, Benhenda S, Morganti C, Wu C, Conte L, et al: Actinomycin D targets NPM1c-primed mitochondria to restore PML-driven senescence in AML therapy. Cancer Discov. 11:3198–3213. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Feng B, Wang K, Liu J, Mao G, Cui J, Xuan X, Jiang K and Zhang H: Ultrasensitive apurinic/apyrimidinic site-specific ratio fluorescent rotor for real-time highly selective evaluation of mtDNA oxidative damage in living cells. Anal Chem. 91:13962–13969. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Dabravolski SA, Nikiforov NG, Zhuravlev AD, Orekhov NA, Grechko AV and Orekhov AN: Role of the mtDNA mutations and mitophagy in inflammaging. Int J Mol Sci. 23:13232022. View Article : Google Scholar : PubMed/NCBI | |
|
Hamel Y, Mauvais FX, Madrange M, Renard P, Lebreton C, Nemazanyy I, Pellé O, Goudin N, Tang X, Rodero MP, et al: Compromised mitochondrial quality control triggers lipin1-related rhabdomyolysis. Cell Rep Med. 2:1003702021. View Article : Google Scholar : PubMed/NCBI | |
|
Karshovska E, Wei Y, Subramanian P, Mohibullah R, Geißler C, Baatsch I, Popal A, Corbalán Campos J, Exner N and Schober A: HIF-1α (hypoxia-inducible factor-1α) promotes macrophage necroptosis by regulating miR-210 and miR-383. Arterioscler Thromb Vasc Biol. 40:583–596. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gao F, Li L, Fan J, Cao J, Li Y, Chen L and Peng X: An off-on two-photon carbazole-based fluorescent probe: Highly targeting and super-resolution imaging of mtDNA. Anal Chem. 91:3336–3341. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Grady JP, Pickett SJ, Ng YS, Alston CL, Blakely EL, Hardy SA, Feeney CL, Bright AA, Schaefer AM, Gorman GS, et al: mtDNA heteroplasmy level and copy number indicate disease burden in m.3243A>G mitochondrial disease. EMBO Mol Med. 10:e82622018. View Article : Google Scholar : | |
|
Bozi LHM, Campos JC, Zambelli VO, Ferreira ND and Ferreira JCB: Mitochondrially-targeted treatment strategies. Mol Aspects Med. 71:1008362020. View Article : Google Scholar | |
|
Jing X, Yang F, Shao C, Wei K, Xie M, Shen H and Shu Y: Role of hypoxia in cancer therapy by regulating the tumor microenvironment. Mol Cancer. 18:1572019. View Article : Google Scholar : PubMed/NCBI | |
|
Amore G, Romagnoli M, Carbonelli M, Barboni P, Carelli V and La Morgia C: Therapeutic options in hereditary optic neuropathies. Drugs. 81:57–86. 2021. View Article : Google Scholar : | |
|
Chen JJ and Bhatti MT: Gene therapy for leber hereditary optic neuropathy: Is vision truly RESCUED? Ophthalmology. 128:661–662. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Mejia-Vergara AJ, Seleme N, Sadun AA and Karanjia R: Pathophysiology of conversion to symptomatic leber hereditary optic neuropathy and therapeutic implications: A review. Curr Neurol Neurosci Rep. 20:112020. View Article : Google Scholar : PubMed/NCBI | |
|
Newman NJ, Yu-Wai-Man P, Carelli V, Moster ML, Biousse V, Vignal-Clermont C, Sergott RC, Klopstock T, Sadun AA, Barboni P, et al: Efficacy and safety of intravitreal gene therapy for leber hereditary optic neuropathy treated within 6 months of disease onset. Ophthalmology. 128:649–660. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Stenton SL, Sheremet NL, Catarino CB, Andreeva NA, Assouline Z, Barboni P, Barel O, Berutti R, Bychkov I, Caporali L, et al: Impaired complex I repair causes recessive leber's hereditary optic neuropathy. J Clin Invest. 131:e1382672021. View Article : Google Scholar | |
|
Wang L, Ding H, Chen BT, Fan K, Tian Q, Long M, Liang M, Shi D, Yu C and Qin W: Occult primary white matter impairment in leber hereditary optic neuropathy. Eur J Neurol. 28:2871–2881. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yu-Wai-Man P, Newman NJ, Carelli V, Moster ML, Biousse V, Sadun AA, Klopstock T, Vignal-Clermont C, Sergott RC, Rudolph G, et al: Bilateral visual improvement with unilateral gene therapy injection for leber hereditary optic neuropathy. Sci Transl Med. 12:eaaz74232020. View Article : Google Scholar : PubMed/NCBI | |
