You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
![]() |
![]() |
|
Sun Y, Chen P, Zhai B, Zhang M, Xiang Y, Fang J, Xu S, Gao Y, Chen X, Sui X and Li G: The emerging role of ferroptosis in inflammation. Biomed Pharmacother. 127:1101082020. View Article : Google Scholar : PubMed/NCBI | |
|
Peng JJ, Song WT, Yao F, Zhang X, Peng J, Luo XJ and Xia XB: Involvement of regulated necrosis in blinding diseases: Focus on necroptosis and ferroptosis. Exp Eye Res. 191:1079222020. View Article : Google Scholar | |
|
Ma T, Du J, Zhang Y, Wang Y, Wang B and Zhang T: GPX4-independent ferroptosis-a new strategy in disease's therapy. Cell Death Discov. 8:4342022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Liu Z, Liu L, Guo C, Jiao D, Li L, Zhao J, Han X and Sun Y: CELF2 is a candidate prognostic and immunotherapy biomarker in triple-negative breast cancer and lung squamous cell carcinoma: A pan-cancer analysis. J Cell Mol Med. 25:7559–7574. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ramalingam S, Ramamoorthy P, Subramaniam D and Anant S: Reduced expression of RNA binding protein CELF2, a putative tumor suppressor gene in colon cancer. Immunogastroenterology. 1:27–33. 2012. View Article : Google Scholar | |
|
Sureban SM, Murmu N, Rodriguez P, May R, Maheshwari R, Dieckgraefe BK, Houchen CW and Anant S: Functional antagonism between RNA binding proteins HuR and CUGBP2 determines the fate of COX-2 mRNA translation. Gastroenterology. 132:1055–1065. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Jakstaite A, Maziukiene A, Silkuniene G, Kmieliute K, Dauksa A, Paskauskas S, Gulbinas A and Dambrauskas Z: Upregulation of cugbp2 increases response of pancreatic cancer cells to chemotherapy. Langenbecks Arch Surg. 401:99–111. 2016. View Article : Google Scholar | |
|
Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI | |
|
Lee S, Rauch J and Kolch W: Targeting MAPK Signaling in Cancer: Mechanisms of Drug Resistance and Sensitivity. Int J Mol Sci. 21:11022020. View Article : Google Scholar : PubMed/NCBI | |
|
Sui X, Kong N, Ye L, Han W, Zhou J, Zhang Q, He C and Pan H: p38 and JNK MAPK pathways control the balance of apoptosis and autophagy in response to chemotherapeutic agents. Cancer Lett. 344:174–179. 2014. View Article : Google Scholar | |
|
Chang WT, Bow YD, Fu PJ, Li CY, Wu CY, Chang YH, Teng YN, Li RN, Lu MC, Liu YC and Chiu CC: A Marine terpenoid, heteronemin, induces both the apoptosis and ferroptosis of hepatocellular carcinoma cells and involves the ROS and MAPK pathways. Oxid Med Cell Longev. 2021:76890452021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou D, Wu Q, Qiu H, Li M and Ji Y: Simvastatin inhibits endometrial cancer malignant behaviors by suppressing R AS/ M itogen-Activated protei n k i nase ( M A PK) Pathway-Mediated reactive oxygen species (ROS) and ferroptosis. Evid Based Complement Alternat Med. 2022:61774772022. View Article : Google Scholar | |
|
He T, Lin X, Yang C, Chen Z, Wang L, Li Q, Ma J, Zhan F, Wang Y, Yan J and Quan Z: Theaflavin-3,3′-Digallate Plays a ROS-Mediated dual role in ferroptosis and apoptosis via the MAPK pathway in human osteosarcoma cell lines and xenografts. Oxid Med Cell Longev. 2022:89663682022. View Article : Google Scholar | |
|
Bhatt V, Lan T, Wang W, Kong J, Lopes EC, Wang J, Khayati K, Raju A, Rangel M, Lopez E, et al: Inhibition of autophagy and MEK promotes ferroptosis in Lkb1-deficient Kras-driven lung tumors. Cell Death Dis. 14:612023. View Article : Google Scholar : PubMed/NCBI | |
|
