Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2022 Volume 50 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2022 Volume 50 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data3.xlsx
    • Supplementary_Data4.xlsx
    • Supplementary_Data2.xlsx
Article Open Access

Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway

  • Authors:
    • Ziyu Zhou
    • Jianmao Zheng
    • Danle Lin
    • Ruoman Xu
    • Yanan Chen
    • Xiaoli Hu
  • View Affiliations / Copyright

    Affiliations: Department of Operative Dentistry and Endodontics, Guanghua School of Stomatology, Hospital of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat‑sen University, Guangzhou, Guangdong 510055, P.R. China
    Copyright: © Zhou et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 143
    |
    Published online on: October 31, 2022
       https://doi.org/10.3892/ijmm.2022.5199
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Skin wound healing is a common challenging clinical issue which requires advanced treatment strategies. The present study investigated the therapeutic effects of exosomes derived from dental pulp stem cells (DPSC‑Exos) on cutaneous wound healing and the underlying mechanisms. The effects of DPSC‑Exos on cutaneous wound healing in mice were examined by measuring wound closure rates, and using histological and immunohistochemical analysis. A series of functional assays were performed to evaluate the effects of DPSC‑Exos on the angiogenic activities of human umbilical vein endothelial cells (HUVECs) in vitro. Tandem mass tag‑based quantitative proteomics analysis of DPSCs and DPSC‑Exos was performed. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway enrichment analyses were used to evaluate the biological functions and pathways for the differentially expressed proteins in DPSC‑Exos. Western blot analysis was used to assess the protein levels of cell division control protein 42 (Cdc42) and p38 in DPSC‑Exos and in HUVECs subjected to DPSC‑Exos‑induced angiogenesis. SB203580, a p38 mitogen‑activated protein kinase (MAPK) signaling pathway inhibitor, was employed to verify the role of the p38 MAPK pathway in vitro and in vivo. Histological and immunohistochemical staining revealed that the DPSC‑Exos accelerated wound healing by promoting neovascularization. The DPSC‑Exos promoted the migration, proliferation and capillary formation capacity of HUVECs. Proteomics data demonstrated that proteins contained in DPSC‑Exos regulated vasculature development and angiogenesis. Pathway analysis revealed that proteins expressed in DPSC‑Exos were involved in several pathways, including MAPK pathway. Western blot analysis demonstrated that the DPSC‑Exos increased the protein levels of Cdc42 and phosphorylation of p38 in HUVECs. SB203580 suppressed the angiogenesis induced by DPSC‑Exos. On the whole, the present study demonstrates that DPSC‑Exos accelerate cutaneous wound healing by enhancing the angiogenic properties of HUVECs via the Cdc42/p38 MAPK signaling pathway.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

View References

1 

Strecker-McGraw MK, Jones TR and Baer DG: Soft tissue wounds and principles of healing. Emerg Med Clin North Am. 25:1–22. 2007. View Article : Google Scholar : PubMed/NCBI

2 

Rodrigues M, Kosaric N, Bonham CA and Gurtner GC: Wound healing: A cellular perspective. Physiol Rev. 99:665–706. 2019. View Article : Google Scholar :

3 

Gurtner GC, Werner S, Barrandon Y and Longaker MT: Wound repair and regeneration. Nature. 453:314–321. 2008. View Article : Google Scholar : PubMed/NCBI

4 

Li J, Zhang YP and Kirsner RS: Angiogenesis in wound repair: Angiogenic growth factors and the extracellular matrix. Microsc Res Tech. 60:107–114. 2003. View Article : Google Scholar

5 

Ding J, Wang X, Chen B, Zhang J and Xu J: Exosomes derived from human bone marrow mesenchymal stem cells stimulated by deferoxamine accelerate cutaneous wound healing by promoting angiogenesis. Biomed Res Int. 2019:97427652019. View Article : Google Scholar : PubMed/NCBI

6 

Li X, Xie X, Lian W, Shi R, Han S, Zhang H, Lu L and Li M: Exosomes from adipose-derived stem cells overexpressing Nrf2 accelerate cutaneous wound healing by promoting vascularization in a diabetic foot ulcer rat model. Exp Mol Med. 50:1–14. 2018.

