
Association of endometriosis with cardiovascular disease: Genetic aspects (Review)
- Authors:
- Vassilios M. Vazgiourakis
- Maria I. Zervou
- Louis Papageorgiou
- Dimitrios Chaniotis
- Demetrios A. Spandidos
- Dimitrios Vlachakis
- Elias Eliopoulos
- George N. Goulielmos
-
Affiliations: Intensive Care Unit, University Hospital of Larissa, University of Thessaly, Faculty of Medicine, 41110 Larissa, Greece, Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece, Department of Biomedical Sciences, School of Health and Care Sciences, University of West Attica, 12243 Athens, Greece, Laboratory of Clinical Virology, School of Medicine, University of Crete, Heraklion 71500, Greece, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece, Laboratory of Genetics, Department of Biotechnology, Agricultural University of Athens, 11855 Athens, Greece, Section of Molecular Pathology and Human Genetics, Department of Internal Medicine, School of Medicine, University of Crete, 71403 Heraklion, Greece - Published online on: February 15, 2023 https://doi.org/10.3892/ijmm.2023.5232
- Article Number: 29
-
Copyright: © Vazgiourakis et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
Organization WH: Global status report on noncommunicable diseases 2014. World Health Organization; 2014 | |
Berkley KJ, Rapkin AJ and Papka RE: The pains of endometriosis. Science. 308:1587–1589. 2005. View Article : Google Scholar : PubMed/NCBI | |
Symons LK, Miller JE, Kay VR, Marks RM, Liblik K, Koti M and Tayade C: The immunopathophysiology of endometriosis. Trends Mol Med. 24:748–762. 2018. View Article : Google Scholar : PubMed/NCBI | |
Simpson JL, Elias S, Malinak LR and Buttram VC Jr: Heritable aspects of endometriosis. I. Genetic studies. Am J Obstet Gynecol. 137:327–331. 1980. View Article : Google Scholar : PubMed/NCBI | |
Maroun P, Cooper MJ, Reid GD and Keirse MJ: Relevance of gastrointestinal symptoms in endometriosis. Aust N Z J Obstet Gynaecol. 49:411–414. 2009. View Article : Google Scholar : PubMed/NCBI | |
De Graaff AA, D'Hooghe TM, Dunselman GA, Dirksen CD and Hummelshoj L; WERF EndoCost Consortium and Simoens S: The significant effect of endometriosis on physical, mental and social wellbeing: Results from an international cross-sectional survey. Human Reprod. 28:2677–2685. 2013. View Article : Google Scholar | |
Vassilopoulou L, Matalliotakis M, Zervou MI, Matalliotaki C, Krithinakis K, Matalliotakis I, Spandidos DA and Goulielmos GN: Defining the genetic profile of endometriosis. Exp Ther Med. 17:3267–3281. 2019.PubMed/NCBI | |
Vercellini P, Vigano P, Somigliana E and Fedele L: Endometriosis: Pathogenesis and treatment. Nat Rev Endocrinol. 10:261–275. 2014. View Article : Google Scholar | |
Matalliotakis M, Zervou MI, Eliopoulos E, Matalliotaki C, Rahmioglu N, Kalogiannidis I, Zondervan K, Spandidos DA, Matalliotakis I and Goulielmos GN: The role of IL16 gene polymorphisms in endometriosis. Int J Mol Med. 41:1469–1476. 2018.PubMed/NCBI | |
Santanam N, Song M, Rong R, Murphy AA and Parthasarathy S: Atherosclerosis, oxidation and endometriosis. Free Radical Res. 36:1315–1321. 2002. View Article : Google Scholar | |
Kvaskoff M, Mu F, Terry KL, Harris HR, Poole EM, Farland L and Missmer SA: Endometriosis: A high-risk population for major chronic diseases? Hum Reprod Update. 21:500–516. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shigesi N, Kvaskoff M, Kirtley S, Feng Q, Fang H, Knight JC, Missmer SA, Rahmioglu N, Zondervan KT and Becker CM: The association between endometriosis and autoimmune diseases: A systematic review and meta-analysis. Hum Reprod Update. 25:486–503. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zervou MI, Vlachakis D, Papageorgiou L, Eliopoulos E and Goulielmos GN: Increased risk of rheumatoid arthritis in patients with endometriosis: Genetic aspects. Rheumatology (Oxford). 61:4252–4262. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yin Z, Low HY, Chen BS, Huang KS, Zhang Y, Wang YH, Ye Z and Wei JC: Risk of ankylosing spondylitis in patients with endometriosis: A population-based retrospective cohort study. Front Immunol. 13:8779422022. View Article : Google Scholar : PubMed/NCBI | |
Ahn SH, Khalaj K, Young SL, Lessey BA, Koti M and Tayade C: Immune-inflammation gene signatures in endometriosis patients. Fertility Sterility. 106:1420–1431.e7. 2016. View Article : Google Scholar : PubMed/NCBI | |
Hai-Feng T, Wei W, Yuan-Yuan Y, Jun Z, Su-Ping G and Hui-Ming L: Association between polymorphisms in IL-16 genes and coronary heart disease risk. Pakistan J Med Sci. 29:1033–1037. 2013. | |
Rafi U, Ahmad S, Bokhari SS, Iqbal MA, Zia A, Khan MA and Roohi N: Association of Inflammatory Markers/Cytokines with cardiovascular risk manifestation in patients with endometriosis. Mediators Inflamm. 2021:34255602021. View Article : Google Scholar : PubMed/NCBI | |
Kinugasa S, Shinohara K and Wakatsuki A: Increased asymmetric dimethylarginine and enhanced inflammation are associated with impaired vascular reactivity in women with endometriosis. Atherosclerosis. 219:784–788. 2011. View Article : Google Scholar : PubMed/NCBI | |
Melo AS, Rosa-e-Silva JC, Rosa-e-Silva AC, Poli-Neto OB, Ferriani RA and Vieira CS: Unfavorable lipid profile in women with endometriosis. Fertil Steril. 93:2433–2436. 2010. View Article : Google Scholar | |
Mu F, Rich-Edwards J, Rimm EB, Spiegelman D and Missmer SA: Endometriosis and risk of coronary heart disease. Circ Cardiovasc Qual Outcomes. 9:257–264. 2016. View Article : Google Scholar : PubMed/NCBI | |
Akinjero A, Adegbala O and Akinyemiju T: Abstract P320: Is Co-occurring endometriosis among women with myocardial infarction associated with worse In-hospital outcomes? Findings from the nationwide inpatient sample. Circulation. 135:AP320. 2017. View Article : Google Scholar | |
Chiang HJ, Lan KC, Yang YH, Chiang JY, Kung FT, Huang FJ, Lin YJ, Su YT and Sung PH: Risk of major adverse cardiovascular and cerebrovascular events in Taiwanese women with endometriosis. J Formos Med Assoc. 120:327–336. 2021. View Article : Google Scholar | |
Okoth K, Wang J, Zemedikun D, Thomas GN, Nirantharakumar K and Adderley NJ: Risk of cardiovascular outcomes among women with endometriosis in the United Kingdom: A retrospective matched cohort study. BJOG. 128:1598–1609. 2021. View Article : Google Scholar : PubMed/NCBI | |
Marchandot B, Curtiaud A, Matsushita K, Trimaille A, Host A, Faller E, Garbin O, Akladios C, Jesel L and Morel O: Endometriosis and cardiovascular disease. Eur Heart J Open. 2:oeac0012022. View Article : Google Scholar : PubMed/NCBI | |
Benjamin EJ, Muntner P, Alonso A, Bittencourt MS, Callaway CW, Carson AP, Chamberlain AM, Chang AR, Cheng S, Das SR, et al: Heart disease and stroke statistics-2019 Update: A report from the american heart association. Circulation. 139:e56–e528. 2019. View Article : Google Scholar : PubMed/NCBI | |
Samani NJ, Erdmann J, Hall AS, Hengstenberg C, Mangino M, Mayer B, Dixon RJ, Meitinger T, Braund P, Wichmann HE, et al: Genomewide association analysis of coronary artery disease. N Engl J Med. 357:443–453. 2007. View Article : Google Scholar : PubMed/NCBI | |