|
Heighton JN, Brady LI, Sadikovic B, Bulman DE and Tarnopolsky MA: Genotypes of chronic progressive external ophthalmoplegia in a large adult-onset cohort. Mitochondrion. 49:227–231. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu Y, Kang L, Wu HL, Hou Y and Wang ZX: Optical coherence tomography findings in chronic progressive external ophthalmoplegia. Chin Med J (Engl). 132:1202–1207. 2019. View Article : Google Scholar | |
|
Del Monte F, Angelini F, Villar AM and Gabbarini F: The arrhythmic risk in Kearns-Sayre syndrome: Still many questions unanswered. Europace. 23:980–981. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Di Mambro C, Tamborrino PP and Drago F: The arrhythmic risk in Kearns-Sayre syndrome: Still many questions unanswered-Authors' reply. Europace. 23:981–982. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Di Nora C, Paldino A, Miani D, Finato N, Pizzolitto S, De Maglio G, Vendramin I, Sponga S, Nalli C, Sinagra G and Livi U: Heart transplantation in Kearns-Sayre syndrome. Transplantation. 103:e393–e394. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen MTB, Micieli J and Margolin E: Teaching neuroImages: Kearns-Sayre syndrome. Neurology. 92:e519–e520. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Ashton TM, McKenna WG, Kunz-Schughart LA and Higgins GS: Oxidative phosphorylation as an emerging target in cancer therapy. Clin Cancer Res. 24:2482–2490. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Bonora M, Wieckowski MR, Sinclair DA, Kroemer G, Pinton P and Galluzzi L: Targeting mitochondria for cardiovascular disorders: Therapeutic potential and obstacles. Nat Rev Cardiol. 16:33–55. 2019. View Article : Google Scholar : | |
|
Ni K, Lan G, Veroneau SS, Duan X, Song Y and Lin W: Nanoscale metal-organic frameworks for mitochondria-targeted radiotherapy-radiodynamic therapy. Nat Commun. 9:43212018. View Article : Google Scholar : PubMed/NCBI | |
|
Porporato PE, Filigheddu N, Pedro JMB, Kroemer G and Galluzzi L: Mitochondrial metabolism and cancer. Cell Res. 28:265–280. 2018. View Article : Google Scholar : | |
|
Qi T, Chen B, Wang Z, Du H, Liu D, Yin Q, Liu B, Zhang Q and Wang Y: A pH-activatable nanoparticle for dual-stage precisely mitochondria-targeted photodynamic anticancer therapy. Biomaterials. 213:1192192019. View Article : Google Scholar : PubMed/NCBI | |
|
Ramachandra CJA, Hernandez-Resendiz S, Crespo-Avilan GE, Lin YH and Hausenloy DJ: Mitochondria in acute myocardial infarction and cardioprotection. EBioMedicine. 57:1028842020. View Article : Google Scholar : PubMed/NCBI | |
|
Soukas AA, Hao H and Wu L: Metformin as anti-aging therapy: Is it for everyone? Trends Endocrinol Metab. 30:745–755. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bonora E, Chakrabarty S, Kellaris G, Tsutsumi M, Bianco F, Bergamini C, Ullah F, Isidori F, Liparulo I, Diquigiovanni C, et al: Biallelic variants in LIG3 cause a novel mitochondrial neurogastrointestinal encephalomyopathy. Brain. 144:1451–1466. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
D'Angelo R, Boschetti E, Amore G, Costa R, Pugliese A, Caporali L, Gramegna LL, Papa V, Vizioli L, Capristo M, et al: Liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Clinical long-term follow-up and pathogenic implications. J Neurol. 267:3702–3710. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Hirano M, Carelli V, De Giorgio R, Pironi L, Accarino A, Cenacchi G, D'Alessandro R, Filosto M, Martí R, Nonino F, et al: Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE): Position paper on diagnosis, prognosis, and treatment by the MNGIE international network. J Inherit Metab Dis. 44:376–387. 2021. View Article : Google Scholar : | |
|
