
Advances in the study of regulators of ferroptosis in head and neck squamous cell carcinoma (Review)
- Authors:
- Mengyuan Yang
- Rongrong Guo
- Xin Chen
- Guohua Song
- Fang Zhang
-
Affiliations: Shanxi Medical University School and Hospital of Stomatology, Shanxi Province Key Laboratory of Oral Diseases Prevention and New Materials, Taiyuan, Shanxi 030001, P.R. China - Published online on: April 13, 2023 https://doi.org/10.3892/ijmm.2023.5248
- Article Number: 45
-
Copyright: © Yang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
Sung H, Ferlay J, Siegel RL, Laversanne M, Soerjomataram I, Jemal A and Bray F: Global cancer statistics 2020: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 71:209–249. 2021. View Article : Google Scholar : PubMed/NCBI | |
Johnson DE, Burtness B, Leemans CR, Lui VWY, Bauman JE and Grandis JR: Head and neck squamous cell carcinoma. Nat Rev Dis Primers. 6:922020. View Article : Google Scholar : PubMed/NCBI | |
Roh JL, Kim EH, Jang HJ, Park JY and Shin D: Induction of ferroptotic cell death for overcoming cisplatin resistance of head and neck cancer. Cancer Lett. 381:96–103. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gorrini C, Harris IS and Mak TW: Modulation of oxidative stress as an anticancer strategy. Nat Rev Drug Discov. 12:931–947. 2013. View Article : Google Scholar : PubMed/NCBI | |
Chen X, Comish PB, Tang D and Kang R: Characteristics and biomarkers of ferroptosis. Front Cell Dev Biol. 9:6371622021. View Article : Google Scholar : PubMed/NCBI | |
Masaldan S, Belaidi AA, Ayton S and Bush AI: Cellular senescence and iron dyshomeostasis in Alzheimer's disease. Pharmaceuticals (Basel). 12:932019. View Article : Google Scholar : PubMed/NCBI | |
Guan X, Li X, Yang X, Yan J, Shi P, Ba L, Cao Y and Wang P: The neuroprotective effects of carvacrol on ischemia/reperfusion-induced hippocampal neuronal impairment by ferroptosis mitigation. Life Sci. 235:1167952019. View Article : Google Scholar : PubMed/NCBI | |
Lv Z, Han J, Li J, Guo H, Fei Y, Sun Z, Dong J, Wang M, Fan C, Li W, et al: Single cell RNA-seq analysis identifies ferroptotic chondrocyte cluster and reveals TRPV1 as an anti-ferroptotic target in osteoarthritis. EBioMedicine. 84:1042582022. View Article : Google Scholar : PubMed/NCBI | |
Lei G, Zhuang L and Gan B: Targeting ferroptosis as a vulnerability in cancer. Nat Rev Cancer. 22:381–396. 2022. View Article : Google Scholar : PubMed/NCBI | |
Yang WS and Stockwell BR: Synthetic lethal screening identifies compounds activating iron-dependent, nonapoptotic cell death in oncogenic-RAS-harboring cancer cells. Chem Biol. 15:234–245. 2008. View Article : Google Scholar : PubMed/NCBI | |
Dixon SJ, Lemberg KM, Lamprecht MR, Skouta R, Zaitsev EM, Gleason CE, Patel DN, Bauer AJ, Cantley AM, Yang WS, et al: Ferroptosis: An iron-dependent form of nonapoptotic cell death. Cell. 149:1060–1072. 2012. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Friedmann Angeli JP, Bayir H, Bush AI, Conrad M, Dixon SJ, Fulda S, Gascón S, Hatzios SK, Kagan VE, et al: Ferroptosis: A regulated cell death nexus linking metabolism, redox biology, and disease. Cell. 171:273–285. 2017. View Article : Google Scholar : PubMed/NCBI | |
Stockwell BR, Jiang X and Gu W: Emerging mechanisms and disease relevance of ferroptosis. Trends Cell Biol. 30:478–490. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yan HF, Zou T, Tuo QZ, Xu S, Li H, Belaidi AA and Lei P: Ferroptosis: Mechanisms and links with diseases. Signal Transduct Target Ther. 6:492021. View Article : Google Scholar : PubMed/NCBI | |
Liang W and Ferrara N: Iron metabolism in the tumor microenvironment: Contributions of innate immune cells. Front Immunol. 11:6268122021. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Song J, Yung BC, Zhou Z, Wu A and Chen X: Emerging strategies of cancer therapy based on ferroptosis. Adv Mater. 30:e17040072018. View Article : Google Scholar : PubMed/NCBI | |