McPherson R, Pertsemlidis A, Kavaslar N, Stewart A, Roberts R, Cox DR, Hinds DA, Pennacchio LA, Tybjaerg-Hansen A, Folsom AR, et al: A common allele on chromosome 9 associated with coronary heart disease. Science. 316:1488–1491. 2007. View Article : Google Scholar : PubMed/NCBI | |
Helgadottir A, Thorleifsson G, Manolescu A, Gretarsdottir S, Blondal T, Jonasdottir A, Jonasdottir A, Sigurdsson A, Baker A, Palsson A, et al: A common variant on chromosome 9p21 affects the risk of myocardial infarction. Science. 316:1491–1493. 2007. View Article : Google Scholar : PubMed/NCBI | |
Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature. 447:661–678. 2007. View Article : Google Scholar : PubMed/NCBI | |
Clarke R, Peden JF, Hopewell JC, Kyriakou T, Goel A, Heath SC, Parish S, Barlera S, Franzosi MG, Rust S, et al: Genetic variants associated with Lp(a) lipoprotein level and coronary disease. N Engl J Med. 361:2518–2528. 2009. View Article : Google Scholar : PubMed/NCBI | |
Visel A, Zhu Y, May D, Afzal V, Gong E, Attanasio C, Blow MJ, Cohen JC, Rubin EM and Pennacchio LA: Targeted deletion of the 9p21 non-coding coronary artery disease risk interval in mice. Nature. 464:409–412. 2010. View Article : Google Scholar : PubMed/NCBI | |
Holdt LM and Teupser D: Recent studies of the human chromosome 9p21 locus, which is associated with atherosclerosis in human populations. Arterioscler Thromb Vasc Biol. 32:196–206. 2012. View Article : Google Scholar : PubMed/NCBI | |
Holdt LM, Stahringer A, Sass K, Kulak NA, Wilfert W, Kohlmaier A, Herbst A, Northoff BH, Nicolaou A, Gäbel G, et al: Circular non-coding RNA ANRIL modulates ribosomal RNA maturation and atherosclerosis in humans. Nat Commun. 7:124292016. View Article : Google Scholar : PubMed/NCBI | |
Lo Sardo V, Chubukov P, Ferguson W, Kumar A, Teng EL, Duran M, Zhang L, Cost G, Engler AJ, Urnov F, et al: Unveiling the role of the most impactful cardiovascular risk locus through haplotype editing. Cell. 175:1796–1810.20. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kessler T and Schunkert H: Coronary artery disease genetics enlightened by genome-wide association studies. JACC Basic Transl Sci. 6:610–623. 2021. View Article : Google Scholar : PubMed/NCBI | |
Stortoni P, Cecati M, Giannubilo SR, Sartini D, Turi A, Emanuelli M and Tranquilli AL: Placental thrombomodulin expression in recurrent miscarriage. Reprod Biol Endocrinol. 8:12010. View Article : Google Scholar : PubMed/NCBI | |
Saha R, Pettersson HJ, Svedberg P, Olovsson M, Bergqvist A, Marions L, Tornvall P and Kuja-Halkola R: Heritability of endometriosis. Fertil Steril. 104:947–952. 2015. View Article : Google Scholar : PubMed/NCBI | |
Falconer H, D'Hooghe T and Fried G: Endometriosis and genetic polymorphisms. Obstet Gynecol Surv. 62:616–628. 2007. View Article : Google Scholar : PubMed/NCBI | |
Rahmioglu N, Montgomery GW and Zondervan KT: Genetics of endometriosis. Women's Health. 11:577–586. 2015. View Article : Google Scholar : PubMed/NCBI | |
Nyholt DR, Low SK, Anderson CA, Painter JN, Uno S, Morris AP, MacGregor S, Gordon SD, Henders AK, Martin NG, et al: Genome-wide association meta-analysis identifies new endometriosis risk loci. Nat Genet. 44:1355–1359. 2012. View Article : Google Scholar : PubMed/NCBI | |
Rahmioglu N, Nyholt DR, Morris AP, Missmer SA, Montgomery GW and Zondervan KT: Genetic variants underlying risk of endometriosis: Insights from meta-analysis of eight genome-wide association and replication datasets. Hum Reprod Update. 20:702–716. 2014. View Article : Google Scholar : PubMed/NCBI | |
Uimari O, Rahmioglu N, Nyholt DR, Vincent K, Missmer SA, Becker C, Morris AP, Montgomery GW and Zondervan KT: Genome-wide genetic analyses highlight mitogen-activated protein kinase (MAPK) signaling in the pathogenesis of endometriosis. Hum Reprod. 32:780–793. 2017. View Article : Google Scholar : PubMed/NCBI | |
Watanabe K, Taskesen E, van Bochoven A and Posthuma D: Functional mapping and annotation of genetic associations with FUMA. Nat Commun. 8:18262017. View Article : Google Scholar : PubMed/NCBI | |
Sapkota Y, Steinthorsdottir V, Morris AP, Fassbender A, Rahmioglu N, De Vivo I, Buring JE, Zhang F, Edwards TL, Jones S, et al: Meta-analysis identifies five novel loci associated with endometriosis highlighting key genes involved in hormone metabolism. Nat Commun. 8:155392017. View Article : Google Scholar : PubMed/NCBI | |
Sapkota Y, Fassbender A, Bowdler L, Fung JN, Peterse D, O D, Montgomery GW, Nyholt DR and D'Hooghe TM: Independent replication and meta-analysis for endometriosis risk loci. Twin Res Hum Genet. 18:518–525. 2015. View Article : Google Scholar : PubMed/NCBI | |
Rahmioglu N, Mortlock S, Ghiasi M, Møller PL, Stefansdottir L, Galarneau G, Turman C, Danning R, Law MH, Sapkota Y, et al: The genetic basis of endometriosis and comorbidity with other pain and inflammatory conditions. Nat Genet. In press. | |
Albertsen HM, Matalliotaki C, Matalliotakis M, Zervou MI, Matalliotakis I, Spandidos DA, Chettier R, Ward K and Goulielmos GN: Whole exome sequencing identifies hemizygous deletions in the UGT2B28 and USP17L2 genes in a threegeneration family with endometriosis. Mol Med Rep. 19:1716–1720. 2019.PubMed/NCBI | |
Libby P: Inflammation in atherosclerosis. Nature. 420:868–874. 2002. View Article : Google Scholar : PubMed/NCBI | |
Moore KJ and Tabas I: Macrophages in the pathogenesis of atherosclerosis. Cell. 145:341–355. 2011. View Article : Google Scholar : PubMed/NCBI | |
Randolph GJ: The fate of monocytes in atherosclerosis. J Thromb Haemost. 7(Suppl 1): S28–S30. 2009. View Article : Google Scholar | |
Swirski FK and Nahrendorf M: Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science. 339:161–166. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ridker PM: Residual inflammatory risk: Addressing the obverse side of the atherosclerosis prevention coin. Eur Heart J. 37:1720–1722. 2016. View Article : Google Scholar : PubMed/NCBI | |
Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, et al: Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 377:1119–1131. 2017. View Article : Google Scholar : PubMed/NCBI | |
Tardif JC, Kouz S, Waters DD, Bertrand OF, Diaz R, Maggioni AP, Pinto FJ, Ibrahim R, Gamra H, Kiwan GS, et al: Efficacy and safety of low-dose colchicine after myocardial infarction. N Engl J Med. 381:2497–2505. 2019. View Article : Google Scholar : PubMed/NCBI | |
Nidorf SM, Fiolet ATL, Mosterd A, Eikelboom JW, Schut A, Opstal TSJ, The SHK, Xu XF, Ireland MA, Lenderink T, et al: Colchicine in patients with chronic coronary disease. N Engl J Med. 383:1838–1847. 2020. View Article : Google Scholar : PubMed/NCBI | |
Schloss MJ, Swirski FK and Nahrendorf M: Modifiable cardiovascular risk, hematopoiesis, and innate immunity. Circ Res. 126:1242–1259. 2020. View Article : Google Scholar : PubMed/NCBI | |
Vromman A, Ruvkun V, Shvartz E, Wojtkiewicz G, Santos Masson G, Tesmenitsky Y, Folco E, Gram H, Nahrendorf M, Swirski FK, et al: Stage-dependent differential effects of interleukin-1 isoforms on experimental atherosclerosis. Eur Heart J. 40:2482–2491. 2019. View Article : Google Scholar : PubMed/NCBI | |