7 

Hu Y, Rao SS, Wang ZX, Cao J, Tan YJ, Luo J, Li HM, Zhang WS, Chen CY and Xie H: Exosomes from human umbilical cord blood accelerate cutaneous wound healing through miR-21-3p-mediated promotion of angiogenesis and fibroblast function. Theranostics. 8:169–184. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Théry C, Zitvogel L and Amigorena S: Exosomes: Composition, biogenesis and function. Nat Rev Immunol. 2:569–579. 2002. View Article : Google Scholar : PubMed/NCBI

9 

Yang B, Chen Y and Shi J: Exosome biochemistry and advanced nanotechnology for next-generation theranostic platforms. Adv Mater. 31:e18028962019. View Article : Google Scholar

10 

Gonzalez-King H, García NA, Ontoria-Oviedo I, Ciria M, Montero JA and Sepúlveda P: Hypoxia inducible factor-1α potentiates jagged 1-mediated angiogenesis by mesenchymal stem cell-derived exosomes. Stem Cells. 35:1747–1759. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Liu J, Yan Z, Yang F, Huang Y, Yu Y, Zhou L, Sun Z, Cui D and Yan Y: Exosomes derived from human umbilical cord mesenchymal stem cells accelerate cutaneous wound healing by enhancing angiogenesis through delivering angiopoietin-2. Stem Cell Rev Rep. 17:305–317. 2021. View Article : Google Scholar

12 

Chen CY, Rao SS, Ren L, Hu XK, Tan YJ, Hu Y, Luo J, Liu YW, Yin H, Huang J, et al: Exosomal DMBT1 from human urine-derived stem cells facilitates diabetic wound repair by promoting angiogenesis. Theranostics. 8:1607–1623. 2018. View Article : Google Scholar : PubMed/NCBI

13 

Tsutsui TW: Dental pulp stem cells: Advances to applications. Stem Cells Cloning. 13:33–42. 2020.PubMed/NCBI

14 

Yoon JK, Kang ML, Park JH, Lee KM, Shin YM, Lee JW, Kim HO and Sung HJ: Direct control of stem cell behavior using biomaterials and genetic factors. Stem Cells Int. 2018:86429892018. View Article : Google Scholar : PubMed/NCBI

15 

Kim BC, Bae H, Kwon IK, Lee EJ, Park JH, Khademhosseini A and Hwang YS: Osteoblastic/cementoblastic and neural differentiation of dental stem cells and their applications to tissue engineering and regenerative medicine. Tissue Eng Part B Rev. 18:235–244. 2012. View Article : Google Scholar : PubMed/NCBI

16 

Botelho J, Cavacas MA, Machado V and Mendes JJ: Dental stem cells: Recent progresses in tissue engineering and regenerative medicine. Ann Med. 49:644–651. 2017. View Article : Google Scholar : PubMed/NCBI

17 

Martínez-Sarrà E, Montori S, Gil-Recio C, Núñez-Toldrà R, Costamagna D, Rotini A, Atari M, Luttun A and Sampaolesi M: Human dental pulp pluripotent-like stem cells promote wound healing and muscle regeneration. Stem Cell Res Ther. 8:1752017. View Article : Google Scholar : PubMed/NCBI

18 

Mead B, Logan A, Berry M, Leadbeater W and Scheven BA: Concise review: Dental pulp stem cells: A novel cell therapy for retinal and central nervous system repair. Stem Cells. 35:61–67. 2017. View Article : Google Scholar

19 

Huang CC, Narayanan R, Alapati S and Ravindran S: Exosomes as biomimetic tools for stem cell differentiation: Applications in dental pulp tissue regeneration. Biomaterials. 111:103–115. 2016. View Article : Google Scholar : PubMed/NCBI

20 

Jarmalavičiūtė A, Tunaitis V, Pivoraitė U, Venalis A and Pivoriūnas A: Exosomes from dental pulp stem cells rescue human dopaminergic neurons from 6-hydroxy-dopamine-induced apoptosis. Cytotherapy. 17:932–939. 2015. View Article : Google Scholar

21 

Swanson WB, Zhang Z, Xiu K, Gong T, Eberle M, Wang Z and Ma PX: Scaffolds with controlled release of pro-mineralization exosomes to promote craniofacial bone healing without cell transplantation. Acta Biomater. 118:215–232. 2020. View Article : Google Scholar : PubMed/NCBI

22 

Hu X, Zhong Y, Kong Y, Chen Y, Feng J and Zheng J: Lineage-specific exosomes promote the odontogenic differentiation of human dental pulp stem cells (DPSCs) through TGFβ1/smads signaling pathway via transfer of microRNAs. Stem Cell Res Ther. 10:1702019. View Article : Google Scholar

23 

Izar B, Tirosh I, Stover EH, Wakiro I, Cuoco MS, Alter I, Rodman C, Leeson R, Su MJ, Shah P, et al: A single-cell landscape of high-grade serous ovarian cancer. Nat Med. 26:1271–1279. 2020. View Article : Google Scholar : PubMed/NCBI