Kripps K, Nakayuenyongsuk W, Shayota BJ, Berquist W, Gomez-Ospina N, Esquivel CO, Concepcion W, Sampson JB, Cristin DJ, Jackson WE, et al: Successful liver transplantation in mitochondrial neurogastrointestinal encephalomyopathy (MNGIE). Mol Genet Metab. 130:58–64. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Parés M, Fornaguera C, Vila-Julià F, Oh S, Fan SHY, Tam YK, Comes N, Vidal F, Martí R, Borrós S and Barquinero J: Preclinical assessment of a gene-editing approach in a mouse model of mitochondrial neurogastrointestinal encephalomyopathy. Hum Gene Ther. 32:1210–1223. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Jackson CB, Turnbull DM, Minczuk M and Gammage PA: Therapeutic manipulation of mtDNA heteroplasmy: A shifting perspective. Trends Mol Med. 26:698–709. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang Z and Shen H: Mitochondria: Emerging therapeutic strategies for oocyte rescue. Reprod Sci. 29:711–722. 2022. View Article : Google Scholar | |
|
Mok BY, de Moraes MH, Zeng J, Bosch DE, Kotrys AV, Raguram A, Hsu F, Radey MC, Peterson SB, Mootha VK, et al: A bacterial cytidine deaminase toxin enables CRISPR-free mitochondrial base editing. Nature. 583:631–637. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Ng YS, Bindoff LA, Gorman GS, Klopstock T, Kornblum C, Mancuso M, McFarland R, Sue C M, Suomalainen A, Taylor RW, et al: Mitochondrial disease in adults: Recent advances and future promise. Lancet Neurol. 20:573–584. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fang H, Yao S, Chen Q, Liu C, Cai Y, Geng S, Bai Y, Tian Z, Zacharias AL, Takebe T, et al: De novo-designed near-infrared nanoaggregates for super-resolution monitoring of lysosomes in cells, in whole organoids, and in vivo. ACS Nano. 13:14426–14436. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gong X, Pu X, Wang J, Yang L, Cui Y, Li L, Sun X, Liu J, Bai J and Wang Y: Enhancing of nanocatalyst-driven chemodynaminc therapy for endometrial cancer cells through inhibition of PINK1/parkin-mediated mitophagy. Int J Nanomedicine. 16:6661–6679. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
González LF, Bevilacqua LE and Naves R: Nanotechnology-based drug delivery strategies to repair the mitochondrial function in neuroinflammatory and neurodegenerative diseases. Pharmaceutics. 13:20552021. View Article : Google Scholar : PubMed/NCBI | |
|
Gu X, Kwok RTK, Lam JWY and Tang BZ: AIEgens for biological process monitoring and disease theranostics. Biomaterials. 146:115–135. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
He C, Jiang S, Yao H, Zhang L, Yang C, Jiang S, Ruan F, Zhan D, Liu G, Lin Z, et al: High-content analysis for mitophagy response to nanoparticles: A potential sensitive biomarker for nanosafety assessment. Nanomedicine. 15:59–69. 2019. View Article : Google Scholar | |
|
He G, Pan X, Liu X, Zhu Y, Ma Y, Du C, Liu X and Mao C: HIF-1α-mediated mitophagy determines ZnO nanoparticle-induced human osteosarcoma cell death both in vitro and in vivo. ACS Appl Mater Interfaces. 12:48296–48309. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao M, Liu S, Wang C, Wang Y, Wan M, Liu F, Gong M, Yuan Y, Chen Y, Cheng J, et al: Mesenchymal stem cell-derived extracellular vesicles attenuate mitochondrial damage and inflammation by stabilizing mitochondrial DNA. ACS Nano. 15:1519–1538. 2021. View Article : Google Scholar | |
|
Macdonald R, Barnes K, Hastings C and Mortiboys H: Mitochondrial abnormalities in Parkinson's disease and Alzheimer's disease: Can mitochondria be targeted therapeutically? Biochem Soc Trans. 46:891–909. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tan DX, Manchester LC, Liu X, Rosales-Corral SA, Acuna-Castroviejo D and Reiter RJ: Mitochondria and chloroplasts as the original sites of melatonin synthesis: A hypothesis related to melatonin's primary function and evolution in eukaryotes. J Pineal Res. 54:127–138. 2013. View Article : Google Scholar | |
|
Lee JH, Park A, Oh KJ, Lee SC, Kim WK and Bae KH: The role of adipose tissue mitochondria: Regulation of mitochondrial function for the treatment of metabolic diseases. Int J Mol Sci. 20:49242019. View Article : Google Scholar : | |
|