Grebe A, Hoss F and Latz E: NLRP3 inflammasome and the IL-1 pathway in atherosclerosis. Circ Res. 122:1722–1740. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zernecke A, Shagdarsuren E and Weber C: Chemokines in atherosclerosis: An update. Arterioscler Thromb Vasc Biol. 28:1897–1908. 2008. View Article : Google Scholar : PubMed/NCBI | |
Schunkert H, Konig IR, Kathiresan S, Reilly MP, Assimes TL, Holm H, Preuss M, Stewart AF, Barbalic M, Gieger C, et al: Large-scale association analysis identifies 13 new susceptibility loci for coronary artery disease. Nat Genet. 43:333–338. 2011. View Article : Google Scholar : PubMed/NCBI | |
Doring Y, Noels H, van der Vorst EPC, Neideck C, Egea V, Drechsler M, Mandl M, Pawig L, Jansen Y, Schröder K, et al: Vascular CXCR4 limits atherosclerosis by maintaining arterial integrity: Evidence from mouse and human studies. Circulation. 136:388–403. 2017. View Article : Google Scholar : PubMed/NCBI | |
Doring Y, van der Vorst EPC, Duchene J, Jansen Y, Gencer S, Bidzhekov K, Atzler D, Santovito D, Rader DJ, Saleheen D and Weber C: CXCL12 derived from endothelial cells promotes atherosclerosis to drive coronary artery disease. Circulation. 139:1338–1340. 2019. View Article : Google Scholar : PubMed/NCBI | |
Pober JS and Sessa WC: Evolving functions of endothelial cells in inflammation. Nat Rev Immunol. 7:803–815. 2007. View Article : Google Scholar : PubMed/NCBI | |
Lohse AW, Knolle PA, Bilo K, Uhrig A, Waldmann C, Ibe M, Schmitt E, Gerken G, Meyer Zum and Büschenfelde KH: Antigen-presenting function and B7 expression of murine sinusoidal endothelial cells and Kupffer cells. Gastroenterology. 110:1175–1181. 1996. View Article : Google Scholar : PubMed/NCBI | |
Wedgwood JF, Hatam L and Bonagura VR: Effect of interferon-gamma and tumor necrosis factor on the expression of class I and class II major histocompatibility molecules by cultured human umbilical vein endothelial cells. Cell Immunol. 111:1–9. 1988. View Article : Google Scholar : PubMed/NCBI | |
Carman CV and Martinelli R: T Lymphocyte-endothelial interactions: Emerging understanding of trafficking and antigen-specific immunity. Front Immunol. 6:6032015. View Article : Google Scholar : PubMed/NCBI | |
Motz GT, Santoro SP, Wang LP, Garrabrant T, Lastra RR, Hagemann IS, Lal P, Feldman MD, Benencia F and Coukos G: Tumor endothelium FasL establishes a selective immune barrier promoting tolerance in tumors. Nat Med. 20:607–615. 2014. View Article : Google Scholar : PubMed/NCBI | |
Full LE, Ruisanchez C and Monaco C: The inextricable link between atherosclerosis and prototypical inflammatory diseases rheumatoid arthritis and systemic lupus erythematosus. Arthritis Res Ther. 11:2172009. View Article : Google Scholar : PubMed/NCBI | |
Glavind MT, Forman A, Arendt LH, Nielsen K and Henriksen TB: Endometriosis and pregnancy complications: A Danish cohort study. Fertil Steril. 107:160–166. 2017. View Article : Google Scholar | |
Haney AF, Jenkins S and Weinberg JB: The stimulus responsible for the peritoneal fluid inflammation observed in infertile women with endometriosis. Fertil Steril. 56:408–413. 1991. View Article : Google Scholar : PubMed/NCBI | |
Uz YH, Murk W, Bozkurt I, Kizilay G, Arici A and Kayisli UA: Increased c-Jun N-terminal kinase activation in human endometriotic endothelial cells. Histochem Cell Biol. 135:83–91. 2011. View Article : Google Scholar | |
Bedaiwy MA and Falcone T: Peritoneal fluid environment in endometriosis. Clinicopathological implications. Minerva Ginecol. 55:333–345. 2003.PubMed/NCBI | |
Agic A, Xu H, Finas D, Banz C, Diedrich K and Hornung D: Is endometriosis associated with systemic subclinical inflammation? Gynecol Obstet Invest. 62:139–147. 2006. View Article : Google Scholar : PubMed/NCBI | |
Monsanto SP, Edwards AK, Zhou J, Nagarkatti P, Nagarkatti M, Young SL, Lessey BA and Tayade C: Surgical removal of endometriotic lesions alters local and systemic proinflammatory cytokines in endometriosis patients. Fertil Steril. 105:968–977.e965. 2016. View Article : Google Scholar : | |
Graziottin A, Skaper SD and Fusco M: Mast cells in chronic inflammation, pelvic pain and depression in women. Gynecol Endocrinol. 30:472–477. 2014. View Article : Google Scholar : PubMed/NCBI | |
Indraccolo U and Barbieri F: Effect of palmitoylethanolamide-polydatin combination on chronic pelvic pain associated with endometriosis: Preliminary observations. Eur J Obstet Gynecol Reprod Biol. 150:76–79. 2010. View Article : Google Scholar : PubMed/NCBI | |
Grandi G, Mueller MD, Papadia A, Kocbek V, Bersinger NA, Petraglia F, Cagnacci A and McKinnon B: Inflammation influences steroid hormone receptors targeted by progestins in endometrial stromal cells from women with endometriosis. J Reprod Immunol. 117:30–38. 2016. View Article : Google Scholar : PubMed/NCBI | |
Garcia-Gomez E, Vazquez-Martinez ER, Reyes-Mayoral C, Cruz-Orozco OP, Camacho-Arroyo I and Cerbon M: Regulation of Inflammation Pathways and Inflammasome by Sex Steroid Hormones in Endometriosis. Front Endocrinol. 10:9352019. View Article : Google Scholar | |
Bao C, Wang H and Fang H: Genomic evidence supports the recognition of endometriosis as an inflammatory systemic disease and reveals disease-specific therapeutic potentials of targeting neutrophil degranulation. Front Immunol. 13:7584402022. View Article : Google Scholar : PubMed/NCBI | |
Malhotra N, Karmakar D, Tripathi V, Luthra K and Kumar S: Correlation of angiogenic cytokines-leptin and IL-8 in stage, type and presentation of endometriosis. Gynecol Endocrinol. 28:224–227. 2012. View Article : Google Scholar | |
Kobayashi H, Higashiura Y, Shigetomi H and Kajihara H: Pathogenesis of endometriosis: The role of initial infection and subsequent sterile inflammation (Review). Mol Med Rep. 9:9–15. 2014. View Article : Google Scholar | |
Shifren JL, Tseng JF, Zaloudek CJ, Ryan IP, Meng YG, Ferrara N, Jaffe RB and Taylor RN: Ovarian steroid regulation of vascular endothelial growth factor in the human endometrium: implications for angiogenesis during the menstrual cycle and in the pathogenesis of endometriosis. J Clin Endocrinol Metab. 81:3112–3118. 1996.PubMed/NCBI | |
Kirchhoff D, Kaulfuss S, Fuhrmann U, Maurer M and Zollner TM: Mast cells in endometriosis: Guilty or innocent bystanders? Expert Opin Ther Targets. 16:237–241. 2012. View Article : Google Scholar : PubMed/NCBI | |
Wu J, Xie H, Yao S and Liang Y: Macrophage and nerve interaction in endometriosis. J Neuroinflammation. 14:532017. View Article : Google Scholar : PubMed/NCBI | |
Sasamoto N, Ngo L, Vitonis AF, Dillon ST, Missmer SA, Libermann TA and Terry KL: Circulating proteomic profiles associated with endometriosis in adolescents and young adults. Hum Reprod. 37:2042–2053. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ahmed Z and Bicknell R: Angiogenic signalling pathways. Methods Mol Biol. 467:3–24. 2009. View Article : Google Scholar : PubMed/NCBI | |