24 

Rochereau N, Roblin X, Michaud E, Gayet R, Chanut B, Jospin F, Corthésy B and Paul S: NOD2 deficiency increases retrograde transport of secretory IgA complexes in Crohn's disease. Nat Commun. 12:2612021. View Article : Google Scholar : PubMed/NCBI

25 

Fornabaio G, Barnhill RL, Lugassy C, Bentolila LA, Cassoux N, Roman-Roman S, Alsafadi S and Bene FD: Angiotropism and extravascular migratory metastasis in cutaneous and uveal melanoma progression in a zebrafish model. Sci Rep. 8:104482018. View Article : Google Scholar : PubMed/NCBI

26 

Goerge T, Ho-Tin-Noe B, Carbo C, Benarafa C, Remold-O'Donnell E, Zhao BQ, Cifuni SM and Wagner DD: Inflammation induces hemorrhage in thrombocytopenia. Blood. 111:4958–4964. 2008. View Article : Google Scholar : PubMed/NCBI

27 

Marcinkiewicz AL, Lieknina I, Kotelovica S, Yang X, Kraiczy P, Pal U, Lin YP and Tars K: Eliminating factor H-Binding activity of borrelia burgdorferi CspZ combined with virus-like particle conjugation enhances its efficacy as a lyme disease vaccine. Front Immunol. 9:1812018. View Article : Google Scholar :

28 

Albelda SM, Muller WA, Buck CA and Newman PJ: Molecular and cellular properties of PECAM-1 (endoCAM/CD31): A novel vascular cell-cell adhesion molecule. J Cell Biol. 114:1059–1068. 2018. View Article : Google Scholar

29 

Ju Lee H, Bartsch D, Xiao C, Guerrero S, Ahuja G, Schindler C, Moresco JJ, Yates JR III, Gebauer F, Bazzi H, et al: A post-transcriptional program coordinated by CSDE1 prevents intrinsic neural differentiation of human embryonic stem cells. Nat Commun. 8:14562017. View Article : Google Scholar : PubMed/NCBI

30 

Zeng H, Castillo-Cabrera J, Manser M, Lu B, Yang Z, Strande V, Begue D, Zamponi R, Qiu S, Sigoillot F, et al: Genome-wide CRISPR screening reveals genetic modifiers of mutant EGFR dependence in human NSCLC. Elife. 19:e502232019. View Article : Google Scholar

31 

Kumar S, Jiang MS, Adams JL and Lee JC: Pyridinylimidazole compound SB 203580 inhibits the activity but not the activation of p38 mitogen-activated protein kinase. Biochem Biophys Res Commun. 263:825–831. 2017. View Article : Google Scholar

32 

Tu GW, Ju MJ, Zheng YJ, Hao GW, Ma GG, Hou JY, Zhang XP, Luo Z and Lu LM: CXCL16/CXCR6 is involved in LPS-induced acute lung injury via P38 signalling. J Cell Mol Med. 23:5380–5389. 2019. View Article : Google Scholar : PubMed/NCBI

33 

Liu Z, Wu H, Jiang K, Wang Y, Zhang W, Chu Q, Li J, Huang H, Cai T, Ji H, et al: MAPK-Mediated YAP activation controls mechanical-tension-induced pulmonary alveolar regeneration. Cell Rep. 16:1810–1819. 2016. View Article : Google Scholar : PubMed/NCBI

34 

Koch S and Claesson-Welsh L: Signal transduction by vascular endothelial growth factor receptors. Cold Spring Harb Perspect Med. 2:a0065022012. View Article : Google Scholar : PubMed/NCBI

35 

Kurogane Y, Miyata M, Kubo Y, Nagamatsu Y, Kundu RK, Uemura A, Ishida T, Quertermous T, Hirata KI and Rikitake Y: FGD5 mediates proangiogenic action of vascular endothelial growth factor in human vascular endothelial cells. Arterioscler Thromb Vasc Biol. 32:988–996. 2012. View Article : Google Scholar : PubMed/NCBI

36 

Rousseau S, Houle F, Landry J and Huot J: p38 MAP kinase activation by vascular endothelial growth factor mediates actin reorganization and cell migration in human endothelial cells. Oncogene. 15:2169–2177. 1997. View Article : Google Scholar : PubMed/NCBI

37 

Armstrong SC, Delacey M and Ganote CE: Phosphorylation state of hsp27 and p38 MAPK during preconditioning and protein phosphatase inhibitor protection of rabbit cardiomyocytes. J Mol Cell Cardiol. 31:555–567. 1999. View Article : Google Scholar : PubMed/NCBI