He YJ, Liu XY, Xing L, Wan X, Chang X and Jiang HL: Fenton reaction-independent ferroptosis therapy via glutathione and iron redox couple sequentially triggered lipid peroxide generator. Biomaterials. 241:1199112020. View Article : Google Scholar : PubMed/NCBI | |
Manz DH, Blanchette NL, Paul BT, Torti FM and Torti SV: Iron and cancer: Recent insights. Ann N Y Acad Sci. 1368:149–161. 2016. View Article : Google Scholar : PubMed/NCBI | |
Galaris D, Barbouti A and Pantopoulos K: Iron homeostasis and oxidative stress: An intimate relationship. Biochim Biophys Acta Mol Cell Res. 1866:1185352019. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Lin Y, Wang M, Yuan K, Wang Q, Mu P, Du J, Yu Z, Yang S, Huang K, et al: Targeting ferroptosis suppresses osteocyte glucolipotoxicity and alleviates diabetic osteoporosis. Bone Res. 10:262022. View Article : Google Scholar : PubMed/NCBI | |
Koppula P, Zhuang L and Gan B: Cystine transporter SLC7A11/xCT in cancer: Ferroptosis, nutrient dependency, and cancer therapy. Protein Cell. 12:599–620. 2021. View Article : Google Scholar : | |
Tan Y, Huang Y, Mei R, Mao F, Yang D, Liu J, Xu W, Qian H and Yan Y: HucMSC-derived exosomes delivered BECN1 induces ferroptosis of hepatic stellate cells via regulating the xCT/GPX4 axis. Cell Death Dis. 13:3192022. View Article : Google Scholar : PubMed/NCBI | |
Maiorino M, Conrad M and Ursini F: GPx4, lipid peroxidation, and cell death: Discoveries, rediscoveries, and open issues. Antioxid Redox Signal. 29:61–74. 2018. View Article : Google Scholar | |
Seibt TM, Proneth B and Conrad M: Role of GPX4 in ferroptosis and its pharmacological implication. Free Radic Biol Med. 133:144–152. 2019. View Article : Google Scholar | |
Luo C, Sun J, Liu D, Sun B, Miao L, Musetti S, Li J, Han X, Du Y, Li L, et al: Self-assembled redox dual-responsive prodrug-nano-system formed by single thioether-bridged paclitaxel-fatty acid conjugate for cancer chemotherapy. Nano Lett. 16:5401–5408. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Karakhanova S, Hartwig W, D'Haese JG, Philippov PP, Werner J and Bazhin AV: Mitochondria and mitochondrial ROS in cancer: Novel targets for anticancer therapy. J Cell Physiol. 231:2570–2581. 2016. View Article : Google Scholar : PubMed/NCBI | |
Yang WS and Stockwell BR: Ferroptosis: Death by lipid peroxidation. Trends Cell Biol. 26:165–176. 2016. View Article : Google Scholar : | |
Lee JY, Kim WK, Bae KH, Lee SC and Lee EW: Lipid metabolism and ferroptosis. Biology (Basel). 10:1842021.PubMed/NCBI | |
Lee H, Zandkarimi F, Zhang Y, Meena JK, Kim J, Zhuang L, Tyagi S, Ma L, Westbrook TF, Steinberg GR, et al: Energy-stress-mediated AMPK activation inhibits ferroptosis. Nat Cell Biol. 22:225–234. 2020. View Article : Google Scholar : PubMed/NCBI | |
Doll S, Proneth B, Tyurina YY, Panzilius E, Kobayashi S, Ingold I, Irmler M, Beckers J, Aichler M, Walch A, et al: ACSL4 dictates ferroptosis sensitivity by shaping cellular lipid composition. Nat Chem Biol. 13:91–98. 2017. View Article : Google Scholar : | |
Liu J, Kang R and Tang D: Signaling pathways and defense mechanisms of ferroptosis. FEBS J. 289:7038–7050. 2022. View Article : Google Scholar | |
Gan B: ACSL4, PUFA, and ferroptosis: New arsenal in anti-tumor immunity. Signal Transduct Target Ther. 7:1282022. View Article : Google Scholar : PubMed/NCBI | |
Hung CC, Chien CY, Chu PY, Wu YJ, Lin CS, Huang CJ, Chan LP, Wang YY, Yuan SF, Hour TC and Chen JY: Differential resistance to platinum-based drugs and 5-fluorouracil in p22phox-overexpressing oral squamous cell carcinoma: Implications of alternative treatment strategies. Head Neck. 39:1621–1630. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kallunki T, Olsen OD and Jäättelä M: Cancer-associated lysosomal changes: Friends or foes? Oncogene. 32:1995–2004. 2013. View Article : Google Scholar | |
