|
1
|
Greijer AE, van der Groep P, Kemming D,
Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JA, van
Diest PJ and van der Wall E: Up-regulation of gene expression by
hypoxia is mediated predominantly by hypoxia-inducible factor 1
(HIF-1). J Pathol. 206:291–304. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Bentley ER and Little SR: Local delivery
strategies to restore immune homeostasis in the context of
inflammation. Adv Drug Deliv Rev. 178:1139712021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Goldstein DS: How does homeostasis happen?
Integrative physiological, systems biological, and evolutionary
perspectives. Am J Physiol Regul Integr Comp Physiol.
316:R301–R317. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Suciadi LP, Henrina J, Putra ICS, Cahyadi
I and Gunawan HFH: Chronic heart failure: Clinical implications of
iron homeostasis disturbances revisited. Cureus.
14:e212242022.PubMed/NCBI
|
|
5
|
Lee SY, Park KH, Yu HG, Kook E, Song WH,
Lee G, Koh JT, Shin HI, Choi JY, Huh YH and Ryu JH: Controlling
hypoxia-inducible factor-2α is critical for maintaining bone
homeostasis in mice. Bone Res. 7:142019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Knowles HJ: Distinct roles for the
hypoxia-inducible transcription factors HIF-1α and HIF-2α in human
osteoclast formation and function. Sci Rep. 10:210722020.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Chen S, Xiao L, Li Y, Qiu M, Yuan Y, Zhou
R, Li C, Zhang L, Jiang ZX, Liu M and Zhou X: Osteocytic HIF-1α
pathway manipulates bone micro-structure and remodeling via
regulating osteocyte terminal differentiation. Front Cell Dev Biol.
9:7215612021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Stegen S and Carmeliet G: Hypoxia,
hypoxia-inducible transcription factors and oxygen-sensing prolyl
hydroxylases in bone development and homeostasis. Curr Opin Nephrol
Hypertens. 28:328–335. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Das NK, Schwartz AJ, Barthel G, Inohara N,
Liu Q, Sankar A, Hill DR, Ma X, Lamberg O, Schnizlein MK, et al:
Microbial metabolite signaling is required for systemic iron
homeostasis. Cell Metab. 31:115–130. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Galaris D, Barbouti A and Pantopoulos K:
Iron homeostasis and oxidative stress: An intimate relationship.
Biochim Biophys Acta Mol Cell Res. 1866:1185352019. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Ikeda Y: Novel roles of HIF-PHIs in
chronic kidney disease: The link between iron metabolism, kidney
function, and FGF23. Kidney Int. 100:14–16. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Chen N, Hao C, Peng X, Lin H, Yin A, Hao
L, Tao Y, Liang X, Liu Z, Xing C, et al: Roxadustat for anemia in
patients with kidney disease not receiving dialysis. N Engl J Med.
381:1001–1010. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Ni S, Yuan Y, Qian Z, Zhong Z, Lv T, Kuang
Y and Yu B: Hypoxia inhibits RANKL-induced ferritinophagy and
protects osteoclasts from ferroptosis. Free Radic Biol Med.
169:271–282. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Shao J, Zhang Y, Yang T, Qi J, Zhang L and
Deng L: HIF-1α disturbs osteoblasts and osteoclasts coupling in
bone remodeling by up-regulating OPG expression. In Vitro Cell Dev
Biol Anim. 51:808–814. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Meng X, Wielockx B, Rauner M and Bozec A:
Hypoxia-inducible factors regulate osteoclasts in health and
disease. Front Cell Dev Biol. 9:6588932021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Maes C, Araldi E, Haigh K, Khatri R, Van
Looveren R, Giaccia AJ, Haigh JJ, Carmeliet G and Schipani E:
VEGF-independent cell-autonomous functions of HIF-1α regulating
oxygen consumption in fetal cartilage are critical for chondrocyte
survival. J Bone Miner Res. 27:596–609. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Papandreou I, Cairns RA, Fontana L, Lim AL
and Denko NC: HIF-1 mediates adaptation to hypoxia by actively
downregulating mitochondrial oxygen consumption. Cell Metab.