38 

Evans IM, Britton G and Zachary IC: Vascular endothelial growth factor induces heat shock protein (HSP) 27 serine 82 phosphorylation and endothelial tubulogenesis via protein kinase D and independent of p38 kinase. Cell Signal. 20:1375–1384. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Zhou T, Yang Z, Chen Y, Chen Y, Huang Z, You B, Peng Y and Chen J: Estrogen accelerates cutaneous wound healing by promoting proliferation of epidermal keratinocytes via Erk/Akt signaling pathway. Cell Physiol Biochem. 38:959–968. 2016. View Article : Google Scholar : PubMed/NCBI

40 

Xie L, Guan Z, Zhang M, Lyu S, Thuaksuban N, Kamolmattayakul S and Nuntanaranont T: Exosomal circLPAR1 promoted osteogenic differentiation of homotypic dental pulp stem cells by competitively binding to hsa-miR-31. Biomed Res Int. 2020:63193952020. View Article : Google Scholar : PubMed/NCBI

41 

Venugopal CKS, Rai KS, Pinnelli VB, Kutty BM and Dhanushkodi A: Neuroprotection by human dental pulp mesenchymal stem cells: From billions to nano. Curr Gene Ther. 18:307–323. 2018. View Article : Google Scholar : PubMed/NCBI

42 

Pivoraitė U, Jarmalavičiūtė A, Tunaitis V, Ramanauskaitė G, Vaitkuvienė A, Kašėta V, Biziulevičienė G, Venalis A and Pivoriūnas A: Exosomes from human dental pulp stem cells suppress carrageenan-induced acute inflammation in mice. Inflammation. 38:1933–1941. 2015. View Article : Google Scholar

43 

Han Y, Ren J, Bai Y, Pei X and Han Y: Exosomes from hypoxia-treated human adipose-derived mesenchymal stem cells enhance angiogenesis through VEGF/VEGF-R. Int J Biochem Cell Biol. 109:59–68. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Bakhtyar N, Jeschke MG, Herer E, Sheikholeslam M and Amini-Nik S: Exosomes from acellular Wharton's jelly of the human umbilical cord promotes skin wound healing. Stem Cell Res Ther. 9:1932018. View Article : Google Scholar : PubMed/NCBI

45 

Tonnesen MG, Feng X and Clark RA: Angiogenesis in wound healing. J Investig Dermatol Symp Proc. 5:40–46. 2000. View Article : Google Scholar

46 

Ribeiro MF, Zhu H, Millard RW and Fan GC: Exosomes function in pro- and anti-angiogenesis. Curr Angiogenes. 2:54–59. 2013. View Article : Google Scholar : PubMed/NCBI

47 

Wu P, Zhang B, Shi H, Qian H and Xu W: MSC-exosome: A novel cell-free therapy for cutaneous regeneration. Cytotherapy. 20:291–301. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Yu M, Liu W, Li J, Lu J, Lu H, Jia W and Liu F: Exosomes derived from atorvastatin-pretreated MSC accelerate diabetic wound repair by enhancing angiogenesis via AKT/eNOS pathway. Stem Cell Res Ther. 11:3502020. View Article : Google Scholar : PubMed/NCBI

49 

Liu S, Uppal H, Demaria M, Desprez PY, Campisi J and Kapahi P: Simvastatin suppresses breast cancer cell proliferation induced by senescent cells. Sci Rep. 5:178952015. View Article : Google Scholar : PubMed/NCBI

50 

Liu J, He X, Corbett SA, Lowry SF, Graham AM, Fässler R and Li S: Integrins are required for the differentiation of visceral endoderm. J Cell Sci. 122:233–242. 2009. View Article : Google Scholar : PubMed/NCBI

51 

Lamalice L, Houle F, Jourdan G and Huot J: Phosphorylation of tyrosine 1214 on VEGFR2 is required for VEGF-induced activation of Cdc42 upstream of SAPK2/p38. Oncogene. 23:434–445. 2004. View Article : Google Scholar : PubMed/NCBI

52 

Lamalice L, Houle F and Huot J: Phosphorylation of Tyr1214 within VEGFR-2 triggers the recruitment of Nck and activation of Fyn leading to SAPK2/p38 activation and endothelial cell migration in response to VEGF. J Biol Chem. 281:34009–34020. 2006. View Article : Google Scholar : PubMed/NCBI

53 

Feng PC, Ke XF, Kuang HL, Pan LL, Ye Q and Wu JB: BMP2 secretion from hepatocellular carcinoma cell HepG2 enhances angiogenesis and tumor growth in endothelial cells via activation of the MAPK/p38 signaling pathway. Stem Cell Res Ther. 10:2372019. View Article : Google Scholar : PubMed/NCBI