Pan ST, Qin Y, Zhou ZW, He ZX, Zhang X, Yang T, Yang YX, Wang D, Qiu JX and Zhou SF: Plumbagin induces G2/M arrest, apoptosis, and autophagy via p38 MAPK- and PI3K/Akt/mTOR-mediated pathways in human tongue squamous cell carcinoma cells. Drug Des Devel Ther. 9:1601–1626. 2015.PubMed/NCBI | |
Chen X, Kang R, Kroemer G and Tang D: Broadening horizons: The role of ferroptosis in cancer. Nat Rev Clin Oncol. 18:280–296. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yu W, Chen Y, Putluri N, Coarfa C, Robertson MJ, Putluri V, Stossi F, Dubrulle J, Mancini MA, Pang JC, et al: Acquisition of cisplatin resistance shifts head and neck squamous cell carcinoma metabolism toward neutralization of oxidative stress. Cancers (Basel). 12:16702020. View Article : Google Scholar : PubMed/NCBI | |
Han L, Li L and Wu G: Induction of ferroptosis by carnosic acid-mediated inactivation of Nrf2/HO-1 potentiates cisplatin responsiveness in OSCC cells. Mol Cell Probes. 64:1018212022. View Article : Google Scholar : PubMed/NCBI | |
Lu B, Chen XB, Ying MD, He QJ, Cao J and Yang B: The role of ferroptosis in cancer development and treatment response. Front Pharmacol. 8:9922018. View Article : Google Scholar : PubMed/NCBI | |
Feng H and Stockwell BR: Unsolved mysteries: How does lipid peroxidation cause ferroptosis? PLoS Biol. 16:e20062032018. View Article : Google Scholar : PubMed/NCBI | |
Hu K, Li K, Lv J, Feng J, Chen J, Wu H, Cheng F, Jiang W, Wang J, Pei H, et al: Suppression of the SLC7A11/glutathione axis causes synthetic lethality in KRAS-mutant lung adenocarcinoma. J Clin Invest. 130:1752–1766. 2020. View Article : Google Scholar : | |
Ji X, Qian J, Rahman SMJ, Siska PJ, Zou Y, Harris BK, Hoeksema MD, Trenary IA, Heidi C, Eisenberg R, et al: xCT (SLC7A11)-mediated metabolic reprogramming promotes non-small cell lung cancer progression. Oncogene. 37:5007–5019. 2018. View Article : Google Scholar : PubMed/NCBI | |
Ma Z, Zhang H, Lian M, Yue C, Dong G, Jin Y, Li R, Wan H, Wang R, Wang Y, et al: SLC7A11, a component of cysteine/glutamate transporter, is a novel biomarker for the diagnosis and prognosis in laryngeal squamous cell carcinoma. Oncol Rep. 38:3019–3029. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hémon A, Louandre C, Lailler C, Godin C, Bottelin M, Morel V, François C, Galmiche A and Saidak Z: SLC7A11 as a biomarker and therapeutic target in HPV-positive head and neck squamous cell carcinoma. Biochem Biophys Res Commun. 533:1083–1087. 2020. View Article : Google Scholar : PubMed/NCBI | |
Jyotsana N, Ta KT and DelGiorno KE: The role of cystine/glutamate antiporter SLC7A11/xCT in the pathophysiology of cancer. Front Oncol. 12:8584622022. View Article : Google Scholar : PubMed/NCBI | |
Slaby O, Laga R and Sedlacek O: Therapeutic targeting of non-coding RNAs in cancer. Biochem J. 474:4219–4251. 2017. View Article : Google Scholar : PubMed/NCBI | |
Xie B and Guo Y: Molecular mechanism of cell ferroptosis and research progress in regulation of ferroptosis by noncoding RNAs in tumor cells. Cell Death Discov. 7:1012021. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Wu L, Zhang K, Wang H, Zhang T, Gutierrez L, O'Connell D, Zhang P, Li Y, Gao T, et al: miR-137 regulates ferroptosis by targeting glutamine transporter SLC1A5 in melanoma. Cell Death Differ. 25:1457–1472. 2018. View Article : Google Scholar : PubMed/NCBI | |
Zhang K, Wu L, Zhang P, Luo M, Du J, Gao T, O'Connell D, Wang G, Wang H and Yang Y: miR-9 regulates ferroptosis by targeting glutamic-oxaloacetic transaminase GOT1 in melanoma. Mol Carcinog. 57:1566–1576. 2018. View Article : Google Scholar : PubMed/NCBI | |
