
Antitumor activities of a defucosylated anti‑EpCAM monoclonal antibody in colorectal carcinoma xenograft models
- Authors:
- Guanjie Li
- Hiroyuki Suzuki
- Tomokazu Ohishi
- Teizo Asano
- Tomohiro Tanaka
- Miyuki Yanaka
- Takuro Nakamura
- Takeo Yoshikawa
- Manabu Kawada
- Mika K. Kaneko
- Yukinari Kato
-
Affiliations: Department of Molecular Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan, Institute of Microbial Chemistry (BIKAKEN), Microbial Chemistry Research Foundation, Numazu, Shizuoka 410‑0301, Japan, Department of Antibody Drug Development, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan, Department of Pharmacology, Tohoku University Graduate School of Medicine, Sendai, Miyagi 980‑8575, Japan - Published online on: January 18, 2023 https://doi.org/10.3892/ijmm.2023.5221
- Article Number: 18
-
Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
Trzpis M, McLaughlin PM, de Leij LM and Harmsen MC: Epithelial cell adhesion molecule: More than a carcinoma marker and adhesion molecule. Am J Pathol. 171:386–395. 2007. View Article : Google Scholar : PubMed/NCBI | |
Brown TC, Sankpal NV and Gillanders WE: Functional implications of the dynamic regulation of EpCAM during epithelial-to-mesenchymal transition. Biomolecules. 11:9562021. View Article : Google Scholar : PubMed/NCBI | |
Eyvazi S, Farajnia S, Dastmalchi S, Kanipour F, Zarredar H and Bandehpour M: Antibody based EpCAM targeted therapy of cancer, review and update. Curr Cancer Drug Targets. 18:857–868. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xiao J, Pohlmann PR, Isaacs C, Weinberg BA, He AR, Schlegel R and Agarwal S: Circulating tumor cells: Technologies and their clinical potential in cancer metastasis. Biomedicines. 9:11112021. View Article : Google Scholar : PubMed/NCBI | |
de Bono JS, Scher HI, Montgomery RB, Parker C, Miller MC, Tissing H, Doyle GV, Terstappen LW, Pienta KJ and Raghavan D: Circulating tumor cells predict survival benefit from treatment in metastatic castration-resistant prostate cancer. Clin Cancer Res. 14:6302–6309. 2008. View Article : Google Scholar : PubMed/NCBI | |
Watanabe M, Kenmotsu H, Ko R, Wakuda K, Ono A, Imai H, Taira T, Naito T, Murakami H, Abe M, et al: Isolation and molecular analysis of circulating tumor cells from lung cancer patients using a microfluidic chip type cell sorter. Cancer Sci. 109:2539–2548. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lampignano R, Yang L, Neumann MHD, Franken A, Fehm T, Niederacher D and Neubauer H: A novel workflow to enrich and isolate patient-matched EpCAMhigh and EpCAMlow/negative CTCs enables the comparative characterization of the PIK3CA status in metastatic breast cancer. Int J Mol Sci. 18:18852017. View Article : Google Scholar | |
Zapatero A, Gómez-Caamaño A, Cabeza Rodriguez MÁ, Muinelo-Romay L, Martin de Vidales C, Abalo A, Calvo Crespo P, Leon Mateos L, Olivier C and Vega Piris LV: Detection and dynamics of circulating tumor cells in patients with high-risk prostate cancer treated with radiotherapy and hormones: A prospective phase II study. Radiat Oncol. 15:1372020. View Article : Google Scholar : PubMed/NCBI | |
Tsao LC, Force J and Hartman ZC: Mechanisms of therapeutic antitumor monoclonal antibodies. Cancer Res. 81:4641–4651. 2021. View Article : Google Scholar : PubMed/NCBI | |
McInnes IB and Gravallese EM: Immune-mediated inflammatory disease therapeutics: Past, present and future. Nat Rev Immunol. 21:680–686. 2021. View Article : Google Scholar : PubMed/NCBI | |