Landskroner-Eiger S, Moneke I and Sessa WC: miRNAs as modulators of angiogenesis. Cold Spring Harb Perspect Med. 3:a0066432013. View Article : Google Scholar | |
Wang S and Olson EN: AngiomiRs-key regulators of angiogenesis. Curr Opin Genet Dev. 19:205–211. 2009. View Article : Google Scholar : PubMed/NCBI | |
Uchida S and Dimmeler S: Long noncoding RNAs in cardiovascular diseases. Circ Res. 116:737–750. 2015. View Article : Google Scholar : PubMed/NCBI | |
Kumar MM and Goyal R: LncRNA as a therapeutic target for angiogenesis. Curr Top Med Chem. 17:1750–1757. 2017. View Article : Google Scholar : | |
Lusis AJ: Atherosclerosis. Nature. 407:233–241. 2000. View Article : Google Scholar : PubMed/NCBI | |
Michel JB, Thaunat O, Houard X, Meilhac O, Caligiuri G and Nicoletti A: Topological determinants and consequences of adventitial responses to arterial wall injury. Arterioscler Thromb Vasc Biol. 27:1259–1268. 2007. View Article : Google Scholar : PubMed/NCBI | |
Moreno PR, Purushothaman KR, Sirol M, Levy AP and Fuster V: Neovascularization in human atherosclerosis. Circulation. 113:2245–2252. 2006. View Article : Google Scholar : PubMed/NCBI | |
Conway EM, Collen D and Carmeliet P: Molecular mechanisms of blood vessel growth. Cardiovasc Res. 49:507–521. 2001. View Article : Google Scholar : PubMed/NCBI | |
Simons M: Angiogenesis: Where do we stand now? Circulation. 111:1556–1566. 2005. View Article : Google Scholar : PubMed/NCBI | |
Tanaka K, Nagata D, Hirata Y, Tabata Y, Nagai R and Sata M: Augmented angiogenesis in adventitia promotes growth of atherosclerotic plaque in apolipoprotein E-deficient mice. Atherosclerosis. 215:366–373. 2011. View Article : Google Scholar : PubMed/NCBI | |
Carmeliet P: Angiogenesis in health and disease. Nat Med. 9:653–660. 2003. View Article : Google Scholar : PubMed/NCBI | |
Michel JB, Martin-Ventura JL, Nicoletti A and Ho-Tin-Noe B: Pathology of human plaque vulnerability: Mechanisms and consequences of intraplaque haemorrhages. Atherosclerosis. 234:311–319. 2014. View Article : Google Scholar : PubMed/NCBI | |
Bhardwaj S, Roy H, Heikura T and Yla-Herttuala S: VEGF-A, VEGF-D and VEGF-D(DeltaNDeltaC) induced intimal hyperplasia in carotid arteries. Eur J Clin Invest. 35:669–676. 2005. View Article : Google Scholar : PubMed/NCBI | |
Moulton KS, Heller E, Konerding MA, Flynn E, Palinski W and Folkman J: Angiogenesis inhibitors endostatin or TNP-470 reduce intimal neovascularization and plaque growth in apolipoprotein E-deficient mice. Circulation. 99:1726–1732. 1999. View Article : Google Scholar : PubMed/NCBI | |
Swirski FK and Nahrendorf M: Cardioimmunology: The immune system in cardiac homeostasis and disease. Nat Rev Immunolo. 18:733–744. 2018. View Article : Google Scholar | |
Dang TA, Schunkert H and Kessler T: cGMP signaling in cardiovascular diseases: Linking genotype and phenotype. J Cardiovasc Pharmacol. 75:516–525. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feil R and Kemp-Harper B: cGMP signalling: From bench to bedside. Conference on cGMP generators, effectors and therapeutic implications. EMBO Rep. 7:149–153. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dubey RK, Jackson EK and Luscher TF: Nitric oxide inhibits angiotensin II-induced migration of rat aortic smooth muscle cell. Role of cyclic-nucleotides and angiotensin1 receptors. J Clin Invest. 96:141–149. 1995. View Article : Google Scholar : PubMed/NCBI | |
Libby P, Ridker PM and Hansson GK: Progress and challenges in translating the biology of atherosclerosis. Nature. 473:317–325. 2011. View Article : Google Scholar : PubMed/NCBI | |
Taylor HS, Kotlyar AM and Flores VA: Endometriosis is a chronic systemic disease: Clinical challenges and novel innovations. Lancet. 397:839–852. 2021. View Article : Google Scholar : PubMed/NCBI | |
Bacci M, Capobianco A, Monno A, Cottone L, Di Puppo F, Camisa B, Mariani M, Brignole C, Ponzoni M, Ferrari S, et al: Macrophages are alternatively activated in patients with endometriosis and required for growth and vascularization of lesions in a mouse model of disease. Am J Pathol. 175:547–556. 2009. View Article : Google Scholar : PubMed/NCBI | |
Bianco B, André GM, Vilarino FL, Peluso C, Mafra FA, Christofolini DM and Barbosa CP: The possible role of genetic variants in autoimmune-related genes in the development of endometriosis. Hum Immunol. 73:306–315. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liu D, Song J, Ji X, Liu Z, Cong M and Hu B: Association of genetic polymorphisms on VEGFA and VEGFR2 with risk of coronary heart disease. Medicine. 95:e34132016. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Marti-Gutierrez N, Park SW, Wu J, Hayama T, Darby H, Van Dyken C, Li Y, Koski A, Liang D, Ma, et al: reply. Nature. 560:E10–E23. 2018. View Article : Google Scholar | |
Shimizu Y, Arima K, Noguchi Y, Yamanashi H, Kawashiri SY, Nobusue K, Nonaka F, Aoyagi K, Nagata Y and Maeda T: Vascular endothelial growth factor (VEGF) polymorphism rs3025039 and atherosclerosis among older with hypertension. Sci Rep. 12:55642022. View Article : Google Scholar : PubMed/NCBI | |
Eldafira E, Prasasty VD, Abinawanto A, Syahfirdi L and Pujianto DA: Polymorphisms of estrogen receptor-α and estrogen receptor-β genes and its expression in endometriosis. Turk J Pharm Sci. 18:91–95. 2021. View Article : Google Scholar : PubMed/NCBI | |
Casazza K, Page GP and Fernandez JR: The association between the rs2234693 and rs9340799 estrogen receptor alpha gene polymorphisms and risk factors for cardiovascular disease: A review. Biol Res Nurs. 12:84–97. 2010. View Article : Google Scholar : PubMed/NCBI | |
Mao T, Zong LL, Wang YF, Zhao X, Fu YG, Zeng J and Rao XQ: Association of the IL-6 gene 634C/G polymorphism with susceptibility to endometriosis. Zhonghua Yi Xue Yi Chuan Xue Za Zhi. 28:555–558. 2011.In Chinese. PubMed/NCBI | |
Lu S, Wang Y, Wang Y, Hu J, Di W, Liu S, Zeng X, Yu G, Wang Y and Wang Z: The IL-6 rs1800795 and rs1800796 polymorphisms are associated with coronary artery disease risk. J Cell Mol Med. 24:6191–6207. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kumari R and Kumar S, Ahmad MK, Singh R, Kant Kumar S, Pradhan A, Chandra S and Kumar S: Promoter variants of TNF-α rs1800629 and IL-10 rs1800871 are independently associated with the susceptibility of coronary artery disease in north Indian. Cytokine. 110:131–136. 2018. View Article : Google Scholar : PubMed/NCBI | |
Juo SH, Wu R, Lin CS, Wu MT, Lee JN and Tsai EM: A functional promoter polymorphism in interleukin-10 gene influences susceptibility to endometriosis. Fertil Steril. 92:1228–1233. 2009. View Article : Google Scholar | |
Zheng J, Chen T and Lin H: IL-10, IL-18 gene polymorphisms might influence predisposition to coronary artery disease in east asians: A meta-analysis. Immunol Invest. 50:37–46. 2021. View Article : Google Scholar | |
Chen Y, Huang H, Liu S, Pan LA, Zhou B, Zhang L and Zeng Z: IL-16 rs11556218 gene polymorphism is associated with coronary artery disease in the Chinese Han population. Clin Biochem. 44:1041–1044. 2011. View Article : Google Scholar : PubMed/NCBI | |