Quirico L, Orso F, Cucinelli S, Paradzik M, Natalini D, Centonze G, Dalmasso A, La Vecchia S, Coco M, Audrito V, et al: miRNA-guided reprogramming of glucose and glutamine metabolism and its impact on cell adhesion/migration during solid tumor progression. Cell Mol Life Sci. 79:2162022. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Wang B, Ren H and Chen W: miR-9-5p inhibits pancreatic cancer cell proliferation, invasion and glutamine metabolism by targeting GOT1. Biochem Biophys Res Commun. 509:241–218. 2019. View Article : Google Scholar | |
Tomita K, Fukumoto M, Itoh K, Kuwahara Y, Igarashi K, Nagasawa T, Suzuki M, Kurimasa A and Sato T: MiR-7-5p is a key factor that controls radioresistance via intracellular Fe2+ content in clinically relevant radioresistant cells. Biochem Biophys Res Commun. 518:712–718. 2019. View Article : Google Scholar : PubMed/NCBI | |
Tomita K, Kuwahara Y, Takashi Y, Igarashi K, Nagasawa T, Nabika H, Kurimasa A, Fukumoto M, Nishitani Y and Sato T: Clinically relevant radioresistant cells exhibit resistance to H2O2 by decreasing internal H2O2 and lipid peroxidation. Tumour Biol. 40:10104283187992502018. View Article : Google Scholar | |
Amaral AJ, Andrade J, Foxall RB, Matoso P, Matos AM, Soares RS, Rocha C, Ramos CG, Tendeiro R, Serra-Caetano A, et al: miRNA profiling of human naive CD4 T cells links miR-34c-5p to cell activation and HIV replication. EMBO J. 36:346–360. 2017. View Article : Google Scholar | |
Zhang B, Li Y, Hou D, Shi Q, Yang S and Li Q: MicroRNA-375 inhibits growth and enhances radiosensitivity in oral squamous cell carcinoma by targeting insulin like growth factor 1 receptor. Cell Physiol Biochem. 42:2105–2117. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang K, Jin J, Ma T and Zhai H: MiR-139-5p inhibits the tumorigenesis and progression of oral squamous carcinoma cells by targeting HOXA9. J Cell Mol Med. 21:3730–3740. 2017. View Article : Google Scholar : PubMed/NCBI | |
Shen Y, Sun C, Zhao B, Guo H, Li J, Xia Y, Liu M, Piao S and Saiyin W: miR-34c-5p mediates the cellular malignant behaviors of oral squamous cell carcinoma through targeted binding of TRIM29. Ann Transl Med. 9:15372021. View Article : Google Scholar : PubMed/NCBI | |
Sun K, Ren W, Li S, Zheng J, Huang Y, Zhi K and Gao L: MiR-34c-3p upregulates erastin-induced ferroptosis to inhibit proliferation in oral squamous cell carcinomas by targeting SLC7A11. Pathol Res Pract. 231:1537782022. View Article : Google Scholar : PubMed/NCBI | |
Garikipati VNS, Verma SK, Cheng Z, Liang D, Truongcao MM, Cimini M, Yue Y, Huang G, Wang C, Benedict C, et al: Circular RNA CircFndc3b modulates cardiac repair after myocardial infarction via FUS/VEGF-A axis. Nat Commun. 10:43172019. View Article : Google Scholar : PubMed/NCBI | |
Balihodzic A, Prinz F, Dengler MA, Calin GA, Jost PJ and Pichler M: Non-coding RNAs and ferroptosis: Potential implications for cancer therapy. Cell Death Differ. 29:1094–1106. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Wang L, Li H, Zhang L, Zheng X and Cheng W: Crosstalk between noncoding RNAs and ferroptosis: New dawn for overcoming cancer progression. Cell Death Dis. 11:5802020. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Cao XH, Luan KF and Huang YD: Circular RNA FNDC3B protects oral squamous cell carcinoma cells from ferroptosis and contributes to the malignant progression by regulating miR-520d-5p/SLC7A11 axis. Front Oncol. 11:6727242021. View Article : Google Scholar | |
Ayala A, Muñoz MF and Argüelles S: Lipid peroxidation: Production, metabolism, and signaling mechanisms of malondialdehyde and 4-hydroxy-2-nonenal. Oxid Med Cell Longev. 2014:3604382014. View Article : Google Scholar : PubMed/NCBI | |
Song X and Long D: Nrf2 and ferroptosis: A new research direction for neurodegenerative diseases. Front Neurosci. 14:2672020. View Article : Google Scholar : PubMed/NCBI | |
Zhang Q, Qu H, Chen Y, Luo X, Chen C, Xiao B, Ding X, Zhao P, Lu Y, Chen AF and Yu Y: Atorvastatin induces mitochondria-dependent ferroptosis via the modulation of Nrf2-xCT/GPx4 axis. Front Cell Dev Biol. 10:8060812022. View Article : Google Scholar : PubMed/NCBI | |