3:187–197. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Semenza GL: Hypoxia-inducible factor 1 and
cardiovascular disease. Annu Rev Physiol. 76:39–56. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
de Nigris F, Crudele V, Giovane A,
Casamassimi A, Giordano A, Garban HJ, Cacciatore F, Pentimalli F,
Marquez-Garban DC, Petrillo A, et al: CXCR4/YY1 inhibition impairs
VEGF network and angiogenesis during malignancy. Proc Natl Acad Sci
USA. 107:14484–14489. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Li J, Tao T, Xu J, Liu Z, Zou Z and Jin M:
HIF-1α attenuates neuronal apoptosis by upregulating EPO expression
following cerebral ischemia-reperfusion injury in a rat MCAO model.
Int J Mol Med. 45:1027–1036. 2020.PubMed/NCBI
|
|
21
|
Wang Z, Moran E, Ding L, Cheng R, Xu X and
Ma JX: PPARα regulates mobilization and homing of endothelial
progenitor cells through the HIF-1α/SDF-1 pathway. Invest
Ophthalmol Vis Sci. 55:3820–3832. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Rankin EB, Wu C, Khatri R, Wilson TL,
Andersen R, Araldi E, Rankin AL, Yuan J, Kuo CJ, Schipani E and
Giaccia AJ: The HIF signaling pathway in osteoblasts directly
modulates erythropoiesis through the production of EPO. Cell.
149:63–74. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Gerri C, Marass M, Rossi A and Stainier
DYR: Hif-1α and Hif-2α regulate hemogenic endothelium and
hematopoietic stem cell formation in zebrafish. Blood. 131:963–973.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Jimenez-Blasco D, Busquets-Garcia A,
Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C,
Gómez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, et al:
Glucose metabolism links astroglial mitochondria to cannabinoid
effects. Nature. 583:603–608. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Cerychova R and Pavlinkova G: HIF-1,
Metabolism, and diabetes in the embryonic and adult heart. Front
Endocrinol (Lausanne). 9:4602018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Hölscher M, Schäfer K, Krull S, Farhat K,
Hesse A, Silter M, Lin Y, Pichler BJ, Thistlethwaite P, El-Armouche
A, et al: Unfavourable consequences of chronic cardiac HIF-1α
stabilization. Cardiovasc Res. 94:77–86. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Huang Y, Hickey RP, Yeh JL, Liu D, Dadak
A, Young LH, Johnson RS and Giordano FJ: Cardiac myocyte-specific
HIF-1alpha deletion alters vascularization, energy availability,
calcium flux, and contractility in the normoxic heart. FASEB J.
18:1138–1140. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Stegen S, Laperre K, Eelen G, Rinaldi G,
Fraisl P, Torrekens S, Van Looveren R, Loopmans S, Bultynck G,
Vinckier S, et al: HIF-1α metabolically controls collagen synthesis
and modification in chondrocytes. Nature. 565:511–515. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ambrose LJ, Abd-Jamil AH, Gomes RS, Carter
EE, Carr CA, Clarke K and Heather LC: Investigating mitochondrial
metabolism in contracting HL-1 cardiomyocytes following hypoxia and
pharmacological HIF activation identifies HIF-dependent and
independent mechanisms of regulation. J Cardiovasc Pharmacol Ther.
19:574–585. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Semenza GL: Pharmacologic targeting of
hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 59:379–403.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Knutson AK, Williams AL, Boisvert WA and
Shohet RV: HIF in the heart: Development, metabolism, ischemia, and
atherosclerosis. J Clin Invest. 131:e1375572021. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Jiang L, Zeng H, Ni L, Qi L, Xu Y, Xia L,
Yu Y, Liu B, Yang H, Hao H and Li P: HIF-1α preconditioning
potentiates antioxidant activity in ischemic injury: The role of
sequential administration of Dihydrotanshinone I and Protocatechuic
aldehyde in Cardioprotection. Antioxid Redox Signal. 31:227–242.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Li X, Zhang Q, Nasser MI, Xu L, Zhang X,
Zhu P, He Q and Zhao M: Oxygen homeostasis and cardiovascular
disease: A role for HIF? Biomed Pharmacother. 128:1103382020.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Wu LY, He YL and Zhu LL: Possible Role of
PHD Inhibitors as Hypoxia-mimicking agents in the maintenance of
neural stem cells' self-renewal properties. Front Cell Dev Biol.