Santarpia L, Lippman SM and El-Naggar AK: Targeting the MAPK-RAS-RAF signaling pathway in cancer therapy. Expert Opin Ther Targets. 16:103–119. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ji S, Qin Y, Shi S, Liu X, Hu H, Zhou H, Gao J, Zhang B, Xu W, Liu J, et al: ERK kinase phosphorylates and destabilizes the tumor suppressor FBW7 in pancreatic cancer. Cell Res. 25:561–573. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Davis RJ, Welcker M and Clurman BE: Tumor suppression by the Fbw7 ubiquitin ligase: mechanisms and opportunities. Cancer Cell. 26:455–464. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Hu K, Xiao X, Wu W, Yan H, Chen H, Chen Z and Yin D: FBW7 suppresses cell proliferation and G2/M cell cycle transition via promoting γ-catenin K63-linked ubiquitylation. Biochem Biophys Res Commun. 497:473–479. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Ye Z, Zhuo Q, Hu Q, Xu X, Mengqi Liu, Zhang Z, Xu W, Liu W, Fan G, Qin Y, et al: FBW7-NRA41-SCD1 axis synchronously regulates apoptosis and ferroptosis in pancreatic cancer cells. Redox Biol. 38:1018072021. View Article : Google Scholar | |
|
Yada M, Hatakeyama S, Kamura T, Nishiyama M, Tsunematsu R, Imaki H, Ishida N, Okumura F, Nakayama K and Nakayama KI: Phosphorylation-dependent degradation of c-Myc is mediated by the F-box protein Fbw7. EMBO J. 23:2116–2125. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Chen J, Ding C, Chen Y, Hu W, Lu Y, Wu W, Zhang Y, Yang B, Wu H, Peng C, et al: ACSL4 promotes hepatocellular carcinoma progression via c-Myc stability mediated by ERK/FBW7/c-Myc axis. Oncogenesis. 9:422020. View Article : Google Scholar : PubMed/NCBI | |
|
Benassi B, Fanciulli M, Fiorentino F, Porrello A, Chiorino G, Loda M, Zupi G and Biroccio A: c-Myc phosphorylation is required for cellular response to oxidative stress. Mol Cell. 21:509–519. 2006. View Article : Google Scholar | |
|
Lepore Signorile M, Grossi V, Fasano C, Forte G, Disciglio V, Sanese P, De Marco K, La Rocca F, Armentano R, Valentini AM, et al: c-MYC protein stability is sustained by MAPKs in colorectal cancer. Cancers (Basel). 14:48402022. View Article : Google Scholar : PubMed/NCBI | |
|
Lepore Signorile M, Grossi V, Di Franco S, Forte G, Disciglio V, Fasano C, Sanese P, De Marco K, Susca FC, Mangiapane LR, et al: Pharmacological targeting of the novel β-catenin chromatin-associated kinase p38α in colorectal cancer stem cell tumorspheres and organoids. Cell Death Dis. 12:3162021. View Article : Google Scholar | |
|
Jiang X, Guo S, Xu M, Ma B, Liu R, Xu Y and Zhang Y: TFAP2C-Mediated lncRNA PCAT1 inhibits ferroptosis in docetaxel-resistant prostate cancer through c-Myc/miR-25-3p/SLC7A11 signaling. Front Oncol. 12:8620152022. View Article : Google Scholar : PubMed/NCBI | |
|
Benassi B, Zupi G and Biroccio A: Gamma-glutamylcysteine synthetase mediates the c-Myc-dependent response to antineoplastic agents in melanoma cells. Mol Pharmacol. 72:1015–1023. 2007. View Article : Google Scholar | |
|
Kim BY, Kwak SY, Yang JS and Han YH: Phosphorylation and stabilization of c-Myc by NEMO renders cells resistant to ionizing radiation through up-regulation of γ-GCS. Oncol Rep. 26:1587–1593. 2011.PubMed/NCBI | |
|
Jiang Y, Mao C, Yang R, Yan B, Shi Y, Liu X, Lai W, Liu Y, Wang X, Xiao D, et al: EGLN1/c-Myc induced lymphoid-specific helicase inhibits ferroptosis through lipid metabolic gene expression changes. Theranostics. 7:3293–3305. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Liang C, Shi S, Liu M, Qin Y, Meng Q, Hua J, Ji S, Zhang Y, Yang J, Xu J, et al: PIN1 maintains redox balance via the c-Myc/NRF2 axis to counteract kras-induced mitochondrial respiratory injury in pancreatic cancer cells. Cancer Res. 79:133–145. 2019. View Article : Google Scholar | |
|
Lu H, Yin H, Qu L, Ma X, Fu R and Fan D: Ginsenoside Rk1 regulates glutamine metabolism in hepatocellular carcinoma through inhibition of the ERK/c-Myc pathway. Food Funct. 13:3793–3811. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Gao P, Tchernyshyov I, Chang TC, Lee YS, Kita K, Ochi T, Zeller KI, De Marzo AM, Van Eyk JE, Mendell JT and Dang CV: c-Myc suppression of miR-23a/b enhances mitochondrial glutaminase expression and glutamine metabolism. Nature. 458:762–765. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Jin Y, Qiu J, Lu X and Li G: C-MYC inhibited ferroptosis and promoted immune evasion in ovarian cancer cells through NCOA4 mediated ferritin autophagy. Cells. 11:41272022. View Article : Google Scholar : | |
|