Ma Q: Role of nrf2 in oxidative stress and toxicity. Annu Rev Pharmacol Toxicol. 53:401–426. 2013. View Article : Google Scholar : PubMed/NCBI | |
Jelic MD, Mandic AD, Maricic SM and Srdjenovic BU: Oxidative stress and its role in cancer. J Cancer Res Ther. 17:22–28. 2021. View Article : Google Scholar : PubMed/NCBI | |
Feng L, Zhao K, Sun L, Yin X, Zhang J, Liu C and Li B: SLC7A11 regulated by NRF2 modulates esophageal squamous cell carcinoma radiosensitivity by inhibiting ferroptosis. J Transl Med. 19:3672021. View Article : Google Scholar : PubMed/NCBI | |
Yang J, Mo J, Dai J, Ye C, Cen W, Zheng X, Jiang L and Ye L: Cetuximab promotes RSL3-induced ferroptosis by suppressing the Nrf2/HO-1 signalling pathway in KRAS mutant colorectal cancer. Cell Death Dis. 12:10792021. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Ortega M, Carrera AC and Garrido A: Role of NRF2 in lung cancer. Cells. 10:18792021. View Article : Google Scholar : PubMed/NCBI | |
Farkhondeh T, Pourbagher-Shahri AM, Azimi-Nezhad M, Forouzanfar F, Brockmueller A, Ashrafizadeh M, Talebi M, Shakibaei M and Samarghandian S: Roles of Nrf2 in gastric cancer: Targeting for therapeutic strategies. Molecules. 26:31572021. View Article : Google Scholar : PubMed/NCBI | |
Tossetta G, Fantone S, Montanari E, Marzioni D and Goteri G: Role of NRF2 in ovarian cancer. Antioxidants (Basel). 11:6632022. View Article : Google Scholar : PubMed/NCBI | |
Wang XJ, Sun Z, Villeneuve NF, Zhang S, Zhao F, Li Y, Chen W, Yi X, Zheng W, Wondrak GT, et al: Nrf2 enhances resistance of cancer cells to chemotherapeutic drugs, the dark side of Nrf2. Carcinogenesis. 29:1235–1243. 2008. View Article : Google Scholar : PubMed/NCBI | |
Ying J, Qiu X, Lu Y and Zhang M: SOCS1 and its potential clinical role in tumor. Pathol Oncol Res. 25:1295–1301. 2019. View Article : Google Scholar : PubMed/NCBI | |
Hu ZW, Wen YH, Ma RQ, Chen L, Zeng XL, Wen WP and Sun W: Ferroptosis driver SOCS1 and suppressor FTH1 independently correlate with M1 and M2 macrophage infiltration in head and neck squamous cell carcinoma. Front Cell Dev Biol. 9:7277622021. View Article : Google Scholar : PubMed/NCBI | |
Lee CH, Chang JS, Syu SH, Wong TS, Chan JY, Tang YC, Yang ZP, Yang WC, Chen CT, Lu SC, et al: IL-1β promotes malignant transformation and tumor aggressiveness in oral cancer. J Cell Physiol. 230:875–884. 2015. View Article : Google Scholar | |
Zhao J, Dar HH, Deng Y, St Croix CM, Li Z, Minami Y, Shrivastava IH, Tyurina YY, Etling E, Rosenbaum JC, et al: PEBP1 acts as a rheostat between prosurvival autophagy and ferroptotic death in asthmatic epithelial cells. Proc Natl Acad Sci USA. 117:14376–14385. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li M, Jin S, Zhang Z, Ma H and Yang X: Interleukin-6 facilitates tumor progression by inducing ferroptosis resistance in head and neck squamous cell carcinoma. Cancer Lett. 527:28–40. 2022. View Article : Google Scholar | |
Jin S, Yang X, Li J, Yang W, Ma H and Zhang Z: p53-targeted lincRNA-p21 acts as a tumor suppressor by inhibiting JAK2/STAT3 signaling pathways in head and neck squamous cell carcinoma. Mol Cancer. 18:382019. View Article : Google Scholar : PubMed/NCBI | |
Ding Y, Chen X, Liu C, Ge W, Wang Q, Hao X, Wang M, Chen Y and Zhang Q: Identification of a small molecule as inducer of ferroptosis and apoptosis through ubiquitination of GPX4 in triple negative breast cancer cells. J Hematol Oncol. 14:192021. View Article : Google Scholar | |
Zhao L, Peng Y, He S, Li R, Wang Z, Huang J, Lei X, Li G and Ma Q: Apatinib induced ferroptosis by lipid peroxidation in gastric cancer. Gastric Cancer. 24:642–654. 2021. View Article : Google Scholar : PubMed/NCBI | |
Liu CC, Li HH, Lin JH, Chiang MC, Hsu TW, Li AF, Yen DH, Hsu HS and Hung SC: Esophageal cancer stem-like cells resist ferroptosis-induced cell death by active Hsp27-GPX4 pathway. Biomolecules. 12:482021. View Article : Google Scholar | |