Luo Z, Lu Z, Muhammad I, Chen Y, Chen Q, Zhang J and Song Y: Associations of the MTHFR rs1801133 polymorphism with coronary artery disease and lipid levels: A systematic review and updated meta-analysis. Lipids Health Dis. 17:1912018. View Article : Google Scholar : PubMed/NCBI | |
Szczepanska M, Mostowska A, Wirstlein P, Lianeri M, Marianowski P, Skrzypczak J and Jagodziński PP: Polymorphic variants of folate and choline metabolism genes and the risk of endometriosis-associated infertility. Eur J Obstet Gynecol Reprod Biol. 157:67–72. 2011. View Article : Google Scholar : PubMed/NCBI | |
Rodriguez-Rodriguez L, Lopez-Mejias R, Garcia-Bermudez M, Gonzalez-Juanatey C, Gonzalez-Gay MA and Martin J: Genetic markers of cardiovascular disease in rheumatoid arthritis. Mediators Inflamm. 2012:5748172012. View Article : Google Scholar : PubMed/NCBI | |
Sundqvist J, Falconer H, Seddighzadeh M, Vodolazkaia A, Fassbender A, Kyama C, Bokor A, Stephansson O, Padyukov L, Gemzell-Danielsson K and D'Hooghe TM: Endometriosis and autoimmune disease: Association of susceptibility to moderate/severe endometriosis with CCL21 and HLA-DRB1. Fertil Steril. 95:437–440. 2011. View Article : Google Scholar | |
Nilufer R, Karina B, Paraskevi C, Rebecca D, Genevieve G, Ayush G, Stuar M, Sally M, Yadav S, Andrew SJ, et al: Large-scale genome-wide association meta-analysis of endometriosis reveals 13 novel loci and genetically-associated comorbidity with other pain conditions. bio Rxiv. 406967. 2018, View Article : Google Scholar | |
Zhang H, Mooney CJ and Reilly MP: ABO blood groups and cardiovascular diseases. Int J Vasc Med. 2012:6419172012.PubMed/NCBI | |
Omrani-Nava V, Hedayatizadeh-Omran A, Alizadeh-Navaei R, Mokhberi V, Jalalian R, Janbabaei G, Amjadi O, Rahmatpour G and Mozaffari A: TP53 single nucleotide polymorphism (rs1042522) in Iranian patients with coronary artery disease. Biomed Rep. 9:259–265. 2018.PubMed/NCBI | |
Li J, Chen Y, Mo Z and Li L: TP53 Arg72Pro polymorphism (rs1042522) and risk of endometriosis among Asian and Caucasian populations. Eur J Obstet Gynecol Reprod Biol. 189:73–78. 2015. View Article : Google Scholar : PubMed/NCBI | |
Shakhtshneider E, Orlov P, Semaev S, Ivanoshchuk D, Malyutina S, Gafarov V, Ragino Y and Voevoda M: Analysis of polymorphism rs1333049 (Located at 9P21.3) in the white population of western siberia and associations with clinical and biochemical markers. Biomolecules. 9:2902019. View Article : Google Scholar : PubMed/NCBI | |
Lalami I, Abo C, Borghese B, Chapron C and Vaiman D: Genomics of endometriosis: From genome wide association studies to exome sequencing. Int J Mol Sci. 22:72972021. View Article : Google Scholar : PubMed/NCBI | |
Kang YJ, Jeung IC, Park A, Park YJ, Jung H, Kim TD, Lee HG, Choi I and Yoon SR: An increased level of IL-6 suppresses NK cell activity in peritoneal fluid of patients with endometriosis via regulation of SHP-2 expression. Hum Reprod. 29:2176–2189. 2014. View Article : Google Scholar : PubMed/NCBI | |
Holdt LM and Teupser D: Long noncoding RNA ANRIL: Lnc-ing genetic variation at the chromosome 9p21 locus to molecular mechanisms of atherosclerosis. Front Cardiovasc Med. 5:1452018. View Article : Google Scholar : PubMed/NCBI | |
Matoo S, Fallah MS, Daneshpour MS, Mousavi R, Sedaghati Khayat B, Hasanzad M and Azizi F: Increased risk of CHD in the presence of rs7865618 (A allele): Tehran lipid and glucose study. Arch Iran Med. 20:153–157. 2017.PubMed/NCBI | |
Manjula G, Pranavchand R, Kumuda I, Reddy BS and Reddy BM: The SNP rs7865618 of 9p213 locus emerges as the most promising marker of coronary artery disease in the southern Indian population. Sci Rep. 10:215112020. View Article : Google Scholar | |
Yang Y, Shi X, Du Z, Zhou G and Zhang X: Associations between genetic variations in microRNA and myocardial infarction susceptibility: A meta-analysis and systematic review. Herz. 47:524–535. 2022. View Article : Google Scholar | |
Farsimadan M, Ismail Haje M, Khudhur Mawlood C, Arabipour I, Emamvirdizadeh A, Takamoli S, Masumi M and Vaziri H: MicroRNA variants in endometriosis and its severity. Br J Biomed Sci. 78:206–210. 2021. View Article : Google Scholar : PubMed/NCBI | |
Cai MY, Cheng J, Zhou MY, Liang LL, Lian SM, Xie XS, Xu S, Liu X and Xiong XD: The associationbetween pre-miR-27a rs 895819 polymorphism and myocardial infarction risk in a Chinese Han population. Lipids Health Dis. 17:72018. View Article : Google Scholar | |
Jaafar SO, Jaffar JO, Ibrahim SA and Jarjees KK: MicroRNA Variants miR-27a rs895819 and miR-423 rs6505162, but not miR-124-1 rs531564, are Linked to endometriosis and its severity. Br J Biomed Sci. 79:102072022. View Article : Google Scholar : PubMed/NCBI | |
Zhang Z, Li H, Zhao Z, Gao B, Meng L and Feng X: miR-146b level and variants is associated with endometriosis related macrophages phenotype and plays a pivotal role in the endometriotic pain symptom. Taiwan J Obstet Gynecol. 58:401–408. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Ponnusamy M, Zhang L, Zhang Y, Liu C, Yu W, Wang K and Li P: The role of miR-214 in cardiovascular diseases. Eur J Pharmacol. 816:138–145. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jones Buie JN, Goodwin AJ, Cook JA, Halushka PV and Fan H: The role of miRNAs in cardiovascular disease risk factors. Atherosclerosis. 254:271–281. 2016. View Article : Google Scholar : PubMed/NCBI | |
CARDIoGRAMplusC4D Consortium; Deloukas P, Kanoni S, Willenborg C, Farrall M, Assimes TL, Thompson JR, Ingelsson E, Saleheen D, Erdmann J, et al: Large-scale association analysis identifies new risk loci for coronary artery disease. Nat Genet. 45:25–33. 2013. View Article : Google Scholar | |
Ghafouri-Fard S, Shoorei H and Taheri M: Role of Non-coding RNAs in the pathogenesis of endometriosis. Front Oncol. 10:13702020. View Article : Google Scholar : PubMed/NCBI | |
Besseling J, Hovingh GK, Huijgen R, Kastelein JJP and Hutten BA: Statins in familial hypercholesterolemia: Consequences for coronary artery disease and All-cause mortality. J Am Coll Cardiol. 68:252–260. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jha CK, Mir R, Elfaki I, Khullar N, Rehman S, Javid J, Banu S and Chahal SMS: Potential impact of MicroRNA-423 gene variability in coronary artery disease. Endocr Metab Immune Disord Drug Targets. 19:67–74. 2019. View Article : Google Scholar | |
Chang CY, Lai MT, Chen Y, Yang CW, Chang HW, Lu CC, Chen CM, Chan C, Chung C, Tseng CC, et al: Up-regulation of ribosome biogenesis by MIR196A2 genetic variation promotes endometriosis development and progression. Oncotarget. 7:76713–76725. 2016. View Article : Google Scholar : PubMed/NCBI | |
Fragoso JM, Ramirez-Bello J, Martinez-Rios MA, Peña-Duque MA, Posadas-Sánchez R, Delgadillo-Rodríguez H, Jiménez-Morales M, Posadas-Romero C and Vargas-Alarcón G: miR-196a2 (rs11614913) polymorphism is associated with coronary artery disease, but not with in-stent coronary restenosis. Inflamm Res. 68:215–221. 2019. View Article : Google Scholar | |