Hongu T and Kanaho Y: Activation machinery of the small GTPase Arf6. Adv Biol Regul. 54:59–66. 2014. View Article : Google Scholar | |
|
Liang C, Qin Y, Zhang B, Ji S, Shi S, Xu W, Liu J, Xiang J, Liang D, Hu Q, et al: ARF6, induced by mutant Kras, promotes proliferation and Warburg effect in pancreatic cancer. Cancer Lett. 388:303–311. 2017. View Article : Google Scholar | |
|
Knizhnik AV, Kovaleva OV, Komelkov AV, Trukhanova LS, Rybko VA, Zborovskaya IB and Tchevkina EM: Arf6 promotes cell proliferation via the PLD-mTORC1 and p38MAPK pathways. J Cell Biochem. 113:360–371. 2012. View Article : Google Scholar | |
|
Ye Z, Hu Q, Zhuo Q, Zhu Y, Fan G, Liu M, Sun Q, Zhang Z, Liu W, Xu W, et al: Abrogation of ARF6 promotes RSL3-induced ferroptosis and mitigates gemcitabine resistance in pancreatic cancer cells. Am J Cancer Res. 10:1182–1193. 2020.PubMed/NCBI | |
|
Geng D and Wu H: Abrogation of ARF6 in promoting erastin-induced ferroptosis and mitigating capecitabine resistance in gastric cancer cells. J Gastrointest Oncol. 13:958–967. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Yan F, Qian M, He Q, Zhu H and Yang B: The posttranslational modifications of Hippo-YAP pathway in cancer. Biochim Biophys Acta Gen Subj. 1864:1293972020. View Article : Google Scholar | |
|
Jang JW, Kim MK and Bae SC: Reciprocal regulation of YAP/TAZ by the Hippo pathway and the Small GTPase pathway. Small GTPases. 11:280–288. 2020. View Article : Google Scholar : | |
|
Meng XY, Zhang HZ, Ren YY, Wang KJ, Chen JF, Su R, Jiang JH, Wang P and Ma Q: Pinin promotes tumor progression via activating CREB through PI3K/AKT and ERK/MAPK pathway in prostate cancer. Am J Cancer Res. 11:1286–1303. 2021.PubMed/NCBI | |
|
Lee CW, Nam JS, Park YK, Choi HK, Lee JH, Kim NH, Cho J, Song DK, Suh HW, Lee J, et al: Lysophosphatidic acid stimulates CREB through mitogen- and stress-activated protein kinase-1. Biochem Biophys Res Commun. 305:455–461. 2003. View Article : Google Scholar | |
|
Ippolito F, Consalvi V, Noce V, Battistelli C, Cicchini C, Tripodi M, Amicone L and Marchetti A: Extracellular signal-Regulated Kinase 5 (ERK5) is required for the Yes-associated protein (YAP) co-transcriptional activity. Cell Death Dis. 14:322023. View Article : Google Scholar : PubMed/NCBI | |
|
Holmes B, Benavides-Serrato A, Saunders JT, Kumar S, Nishimura RN and Gera J: mTORC2-mediated direct phosphorylation regulates YAP activity promoting glioblastoma growth and invasive characteristics. Neoplasia. 23:951–965. 2021. View Article : Google Scholar : | |
|
Wang Y, Fang R, Cui M, Zhang W, Bai X, Wang H, Liu B, Zhang X and Ye L: The oncoprotein HBXIP up-regulates YAP through activation of transcription factor c-Myb to promote growth of liver cancer. Cancer Lett. 385:234–242. 2017. View Article : Google Scholar | |
|
Xiao W, Wang J, Ou C, Zhang Y, Ma L, Weng W, Pan Q and Sun F: Mutual interaction between YAP and c-Myc is critical for carcinogenesis in liver cancer. Biochem Biophys Res Commun. 439:167–172. 2013. View Article : Google Scholar | |
|
Qin Y, Pei Z, Feng Z, Lin P, Wang S, Li Y, Huo F, Wang Q, Wang Z, Chen ZN, et al: Oncogenic activation of YAP signaling sensitizes ferroptosis of hepatocellular carcinoma via ALOXE3-mediated lipid peroxidation accumulation. Front Cell Dev Biol. 9:7515932021. View Article : Google Scholar | |
|
Wu J, Minikes AM, Gao M, Bian H, Li Y, Stockwell BR, Chen ZN and Jiang X: Intercellular interaction dictates cancer cell ferroptosis via NF2-YAP signalling. Nature. 572:402–406. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Fang K, Du S, Shen D, Xiong Z, Jiang K, Liang D, Wang J, Xu H, Hu L, Zhai X, et al: SUFU suppresses ferroptosis sensitivity in breast cancer cells via Hippo/YAP pathway. iScience. 25:1046182022. View Article : Google Scholar : PubMed/NCBI | |
|
Yang WH, Lin CC, Wu J, Chao PY, Chen K, Chen PH and Chi JT: The Hippo pathway effector YAP promotes ferroptosis via the E3 ligase SKP2. Mol Cancer Res. 19:1005–1014. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Gao R, Kalathur RKR, Coto-Llerena M, Ercan C, Buechel D, Shuang S, Piscuoglio S, