Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2022 Volume 50 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 50 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review

HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review)

  • Authors:
    • Xinyi Huang
    • Yili Zhang
    • Baoyu Qi
    • Kai Sun
    • Ning Liu
    • Bin Tang
    • Shengjie Fang
    • Liguo Zhu
    • Xu Wei
  • View Affiliations / Copyright

    Affiliations: Wangjing Hospital, China Academy of Chinese Medical Sciences, Beijing 100102, P.R. China, School of Traditional Chinese Medicine and School of Integrated Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210023, P.R. China
  • Article Number: 141
    |
    Published online on: October 27, 2022
       https://doi.org/10.3892/ijmm.2022.5197
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Hypoxia is a characteristic feature of numerous diseases, including metabolic bone disease, solid tumors, cardiovascular diseases, neurodegeneration and inflammation. It is also a risk factor for a poor prognosis in various diseases. Hypoxia‑inducible factor‑1α (HIF‑1α) is activated by hypoxia to regulate a series of pathophysiological pathways, which is of utmost significance for maintaining body homeostasis. The present review highlights the role of the HIF‑1α in oxygen, bone and iron homeostasis, and alludes on the biological complexity and dual functions of HIF‑1α regulation. In addition, the pathophysiological significance of HIF‑1α in bone formation, bone absorption, angiogenesis, erythropoiesis, oxidative stress, energy metabolism, iron death, etc., is discussed An accurate understanding of all these processes may aid in the identification of possible therapeutic targets that may then be used in the treatment of related diseases. However, further studies are required to unravel the extensive complexity of HIF‑1α regulation and to develop more precise treatment strategies.
View Figures

Figure 1

View References

1 

Greijer AE, van der Groep P, Kemming D, Shvarts A, Semenza GL, Meijer GA, van de Wiel MA, Belien JA, van Diest PJ and van der Wall E: Up-regulation of gene expression by hypoxia is mediated predominantly by hypoxia-inducible factor 1 (HIF-1). J Pathol. 206:291–304. 2005. View Article : Google Scholar : PubMed/NCBI

2 

Bentley ER and Little SR: Local delivery strategies to restore immune homeostasis in the context of inflammation. Adv Drug Deliv Rev. 178:1139712021. View Article : Google Scholar : PubMed/NCBI

3 

Goldstein DS: How does homeostasis happen? Integrative physiological, systems biological, and evolutionary perspectives. Am J Physiol Regul Integr Comp Physiol. 316:R301–R317. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Suciadi LP, Henrina J, Putra ICS, Cahyadi I and Gunawan HFH: Chronic heart failure: Clinical implications of iron homeostasis disturbances revisited. Cureus. 14:e212242022.PubMed/NCBI

5 

Lee SY, Park KH, Yu HG, Kook E, Song WH, Lee G, Koh JT, Shin HI, Choi JY, Huh YH and Ryu JH: Controlling hypoxia-inducible factor-2α is critical for maintaining bone homeostasis in mice. Bone Res. 7:142019. View Article : Google Scholar : PubMed/NCBI

6 

Knowles HJ: Distinct roles for the hypoxia-inducible transcription factors HIF-1α and HIF-2α in human osteoclast formation and function. Sci Rep. 10:210722020. View Article : Google Scholar : PubMed/NCBI

7 

Chen S, Xiao L, Li Y, Qiu M, Yuan Y, Zhou R, Li C, Zhang L, Jiang ZX, Liu M and Zhou X: Osteocytic HIF-1α pathway manipulates bone micro-structure and remodeling via regulating osteocyte terminal differentiation. Front Cell Dev Biol. 9:7215612021. View Article : Google Scholar : PubMed/NCBI

8 

Stegen S and Carmeliet G: Hypoxia, hypoxia-inducible transcription factors and oxygen-sensing prolyl hydroxylases in bone development and homeostasis. Curr Opin Nephrol Hypertens. 28:328–335. 2019. View Article : Google Scholar : PubMed/NCBI