Wallace DC: Mitochondrial genetic medicine. Nat Genet. 50:1642–1649. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Strobbe D and Campanella M: Anxiolytic therapy: A paradigm of successful mitochondrial pharmacology. Trends Pharmacol Sci. 39:437–439. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Wang XQ, Peng M, Li CX, Zhang Y, Zhang M, Tang Y, Liu MD, Xie BR and Zhang XZ: Real-time imaging of free radicals for mitochondria-targeting hypoxic tumor therapy. Nano Lett. 18:6804–6811. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HK, Noh YH, Nilius B, Ko KS, Rhee BD, Kim N and Han J: Current and upcoming mitochondrial targets for cancer therapy. Semin Cancer Biol. 47:154–167. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Lleonart ME, Grodzicki R, Graifer DM and Lyakhovich A: Mitochondrial dysfunction and potential anticancer therapy. Med Res Rev. 37:1275–1298. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tian J, Huang B, Cui Z, Wang P, Chen S, Yang G and Zhang W: Mitochondria-targeting and ROS-sensitive smart nanoscale supramolecular organic framework for combinational amplified photodynamic therapy and chemotherapy. Acta Biomater. 130:447–459. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kim HJ, Maiti P and Barrientos A: Mitochondrial ribosomes in cancer. Semin Cancer Biol. 47:67–81. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen WW, Freinkman E and Sabatini DM: Rapid immunopurification of mitochondria for metabolite profiling and absolute quantification of matrix metabolites. Nat Protoc. 12:2215–2231. 2017. View Article : Google Scholar | |
|
Jung HS, Lee JH, Kim K, Koo S, Verwilst P, Sessler JL, Kang C and Kim JS: A mitochondria-targeted cryptocyanine-based photothermogenic photosensitizer. J Am Chem Soc. 139:9972–9978. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Roth KG, Mambetsariev I, Kulkarni P and Salgia R: The mitochondrion as an emerging therapeutic target in cancer. Trends Mol Med. 26:119–134. 2020. View Article : Google Scholar : | |
|
Nash GT, Luo T, Lan G, Ni K, Kaufmann M and Lin W: Nanoscale metal-organic layer isolates phthalocyanines for efficient mitochondria-targeted photodynamic therapy. J Am Chem Soc. 143:2194–2199. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Russell OM, Gorman GS, Lightowlers RN and Turnbull DM: Mitochondrial diseases: Hope for the future. Cell. 181:168–188. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Saeb-Parsy K, Martin JL, Summers DM, Watson CJE, Krieg T and Murphy MP: Mitochondria as therapeutic targets in transplantation. Trends Mol Med. 27:185–198. 2021. View Article : Google Scholar | |
|
Kelly B and Pearce EL: Amino assets: How amino acids support immunity. Cell Metab. 32:154–175. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Rahman J and Rahman S: Mitochondrial medicine in the omics era. Lancet. 391:2560–2574. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Tabish TA and Narayan RJ: Mitochondria-targeted graphene for advanced cancer therapeutics. Acta Biomater. 129:43–56. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Yuan P, Deng FA, Liu YB, Zheng RR, Rao XN, Qiu XZ, Zhang DW, Yu XY, Cheng H and Li SY: Mitochondria targeted O2 economizer to alleviate tumor hypoxia for enhanced photodynamic therapy. Adv Healthc Mater. 10:e21001982021. View Article : Google Scholar | |
|
Ballarò R, Lopalco P, Audrito V, Beltrà M, Pin F, Angelini R, Costelli P, Corcelli A, Bonetto A, Szeto HH, et al: Targeting mitochondria by SS-31 ameliorates the whole body energy status in cancer- and chemotherapy-induced cachexia. Cancers (Basel). 13. pp. 8502021, View Article : Google Scholar | |
|
Bhatti JS, Tamarai K, Kandimalla R, Manczak M, Yin X, Ramasubramanian B, Sawant N, Pradeepkiran JA, Vijayan M, Kumar S and Reddy PH: Protective effects of a mitochondria-targeted small peptide SS31 against hyperglycemia-induced mitochondrial abnormalities in the liver tissues of diabetic mice, Tallyho/JngJ mice. Mitochondrion. 58:49–58. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Deng HF, Yue LX, Wang NN, Zhou YQ, Zhou W, Liu X, Ni YH, Huang CS, Qiu LZ, Liu H, et al: Mitochondrial iron overload-mediated inhibition of Nrf2-HO-1/GPX4 assisted ALI-induced nephrotoxicity. Front Pharmacol. 11:6245292021. View Article : Google Scholar : PubMed/NCBI | |