Yang WS, SriRamaratnam R, Welsch ME, Shimada K, Skouta R, Viswanathan VS, Cheah JH, Clemons PA, Shamji AF, Clish CB, et al: Regulation of ferroptotic cancer cell death by GPX4. Cell. 156:317–331. 2014. View Article : Google Scholar : PubMed/NCBI | |
Chatterjee R and Chatterjee J: ROS and oncogenesis with special reference to EMT and stemness. Eur J Cell Biol. 99:1510732020. View Article : Google Scholar : PubMed/NCBI | |
Cheng FZY, Wang X, Dou J and Wu Z: Research progress on the role and mechanism of GPX4 in ferroptosis. Mod Oncol. 29:1254–1258. 2021. | |
Viswanathan VS, Ryan MJ, Dhruv HD, Gill S, Eichhoff OM, Seashore-Ludlow B, Kaffenberger SD, Eaton JK, Shimada K, Aguirre AJ, et al: Dependency of a therapy-resistant state of cancer cells on a lipid peroxidase pathway. Nature. 547:453–457. 2017. View Article : Google Scholar : PubMed/NCBI | |
Hangauer MJ, Viswanathan VS, Ryan MJ, Bole D, Eaton JK, Matov A, Galeas J, Dhruv HD, Berens ME, Schreiber SL, et al: Drug-tolerant persister cancer cells are vulnerable to GPX4 inhibition. Nature. 551:247–250. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lee JR, Roh JL, Lee SM, Park Y, Cho KJ, Choi SH, Nam SY and Kim SY: Overexpression of glutathione peroxidase 1 predicts poor prognosis in oral squamous cell carcinoma. J Cancer Res Clin Oncol. 143:2257–2265. 2017. View Article : Google Scholar : PubMed/NCBI | |
Fukuda M, Ogasawara Y, Hayashi H, Okuyama A, Shiono J, Inoue K and Sakashita H: Down-regulation of glutathione peroxidase 4 in oral cancer inhibits tumor growth through SREBP1 signaling. Anticancer Res. 41:1785–1792. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ye J, Jiang X, Dong Z, Hu S and Xiao M: Low-concentration PTX and RSL3 inhibits tumor cell growth synergistically by inducing ferroptosis in mutant p53 hypopharyngeal squamous carcinoma. Cancer Manag Res. 11:9783–9792. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ahmat Amin MKB, Shimizu A and Ogita H: The pivotal roles of the epithelial membrane protein family in cancer invasiveness and metastasis. Cancers (Basel). 11:16202019. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Ding Y, Nie Y and Yang M: EMP1 promotes the proliferation and invasion of ovarian cancer cells through activating the MAPK pathway. Onco Targets Ther. 13:2047–2055. 2020. View Article : Google Scholar : PubMed/NCBI | |
Durgan J, Tao G, Walters MS, Florey O, Schmidt A, Arbelaez V, Rosen N, Crystal RG and Hall A: SOS1 and Ras regulate epithelial tight junction formation in the human airway through EMP1. EMBO Rep. 16:87–96. 2015. View Article : Google Scholar : | |
Sun GG, Wang YD, Cui DW, Cheng YJ and Hu WN: EMP1 regulates caspase-9 and VEGFC expression and suppresses prostate cancer cell proliferation and invasion. Tumour Biol. 35:3455–3462. 2014. View Article : Google Scholar | |
Wang Y, Zhang L, Yao C, Ma Y and Liu Y: Epithelial membrane protein 1 promotes sensitivity to RSL3-induced ferroptosis and intensifies gefitinib resistance in head and neck cancer. Oxid Med Cell Longev. 2022:47506712022.PubMed/NCBI | |
van Zandwijk N: Tolerability of gefitinib in patients receiving treatment in everyday clinical practice. Br J Cancer. 89(Suppl 2): S9–S14. 2003. View Article : Google Scholar : PubMed/NCBI | |
Liu Y, Hao J, Yuan G, Wei M, Bu Y, Jin T and Ma L: PER1 as a tumor suppressor attenuated in the malignant phenotypes of breast cancer cells. Int J Gen Med. 14:7077–7087. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chakrabarti S and Michor F: Circadian clock effects on cellular proliferation: Insights from theory and experiments. Curr Opin Cell Biol. 67:17–26. 2020. View Article : Google Scholar : PubMed/NCBI | |
Zhao H, Zeng ZL, Yang J, Jin Y, Qiu MZ, Hu XY, Han J, Liu KY, Liao JW and Zou QF: Prognostic relevance of Period1 (Per1) and Period2 (Per2) expression in human gastric cancer. Int J Clin Exp Pathol. 7:619–630. 2014.PubMed/NCBI | |