Davignon J: Beneficial cardiovascular pleiotropic effects of statins. Circulation. 109(23 Suppl 1): III39–II43. 2004. View Article : Google Scholar : PubMed/NCBI | |
Leuschner F, Rauch PJ, Ueno T, Gorbatov R, Marinelli B, Lee WW, Dutta P, Wei Y, Robbins C, Iwamoto Y, et al: Rapid monocyte kinetics in acute myocardial infarction are sustained by extramedullary monocytopoiesis. J Exp Med. 209:123–137. 2012. View Article : Google Scholar : PubMed/NCBI | |
Hoyer FF, Naxerova K, Schloss MJ, Hulsmans M, Nair AV, Dutta P, Calcagno DM, Herisson F, Anzai A, Sun Y, et al: Tissue-specific macrophage responses to remote injury impact the outcome of subsequent local immune challenge. Immunity. 51:899–914 e897. 2019. View Article : Google Scholar : PubMed/NCBI | |
Burney RO and Giudice LC: Pathogenesis and pathophysiology of endometriosis. Fertil Steril. 98:511–519. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhao N and Zhang J: Role of alternative splicing of VEGF-A in the development of atherosclerosis. Aging. 10:2695–2708. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhao W, Li Y, Zhao J and Kang S: A functional promoter polymorphism in interleukin 12B gene is associated with an increased risk of ovarian endometriosis. Gene. 666:27–31. 2018. View Article : Google Scholar : PubMed/NCBI | |
Buroker NE: SNP (rs1570360) in transcriptional factor binding sites of the VEGFA promoter is associated with hypertensive nephropathy and diabetic retinopathy. Austin J Endocrinol Diabetes. 2:1–5. 2015. | |
Kim I, Moon SO, Kim SH, Kim HJ, Koh YS and Koh GY: Vascular endothelial growth factor expression of intercellular adhesion molecule 1 (ICAM-1), vascular cell adhesion molecule 1 (VCAM-1), and E-selectin through nuclear factor-kappa B activation in endothelial cells. J Biol Chem. 276:7614–7620. 2001. View Article : Google Scholar | |
McCarron SL, Edwards S, Evans PR, Gibbs R, Dearnaley DP, Dowe A, Southgate C, Easton DF, Eeles RA and Howell WM: Influence of cytokine gene polymorphisms on the development of prostate cancer. Cancer Res. 62:3369–3372. 2002.PubMed/NCBI | |
Howell WM, Bateman AC, Turner SJ, Collins A and Theaker JM: Influence of vascular endothelial growth factor single nucleotide polymorphisms on tumour development in cutaneous malignant melanoma. Genes Immunity. 3:229–232. 2002. View Article : Google Scholar : PubMed/NCBI | |
Vigano P, Parazzini F, Somigliana E and Vercellini P: Endometriosis: Epidemiology and aetiological factors. Best Pract Res Clin Obstet Gynaecol. 18:177–200. 2004. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Xu A and Xu H: The roles of vascular endothelial growth factor gene polymorphisms in congenital heart diseases: A meta-analysis. Growth Factors. 36:232–238. 2018. View Article : Google Scholar | |
Wieser F, Fabjani G, Tempfer C, Schneeberger C, Sator M, Huber J and Wenzl R: Analysis of an interleukin-6 gene promoter polymorphism in women with endometriosis by pyrosequencing. J Soc Gynecol Investig. 10:32–36. 2003.PubMed/NCBI | |
Schieffer B, Schieffer E, Hilfiker-Kleiner D, Hilfiker A, Kovanen PT, Kaartinen M, Nussberger J, Harringer W and Drexler H: Expression of angiotensin II and interleukin 6 in human coronary atherosclerotic plaques: Potential implications for inflammation and plaque instability. Circulation. 101:1372–1378. 2000. View Article : Google Scholar : PubMed/NCBI | |
Moore KW, de Waal Malefyt R, Coffman RL and O'Garra A: Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol. 19:683–765. 2001. View Article : Google Scholar : PubMed/NCBI | |
Kitawaki J, Obayashi H, Ohta M, Kado N, Ishihara H, Koshiba H, Kusuki I, Tsukamoto K, Hasegawa G, Nakamura N, et al: Genetic contribution of the interleukin-10 promoter polymorphism in endometriosis susceptibility. Am J Reprod Immunol. 47:12–18. 2002. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Hei P, Deng L and Lin J: Interleukin-10 gene promoter polymorphisms and their protein production in peritoneal fluid in patients with endometriosis. Mol Hum Reprod. 13:135–140. 2007. View Article : Google Scholar | |
Tabrez S, Ali M, Jabir NR, Firoz CK, Ashraf GM, Hindawi S, Damanhouri GA and Nabil Alama M: A putative association of interleukin-10 promoter polymorphisms with cardiovascular disease. IUBMB Life. 69:522–527. 2017. View Article : Google Scholar : PubMed/NCBI | |
Center DM, Kornfeld H and Cruikshank WW: Interleukin-16. Int J Biochem Cell Biol. 29:1231–1234. 1997. View Article : Google Scholar | |
Mathy NL, Scheuer W, Lanzendörfer M, Honold K, Ambrosius D, Norley S, Kurth R, et al: Interleukin-16 stimulates the expression and production of pro-inflammatory cytokines by human monocytes. Immunology. 100:63–69. 2000. View Article : Google Scholar : PubMed/NCBI | |
Cheong YC, Shelton JB, Laird SM, Richmond M, Kudesia G, Li TC and Ledger WL: IL-1, IL-6 and TNF-alpha concentrations in the peritoneal fluid of women with pelvic adhesions. Hum Reprod. 17:69–75. 2002. View Article : Google Scholar : PubMed/NCBI | |
Watkins D and Rosenblatt DS: Inherited disorders of folate and cobalamin transport and Metabolism. The Online Metabolic and Molecular Bases of Inherited Disease. Valle DL, Antonarakis S, Ballabio A, Beaudet AL and Mitchell GA: McGraw-Hill Education; New York, NY: 2019 | |
Lian Z, Lv FF, Yu J and Wang JW: The anti-inflammatory effect of microRNA-383-3p interacting with IL1R2 against homocysteine-induced endothelial injury in rat coronary arteries. J Cell Biochem. 119:6684–6694. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cyster JG: Leukocyte migration: Scent of the T zone. Curr Biol. 10:R30–R33. 2000. View Article : Google Scholar : PubMed/NCBI | |
Li G, Zhao J, Li B, Ma J, Zhao Q, Wang X, Lv Z, Li K, Du Z, Ma X and Liu J: Associations between CCL21 gene polymorphisms and susceptibility to rheumatoid arthritis: A meta-analysis. Rheumatol Int. 37:1673–1681. 2017. View Article : Google Scholar : PubMed/NCBI | |
Damas JK, Smith C, Øie E, Fevang B, Halvorsen B, Waehre T, Boullier A, Breland U, Yndestad A, Ovchinnikova O, et al: Enhanced expression of the homeostatic chemokines CCL19 and CCL21 in clinical and experimental atherosclerosis: Possible pathogenic role in plaque destabilization. Arterioscler Thromb Vasc Biol. 27:614–620. 2007. View Article : Google Scholar | |
Nakayama T, Kitaya K, Okubo T, Kuroboshi H, Daikoku N, Fushiki S and Honjo H: Fluctuation of 6Ckine expression in human endometrium during the menstrual cycle. Fertil Steril. 80:1461–1465. 2003. View Article : Google Scholar : PubMed/NCBI | |
Nilsson S and Gustafsson JA: Biological role of estrogen and estrogen receptors. Crit Rev Biochem Mol Biol. 37:1–28. 2002. View Article : Google Scholar : PubMed/NCBI | |
Howard BV, Criqui MH, Curb JD, Rodabough R, Safford MM, Santoro N, Wilson AC and Wylie-Rosett J: Risk factor clustering in the insulin resistance syndrome and its relationship to cardiovascular disease in postmenopausal white, black, hispanic, and Asian/Pacific Islander women. Metabolism. 52:362–371. 2003. View Article : Google Scholar : PubMed/NCBI | |