Herlyn M, Steplewski Z, Herlyn D and Koprowski H: Colorectal carcinoma-specific antigen: Detection by means of monoclonal antibodies. Proc Natl Acad Sci USA. 76:1438–1442. 1979. View Article : Google Scholar : PubMed/NCBI | |
Baeuerle PA and Gires O: EpCAM (CD326) finding its role in cancer. Br J Cancer. 96:417–423. 2007. View Article : Google Scholar : PubMed/NCBI | |
Sears HF, Atkinson B, Mattis J, Ernst C, Herlyn D, Steplewski Z, Häyry P and Koprowski H: Phase-I clinical trial of monoclonal antibody in treatment of gastrointestinal tumours. Lancet. 1:762–765. 1982. View Article : Google Scholar : PubMed/NCBI | |
Riethmüller G, Holz E, Schlimok G, Schmiegel W, Raab R, Höffken K, Gruber R, Funke I, Pichlmaier H, Hirche H, et al: Monoclonal antibody therapy for resected Dukes' C colorectal cancer: Seven-year outcome of a multicenter randomized trial. J Clin Oncol. 16:1788–1794. 1998. View Article : Google Scholar : PubMed/NCBI | |
Kaplon H, Muralidharan M, Schneider Z and Reichert JM: Antibodies to watch in 2020. MAbs. 12:17035312020. View Article : Google Scholar : | |
Zhang X, Yang Y, Fan D and Xiong D: The development of bispecific antibodies and their applications in tumor immune escape. Exp Hematol Oncol. 6:122017. View Article : Google Scholar : PubMed/NCBI | |
Schönberger S, Kraft D, Nettersheim D, Schorle H, Casati A, Craveiro RB, Mohseni MM, Calaminus G and Dilloo D: Targeting EpCAM by a bispecific trifunctional antibody exerts profound cytotoxic efficacy in germ cell tumor cell lines. Cancers (Basel). 12:12792020. View Article : Google Scholar : PubMed/NCBI | |
Ruf P, Kluge M, Jäger M, Burges A, Volovat C, Heiss MM, Hess J, Wimberger P, Brandt B and Lindhofer H: Pharmacokinetics, immunogenicity and bioactivity of the therapeutic antibody catumaxomab intraperitoneally administered to cancer patients. Br J Clin Pharmacol. 69:617–625. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mau-Sørensen M, Dittrich C, Dienstmann R, Lassen U, Büchler W, Martinius H and Tabernero J: A phase I trial of intravenous catumaxomab: A bispecific monoclonal antibody targeting EpCAM and the T cell coreceptor CD3. Cancer Chemother Pharmacol. 75:1065–1073. 2015. View Article : Google Scholar : PubMed/NCBI | |
Knödler M, Körfer J, Kunzmann V, Trojan J, Daum S, Schenk M, Kullmann F, Schroll S, Behringer D, Stahl M, et al: Randomised phase II trial to investigate catumaxomab (anti-EpCAM x anti-CD3) for treatment of peritoneal carcinomatosis in patients with gastric cancer. Br J Cancer. 119:296–302. 2018. View Article : Google Scholar | |
Linke R, Klein A and Seimetz D: Catumaxomab: Clinical development and future directions. MAbs. 2:129–136. 2010. View Article : Google Scholar : PubMed/NCBI | |
Pereira NA, Chan KF, Lin PC and Song Z: The 'less-is-more' in therapeutic antibodies: Afucosylated anti-cancer antibodies with enhanced antibody-dependent cellular cytotoxicity. MAbs. 10:693–711. 2018. View Article : Google Scholar : PubMed/NCBI | |
Shinkawa T, Nakamura K, Yamane N, Shoji-Hosaka E, Kanda Y, Sakurada M, Uchida K, Anazawa H, Satoh M, Yamasaki M, et al: The absence of fucose but not the presence of galactose or bisecting N-acetylglucosamine of human IgG1 complex-type oligosaccharides shows the critical role of enhancing antibody-dependent cellular cytotoxicity. J Biol Chem. 278:3466–3473. 2003. View Article : Google Scholar | |