Krugluger W, Brandstaetter A, Kállay E, Schueller J, Krexner E, Kriwanek S, Bonner E and Cross HS: Regulation of genes of the circadian clock in human colon cancer: reduced period-1 and dihydropyrimidine dehydrogenase transcription correlates in high-grade tumors. Cancer Res. 67:7917–7922. 2007. View Article : Google Scholar : PubMed/NCBI | |
Hsu CM, Lin SF, Lu CT, Lin PM and Yang MY: Altered expression of circadian clock genes in head and neck squamous cell carcinoma. Tumour Biol. 33:149–155. 2012. View Article : Google Scholar | |
Liu B, Xu K, Jiang Y and Li X: Aberrant expression of Per1, Per2 and Per3 and their prognostic relevance in non-small cell lung cancer. Int J Clin Exp Pathol. 7:7863–7871. 2014. | |
Gery S, Komatsu N, Baldjyan L, Yu A, Koo D and Koeffler HP: The circadian gene per1 plays an important role in cell growth and DNA damage control in human cancer cells. Mol Cell. 22:375–382. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Yang Y, Tang H and Yang K: Loss of the clock gene Per1 promotes oral squamous cell carcinoma progression via the AKT/mTOR pathway. Cancer Sci. 111:1542–1554. 2020. View Article : Google Scholar : PubMed/NCBI | |
Yang Y, Tang H, Zheng J and Yang K: The PER1/HIF-1alpha negative feedback loop promotes ferroptosis and inhibits tumor progression in oral squamous cell carcinoma. Transl Oncol. 18:1013602022. View Article : Google Scholar : PubMed/NCBI | |
Chen D and Che G: Value of caveolin-1 in cancer progression and prognosis: Emphasis on cancer-associated fibroblasts, human cancer cells and mechanism of caveolin-1 expression (Review). Oncol Lett. 8:1409–1421. 2014. View Article : Google Scholar : PubMed/NCBI | |
Yang G, Goltsov AA, Ren C, Kurosaka S, Edamura K, Logothetis R, DeMayo FJ, Troncoso P, Blando J, DiGiovanni J and Thompson TC: Caveolin-1 upregulation contributes to c-Myc-induced high-grade prostatic intraepithelial neoplasia and prostate cancer. Mol Cancer Res. 10:218–229. 2012. View Article : Google Scholar | |
Sun J, Lu Y, Yu C, Xu T, Nie G, Miao B and Zhang X: Involvement of the TGF-β1 pathway in caveolin-1-associated regulation of head and neck tumor cell metastasis. Oncol Lett. 19:1298–1304. 2020.PubMed/NCBI | |
Nwosu ZC, Ebert MP, Dooley S and Meyer C: Caveolin-1 in the regulation of cell metabolism: A cancer perspective. Mol Cancer. 15:712016. View Article : Google Scholar : PubMed/NCBI | |
Vered M, Lehtonen M, Hotakainen L, Pirilä E, Teppo S, Nyberg P, Sormunen R, Zlotogorski-Hurvitz A, Salo T and Dayan D: Caveolin-1 accumulation in the tongue cancer tumor microenvironment is significantly associated with poor prognosis: An in-vivo and in-vitro study. BMC Cancer. 15:252015. View Article : Google Scholar : PubMed/NCBI | |
Deng G, Li Y, Ma S, Gao Z, Zeng T, Chen L, Ye H, Yang M, Shi H, Yao X, et al: Caveolin-1 dictates ferroptosis in the execution of acute immune-mediated hepatic damage by attenuating nitrogen stress. Free Radic Biol Med. 148:151–161. 2020. View Article : Google Scholar | |
Lu T, Zhang Z, Pan X, Zhang J, Wang X, Wang M, Li H, Yan M and Chen W: Caveolin-1 promotes cancer progression via inhibiting ferroptosis in head and neck squamous cell carcinoma. J Oral Pathol Med. 51:52–62. 2022. View Article : Google Scholar | |
Hu ZW, Chen L, Ma RQ, Wei FQ, Wen YH, Zeng XL, Sun W and Wen WP: Comprehensive analysis of ferritin subunits expression and positive correlations with tumor-associated macrophages and T regulatory cells infiltration in most solid tumors. Aging (Albany NY). 13:11491–11506. 2021. View Article : Google Scholar : PubMed/NCBI | |
Salatino A, Aversa I, Battaglia AM, Sacco A, Di Vito A, Santamaria G, Chirillo R, Veltri P, Tradigo G, Di Cello A, et al: H-ferritin affects cisplatin-induced cytotoxicity in ovarian cancer cells through the modulation of ROS. Oxid Med Cell Longev. 2019:34612512019. View Article : Google Scholar : PubMed/NCBI | |
Black W, Chen Y, Matsumoto A, Thompson DC, Lassen N, Pappa A and Vasiliou V: Molecular mechanisms of ALDH3A1-mediated cellular protection against 4-hydroxy-2-nonenal. Free Radic Biol Med. 52:1937–1944. 2012. View Article : Google Scholar : PubMed/NCBI | |
Okazaki S, Shintani S, Hirata Y, Suina K, Semba T, Yamasaki J, Umene K, Ishikawa M, Saya H and Nagano O: Synthetic lethality of the ALDH3A1 inhibitor dyclonine and xCT inhibitors in glutathione deficiency-resistant cancer cells. Oncotarget. 9:33832–33843. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yardley DA: Taxanes in the elderly patient with metastatic breast cancer. Breast Cancer (Dove Med Press). 7:293–301. 2015.PubMed/NCBI | |
Choi YH and Yoo YH: Taxol-induced growth arrest and apoptosis is associated with the upregulation of the Cdk inhibitor, p21WAF1/CIP1, in human breast cancer cells. Oncol Rep. 28:2163–2169. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lv C, Qu H, Zhu W, Xu K, Xu A, Jia B, Qing Y, Li H, Wei HJ and Zhao HY: Low-dose paclitaxel inhibits tumor cell growth by regulating glutaminolysis in colorectal carcinoma cells. Front Pharmacol. 8:2442017. View Article : Google Scholar : PubMed/NCBI | |
Shen YA, Li WH, Chen PH, He CL, Chang YH and Chuang CM: Intraperitoneal delivery of a novel liposome-encapsulated paclitaxel redirects metabolic reprogramming and effectively inhibits cancer stem cells in Taxol(®)-resistant ovarian cancer. Am J Transl Res. 7:841–855. 2015. | |
Li J, Cao F, Yin HL, Huang ZJ, Lin ZT, Mao N, Sun B and Wang G: Ferroptosis: Past, present and future. Cell Death Dis. 11:882020. View Article : Google Scholar : PubMed/NCBI | |
Lin L, Song C, Wei Z, Zou H, Han S, Cao Z, Zhang X, Zhang G, Ran J, Cai Y and Han W: Multifunctional photodynamic/photothermal nano-agents for the treatment of oral leukoplakia. J Nanobiotechnology. 20:1062022. View Article : Google Scholar : PubMed/NCBI | |
Gurudath S, Ganapathy K, D S, Pai A, Ballal S and Ml A: Estimation of superoxide dismutase and glutathione peroxidase in oral submucous fibrosis, oral leukoplakia and oral cancer-a comparative study. Asian Pac J Cancer Prev. 13:4409–4412. 2012. View Article : Google Scholar | |
Zhu T, Shi L, Yu C, Dong Y, Qiu F, Shen L, Qian Q, Zhou G and Zhu X: Ferroptosis promotes photodynamic therapy: Supramolecular photosensitizer-inducer nanodrug for enhanced cancer treatment. Theranostics. 9:3293–3307. 2019. View Article : Google Scholar : PubMed/NCBI | |
Liang F, Wang R, Du Q and Zhu S: An epithelial-mesenchymal transition hallmark gene-based risk score system in head and neck squamous-cell carcinoma. Int J Gen Med. 14:4219–4227. 2021. View Article : Google Scholar : PubMed/NCBI | |
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI | |
Li FJ, Long HZ, Zhou ZW, Luo HY, Xu SG and Gao LC: System Xc −/GSH/GPX4 axis: An important antioxidant system for the ferroptosis in drug-resistant solid tumor therapy. Front Pharmacol. 13:9102922022. View Article : Google Scholar | |
Dodson M, Castro-Portuguez R and Zhang DD: NRF2 plays a critical role in mitigating lipid peroxidation and ferroptosis. Redox Biol. 23:1011072019. View Article : Google Scholar : PubMed/NCBI | |
Tang Y, Li C, Zhang YJ and Wu ZH: Ferroptosis-related long non-coding RNA signature predicts the prognosis of head and neck squamous cell carcinoma. Int J Biol Sci. 17:702–711. 2021. View Article : Google Scholar : PubMed/NCBI | |
Mao C, Liu X, Zhang Y, Lei G, Yan Y, Lee H, Koppula P, Wu S, Zhuang L, Fang B, et al: DHODH-mediated ferroptosis defence is a targetable vulnerability in cancer. Nature. 593:586–590. 2021. View Article : Google Scholar : PubMed/NCBI | |
Hassannia B, Vandenabeele P and Vanden Berghe T: Targeting ferroptosis to iron out cancer. Cancer Cell. 35:830–849. 2019. View Article : Google Scholar : PubMed/NCBI |