Huang Q, Wang TH, Lu WS, Mu PW, Yang YF, Liang WW, Li CX and Lin GP: Estrogen receptor alpha gene polymorphism associated with type 2 diabetes mellitus and the serum lipid concentration in Chinese women in Guangzhou. Chin Med J (Engl). 119:1794–1801. 2006. View Article : Google Scholar : PubMed/NCBI | |
Lawlor DA, Timpson N, Ebrahim S, Day IN and Smith GD: The association of oestrogen receptor alpha-haplotypes with cardiovascular risk factors in the British Women's Heart and Health Study. Eur Heart J. 27:1597–1604. 2006. View Article : Google Scholar : PubMed/NCBI | |
Almeida S and Hutz MH: Genetic variation of estrogen metabolism and the risks of cardiovascular disease. Curr Opin Investig Drugs. 8:814–820. 2007.PubMed/NCBI | |
Naccarati A, Polakova V, Pardini B, Vodickova L, Hemminki K, Kumar R and Vodicka P: Mutations and polymorphisms in TP53 gene-an overview on the role in colorectal cancer. Mutagenesis. 27:211–218. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bennett BJ, Davis RC, Civelek M, Orozco L, Wu J, Qi H, Pan C, Packard RR, Eskin E, Yan M, et al: Genetic Architecture of atherosclerosis in mice: A systems genetics analysis of common inbred strains. PLoS Genet. 11:e10057112015. View Article : Google Scholar : PubMed/NCBI | |
Frank AK, Leu JI, Zhou Y, Devarajan K, Nedelko T, Klein-Szanto A, Hollstein M and Murphy ME: The codon 72 polymorphism of p53 regulates interaction with NF-{kappa}B and transactivation of genes involved in immunity and inflammation. Mol Cell Biol. 31:1201–1213. 2011. View Article : Google Scholar : PubMed/NCBI | |
Dumont C, Corsoni-Tadrzak A, Ruf S, de Boer J, Williams A, Turner M, Kioussis D and Tybulewicz VL: Rac GTPases play critical roles in early T-cell development. Blood. 113:3990–3998. 2009. View Article : Google Scholar : | |
Storry JR and Olsson ML: The ABO blood group system revisited: A review and update. Immunohematology. 25:48–59. 2009. View Article : Google Scholar : PubMed/NCBI | |
Reilly MP, Li M, He J, Ferguson JF, Stylianou IM, Mehta NN, Burnett MS, Devaney JM, Knouff CW, Thompson JR, et al: Identification of ADAMTS7 as a novel locus for coronary atherosclerosis and association of ABO with myocardial infarction in the presence of coronary atherosclerosis: Two genome-wide association studies. Lancet. 377:383–392. 2011. View Article : Google Scholar : PubMed/NCBI | |
Pare G, Ridker PM, Rose L, Barbalic M, Dupuis J, Dehghan A, Bis JC, Benjamin EJ, Shiffman D, Parker AN and Chasman DI: Genome-wide association analysis of soluble ICAM-1 concentration reveals novel associations at the NFKBIK, PNPLA3, RELA, and SH2B3 loci. PLoS Genet. 7:e10013742011. View Article : Google Scholar : PubMed/NCBI | |
Kiechl S, Pare G, Barbalic M, Qi L, Dupuis J, Dehghan A, Bis JC, Laxton RC, Xiao Q, Bonora E, et al: Association of variation at the ABO locus with circulating levels of soluble intercellular adhesion molecule-1, soluble P-selectin, and soluble E-selectin: A meta-analysis. Circ Cardiovasc Genet. 4:681–686. 2011. View Article : Google Scholar : PubMed/NCBI | |
Roberts R and Stewart AF: 9p21 and the genetic revolution for coronary artery disease. Clin Chem. 58:104–112. 2012. View Article : Google Scholar | |
Broadbent HM, Peden JF, Lorkowski S, Goel A, Ongen H, Green F, Clarke R, Collins R, Franzosi MG, Tognoni G, et al: Susceptibility to coronary artery disease and diabetes is encoded by distinct, tightly linked SNPs in the ANRIL locus on chromosome 9p. Hum Mol Genet. 17:806–814. 2008. View Article : Google Scholar | |
Cunnington MS, Santibanez Koref M, Mayosi BM, Burn J and Keavney B: Chromosome 9p21 SNPs associated with multiple disease phenotypes correlate with ANRIL expression. PLoS Genet. 6:e10008992010. View Article : Google Scholar : PubMed/NCBI | |
Kalpana B, Murthy DK and Balakrishna N: 9p213 coronary artery disease risk locus and interferon alpha 21: Association study in an Asian Indian population. Indian Heart J. 71:476–480. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee GH, Choi YM, Hong MA, Yoon SH, Kim JJ, Hwang K and Chae SJ: Association of CDKN2B-AS and WNT4 genetic polymorphisms in Korean patients with endometriosis. Fertil Steril. 102:1393–1397. 2014. View Article : Google Scholar : PubMed/NCBI | |
Motterle A, Pu X, Wood H, Xiao Q, Gor S, Ng FL, Chan K, Cross F, Shohreh B, Poston RN, et al: Functional analyses of coronary artery disease associated variation on chromosome 9p21 in vascular smooth muscle cells. Hum Mol Genet. 21:4021–4029. 2012. View Article : Google Scholar : PubMed/NCBI | |
Boettger T, Beetz N, Kostin S, Schneider J, Krüger M, Hein L and Braun T: Acquisition of the contractile phenotype by murine arterial smooth muscle cells depends on the Mir143/145 gene cluster. J Clin Invest. 119:2634–2647. 2009. View Article : Google Scholar : PubMed/NCBI | |
Cordes KR, Sheehy NT, White MP, Berry EC, Morton SU, Muth AN, Lee TH, Miano JM, Ivey KN and Srivastava D: miR-145 and miR-143 regulate smooth muscle cell fate and plasticity. Nature. 460:705–710. 2009. View Article : Google Scholar : PubMed/NCBI | |
Elia L, Quintavalle M, Zhang J, Contu R, Cossu L, Latronico MV, Peterson KL, Indolfi C, Catalucci D, Chen J, et al: The knockout of miR-143 and -145 alters smooth muscle cell maintenance and vascular homeostasis in mice: Correlates with human disease. Cell Death Differ. 16:1590–1598. 2009. View Article : Google Scholar : PubMed/NCBI | |
Elia L, Kunderfranco P, Carullo P, Vacchiano M, Farina FM, Hall IF, Mantero S, Panico C, Papait R, Condorelli G and Quintavalle M: UHRF1 epigenetically orchestrates smooth muscle cell plasticity in arterial disease. J Clin Invest. 128:2473–2486. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xin M, Small EM, Sutherland LB, Qi X, McAnally J, Plato CF, Richardson JA, Bassel-Duby R and Olson EN: MicroRNAs miR-143 and miR-145 modulate cytoskeletal dynamics and responsiveness of smooth muscle cells to injury. Genes Dev. 23:2166–2178. 2009. View Article : Google Scholar : PubMed/NCBI | |
Quintavalle M, Elia L, Condorelli G and Courtneidge SA: MicroRNA control of podosome formation in vascular smooth muscle cells in vivo and in vitro. J Cell Biol. 189:13–22. 2010. View Article : Google Scholar : PubMed/NCBI | |
Climent M, Quintavalle M, Miragoli M, Chen J, Condorelli G and Elia L: TGFβ Triggers miR-143/145 transfer from smooth muscle cells to endothelial cells, thereby modulating vessel stabilization. Circ Res. 116:1753–1764. 2015. View Article : Google Scholar : PubMed/NCBI | |
Faccini J, Ruidavets JB, Cordelier P, Martins F, Maoret JJ, Bongard V, Ferrières J, Roncalli J, Elbaz M and Vindis C: Circulating miR-155, miR-145 and let-7c as diagnostic biomarkers of the coronary artery disease. Sci Rep. 7:429162017. View Article : Google Scholar : PubMed/NCBI | |
Hall IF, Climent M, Viviani Anselmi C, Papa L, Tragante V, Lambroia L, Farina FM, Kleber ME, März W, Biguori C, et al: rs41291957 controls miR-143 and miR-145 expression and impacts coronary artery disease risk. EMBO Mol Med. 13:e140602021. View Article : Google Scholar : PubMed/NCBI | |