9 

Das NK, Schwartz AJ, Barthel G, Inohara N, Liu Q, Sankar A, Hill DR, Ma X, Lamberg O, Schnizlein MK, et al: Microbial metabolite signaling is required for systemic iron homeostasis. Cell Metab. 31:115–130. 2020. View Article : Google Scholar : PubMed/NCBI

10 

Galaris D, Barbouti A and Pantopoulos K: Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res. 1866:1185352019. View Article : Google Scholar : PubMed/NCBI

11 

Ikeda Y: Novel roles of HIF-PHIs in chronic kidney disease: The link between iron metabolism, kidney function, and FGF23. Kidney Int. 100:14–16. 2021. View Article : Google Scholar : PubMed/NCBI

12 

Chen N, Hao C, Peng X, Lin H, Yin A, Hao L, Tao Y, Liang X, Liu Z, Xing C, et al: Roxadustat for anemia in patients with kidney disease not receiving dialysis. N Engl J Med. 381:1001–1010. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Ni S, Yuan Y, Qian Z, Zhong Z, Lv T, Kuang Y and Yu B: Hypoxia inhibits RANKL-induced ferritinophagy and protects osteoclasts from ferroptosis. Free Radic Biol Med. 169:271–282. 2021. View Article : Google Scholar : PubMed/NCBI

14 

Shao J, Zhang Y, Yang T, Qi J, Zhang L and Deng L: HIF-1α disturbs osteoblasts and osteoclasts coupling in bone remodeling by up-regulating OPG expression. In Vitro Cell Dev Biol Anim. 51:808–814. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Meng X, Wielockx B, Rauner M and Bozec A: Hypoxia-inducible factors regulate osteoclasts in health and disease. Front Cell Dev Biol. 9:6588932021. View Article : Google Scholar : PubMed/NCBI

16 

Maes C, Araldi E, Haigh K, Khatri R, Van Looveren R, Giaccia AJ, Haigh JJ, Carmeliet G and Schipani E: VEGF-independent cell-autonomous functions of HIF-1α regulating oxygen consumption in fetal cartilage are critical for chondrocyte survival. J Bone Miner Res. 27:596–609. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Papandreou I, Cairns RA, Fontana L, Lim AL and Denko NC: HIF-1 mediates adaptation to hypoxia by actively downregulating mitochondrial oxygen consumption. Cell Metab. 3:187–197. 2006. View Article : Google Scholar : PubMed/NCBI

18 

Semenza GL: Hypoxia-inducible factor 1 and cardiovascular disease. Annu Rev Physiol. 76:39–56. 2014. View Article : Google Scholar : PubMed/NCBI

19 

de Nigris F, Crudele V, Giovane A, Casamassimi A, Giordano A, Garban HJ, Cacciatore F, Pentimalli F, Marquez-Garban DC, Petrillo A, et al: CXCR4/YY1 inhibition impairs VEGF network and angiogenesis during malignancy. Proc Natl Acad Sci USA. 107:14484–14489. 2010. View Article : Google Scholar : PubMed/NCBI

20 

Li J, Tao T, Xu J, Liu Z, Zou Z and Jin M: HIF-1α attenuates neuronal apoptosis by upregulating EPO expression following cerebral ischemia-reperfusion injury in a rat MCAO model. Int J Mol Med. 45:1027–1036. 2020.PubMed/NCBI

21 

Wang Z, Moran E, Ding L, Cheng R, Xu X and Ma JX: PPARα regulates mobilization and homing of endothelial progenitor cells through the HIF-1α/SDF-1 pathway. Invest Ophthalmol Vis Sci. 55:3820–3832. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Rankin EB, Wu C, Khatri R, Wilson TL, Andersen R, Araldi E, Rankin AL, Yuan J, Kuo CJ, Schipani E and Giaccia AJ: The HIF signaling pathway in osteoblasts directly modulates erythropoiesis through the production of EPO. Cell. 149:63–74. 2012. View Article : Google Scholar : PubMed/NCBI

23 

Gerri C, Marass M, Rossi A and Stainier DYR: Hif-1α and Hif-2α regulate hemogenic endothelium and hematopoietic stem cell formation in zebrafish. Blood. 131:963–973. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Jimenez-Blasco D, Busquets-Garcia A, Hebert-Chatelain E, Serrat R, Vicente-Gutierrez C, Ioannidou C, Gómez-Sotres P, Lopez-Fabuel I, Resch-Beusher M, Resel E, et al: Glucose metabolism links astroglial mitochondria to cannabinoid effects. Nature. 583:603–608. 2020. View Article : Google Scholar : PubMed/NCBI

25 

Cerychova R and Pavlinkova G: HIF-1, Metabolism, and diabetes in the embryonic and adult heart. Front Endocrinol (Lausanne). 9:4602018. View Article : Google Scholar : PubMed/NCBI

26 

Hölscher M, Schäfer K, Krull S, Farhat K, Hesse A, Silter M, Lin Y, Pichler BJ, Thistlethwaite P, El-Armouche A, et al: Unfavourable consequences of chronic cardiac HIF-1α stabilization. Cardiovasc Res. 94:77–86. 2012. View Article : Google Scholar : PubMed/NCBI

27 

Huang Y, Hickey RP, Yeh JL, Liu D, Dadak A, Young LH, Johnson RS and Giordano FJ: Cardiac myocyte-specific HIF-1alpha deletion alters vascularization, energy availability, calcium flux, and contractility in the normoxic heart. FASEB J. 18:1138–1140. 2004. View Article : Google Scholar : PubMed/NCBI

28 

Stegen S, Laperre K, Eelen G, Rinaldi G, Fraisl P, Torrekens S, Van Looveren R, Loopmans S, Bultynck G, Vinckier S, et al: HIF-1α metabolically controls collagen synthesis and modification in chondrocytes. Nature. 565:511–515. 2019. View Article : Google Scholar : PubMed/NCBI

29 

Ambrose LJ, Abd-Jamil AH, Gomes RS, Carter EE, Carr CA, Clarke K and Heather LC: Investigating mitochondrial metabolism in contracting HL-1 cardiomyocytes following hypoxia and pharmacological HIF activation identifies HIF-dependent and independent mechanisms of regulation. J Cardiovasc Pharmacol Ther. 19:574–585. 2014. View Article : Google Scholar : PubMed/NCBI

30 

Semenza GL: Pharmacologic targeting of hypoxia-inducible factors. Annu Rev Pharmacol Toxicol. 59:379–403. 2019. View Article : Google Scholar : PubMed/NCBI

31 

Knutson AK, Williams AL, Boisvert WA and Shohet RV: HIF in the heart: Development, metabolism, ischemia, and atherosclerosis. J Clin Invest. 131:e1375572021. View Article : Google Scholar : PubMed/NCBI

32 

Jiang L, Zeng H, Ni L, Qi L, Xu Y, Xia L, Yu Y, Liu B, Yang H, Hao H and Li P: HIF-1α preconditioning potentiates antioxidant activity in ischemic injury: The role of sequential administration of Dihydrotanshinone I and Protocatechuic aldehyde in Cardioprotection. Antioxid Redox Signal. 31:227–242. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Li X, Zhang Q, Nasser MI, Xu L, Zhang X, Zhu P, He Q and Zhao M: Oxygen homeostasis and cardiovascular disease: A role for HIF? Biomed Pharmacother. 128:1103382020. View Article : Google Scholar : PubMed/NCBI

34 

Wu LY, He YL and Zhu LL: Possible Role of PHD Inhibitors as Hypoxia-mimicking agents in the maintenance of neural stem cells' self-renewal properties. Front Cell Dev Biol. 6:1692018. View Article : Google Scholar : PubMed/NCBI

35 

Zheng X, Narayanan S, Xu C, Eliasson Angelstig S, Grünler J, Zhao A, Di Toro A, Bernardi L, Mazzone M, Carmeliet P, et al: Repression of hypoxia-inducible factor-1 contributes to increased mitochondrial reactive oxygen species production in diabetes. Elife. 11:e707142022. View Article : Google Scholar : PubMed/NCBI

36 

Semenza GL: Hypoxia-inducible factors: Coupling glucose metabolism and redox regulation with induction of the breast cancer stem cell phenotype. EMBO J. 36:252–259. 2017. View Article : Google Scholar : PubMed/NCBI

37 

Wu K, Zhou K, Wang Y, Zhou Y, Tian N, Wu Y, Chen D, Zhang D, Wang X, Xu H and Zhang X: Stabilization of HIF-1α by FG-4592 promotes functional recovery and neural protection in experimental spinal cord injury. Brain Res. 1632:19–26. 2016. View Article : Google Scholar : PubMed/NCBI

38 

He Q, Ma Y, Liu J, Zhang D, Ren J, Zhao R, Chang J, Guo ZN and Yang Y: Biological functions and regulatory mechanisms of hypoxia-inducible factor-1α in Ischemic Stroke. Front Immunol. 12:8019852021. View Article : Google Scholar : PubMed/NCBI

39 

Kim JW, Tchernyshyov I, Semenza GL and Dang CV: HIF-1-mediated expression of pyruvate dehydrogenase kinase: A metabolic switch required for cellular adaptation to hypoxia. Cell Metab. 3:177–185. 2006. View Article : Google Scholar : PubMed/NCBI

40 

Samanta D and Semenza GL: Maintenance of redox homeostasis by hypoxia-inducible factors. Redox Biol. 13:331–335. 2017. View Article : Google Scholar : PubMed/NCBI

41 

Ji W, Wang L, He S, Yan L, Li T, Wang J, Kong AT, Yu S and Zhang Y: Effects of acute hypoxia exposure with different durations on activation of Nrf2-ARE pathway in mouse skeletal muscle. PLoS One. 13:e02084742018. View Article : Google Scholar : PubMed/NCBI

42 

Xu K, Lu C, Ren X, Wang J, Xu P and Zhang Y: Overexpression of HIF-1α enhances the protective effect of mitophagy on steroid-induced osteocytes apoptosis. Environ Toxicol. 36:2123–2137. 2021. View Article : Google Scholar : PubMed/NCBI

43 

Yang C, Liu X, Zhao K, Zhu Y, Hu B, Zhou Y, Wang M, Wu Y, Zhang C, Xu J, et al: miRNA-21 promotes osteogenesis via the PTEN/PI3K/Akt/HIF-1α pathway and enhances bone regeneration in critical size defects. Stem Cell Res Ther. 10:652019. View Article : Google Scholar : PubMed/NCBI

44 

Yu Y, Ma L, Zhang H, Sun W, Zheng L, Liu C and Miao L: EPO could be regulated by HIF-1 and promote osteogenesis and accelerate bone repair. Artif Cells Nanomed Biotechnol. 48:206–217. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Nakashima T, Hayashi M and Takayanagi H: New insights into osteoclastogenic signaling mechanisms. Trends Endocrinol Metab. 23:582–590. 2012. View Article : Google Scholar : PubMed/NCBI

46 

Doi K, Murata K, Ito S, Suzuki A, Terao C, Ishie S, Umemoto A, Murotani Y, Nishitani K, Yoshitomi H, et al: Role of Lysine-Specific Demethylase 1 in Metabolically Integrating Osteoclast Differentiation and Inflammatory Bone Resorption Through Hypoxia-Inducible Factor 1α and E2F1. Arthritis Rheumatol. 74:948–960. 2022. View Article : Google Scholar : PubMed/NCBI

47 

Tian Y, Shao Q, Tang Y, Li X, Qi X, Jiang R, Liang Y and Kang F: HIF-1α regulates osteoclast activation and mediates osteogenesis during mandibular bone repair via CT-1. Oral Dis. 28:428–441. 2022. View Article : Google Scholar : PubMed/NCBI

48 

Zhu J, Tang Y, Wu Q, Ji YC, Feng ZF and Kang FW: HIF-1α facilitates osteocyte-mediated osteoclastogenesis by activating JAK2/STAT3 pathway in vitro. J Cell Physiol. 234:21182–21192. 2019. View Article : Google Scholar : PubMed/NCBI

49 

Song X, Tang Y, Zhu J, Tian Y, Song Z, Hu X, Hong C, Cai Y and Kang F: HIF-1α induces hypoxic apoptosis of MLO-Y4 osteocytes via JNK/caspase-3 pathway and the apoptotic-osteocyte-mediated osteoclastogenesis in vitro. Tissue Cell. 67:1014022020. View Article : Google Scholar : PubMed/NCBI

50 

Tang Y, Hong C, Cai Y, Zhu J, Hu X, Tian Y, Song X, Song Z, Jiang R and Kang F: HIF-1α mediates osteoclast-induced mandibular condyle growth via AMPK signaling. J Dent Res. 99:1377–1386. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Wu C, Rankin EB, Castellini L, Alcudia JF, LaGory EL, Andersen R, Rhodes SD, Wilson TL, Mohammad KS, Castillo AB, et al: Oxygen-sensing PHDs regulate bone homeostasis through the modulation of osteoprotegerin. Genes Dev. 29:817–831. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Kang H, Yang K, Xiao L, Guo L, Guo C, Yan Y, Qi J, Wang F, Ryffel B, Li C and Deng L: Osteoblast Hypoxia-inducible Factor-1α pathway activation restrains osteoclastogenesis via the interleukin-33-MicroRNA-34a-Notch1 pathway. Front Immunol. 8:13122017. View Article : Google Scholar : PubMed/NCBI

53 

Zou D, Han W, You S, Ye D, Wang L, Wang S, Zhao J, Zhang W, Jiang X, Zhang X and Huang Y: In vitro study of enhanced osteogenesis induced by HIF-1α-transduced bone marrow stem cells. Cell Prolif. 44:234–243. 2011. View Article : Google Scholar : PubMed/NCBI

54 

Kusumbe AP, Ramasamy SK and Adams RH: Coupling of angiogenesis and osteogenesis by a specific vessel subtype in bone. Nature. 507:323–328. 2014. View Article : Google Scholar : PubMed/NCBI

55 

Peng Y, Wu S, Li Y and Crane JL: Type H blood vessels in bone modeling and remodeling. Theranostics. 10:426–436. 2020. View Article : Google Scholar : PubMed/NCBI

56 

Ding W, Xu C, Zhang Y and Chen H: Advances in the understanding of the role of type-H vessels in the pathogenesis of osteoporosis. Arch Osteoporos. 15:52020. View Article : Google Scholar : PubMed/NCBI

57 

Ramasamy SK, Kusumbe AP, Wang L and Adams RH: Endothelial Notch activity promotes angiogenesis and osteogenesis in bone. Nature. 507:376–380. 2014. View Article : Google Scholar : PubMed/NCBI

58 

Yang M, Li CJ, Sun X, Guo Q, Xiao Y, Su T, Tu ML, Peng H, Lu Q, Liu Q, et al: MiR-497-195 cluster regulates angiogenesis during coupling with osteogenesis by maintaining endothelial Notch and HIF-1α activity. Nat Commun. 8:160032017. View Article : Google Scholar : PubMed/NCBI

59 

Shao J, Liu S, Zhang M, Chen S, Gan S, Chen C, Chen W, Li L and Zhu Z: A dual role of HIF1α in regulating osteogenesis-angiogenesis coupling. Stem Cell Res Ther. 13:592022. View Article : Google Scholar : PubMed/NCBI

60 

Tao L, Li D, Liu H, Jiang F, Xu Y, Cao Y, Gao R and Chen G: Neuroprotective effects of metformin on traumatic brain injury in rats associated with NF-κB and MAPK signaling pathway. Brain Res Bull. 140:154–161. 2018. View Article : Google Scholar : PubMed/NCBI

61 

Yao R, Hou W and Bao J: Complete oxidative conversion of lignocellulose derived non-glucose sugars to sugar acids by Gluconobacter oxydans. Bioresour Technol. 244:1188–1192. 2017. View Article : Google Scholar : PubMed/NCBI

62 

Guo K, Yao X, Wu W, Yu Z, Li Z, Ma Z and Liu D: HIF-1α/SDF-1/CXCR4 axis reduces neuronal apoptosis via enhancing the bone marrow-derived mesenchymal stromal cell migration in rats with traumatic brain injury. Exp Mol Pathol. 114:1044162020. View Article : Google Scholar : PubMed/NCBI

