1
|
Lapointe S, Perry A and Butowski NA:
Primary brain tumours in adults. Lancet. 392:432–446. 2018.
View Article : Google Scholar : PubMed/NCBI
|
2
|
Luo Q, Wu T, Wu W, Chen G, Luo X, Jiang L,
Tao H, Rong M, Kang S and Deng M: The functional role of
voltage-gated sodium channel Nav1.5 in metastatic breast cancer.
Front Pharmacol. 11:11112020. View Article : Google Scholar : PubMed/NCBI
|
3
|
Altamura C, Greco MR, Carratu MR and
Cardone RA: Desaphy JF. Emerging roles for ion channels in ovarian
cancer: Pathomechanisms and pharmacological treatment. Cancers
(Basel). 13:6682021. View Article : Google Scholar : PubMed/NCBI
|
4
|
Brummelhuis IS, Fiascone SJ, Hasselblatt
KT and Frendl G: Elias KM. Voltage-gated sodium channels as
potential biomarkers and therapeutic targets for epithelial ovarian
cancer. Cancers (Basel). 13:54372021. View Article : Google Scholar : PubMed/NCBI
|
5
|
Brackenbury WJ: Voltage-gated sodium
channels and metastatic disease. Channels (Austin). 6:352–361.
2012. View Article : Google Scholar : PubMed/NCBI
|
6
|
Liu J, Tan H, Yang W, Yao S and Hong L:
The voltage-gated sodium channel Nav1.7 associated with endometrial
cancer. J Cancer. 10:4954–4960. 2019. View Article : Google Scholar :
|
7
|
Lin S, Lv Y, Xu J, Mao X, Chen Z and Lu W:
Over-expression of Nav1.6 channels is associated with lymph node
metastases in colorectal cancer. World J Surg Oncol. 17:1752019.
View Article : Google Scholar : PubMed/NCBI
|
8
|
Black JA, Liu S and Waxman SG: Sodium
channel activity modulates multiple functions in microglia. Glia.
57:1072–1081. 2009. View Article : Google Scholar
|
9
|
Takayasu T, Kurisu K, Esquenazi Y and
Ballester LY: Ion channels and their role in the pathophysiology of
gliomas. Mol Cancer Ther. 19:1959–1969. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Wang J, Ou SW, Wang YJ, Kameyama M,
Kameyama A and Zong ZH: Analysis of four novel variants of
Nav1.5/SCN5A cloned from the brain. Neurosci Res. 64:339–347. 2009.
View Article : Google Scholar : PubMed/NCBI
|
11
|
Guan G, Zhao M, Xu X, Boczek T, Mao X, Li
Z, Gao Q, Li J, Zhao D, Niu W, et al: Abnormal changes in
voltage-gated sodium channels subtypes NaV1.1, NaV1.2, NaV1.3,
NaV1.6 and CaM/CaMKII pathway in low-grade astrocytoma. Neurosci
Lett. 674:148–155. 2018. View Article : Google Scholar : PubMed/NCBI
|
12
|
Xing D, Wang J, Ou S, Wang Y, Qiu B, Ding
D, Guo F and Gao Q: Expression of neonatal Nav1.5 in human brain
astrocytoma and its effect on proliferation, invasion and apoptosis
of astrocytoma cells. Oncol Rep. 31:2692–2700. 2014. View Article : Google Scholar : PubMed/NCBI
|
13
|
Mao W, Zhang J, Korner H, Jiang Y and Ying
S: The emerging role of voltage-gated sodium channels in tumor
biology. Front Oncol. 9:1242019. View Article : Google Scholar : PubMed/NCBI
|
14
|
Xu L, Ding X, Wang T, Mou S, Sun H and Hou
T: Voltage-gated sodium channels: Structures, functions, and
molecular modeling. Drug Discov Today. 24:1389–1397. 2019.
View Article : Google Scholar : PubMed/NCBI
|
15
|
Wang J, Ou SW and Wang YJ: Distribution
and function of voltage-gated sodium channels in the nervous
system. Channels (Austin). 11:534–554. 2017. View Article : Google Scholar : PubMed/NCBI
|
16
|
Diaz-Garcia A and Varela D: Voltage-Gated
K(+)/Na(+) channels and scorpion venom toxins in cancer. Front
Pharmacol. 11:9132020. View Article : Google Scholar : PubMed/NCBI
|
17
|
Schreiber JM, Tochen L, Brown M, Evans S,
Ball LJ, Bumbut A, Thewamit R, Whitehead MT, Black C, Boutzoukas E,
et al: A multi-disciplinary clinic for SCN8A-related epilepsy.