6:1692018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Zheng X, Narayanan S, Xu C, Eliasson
Angelstig S, Grünler J, Zhao A, Di Toro A, Bernardi L, Mazzone M,
Carmeliet P, et al: Repression of hypoxia-inducible factor-1
contributes to increased mitochondrial reactive oxygen species
production in diabetes. Elife. 11:e707142022. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Semenza GL: Hypoxia-inducible factors:
Coupling glucose metabolism and redox regulation with induction of
the breast cancer stem cell phenotype. EMBO J. 36:252–259. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Wu K, Zhou K, Wang Y, Zhou Y, Tian N, Wu
Y, Chen D, Zhang D, Wang X, Xu H and Zhang X: Stabilization of
HIF-1α by FG-4592 promotes functional recovery and neural
protection in experimental spinal cord injury. Brain Res.
1632:19–26. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
He Q, Ma Y, Liu J, Zhang D, Ren J, Zhao R,
Chang J, Guo ZN and Yang Y: Biological functions and regulatory
mechanisms of hypoxia-inducible factor-1α in Ischemic Stroke. Front
Immunol. 12:8019852021. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Kim JW, Tchernyshyov I, Semenza GL and
Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase
kinase: A metabolic switch required for cellular adaptation to
hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Samanta D and Semenza GL: Maintenance of
redox homeostasis by hypoxia-inducible factors. Redox Biol.
13:331–335. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Ji W, Wang L, He S, Yan L, Li T, Wang J,
Kong AT, Yu S and Zhang Y: Effects of acute hypoxia exposure with
different durations on activation of Nrf2-ARE pathway in mouse
skeletal muscle. PLoS One. 13:e02084742018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Xu K, Lu C, Ren X, Wang J, Xu P and Zhang
Y: Overexpression of HIF-1α enhances the protective effect of
mitophagy on steroid-induced osteocytes apoptosis. Environ Toxicol.
36:2123–2137. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yang C, Liu X, Zhao K, Zhu Y, Hu B, Zhou
Y, Wang M, Wu Y, Zhang C, Xu J, et al: miRNA-21 promotes
osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone
regeneration in critical size defects. Stem Cell Res Ther.
10:652019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Yu Y, Ma L, Zhang H, Sun W, Zheng L, Liu C
and Miao L: EPO could be regulated by HIF-1 and promote
osteogenesis and accelerate bone repair. Artif Cells Nanomed
Biotechnol. 48:206–217. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nakashima T, Hayashi M and Takayanagi H:
New insights into osteoclastogenic signaling mechanisms. Trends
Endocrinol Metab. 23:582–590. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Doi K, Murata K, Ito S, Suzuki A, Terao C,
Ishie S, Umemoto A, Murotani Y, Nishitani K, Yoshitomi H, et al:
Role of Lysine-Specific Demethylase 1 in Metabolically Integrating
Osteoclast Differentiation and Inflammatory Bone Resorption Through
Hypoxia-Inducible Factor 1α and E2F1. Arthritis Rheumatol.
74:948–960. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Tian Y, Shao Q, Tang Y, Li X, Qi X, Jiang
R, Liang Y and Kang F: HIF-1α regulates osteoclast activation and
mediates osteogenesis during mandibular bone repair via CT-1. Oral
Dis. 28:428–441. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Zhu J, Tang Y, Wu Q, Ji YC, Feng ZF and
Kang FW: HIF-1α facilitates osteocyte-mediated osteoclastogenesis
by activating JAK2/STAT3 pathway in vitro. J Cell Physiol.
234:21182–21192. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Song X, Tang Y, Zhu J, Tian Y, Song Z, Hu
X, Hong C, Cai Y and Kang F: HIF-1α induces hypoxic apoptosis of
MLO-Y4 osteocytes via JNK/caspase-3 pathway and the
apoptotic-osteocyte-mediated osteoclastogenesis in vitro. Tissue
Cell. 67:1014022020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Tang Y, Hong C, Cai Y, Zhu J, Hu X, Tian
Y, Song X, Song Z, Jiang R and Kang F: HIF-1α mediates
osteoclast-induced mandibular condyle growth via AMPK signaling. J
Dent Res. 99:1377–1386. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Wu C, Rankin EB, Castellini L, Alcudia JF,
LaGory EL, Andersen R, Rhodes SD, Wilson TL, Mohammad KS, Castillo
AB, et al: Oxygen-sensing PHDs regulate bone homeostasis through
the modulation of osteoprotegerin. Genes Dev. 29:817–831. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kang H, Yang K, Xiao L, Guo L, Guo C, Yan
Y, Qi J, Wang F, Ryffel B, Li C and Deng L: Osteoblast
Hypoxia-inducible Factor-1α pathway activation restrains
osteoclastogenesis via the interleukin-33-MicroRNA-34a-Notch1
pathway. Front Immunol. 8:13122017. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Zou D, Han W, You S, Ye D, Wang L, Wang S,
Zhao J, Zhang W, Jiang X, Zhang X and Huang Y: In vitro study of
enhanced osteogenesis induced by HIF-1α-transduced bone marrow stem
cells. Cell Prolif. 44:234–243. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Kusumbe AP, Ramasamy SK and Adams RH:
Coupling of angiogenesis and osteogenesis by a specific vessel
subtype in bone. Nature. 507:323–328. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Peng Y, Wu S, Li Y and Crane JL: Type H
blood vessels in bone modeling and remodeling. Theranostics.
10:426–436. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Ding W, Xu C, Zhang Y and Chen H: Advances
in the understanding of the role of type-H vessels in the
pathogenesis of osteoporosis. Arch Osteoporos. 15:52020. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Ramasamy SK, Kusumbe AP, Wang L and Adams
RH: Endothelial Notch activity promotes angiogenesis and
osteogenesis in bone. Nature. 507:376–380. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Yang M, Li CJ, Sun X, Guo Q, Xiao Y, Su T,
Tu ML, Peng H, Lu Q, Liu Q, et al: MiR-497-195 cluster regulates
angiogenesis during coupling with osteogenesis by maintaining
endothelial Notch and HIF-1α activity. Nat Commun. 8:160032017.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Shao J, Liu S, Zhang M, Chen S, Gan S,
Chen C, Chen W, Li L and Zhu Z: A dual role of HIF1α in regulating
osteogenesis-angiogenesis coupling. Stem Cell Res Ther. 13:592022.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Tao L, Li D, Liu H, Jiang F, Xu Y, Cao Y,
Gao R and Chen G: Neuroprotective effects of metformin on traumatic
brain injury in rats associated with NF-κB and MAPK signaling
pathway. Brain Res Bull. 140:154–161. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Yao R, Hou W and Bao J: Complete oxidative
conversion of lignocellulose derived non-glucose sugars to sugar
acids by Gluconobacter oxydans. Bioresour Technol. 244:1188–1192.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Guo K, Yao X, Wu W, Yu Z, Li Z, Ma Z and
Liu D: HIF-1α/SDF-1/CXCR4 axis reduces neuronal apoptosis via
enhancing the bone marrow-derived mesenchymal stromal cell
migration in rats with traumatic brain injury. Exp Mol Pathol.
114:1044162020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Knerlich-Lukoschus F, von der Ropp-Brenner
B, Lucius R, Mehdorn HM and Held-Feindt J: Spatiotemporal CCR1,
CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α) expression patterns in a rat
spinal cord injury model of posttraumatic neuropathic pain. J
Neurosurg Spine. 14:583–597. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Xue Y, Li Z, Wang Y, Zhu X, Hu R and Xu W:
Role of the HIF-1α/SDF-1/CXCR4 signaling axis in accelerated
fracture healing after craniocerebral injury. Mol Med Rep.
22:2767–2774. 2020.PubMed/NCBI
|
|
65
|
Tacchini L, Bianchi L, Bernelli-Zazzera A
and Cairo G: Transferrin receptor induction by hypoxia.
HIF-1-mediated transcriptional activation and cell-specific
post-transcriptional regulation. J Biol Chem. 274:24142–24146.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Yang L, Fan M, Du F, Gong Q, Bi ZG, Zhu
ZJ, Zhu LL and Ke Y: Hypoxic preconditioning increases iron
transport rate in astrocytes. Biochim Biophys Acta. 1822:500–508.
2012. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Hu J, Meng F, Hu X, Huang L, Liu H, Liu Z
and Li L: Iron overload regulate the cytokine of mesenchymal
stromal cells through ROS/HIF-1α pathway in Myelodysplastic
syndromes. Leuk Res. 93:1063542020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lok CN and Ponka P: Identification of a
hypoxia response element in the transferrin receptor gene. J Biol
Chem. 274:24147–24152. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam
J, Semenza GL and Choi AM: Hypoxia-inducible factor-1 mediates
transcriptional activation of the heme oxygenase-1 gene in response
to hypoxia. J Biol Chem. 272:5375–5381. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Weinreb O, Mandel S, Youdim MB and Amit T:
Targeting dysregulation of brain iron homeostasis in Parkinson's
disease by iron chelators. Free Radic Biol Med. 62:52–64. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Guo C, Hao LJ, Yang ZH, Chai R, Zhang S,
Gu Y, Gao HL, Zhong ML, Wang T, Li JY and Wang ZY:
Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic
neuronal death via the activation of MAPK family proteins in
MPTP-treated mice. Exp Neurol. 280:13–23. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Lim J, Kim HI, Bang Y, Seol W, Choi HS and
Choi HJ: Hypoxia-inducible factor-1α upregulates tyrosine
hydroxylase and dopamine transporter by nuclear receptor ERRγ in
SH-SY5Y cells. Neuroreport. 26:380–386. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta
R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS,
et al: Ferroptosis: An iron-dependent form of nonapoptotic cell
death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping
F, Huang W, Wu F, Zhang H and Zhang X: Inhibitor of
apoptosis-stimulating protein of p53 inhibits ferroptosis and
alleviates intestinal ischemia/reperfusion-induced acute lung
injury. Cell Death Differ. 27:2635–2650. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Li X, Zou Y, Xing J, Fu YY, Wang KY, Wan
PZ and Zhai XY: Pretreatment with Roxadustat (FG-4592) attenuates
folic acid-induced kidney injury through Antiferroptosis via
Akt/GSK-3β/Nrf2 Pathway. Oxid Med Cell Longev.
2020:62869842020.PubMed/NCBI
|
|
76
|
Nakazawa MS, Keith B and Simon MC: Oxygen
availability and metabolic adaptations. Nat Rev Cancer. 16:663–673.
2016. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Piccoli C, D'Aprile A, Ripoli M, Scrima R,
Boffoli D, Tabilio A and Capitanio N: The hypoxia-inducible factor
is stabilized in circulating hematopoietic stem cells under
normoxic conditions. FEBS Lett. 581:3111–3119. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lequeux A, Noman MZ, Xiao M, Van Moer K,
Hasmim M, Benoit A, Bosseler M, Viry E, Arakelian T, Berchem G, et
al: Targeting HIF-1 alpha transcriptional activity drives cytotoxic
immune effector cells into melanoma and improves combination
immunotherapy. Oncogene. 40:4725–4735. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
López-Barneo J and Simon MC: Cellular
adaptation to oxygen deficiency beyond the Nobel award. Nat Commun.
11:6072020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Loots GG, Robling AG, Chang JC, Murugesh
DK, Bajwa J, Carlisle C, Manilay JO, Wong A, Yellowley CE and
Genetos DC: Vhl deficiency in osteocytes produces high bone mass
and hematopoietic defects. Bone. 116:307–314. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lappin KM, Mills KI and Lappin TR:
Erythropoietin in bone homeostasis-Implications for efficacious
anemia therapy. Stem Cells Transl Med. 10:836–843. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Johnson RW, Schipani E and Giaccia AJ: HIF
targets in bone remodeling and metastatic disease. Pharmacol Ther.