63 

Knerlich-Lukoschus F, von der Ropp-Brenner B, Lucius R, Mehdorn HM and Held-Feindt J: Spatiotemporal CCR1, CCL3(MIP-1α), CXCR4, CXCL12(SDF-1α) expression patterns in a rat spinal cord injury model of posttraumatic neuropathic pain. J Neurosurg Spine. 14:583–597. 2011. View Article : Google Scholar : PubMed/NCBI

64 

Xue Y, Li Z, Wang Y, Zhu X, Hu R and Xu W: Role of the HIF-1α/SDF-1/CXCR4 signaling axis in accelerated fracture healing after craniocerebral injury. Mol Med Rep. 22:2767–2774. 2020.PubMed/NCBI

65 

Tacchini L, Bianchi L, Bernelli-Zazzera A and Cairo G: Transferrin receptor induction by hypoxia. HIF-1-mediated transcriptional activation and cell-specific post-transcriptional regulation. J Biol Chem. 274:24142–24146. 1999. View Article : Google Scholar : PubMed/NCBI

66 

Yang L, Fan M, Du F, Gong Q, Bi ZG, Zhu ZJ, Zhu LL and Ke Y: Hypoxic preconditioning increases iron transport rate in astrocytes. Biochim Biophys Acta. 1822:500–508. 2012. View Article : Google Scholar : PubMed/NCBI

67 

Hu J, Meng F, Hu X, Huang L, Liu H, Liu Z and Li L: Iron overload regulate the cytokine of mesenchymal stromal cells through ROS/HIF-1α pathway in Myelodysplastic syndromes. Leuk Res. 93:1063542020. View Article : Google Scholar : PubMed/NCBI

68 

Lok CN and Ponka P: Identification of a hypoxia response element in the transferrin receptor gene. J Biol Chem. 274:24147–24152. 1999. View Article : Google Scholar : PubMed/NCBI

69 

Lee PJ, Jiang BH, Chin BY, Iyer NV, Alam J, Semenza GL and Choi AM: Hypoxia-inducible factor-1 mediates transcriptional activation of the heme oxygenase-1 gene in response to hypoxia. J Biol Chem. 272:5375–5381. 1997. View Article : Google Scholar : PubMed/NCBI

70 

Weinreb O, Mandel S, Youdim MB and Amit T: Targeting dysregulation of brain iron homeostasis in Parkinson's disease by iron chelators. Free Radic Biol Med. 62:52–64. 2013. View Article : Google Scholar : PubMed/NCBI

71 

Guo C, Hao LJ, Yang ZH, Chai R, Zhang S, Gu Y, Gao HL, Zhong ML, Wang T, Li JY and Wang ZY: Deferoxamine-mediated up-regulation of HIF-1α prevents dopaminergic neuronal death via the activation of MAPK family proteins in MPTP-treated mice. Exp Neurol. 280:13–23. 2016. View Article : Google Scholar : PubMed/NCBI

72 

Lim J, Kim HI, Bang Y, Seol W, Choi HS and Choi HJ: Hypoxia-inducible factor-1α upregulates tyrosine hydroxylase and dopamine transporter by nuclear receptor ERRγ in SH-SY5Y cells. Neuroreport. 26:380–386. 2015. View Article : Google Scholar : PubMed/NCBI

73 

Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI

74 

Li Y, Cao Y, Xiao J, Shang J, Tan Q, Ping F, Huang W, Wu F, Zhang H and Zhang X: Inhibitor of apoptosis-stimulating protein of p53 inhibits ferroptosis and alleviates intestinal ischemia/reperfusion-induced acute lung injury. Cell Death Differ. 27:2635–2650. 2020. View Article : Google Scholar : PubMed/NCBI

75 

Li X, Zou Y, Xing J, Fu YY, Wang KY, Wan PZ and Zhai XY: Pretreatment with Roxadustat (FG-4592) attenuates folic acid-induced kidney injury through Antiferroptosis via Akt/GSK-3β/Nrf2 Pathway. Oxid Med Cell Longev. 2020:62869842020.PubMed/NCBI