Epilepsy Res. 159:1062612020. View Article : Google Scholar
|
18
|
Bennett DL, Clark AJ, Huang J, Waxman SG
and Dib-Hajj SD: The role of Voltage-gated sodium channels in pain
signaling. Physiol Rev. 99:1079–1151. 2019. View Article : Google Scholar : PubMed/NCBI
|
19
|
Alrashdi B, Dawod B, Schampel A, Tacke S,
Kuerten S, Marshall JS and Côté PD: Nav1.6 promotes inflammation
and neuronal degeneration in a mouse model of multiple sclerosis. J
Neuroinflammation. 16:2152019. View Article : Google Scholar : PubMed/NCBI
|
20
|
Menezes LFS, Sabia Junior EF, Tibery DV,
Carneiro LDA and Schwartz EF: Epilepsy-Related Voltage-gated sodium
channelopathies: A review. Front Pharmacol. 11:12762020. View Article : Google Scholar : PubMed/NCBI
|
21
|
Angus M and Ruben P: Voltage gated sodium
channels in cancer and their potential mechanisms of action.
Channels (Austin). 13:400–409. 2019. View Article : Google Scholar : PubMed/NCBI
|
22
|
Besson P, Driffort V, Bon E, Gradek F,
Chevalier S and Roger S: How do voltage-gated sodium channels
enhance migration and invasiveness in cancer cells? Biochim Biophys
Acta. 1848:2493–2501. 2015. View Article : Google Scholar : PubMed/NCBI
|
23
|
Livak KJ and Schmittgen TD: Analysis of
relative gene expression data using real-time quantitative PCR and
the 2(-Delta Delta C(T)) method. Methods. 25:402–408. 2001.
View Article : Google Scholar
|
24
|
FDA-Approved & Pharmacopeia Drug
Library. https://www.targetmol.com/compound-library/fda_approved_&_pharmacopeia_drug_library
Accessed March 8, 2022.
|
25
|
Jumper J, Evans R, Pritzel A, Green T,
Figurnov M, Ronneberger O, Tunyasuvunakool K, Bates R, Žídek A,
Potapenko A, et al: Highly accurate protein structure prediction
with AlphaFold. Nature. 596:583–589. 2021. View Article : Google Scholar : PubMed/NCBI
|
26
|
Varadi M, Anyango S, Deshpande M, Nair S,
Natassia C, Yordanova G, Yuan D, Stroe O, Wood G, Laydon A, et al:
AlphaFold protein structure database: Massively expanding the
structural coverage of protein-sequence space with high-accuracy
models. Nucleic Acids Res. 50:D439–D444. 2022. View Article : Google Scholar :
|
27
|
Kawabata T: Detection of multiscale
pockets on protein surfaces using mathematical morphology.
Proteins. 78:1195–1211. 2010. View Article : Google Scholar
|
28
|
Allen WJ, Fochtman BC, Balius TE and Rizzo
RC: Customizable de novo design strategies for DOCK: Application to
HIVgp41 and other therapeutic targets. J Comput Chem. 38:2641–2663.
2017. View Article : Google Scholar : PubMed/NCBI
|
29
|
Wallace AC, Laskowski RA and Thornton JM:
LIGPLOT: A program to generate schematic diagrams of protein-ligand
interactions. Protein Eng. 8:127–134. 1995. View Article : Google Scholar : PubMed/NCBI
|
30
|
Reinhold WC, Sunshine M, Liu H, Varma S,
Kohn KW, Morris J, Doroshow J and Pommier Y: CellMiner: A web-based
suite of genomic and pharmacologic tools to explore transcript and
drug patterns in the NCI-60 cell line set. Cancer Res.
72:3499–3511. 2012. View Article : Google Scholar : PubMed/NCBI
|
31
|
Cheng S, Wang HN, Xu LJ, Li F, Miao Y, Lei
B, Sun X and Wang Z: Soluble tumor necrosis factor-alpha-induced
hyperexcitability contributes to retinal ganglion cell apoptosis by
enhancing Nav1.6 in experimental glaucoma. J Neuroinflammation.
18:1822021. View Article : Google Scholar : PubMed/NCBI
|
32
|
Pan X, Li Z, Zhou Q, Shen H, Wu K, Huang
X, Chen J, Zhang J, Zhu X, Lei J, et al: Structure of the human
voltage-gated sodium channel Nav1.4 in complex with β1.
Science. 362:eaau24862018. View Article : Google Scholar
|
33
|
Schrey M, Codina C, Kraft R, Beetz C,
Kalff R, Wölfl S and Patt S: Molecular characterization of
voltage-gated sodium channels in human gliomas. Neuroreport.
13:2493–2498. 2002. View Article : Google Scholar : PubMed/NCBI
|
34
|
Catterall WA, Lenaeus MJ and Gamal El-Din
TM: Structure and pharmacology of voltage-gated sodium and calcium
channels. Annu Rev Pharmacol Toxicol. 60:133–154. 2020. View Article : Google Scholar
|
35
|
Clatot J, Ziyadeh-Isleem A, Maugenre S,
Denjoy I, Liu H, Dilanian G, Hatem SN, Deschênes I, Coulombe A,
Guicheney P and Neyroud N: Dominant-negative effect of SCN5A
N-terminal mutations through the interaction of Na(v)1.5
α-subunits. Cardiovasc Res. 96:53–63. 2012. View Article : Google Scholar : PubMed/NCBI
|
36
|
Hernandez-Plata E, Ortiz CS,
Marquina-Castillo B, Medina-Martinez I, Alfaro A, Berumen J, Rivera
M and Gomora JC: Overexpression of NaV 1.6 channels is associated
with the invasion capacity of human cervical cancer. Int J Cancer.