Yamane-Ohnuki N, Kinoshita S, Inoue-Urakubo M, Kusunoki M, Iida S, Nakano R, Wakitani M, Niwa R, Sakurada M, Uchida K, et al: Establishment of FUT8 knockout Chinese hamster ovary cells: An ideal host cell line for producing completely defucosylated antibodies with enhanced antibody-dependent cellular cytotoxicity. Biotechnol Bioeng. 87:614–622. 2004. View Article : Google Scholar : PubMed/NCBI | |
Li G, Suzuki H, Asano T, Tanaka T, Suzuki H, Kaneko MK and Kato Y: Development of a novel anti-EpCAM monoclonal anti-body for various applications. Antibodies (Basel). 11:412022. View Article : Google Scholar | |
Hosono H, Ohishi T, Takei J, Asano T, Sayama Y, Kawada M, Kaneko MK and Kato Y: The anti-epithelial cell adhesion molecule (EpCAM) monoclonal antibody EpMab-16 exerts antitumor activity in a mouse model of colorectal adenocarcinoma. Oncol Lett. 20:3832020. View Article : Google Scholar : PubMed/NCBI | |
Kaneko MK, Ohishi T, Takei J, Sano M, Nakamura T, Hosono H, Yanaka M, Asano T, Sayama Y, Harada H, et al: Anti-EpCAM monoclonal antibody exerts antitumor activity against oral squamous cell carcinomas. Oncol Rep. 44:2517–2526. 2020. View Article : Google Scholar : PubMed/NCBI | |
Queiroz AL, Dantas E, Ramsamooj S, Murthy A, Ahmed M, Zunica ERM, Liang RJ, Murphy J, Holman CD, Bare CJ, et al: Blocking ActRIIB and restoring appetite reverses cachexia and improves survival in mice with lung cancer. Nat Commun. 13:46332022. View Article : Google Scholar : PubMed/NCBI | |
Takei J, Kaneko MK, Ohishi T, Hosono H, Nakamura T, Yanaka M, Sano M, Asano T, Sayama Y, Kawada M, et al: A defucosylated anti-CD44 monoclonal antibody 5-mG2a-f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Oncol Rep. 44:1949–1960. 2020.PubMed/NCBI | |
Takei J, Ohishi T, Kaneko MK, Harada H, Kawada M and Kato Y: A defucosylated anti-PD-L1 monoclonal antibody 13-mG2a-f exerts antitumor effects in mouse xenograft models of oral squamous cell carcinoma. Biochem Biophys Rep. 24:1008012020. | |
Li G, Ohishi T, Kaneko MK, Takei J, Mizuno T, Kawada M, Saito M, Suzuki H and Kato Y: Defucosylated mouse-dog chimeric anti-EGFR antibody exerts antitumor activities in mouse xenograft models of canine tumors. Cells. 10:35992021. View Article : Google Scholar : PubMed/NCBI | |
Tateyama N, Nanamiya R, Ohishi T, Takei J, Nakamura T, Yanaka M, Hosono H, Saito M, Asano T, Tanaka T, et al: Defucosylated anti-epidermal growth factor receptor monoclonal antibody 134-mG2a-f exerts antitumor activities in mouse xenograft models of dog epidermal growth factor receptor-overexpressed cells. Monoclon Antib Immunodiagn Immunother. 40:177–183. 2021. View Article : Google Scholar : PubMed/NCBI | |
Goto N, Suzuki H, Ohishi T, Harakawa A, Li G, Saito M, Takei J, Tanaka T, Asano T, Sano M, et al: Antitumor activities in mouse xenograft models of canine fibroblastic tumor by defucosylated anti-epidermal growth factor receptor monoclonal antibody. Monoclon Antib Immunodiagn Immunother. 41:67–73. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nanamiya R, Takei J, Ohishi T, Asano T, Tanaka T, Sano M, Nakamura T, Yanaka M, Handa S, Tateyama N, et al: Defucosylated anti-epidermal growth factor receptor monoclonal antibody (134-mG2a-f) exerts antitumor activities in mouse xenograft models of canine osteosarcoma. Monoclon Antib Immunodiagn Immunother. 41:1–7. 2022. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Ohishi T, Asano T, Tanaka T, Saito M, Mizuno T, Yoshikawa T, Kawada M, Kaneko MK and Kato Y: Defucosylated mouse-dog chimeric anti-HER2 monoclonal antibody exerts antitumor activities in mouse xenograft models of canine tumors. Oncol Rep. 48:1542022. View Article : Google Scholar : | |
Tanaka T, Ohishi T, Saito M, Suzuki H, Kaneko MK, Kawada M and Kato Y: Defucosylated anti-epidermal growth factor receptor monoclonal antibody exerted antitumor activities in mouse xenograft models of canine mammary gland tumor. Monoclon Antib Immunodiagn Immunother. 41:142–149. 2022. View Article : Google Scholar : PubMed/NCBI | |
Nanamiya R, Suzuki H, Takei J, Li G, Goto N, Harada H, Saito M, Tanaka T, Asano T, Kaneko MK and Kato Y: Development of monoclonal antibody 281-mG2a-f against golden hamster podoplanin. Monoclon Antib Immunodiagn Immunother. Apr 27–2022.Epub ahead of print. | |
Itai S, Ohishi T, Kaneko MK, Yamada S, Abe S, Nakamura T, Yanaka M, Chang YW, Ohba SI, Nishioka Y, et al: Anti-podocalyxin antibody exerts antitumor effects via antibody-dependent cellular cytotoxicity in mouse xenograft models of oral squamous cell carcinoma. Oncotarget. 9:22480–22497. 2018. View Article : Google Scholar : PubMed/NCBI | |
Takei J, Kaneko MK, Ohishi T, Kawada M, Harada H and Kato Y: A novel anti-EGFR monoclonal antibody (EMab-17) exerts antitumor activity against oral squamous cell carcinomas via antibody-dependent cellular cytotoxicity and complement-dependent cytotoxicity. Oncol Lett 1. 9:2809–2816. 2020. | |
Garvin D, Stecha P, Gilden J, Wang J, Grailer J, Hartnett J, Fan F, Cong M and Cheng ZJ: Determining ADCC activity of antibody-based therapeutic molecules using two bioluminescent reporter-based bioassays. Curr Protoc. 1:e2962021. View Article : Google Scholar : PubMed/NCBI | |
Kosterink JGW, McLaughlin PM, Lub-de Hooge MN, Hendrikse HH, van Zanten J, van Garderen E, Harmsen MC and de Leij LFMH: Biodistribution studies of epithelial cell adhesion molecule (EpCAM)-directed monoclonal antibodies in the EpCAM-transgenic mouse tumor model. J Immunol. 179:1362–1368. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Ohishi T, Takei J, Nakamura T, Kawada M and Kaneko MK: An antihuman epidermal growth factor receptor 2 monoclonal antibody (H2Mab-19) exerts antitumor activity in glioblastoma xenograft models. Monoclon Antib Immunodiagn Immunother. 39:135–139. 2020. View Article : Google Scholar : PubMed/NCBI | |
Pavšič M, Gunčar G, Djinović-Carugo K and Lenarčič B: Crystal structure and its bearing towards an understanding of key biological functions of EpCAM. Nat Commun. 5:47642014. View Article : Google Scholar | |
Gaber A, Lenarčič B and Pavšič M: Current view on EpCAM structural biology. Cells. 9:13612020. View Article : Google Scholar : PubMed/NCBI | |
Münz M, Murr A, Kvesic M, Rau D, Mangold S, Pflanz S, Lumsden J, Volkland J, Fagerberg J, Riethmüller G, et al: Side-by-side analysis of five clinically tested anti-EpCAM monoclonal antibodies. Cancer Cell Int. 10:442010. View Article : Google Scholar : PubMed/NCBI | |
Asano T, Kaneko MK and Kato Y: Development of a novel epitope mapping system: RIEDL insertion for epitope mapping method. Monoclon Antib Immunodiagn Immunother. 40:162–167. 2021. View Article : Google Scholar : PubMed/NCBI | |
Asano T, Kaneko MK, Takei J, Tateyama N and Kato Y: Epitope mapping of the anti-CD44 monoclonal antibody (C44Mab-46) using the REMAP method. Monoclon Antib Immunodiagn Immunother. 40:156–161. 2021. View Article : Google Scholar : PubMed/NCBI | |
Nanamiya R, Sano M, Asano T, Yanaka M, Nakamura T, Saito M, Tanaka T, Hosono H, Tateyama N, Kaneko MK and Kato Y: Epitope mapping of an anti-human epidermal growth factor receptor monoclonal antibody (EMab-51) using the RIEDL insertion for epitope mapping method. Monoclon Antib Immunodiagn Immunother. 40:149–155. 2021. View Article : Google Scholar : PubMed/NCBI | |
Sano M, Kaneko MK, Aasano T and Kato Y: Epitope mapping of an antihuman EGFR monoclonal antibody (EMab-134) using the REMAP method. Monoclon Antib Immunodiagn Immunother. 40:191–195. 2021. View Article : Google Scholar : PubMed/NCBI | |
Asano T, Suzuki H, Kaneko MK and Kato Y: Epitope mapping of rituximab using HisMAP method. Monoclon Antib Immunodiagn Immunother. 41:8–14. 2022. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Asano T, Tanaka T, Kaneko MK and Kato Y: Epitope mapping of the anti-CD20 monoclonal antibodies (C20Mab-11 and 2H7) using HisMAP method. Monoclon Antib Immunodiagn Immunother. 41:20–26. 2022. View Article : Google Scholar : PubMed/NCBI | |
Huang L, Yang Y, Yang F, Liu S, Zhu Z, Lei Z and Guo J: Functions of EpCAM in physiological processes and diseases (review). Int J Mol Med. 42:1771–1785. 2018.PubMed/NCBI | |
Maghzal N, Kayali HA, Rohani N, Kajava AV and Fagotto F: EpCAM controls actomyosin contractility and cell adhesion by direct inhibition of PKC. Dev Cell. 27:263–277. 2013. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Antin P, Berx G, Blanpain C, Brabletz T, Bronner M, Campbell K, Cano A, Casanova J, Christofori G, et al: Guidelines and definitions for research on epithelial-mesenchymal transition. Nat Rev Mol Cell Biol. 21:341–352. 2020. View Article : Google Scholar : PubMed/NCBI | |
Munz M, Baeuerle PA and Gires O: The emerging role of EpCAM in cancer and stem cell signaling. Cancer Res. 69:5627–5629. 2009. View Article : Google Scholar : PubMed/NCBI | |
Baccelli I, Schneeweiss A, Riethdorf S, Stenzinger A, Schillert A, Vogel V, Klein C, Saini M, Bäuerle T, Wallwiener M, et al: Identification of a population of blood circulating tumor cells from breast cancer patients that initiates metastasis in a xenograft assay. Nat Biotechnol. 31:539–544. 2013. View Article : Google Scholar : PubMed/NCBI | |
Rupp B, Ball H, Wuchu F, Nagrath D and Nagrath S: Circulating tumor cells in precision medicine: Challenges and opportunities. Trends Pharmacol Sci. 43:378–391. 2022. View Article : Google Scholar : PubMed/NCBI | |
Dieffenbach M and Pastan I: Mechanisms of resistance to immunotoxins containing Pseudomonas exotoxin A in cancer therapy. Biomolecules. 10:9792020. View Article : Google Scholar : PubMed/NCBI | |
Fragkoulis C, Glykas I, Bamias A, Stathouros G, Papadopoulos G and Ntoumas K: Novel treatments in BCG failure. Where do we stand today? Arch Esp Urol. 74:681–691. 2021.In English, Spanish. PubMed/NCBI | |
Kaneko MK, Honma R, Ogasawara S, Fujii Y, Nakamura T, Saidoh N, Takagi M, Kagawa Y, Konnai S and Kato Y: PMab-38 recognizes canine podoplanin of squamous cell carcinomas. Monoclon Antib Immunodiagn Immunother. 35:263–266. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ito A, Ohta M, Kato Y, Inada S, Kato T, Nakata S, Yatabe Y, Goto M, Kaneda N, Kurita K, et al: A real-time near-infrared fluorescence imaging method for the detection of oral cancers in mice using an indocyanine green-labeled podoplanin antibody. Technol Cancer Res Treat. 17:15330338187679362018. View Article : Google Scholar : PubMed/NCBI | |
Kato Y, Ohishi T, Kawada M, Maekawa N, Konnai S, Itai S, Yamada S and Kaneko MK: The mouse-canine chimeric anti-dog podoplanin antibody P38B exerts antitumor activity in mouse xenograft models. Biochem Biophys Rep. 17:23–26. 2018.PubMed/NCBI | |
Kato Y, Ito Y, Ohishi T, Kawada M, Nakamura T, Sayama Y, Sano M, Asano T, Yanaka M, Okamoto S, et al: Antibody-drug conjugates using mouse-canine chimeric anti-dog podoplanin antibody exerts antitumor activity in a mouse xenograft model. Monoclon Antib Immunodiagn Immunother. 39:37–44. 2020. View Article : Google Scholar : PubMed/NCBI | |
Bardia A, Mayer IA, Vahdat LT, Tolaney SM, Isakoff SJ, Diamond JR, O'Shaughnessy J, Moroose RL, Santin AD, Abramson VG, et al: Sacituzumab govitecan-hziy in refractory metastatic triple-negative breast cancer. N Engl J Med. 380:741–751. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pavšič M: Trop2 forms a stable dimer with significant structural differences within the membrane-distal region as compared to EpCAM. Int J Mol Sci. 22:106402021. View Article : Google Scholar | |
Cardillo TM, Govindan SV, Sharkey RM, Trisal P and Goldenberg DM: Humanized anti-Trop-2 IgG-SN-38 conjugate for effective treatment of diverse epithelial cancers: Preclinical studies in human cancer xenograft models and monkeys. Clin Cancer Res. 17:3157–3169. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kato Y and Kaneko MK: A cancer-specific monoclonal antibody recognizes the aberrantly glycosylated podoplanin. Sci Rep. 4:59242014. View Article : Google Scholar : PubMed/NCBI | |
Kaneko MK, Nakamura T, Kunita A, Fukayama M, Abe S, Nishioka Y, Yamada S, Yanaka M, Saidoh N, Yoshida K, et al: ChLpMab-23: Cancer-specific human-mouse chimeric anti-podoplanin antibody exhibits antitumor activity via antibody-dependent cellular cytotoxicity. Monoclon Antib Immunodiagn Immunother. 36:104–112. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kaneko MK, Yamada S, Nakamura T, Abe S, Nishioka Y, Kunita A, Fukayama M, Fujii Y, Ogasawara S and Kato Y: Antitumor activity of chLpMab-2, a human-mouse chimeric cancer-specific antihuman podoplanin antibody, via antibody-dependent cellular cytotoxicity. Cancer Med. 6:768–777. 2017. View Article : Google Scholar : PubMed/NCBI | |
Suzuki H, Kaneko MK and Kato Y: Roles of podoplanin in malignant progression of tumor. Cells. 11:5752022. View Article : Google Scholar : PubMed/NCBI | |
Kaneko MK, Ohishi T, Kawada M and Kato Y: A cancer-specific anti-podocalyxin monoclonal antibody (60-mG2a-f) exerts antitumor effects in mouse xenograft models of pancreatic carcinoma. Biochem Biophys Rep. 24:1008262020. | |
Ishikawa A, Waseda M, Ishii T, Kaneko MK, Kato Y and Kaneko S: Improved anti-solid tumor response by humanized anti-podoplanin chimeric antigen receptor transduced human cytotoxic T cells in an animal model. Genes Cells. 27:549–558. 2022. View Article : Google Scholar : PubMed/NCBI | |
Chalise L, Kato A, Ohno M, Maeda S, Yamamichi A, Kuramitsu S, Shiina S, Takahashi H, Ozone S, Yamaguchi J, et al: Efficacy of cancer-specific anti-podoplanin CAR-T cells and oncolytic herpes virus G47Δ combination therapy against glioblastoma. Mol Ther Oncolytics. 26:265–274. 2022. View Article : Google Scholar : PubMed/NCBI | |
Shiina S, Ohno M, Ohka F, Kuramitsu S, Yamamichi A, Kato A, Motomura K, Tanahashi K, Yamamoto T, Watanabe R, et al: CAR T cells targeting podoplanin reduce orthotopic glioblastomas in mouse brains. Cancer Immunol Res. 4:259–268. 2016. View Article : Google Scholar : PubMed/NCBI |