76 

Nakazawa MS, Keith B and Simon MC: Oxygen availability and metabolic adaptations. Nat Rev Cancer. 16:663–673. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Piccoli C, D'Aprile A, Ripoli M, Scrima R, Boffoli D, Tabilio A and Capitanio N: The hypoxia-inducible factor is stabilized in circulating hematopoietic stem cells under normoxic conditions. FEBS Lett. 581:3111–3119. 2007. View Article : Google Scholar : PubMed/NCBI

78 

Lequeux A, Noman MZ, Xiao M, Van Moer K, Hasmim M, Benoit A, Bosseler M, Viry E, Arakelian T, Berchem G, et al: Targeting HIF-1 alpha transcriptional activity drives cytotoxic immune effector cells into melanoma and improves combination immunotherapy. Oncogene. 40:4725–4735. 2021. View Article : Google Scholar : PubMed/NCBI

79 

López-Barneo J and Simon MC: Cellular adaptation to oxygen deficiency beyond the Nobel award. Nat Commun. 11:6072020. View Article : Google Scholar : PubMed/NCBI

80 

Loots GG, Robling AG, Chang JC, Murugesh DK, Bajwa J, Carlisle C, Manilay JO, Wong A, Yellowley CE and Genetos DC: Vhl deficiency in osteocytes produces high bone mass and hematopoietic defects. Bone. 116:307–314. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Lappin KM, Mills KI and Lappin TR: Erythropoietin in bone homeostasis-Implications for efficacious anemia therapy. Stem Cells Transl Med. 10:836–843. 2021. View Article : Google Scholar : PubMed/NCBI

82 

Johnson RW, Schipani E and Giaccia AJ: HIF targets in bone remodeling and metastatic disease. Pharmacol Ther. 150:169–177. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Tao J, Miao R, Liu G, Qiu X, Yang B, Tan X, Liu L, Long J, Tang W and Jing W: Spatiotemporal correlation between HIF-1α and bone regeneration. FASEB J. 36:e225202022. View Article : Google Scholar : PubMed/NCBI

84 

Hulley PA, Bishop T, Vernet A, Schneider JE, Edwards JR, Athanasou NA and Knowles HJ: Hypoxia-inducible factor 1-alpha does not regulate osteoclastogenesis but enhances bone resorption activity via prolyl-4-hydroxylase 2. J Pathol. 242:322–333. 2017. View Article : Google Scholar : PubMed/NCBI

85 

Clinkenbeard EL, Hanudel MR, Stayrook KR, Appaiah HN, Farrow EG, Cass TA, Summers LJ, Ip CS, Hum JM, Thomas JC, et al: Erythropoietin stimulates murine and human fibroblast growth factor-23, revealing novel roles for bone and bone marrow. Haematologica. 102:e427–e430. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Daryadel A, Bettoni C, Haider T, Imenez Silva PH, Schnitzbauer U, Pastor-Arroyo EM, Wenger RH, Gassmann M and Wagner CA: Erythropoietin stimulates fibroblast growth factor 23 (FGF23) in mice and men. Pflugers Arch. 470:1569–1582. 2018. View Article : Google Scholar : PubMed/NCBI

87 

Li RL, He LY, Zhang Q, Liu J, Lu F, Duan HX, Fan LH, Peng W, Huang YL and Wu CJ: HIF-1α is a potential molecular target for herbal medicine to treat diseases. Drug Des Devel Ther. 14:4915–4949. 2020. View Article : Google Scholar : PubMed/NCBI

88 

Kasper AC, Moon EJ, Hu X, Park Y, Wooten CM, Kim H, Yang W, Dewhirst MW and Hong J: Analysis of HIF-1 inhibition by manassantin A and analogues with modified tetrahydrofuran configurations. Bioorg Med Chem Lett. 19:3783–3786. 2009. View Article : Google Scholar : PubMed/NCBI