|
Le Gal K, Wiel C, Ibrahim MX, Henricsson M, Sayin VI and Bergo MO: Mitochondria-targeted antioxidants MitoQ and MitoTEMPO Do not influence BRAF-driven malignant melanoma and KRAS-driven lung cancer progression in mice. Antioxidants (Basel). 10:1632021. View Article : Google Scholar | |
|
Bhatti JS, Thamarai K, Kandimalla R, Manczak M, Yin X, Kumar S, Vijayan M and Reddy PH: Mitochondria-targeted small peptide, SS31 ameliorates diabetes induced mitochondrial dynamics in male TallyHO/JngJ mice. Mol Neurobiol. 58:795–808. 2021. View Article : Google Scholar : | |
|
Grosser JA, Fehrman RL, Keefe D, Redmon M and Nickells RW: The effects of a mitochondrial targeted peptide (elamipretide/SS31) on BAX recruitment and activation during apoptosis. BMC Res Notes. 14:1982021. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Chen Z, Zhang R, Quan Z, Xu Y, He B and Ren Y: Mitochondrial-targeted antioxidant peptide SS31 prevents RPE cell death under oxidative stress. Biomed Res Int. 2022:61803492022. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Quan Z, Zhang R, He B, Xu Y, Chen Z, Ren Y and Li K: Preparation of targeted mitochondrion nanoscale-release peptides and their efficiency on eukaryotic cells. J Biomed Nanotechnol. 17:1679–1689. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, Zhang R, Quan Z, He B, Xu Y, Chen Z, Ren Y and Liu X: Synthesis, characterization, and specific localization of mitochondrial-targeted antioxidant peptide SS31 probe. Biomed Res Int. 2021:99156992021. View Article : Google Scholar : PubMed/NCBI | |
|
Sun M, Ma J, Ye J, Fan H, Le J and Zhu J: Protective effect of mitochondria-targeted antioxidant peptide SS-31 in sepsis-induced acute kidney injury. Zhonghua Wei Zhong Bing Ji Jiu Yi Xue. 33:1418–1422. 2021.In Chinese. | |
|
Zhu Y, Luo M, Bai X, Li J, Nie P, Li B and Luo P: SS-31, a mitochondria-targeting peptide, ameliorates kidney disease. Oxid Med Cell Longev. 2022:12955092022. View Article : Google Scholar : PubMed/NCBI | |
|
Olgar Y, Billur D, Tuncay E and Turan B: MitoTEMPO provides an antiarrhythmic effect in aged-rats through attenuation of mitochondrial reactive oxygen species. Exp Gerontol. 136:1109612020. View Article : Google Scholar : PubMed/NCBI | |
|
Tuncer S, Akkoca A, Celen MC and Dalkilic N: Can MitoTEMPO protect rat sciatic nerve against ischemia-reperfusion injury? Naunyn Schmiedebergs Arch Pharmacol. 394:545–553. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Vrijsen S, Besora-Casals L, van Veen S, Zielich J, Van den Haute C, Hamouda NN, Fischer C, Ghesquière B, Tournev I, Agostinis P, et al: ATP13A2-mediated endo-lysosomal polyamine export counters mitochondrial oxidative stress. Proc Natl Acad Sci USA. 117:31198–31207. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhao Y, Wang Z, Sun R, Zou B, Li R, Liu D, Lin M, Zhou J, Ning S, et al: Peroxiredoxin 3 inhibits acetaminophen-induced liver pyroptosis through the regulation of mitochondrial ROS. Front Immunol. 12:6527822021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao J, Zhan J and Yang Z: Enzyme-instructed self-assembly (EISA) and hydrogelation of peptides. Adv Mater. 32:e18057982020. View Article : Google Scholar | |
|
Liu C, Liu B, Zhao J, Di Z, Chen D, Gu Z, Li L and Zhao Y: Nd3+-sensitized upconversion metal-organic frameworks for mitochondria-targeted amplified photodynamic therapy. Angew Chem Int Ed Engl. 59:2634–2638. 2020. View Article : Google Scholar | |
|
Lu M, Qu A, Li S, Sun M, Xu L, Kuang H and Xu C: Mitochondria-targeting plasmonic spiky nanorods increase the elimination of aging cells in vivo. Angew Chem Int Ed Engl. 59:8698–8705. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Zhang W, Liu S, Hu X and Xie Z: Mitochondria-targeting organic nanoparticles for enhanced photodynamic/photothermal therapy. ACS Appl Mater Interfaces. 12:30077–30084. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang CX, Cheng Y, Liu DZ, Liu M, Cui H, Zhang BL, Mei QB and Zhou SY: Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology. 17:182019. View Article : Google Scholar : PubMed/NCBI | |