130:2013–2023. 2012. View Article : Google Scholar
|
37
|
Yang Y, Luo Z, Hao Y, Ba W, Wang R, Wang
W, Ding X and Li C: mTOR-mediated Na+/Ca2+
exchange affects cell proliferation and metastasis of melanoma
cells. Biomed Pharmacother. 92:744–749. 2017. View Article : Google Scholar : PubMed/NCBI
|
38
|
Ding HH, Zhang SB, Lv YY, Ma C, Liu M,
Zhang KB, Ruan XC, Wei JY, Xin WJ and Wu SL: TNF-α/STAT3 pathway
epigenetically upregulates Nav1.6 expression in DRG and contributes
to neuropathic pain induced by L5-VRT. J Neuroinflammation.
16:292019. View Article : Google Scholar
|
39
|
Lei Q, Gu H, Li L, Wu T, Xie W, Li M and
Zhao N: TNIP1-mediated TNF-α/NF-κB signalling cascade sustains
glioma cell proliferation. J Cell Mol Med. 24:530–538. 2020.
View Article : Google Scholar
|
40
|
Onganer PU and Djamgoz MB: Small-cell lung
cancer (human): Potentiation of endocytic membrane activity by
voltage-gated Na(+) channel expression in vitro. J Membr Biol.
204:67–75. 2005. View Article : Google Scholar : PubMed/NCBI
|
41
|
Reddy Chichili VP, Xiao Y, Seetharaman J,
Cummins TR and Sivaraman J: Structural basis for the modulation of
the neuronal voltage-gated sodium channel NaV1.6 by calmodulin. Sci
Rep. 3:24352013. View Article : Google Scholar : PubMed/NCBI
|
42
|
Bulling A, Brucker C, Berg U, Gratzl M and
Mayerhofer A: Identification of voltage-activated Na+
and K+ channels in human steroid-secreting ovarian
cells. Ann N Y Acad Sci. 868:77–79. 1999. View Article : Google Scholar : PubMed/NCBI
|
43
|
Anderson KJ, Cormier RT and Scott PM: Role
of ion channels in gastrointestinal cancer. World J Gastroenterol.
25:5732–5772. 2019. View Article : Google Scholar : PubMed/NCBI
|
44
|
Huang K, Wang X, Liu Y and Zhao Y: CRAC
channel is inhibited by neomycin in a Ptdlns(4,5)P2-independent
manner. Cell Biochem Funct. 33:97–100. 2015. View Article : Google Scholar : PubMed/NCBI
|
45
|
Mikkelsen NE, Brännvall M, Virtanen A and
Kirsebom LA: Inhibition of RNase P RNA cleavage by aminoglycosides.
Proc Natl Acad Sci USA. 96:6155–6160. 1999. View Article : Google Scholar : PubMed/NCBI
|
46
|
Tang C, Gong L, Lvzi X, Qiu K, Zhang Z and
Wan L: Echinacoside inhibits breast cancer cells by suppressing the
Wnt/β-catenin signaling pathway. Biochem Biophys Res Commun.
526:170–175. 2020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Zhu M, Lu C and Li W: Transient exposure
to echinacoside is sufficient to activate Trk signaling and protect
neuronal cells from rotenone. J Neurochem. 124:571–580. 2013.
View Article : Google Scholar
|
48
|
Zheng A, Kallio A and Härkönen P:
Tamoxifen-induced rapid death of MCF-7 breast cancer cells is
mediated via extracellularly signal-regulated kinase signaling and
can be abrogated by estrogen. Endocrinology. 148:2764–2777. 2007.
View Article : Google Scholar : PubMed/NCBI
|
49
|
Feil S, Valtcheva N and Feil R: Inducible
Cre mice. Methods Mol Biol. 530:343–363. 2009. View Article : Google Scholar : PubMed/NCBI
|
50
|
Rondón-Lagos M, Rangel N, Di Cantogno LV,
Annaratone L, Castellano I, Russo R, Manetta T, Marchiò C and
Sapino A: Effect of low doses of estradiol and tamoxifen on breast
cancer cell karyotypes. Endocr Relat Cancer. 23:635–650. 2016.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Odia Y, Kreisl TN, Aregawi D, Innis EK and
Fine HA: A phase II trial of tamoxifen and bortezomib in patients
with recurrent malignant gliomas. J Neurooncol. 125:191–195. 2015.
View Article : Google Scholar : PubMed/NCBI
|
52
|
Lien EA, Solheim E and Ueland PM:
Distribution of tamoxifen and its metabolites in rat and human
tissues during steady-state treatment. Cancer Res. 51:4837–4844.
1991.PubMed/NCBI
|
53
|
Novick AM, Scott AT, Neill Epperson C and
Schneck CD: Neuropsychiatric effects of tamoxifen: Challenges and
opportunities. Front Neuroendocrinol. 59:1008692020. View Article : Google Scholar : PubMed/NCBI
|