150:169–177. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Tao J, Miao R, Liu G, Qiu X, Yang B, Tan
X, Liu L, Long J, Tang W and Jing W: Spatiotemporal correlation
between HIF-1α and bone regeneration. FASEB J. 36:e225202022.
View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Hulley PA, Bishop T, Vernet A, Schneider
JE, Edwards JR, Athanasou NA and Knowles HJ: Hypoxia-inducible
factor 1-alpha does not regulate osteoclastogenesis but enhances
bone resorption activity via prolyl-4-hydroxylase 2. J Pathol.
242:322–333. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Clinkenbeard EL, Hanudel MR, Stayrook KR,
Appaiah HN, Farrow EG, Cass TA, Summers LJ, Ip CS, Hum JM, Thomas
JC, et al: Erythropoietin stimulates murine and human fibroblast
growth factor-23, revealing novel roles for bone and bone marrow.
Haematologica. 102:e427–e430. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Daryadel A, Bettoni C, Haider T, Imenez
Silva PH, Schnitzbauer U, Pastor-Arroyo EM, Wenger RH, Gassmann M
and Wagner CA: Erythropoietin stimulates fibroblast growth factor
23 (FGF23) in mice and men. Pflugers Arch. 470:1569–1582. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Li RL, He LY, Zhang Q, Liu J, Lu F, Duan
HX, Fan LH, Peng W, Huang YL and Wu CJ: HIF-1α is a potential
molecular target for herbal medicine to treat diseases. Drug Des
Devel Ther. 14:4915–4949. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Kasper AC, Moon EJ, Hu X, Park Y, Wooten
CM, Kim H, Yang W, Dewhirst MW and Hong J: Analysis of HIF-1
inhibition by manassantin A and analogues with modified
tetrahydrofuran configurations. Bioorg Med Chem Lett. 19:3783–3786.
2009. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Kwak SH, Stephenson TN, Lee HE, Ge Y, Lee
H, Min SM, Kim JH, Kwon DY, Lee YM and Hong J: Evaluation of
Manassantin A tetrahydrofuran core region analogues and cooperative
therapeutic effects with EGFR inhibition. J Med Chem. 63:6821–6833.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Hu H, Miao XK, Li JY, Zhang XW, Xu JJ,
Zhang JY, Zhou TX, Hu MN, Yang WL and Mou LY: YC-1 potentiates the
antitumor activity of gefitinib by inhibiting HIF-1α and promoting
the endocytic trafficking and degradation of EGFR in
gefitinib-resistant non-small-cell lung cancer cells. Eur J
Pharmacol. 874:1729612020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Khan M, Dhammu TS, Baarine M, Kim J,
Paintlia MK, Singh I and Singh AK: GSNO promotes functional
recovery in experimental TBI by stabilizing HIF-1α. Behav Brain
Res. 340:63–70. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Lei R, Li J, Liu F, Li W, Zhang S, Wang Y,
Chu X and Xu J: HIF-1α promotes the keloid development through the
activation of TGF-β/Smad and TLR4/MyD88/NF-κB pathways. Cell Cycle.
18:3239–3250. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Feng S, Bowden N, Fragiadaki M, Souilhol
C, Hsiao S, Mahmoud M, Allen S, Pirri D, Ayllon BT, Akhtar S, et
al: Mechanical activation of hypoxia-inducible Factor 1α drives
endothelial dysfunction at atheroprone sites. Arterioscler Thromb
Vasc Biol. 37:2087–2101. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Wu D, Huang RT, Hamanaka RB, Krause M, Oh
MJ, Kuo CH, Nigdelioglu R, Meliton AY, Witt L, Dai G, et al: HIF-1α
is required for disturbed flow-induced metabolic reprogramming in
human and porcine vascular endothelium. Elife. 6:e252172017.
View Article : Google Scholar : PubMed/NCBI
|