|
Sun J, Zhang J, Tian J, Virzì GM, Digvijay K, Cueto L, Yin Y, Rosner MH and Ronco C: Mitochondria in sepsis-induced AKI. J Am Soc Nephrol. 30:1151–1161. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Yang G, Chen C, Zhu Y, Liu Z, Xue Y, Zhong S, Wang C, Gao Y and Zhang W: GSH-activatable NIR nanoplatform with mitochondria targeting for enhancing tumor-specific therapy. ACS Appl Mater Interfaces. 11:44961–44969. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Gabandé-Rodríguez E, Gómez de Las Heras MM and Mittelbrunn M: Control of inflammation by calorie restriction mimetics: On the crossroad of autophagy and mitochondria. Cells. 9:822019. View Article : Google Scholar | |
|
Cho H, Cho YY, Shim MS, Lee JY, Lee HS and Kang HC: Mitochondria-targeted drug delivery in cancers. Biochim Biophys Acta Mol Basis Dis. 1866:1658082020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu K, Zhou Z, Pan M and Zhang L: Stem cell-derived mitochondria transplantation: A promising therapy for mitochondrial encephalomyopathy. CNS Neurosci Ther. 27:733–742. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Deng Y, Jia F, Chen X, Jin Q and Ji J: ATP suppression by pH-activated mitochondria-targeted delivery of nitric oxide nanoplatform for drug resistance reversal and metastasis inhibition. Small. 16:e20017472020. View Article : Google Scholar : PubMed/NCBI | |
|
Gao C, Wang Y, Sun J, Han Y, Gong W, Li Y, Feng Y, Wang H, Yang M, Li Z, et al: Neuronal mitochondria-targeted delivery of curcumin by biomimetic engineered nanosystems in Alzheimer's disease mice. Acta Biomater. 108:285–299. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Andrieux P, Chevillard C, Cunha-Neto E and Nunes JPS: Mitochondria as a cellular hub in infection and inflammation. Int J Mol Sci. 22:113382021. View Article : Google Scholar : PubMed/NCBI | |
|
Zeng WN, Yu QP, Wang D, Liu JL, Yang QJ, Zhou ZK and Zeng YP: Mitochondria-targeting graphene oxide nanocomposites for fluorescence imaging-guided synergistic phototherapy of drug-resistant osteosarcoma. J Nanobiotechnology. 19:792021. View Article : Google Scholar : PubMed/NCBI | |
|
Nam HY, Hong JA, Choi J, Shin S, Cho SK, Seo J and Lee J: Mitochondria-targeting peptoids. Bioconjug Chem. 29:1669–1676. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
El-Hattab AW, Zarante AM, Almannai M and Scaglia F: Therapies for mitochondrial diseases and current clinical trials. Mol Genet Metab. 122:1–9. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Han Y, Chu X, Cui L, Fu S, Gao C, Li Y and Sun B: Neuronal mitochondria-targeted therapy for Alzheimer's disease by systemic delivery of resveratrol using dual-modified novel biomimetic nanosystems. Drug Deliv. 27:502–518. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Mohammadinejad R, Moosavi MA, Tavakol S, Vardar DÖ, Hosseini A, Rahmati M, Dini L, Hussain S, Mandegary A and Klionsky DJ: Necrotic, apoptotic and autophagic cell fates triggered by nanoparticles. Autophagy. 15:4–33. 2019. View Article : Google Scholar | |
|
Vincent AE, Turnbull DM, Eisner V, Hajnóczky G and Picard M: Mitochondrial nanotunnels. Trends Cell Biol. 27:787–799. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Wu T, Liang X, Liu X, Li Y, Wang Y, Kong L and Tang M: Induction of ferroptosis in response to graphene quantum dots through mitochondrial oxidative stress in microglia. Part Fibre Toxicol. 17:302020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang H, Shi W, Zeng D, Huang Q, Xie J, Wen H, Li J, Yu X, Qin L and Zhou Y: pH-activated, mitochondria-targeted, and redox-responsive delivery of paclitaxel nanomicelles to overcome drug resistance and suppress metastasis in lung cancer. J Nanobiotechnology. 19:1522021. View Article : Google Scholar : PubMed/NCBI |