89 

Kwak SH, Stephenson TN, Lee HE, Ge Y, Lee H, Min SM, Kim JH, Kwon DY, Lee YM and Hong J: Evaluation of Manassantin A tetrahydrofuran core region analogues and cooperative therapeutic effects with EGFR inhibition. J Med Chem. 63:6821–6833. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Hu H, Miao XK, Li JY, Zhang XW, Xu JJ, Zhang JY, Zhou TX, Hu MN, Yang WL and Mou LY: YC-1 potentiates the antitumor activity of gefitinib by inhibiting HIF-1α and promoting the endocytic trafficking and degradation of EGFR in gefitinib-resistant non-small-cell lung cancer cells. Eur J Pharmacol. 874:1729612020. View Article : Google Scholar : PubMed/NCBI

91 

Khan M, Dhammu TS, Baarine M, Kim J, Paintlia MK, Singh I and Singh AK: GSNO promotes functional recovery in experimental TBI by stabilizing HIF-1α. Behav Brain Res. 340:63–70. 2018. View Article : Google Scholar : PubMed/NCBI

92 

Lei R, Li J, Liu F, Li W, Zhang S, Wang Y, Chu X and Xu J: HIF-1α promotes the keloid development through the activation of TGF-β/Smad and TLR4/MyD88/NF-κB pathways. Cell Cycle. 18:3239–3250. 2019. View Article : Google Scholar : PubMed/NCBI

93 

Feng S, Bowden N, Fragiadaki M, Souilhol C, Hsiao S, Mahmoud M, Allen S, Pirri D, Ayllon BT, Akhtar S, et al: Mechanical activation of hypoxia-inducible Factor 1α drives endothelial dysfunction at atheroprone sites. Arterioscler Thromb Vasc Biol. 37:2087–2101. 2017. View Article : Google Scholar : PubMed/NCBI

94 

Wu D, Huang RT, Hamanaka RB, Krause M, Oh MJ, Kuo CH, Nigdelioglu R, Meliton AY, Witt L, Dai G, et al: HIF-1α is required for disturbed flow-induced metabolic reprogramming in human and porcine vascular endothelium. Elife. 6:e252172017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Huang X, Zhang Y, Qi B, Sun K, Liu N, Tang B, Fang S, Zhu L and Wei X: HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review). Int J Mol Med 50: 141, 2022.
APA
Huang, X., Zhang, Y., Qi, B., Sun, K., Liu, N., Tang, B. ... Wei, X. (2022). HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review). International Journal of Molecular Medicine, 50, 141. https://doi.org/10.3892/ijmm.2022.5197
MLA
Huang, X., Zhang, Y., Qi, B., Sun, K., Liu, N., Tang, B., Fang, S., Zhu, L., Wei, X."HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review)". International Journal of Molecular Medicine 50.6 (2022): 141.
Chicago
Huang, X., Zhang, Y., Qi, B., Sun, K., Liu, N., Tang, B., Fang, S., Zhu, L., Wei, X."HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review)". International Journal of Molecular Medicine 50, no. 6 (2022): 141. https://doi.org/10.3892/ijmm.2022.5197
Copy and paste a formatted citation
x
Spandidos Publications style
Huang X, Zhang Y, Qi B, Sun K, Liu N, Tang B, Fang S, Zhu L and Wei X: HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review). Int J Mol Med 50: 141, 2022.
APA
Huang, X., Zhang, Y., Qi, B., Sun, K., Liu, N., Tang, B. ... Wei, X. (2022). HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review). International Journal of Molecular Medicine, 50, 141. https://doi.org/10.3892/ijmm.2022.5197
MLA
Huang, X., Zhang, Y., Qi, B., Sun, K., Liu, N., Tang, B., Fang, S., Zhu, L., Wei, X."HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review)". International Journal of Molecular Medicine 50.6 (2022): 141.
Chicago
Huang, X., Zhang, Y., Qi, B., Sun, K., Liu, N., Tang, B., Fang, S., Zhu, L., Wei, X."HIF‑1α: Its notable role in the maintenance of oxygen, bone and iron homeostasis (Review)". International Journal of Molecular Medicine 50, no. 6 (2022): 141. https://doi.org/10.3892/ijmm.2022.5197
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team