54 

Correa AR, Berbel AC, Papa MP, Morais AT, Peçanha LM and Arruda LB: Dengue virus directly stimulates polyclonal B cell activation. PLoS One. 10:e01433912015. View Article : Google Scholar : PubMed/NCBI

55 

Morrison VL, James MJ, Grzes K, Cook P, Glass DG, Savinko T, Lek HS, Gawden-Bone C, Watts C, Millington OR, et al: Loss of beta2-integrin-mediated cytoskeletal linkage reprogrammes dendritic cells to a mature migratory phenotype. Nat Commun. 5:53592014. View Article : Google Scholar : PubMed/NCBI

56 

Maji S, Chaudhary P, Akopova I, Nguyen PM, Hare RJ, Gryczynski I and Vishwanatha JK: Exosomal annexin II promotes angiogenesis and breast cancer metastasis. Mol Cancer Res. 15:93–105. 2017. View Article : Google Scholar

57 

Liang B, Liang JM, Ding JN, Xu J, Xu JG and Chai YM: Dimethyloxaloylglycine-stimulated human bone marrow mesenchymal stem cell-derived exosomes enhance bone regeneration through angiogenesis by targeting the AKT/mTOR pathway. Stem Cell Res Ther. 10:3352019. View Article : Google Scholar : PubMed/NCBI

58 

Zhou X, Yan T, Huang C, Xu Z, Wang L, Jiang E, Wang H, Chen Y, Liu K, Shao Z and Shang Z: Melanoma cell-secreted exosomal miR-155-5p induce proangiogenic switch of cancer-associated fibroblasts via SOCS1/JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 37:2422018. View Article : Google Scholar : PubMed/NCBI

59 

Xue C, Shen Y, Li X, Li B, Zhao S, Gu J, Chen Y, Ma B, Wei J, Han Q and Zhao RC: Exosomes derived from hypoxia-treated human adipose mesenchymal stem cells enhance angiogenesis through the PKA signaling pathway. Stem Cells Dev. 27:456–465. 2018. View Article : Google Scholar : PubMed/NCBI

60 

Park S, Guo Y, Negre J, Preto J, Smithers CC, Azad AK, Overduin M, Murray AG and Eitzen G: Fgd5 is a rac1-specific Rho GEF that is selectively inhibited by aurintricarboxylic acid. Small GTPases. 12:147–160. 2021. View Article : Google Scholar :

61 

Heldin J, O'Callagha n P, Vera RH, Fuchs PF, Gerwins P and Kreuger J: FGD5 sustains vascular endothelial growth factor A (VEGFA) signaling through inhibition of proteasome-mediated VEGF receptor 2 degradation. Cell Signal. 40:125–132. 2017. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zhou Z, Zheng J, Lin D, Xu R, Chen Y and Hu X: Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway. Int J Mol Med 50: 143, 2022.
APA
Zhou, Z., Zheng, J., Lin, D., Xu, R., Chen, Y., & Hu, X. (2022). Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway. International Journal of Molecular Medicine, 50, 143. https://doi.org/10.3892/ijmm.2022.5199
MLA
Zhou, Z., Zheng, J., Lin, D., Xu, R., Chen, Y., Hu, X."Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway". International Journal of Molecular Medicine 50.6 (2022): 143.
Chicago
Zhou, Z., Zheng, J., Lin, D., Xu, R., Chen, Y., Hu, X."Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway". International Journal of Molecular Medicine 50, no. 6 (2022): 143. https://doi.org/10.3892/ijmm.2022.5199
Copy and paste a formatted citation
x
Spandidos Publications style
Zhou Z, Zheng J, Lin D, Xu R, Chen Y and Hu X: Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway. Int J Mol Med 50: 143, 2022.
APA
Zhou, Z., Zheng, J., Lin, D., Xu, R., Chen, Y., & Hu, X. (2022). Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway. International Journal of Molecular Medicine, 50, 143. https://doi.org/10.3892/ijmm.2022.5199
MLA
Zhou, Z., Zheng, J., Lin, D., Xu, R., Chen, Y., Hu, X."Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway". International Journal of Molecular Medicine 50.6 (2022): 143.
Chicago
Zhou, Z., Zheng, J., Lin, D., Xu, R., Chen, Y., Hu, X."Exosomes derived from dental pulp stem cells accelerate cutaneous wound healing by enhancing angiogenesis via the Cdc42/p38 MAPK pathway". International Journal of Molecular Medicine 50, no. 6 (2022): 143. https://doi.org/10.3892/ijmm.2022.5199
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team