Nimi-Hoveidi E, Kohan L and Hashemi SS: Association of miR-143 rs41291957 and rs4705342 genetic variants with endometriosis risk in infertile women. Feyz J Kashan Univ Med Sci. 20:441–446. 2016. | |
Bashti O, Noruzinia M, Garshasbi M and Abtahi M: miR-31 and miR-145 as potential non-invasive regulatory biomarkers in patients with endometriosis. Cell J. 20:84–89. 2018.PubMed/NCBI | |
Ounzain S, Micheletti R, Arnan C, Plaisance I, Cecchi D, Schroen B, Reverter F, Alexanian M, Gonzales C, Ng SY, et al: CARMEN, a human super enhancer-associated long noncoding RNA controlling cardiac specification, differentiation and homeostasis. J Mol Cell Cardiol. 89:98–112. 2015. View Article : Google Scholar : PubMed/NCBI | |
Plaisance I, Perruchoud S, Fernandez-Tenorio M, Gonzales C, Ounzain S, Ruchat P, Nemir M, Niggli E and Pedrazzini T: Cardiomyocyte lineage specification in adult human cardiac precursor cells via modulation of enhancer-associated long noncoding RNA expression. JACC Basic Transl Sci. 1:472–493. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cheng Y, Liu X, Yang J, Lin Y, Xu DZ, Lu Q, Deitch EA, Huo Y, Delphin ES and Zhang C: MicroRNA-145, a novel smooth muscle cell phenotypic marker and modulator, controls vascular neointimal lesion formation. Circ Res. 105:158–166. 2009. View Article : Google Scholar : PubMed/NCBI | |
Wang X, Hu G and Zhou J: Repression of versican expression by microRNA-143. J Biol Chem. 285:23241–23250. 2010. View Article : Google Scholar : PubMed/NCBI | |
Dong K, Shen J, He X, Hu G, Wang L, Osman I, Bunting KM, Dixon-Melvin R, Zheng Z, Xin H, et al: CARMN is an evolutionarily conserved smooth muscle cell-specific LncRNA that maintains contractile phenotype by binding myocardin. Circulation. 144:1856–1875. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li M, Wang J, Fang Y, Gong S, Li M, Wu M, Lai X, Zeng G, Wang Y, Yang K and Huang X: microRNA-146a promotes mycobacterial survival in macrophages through suppressing nitric oxide production. Sci Rep. 6:233512016. View Article : Google Scholar : PubMed/NCBI | |
Sidorkiewicz M, Grek M, Jozwiak B, Krol A and Piekarska A: The impact of chronic hepatitis C infection on cholesterol metabolism in PBMCs is associated with microRNA-146a expression. Eur J Clin Microbiol Infect Dis. 36:697–702. 2017. View Article : Google Scholar | |
Takahashi Y, Satoh M, Minami Y, Tabuchi T, Itoh T and Nakamura M: Expression of miR-146a/b is associated with the Toll-like receptor 4 signal in coronary artery disease: Effect of renin-angiotensin system blockade and statins on miRNA-146a/b and Toll-like receptor 4 levels. Clin Sci. 119:395–405. 2010. View Article : Google Scholar | |
Gangwar RS, Rajagopalan S, Natarajan R and Deiuliis JA: Noncoding RNAs in cardiovascular disease: Pathological relevance and emerging role as biomarkers and therapeutics. Am J Hypertens. 31:150–165. 2018. View Article : Google Scholar : | |
Zhou L, Zhao X, Han Y, Lu Y, Shang Y, Liu C, Li T, Jin Z, Fan D and Wu K: Regulation of UHRF1 by miR-146a/b modulates gastric cancer invasion and metastasis. FASEB J. 27:4929–4939. 2013. View Article : Google Scholar : PubMed/NCBI | |
Ramirez-Moya J, Wert-Lamas L and Santisteban P: MicroRNA-146b promotes PI3K/AKT pathway hyperactivation and thyroid cancer progression by targeting PTEN. Oncogene. 37:3369–3383. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhu Y, Wu G, Yan W, Zhan H and Sun P: miR-146b-5p regulates cell growth, invasion, and metabolism by targeting PDHB in colorectal cancer. Am J Cancer Res. 7:1136–1150. 2017.PubMed/NCBI | |
Jin H, Zhang H, Ma T, Lan H, Feng S, Zhu H and Ji Y: Resveratrol protects murine chondrogenic ATDC5 cells against LPS-induced inflammatory injury through Up-regulating MiR-146b. Cell Physiol Biochem. 47:972–980. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gao S, Zhao Z, Wu R, Wu L, Tian X and Zhang Z: MiR-146b inhibits autophagy in prostate cancer by targeting the PTEN/Akt/mTOR signaling pathway. Aging. 10:2113–2121. 2018. View Article : Google Scholar : PubMed/NCBI | |
Curtale G, Mirolo M, Renzi TA, Rossato M, Bazzoni F and Locati M: Negative regulation of Toll-like receptor 4 signaling by IL-10-dependent microRNA-146b. Proc Natl Acad Sci USA. 110:11499–11504. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chistiakov DA, Orekhov AN and Bobryshev YV: The role of miR-126 in embryonic angiogenesis, adult vascular homeostasis, and vascular repair and its alterations in atherosclerotic disease. J Mol Cell Cardiol. 97:47–55. 2016. View Article : Google Scholar : PubMed/NCBI | |
Urbich C, Kaluza D, Frömel T, Knau A, Bennewitz K, Boon RA, Bonauer A, Doebele C, Boeckel JN, Hergenreider E, et al: MicroRNA-27a/b controls endothelial cell repulsion and angiogenesis by targeting semaphorin 6A. Blood. 119:1607–1616. 2012. View Article : Google Scholar | |
Su X, Hu Y, Li Y, Cao JL, Wang XQ, Ma X and Xia HF: The polymorphism of rs6505162 in the MIR423 coding region and recurrent pregnancy loss. Reproduction. 150:65–76. 2015. View Article : Google Scholar : PubMed/NCBI | |
Medford HM and Marsh SA: The role of O-GlcNAc transferase in regulating the gene transcription of developing and failing hearts. Future Cardiol. 10:801–812. 2014. View Article : Google Scholar : PubMed/NCBI | |
Luo P, He T, Jiang R and Li G: MicroRNA-423-5p targets O-GlcNAc transferase to induce apoptosis in cardiomyocytes. Mol Med Rep. 12:1163–1168. 2015. View Article : Google Scholar : PubMed/NCBI | |
Amin MMJ, Trevelyan CJ and Turner NA: MicroRNA-214 in health and disease. Cells. 10:32742021. View Article : Google Scholar : PubMed/NCBI | |
Taskin O, Rikhraj K, Tan J, Sedlak T, Rowe TC and Bedaiwy MA: Link between Endometriosis, Atherosclerotic Cardiovascular Disease, and the Health of Women Midlife. J Minim Invasive Gynecol. 26:781–784. 2019. View Article : Google Scholar : PubMed/NCBI | |
Missmer SA: Commentary: Endometriosis-epidemiologic considerations for a potentially 'high-risk' population. Int J Epidemiol. 38:1154–1155. 2009. View Article : Google Scholar : PubMed/NCBI | |
O'Sullivan JW, Raghavan S, Marquez-Luna C, Luzum JA, Damrauer SM, Ashley EA, O'Donnell CJ, Willer CJ and Natarajan P; American Heart Association Council on Genomic and Precision Medicine; et al Polygenic risk scores for cardiovascular disease: A scientific statement from the American Heart Association. Circulation. 146. pp. e93–e118. 2022 | |
Bulun SE, Monsavais D, Pavone ME, Dyson M, Xue Q, Attar E, Tokunaga H and Su EJ: Role of estrogen receptor-β in endometriosis. Semin Reprod Med. 30:39–45. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stevenson JC: Long-term benefits and risks of HRT (Section 11): Cardiovascular disease. Post Reprod Health. 22:80–82. 2016. View Article : Google Scholar : PubMed/NCBI | |
Newson L: Menopause and cardiovascular disease. Post Reprod Health. 24:44–49. 2018. View Article : Google Scholar : PubMed/NCBI | |
Patel BG, Lenk EE, Lebovic DI, Shu Y, Yu J and Taylor RN: Pathogenesis of endometriosis: Interaction between Endocrine and inflammatory pathways. Best Pract Res Clin Obstet Gynaecol. 50:50–60. 2018. View Article : Google Scholar : PubMed/NCBI |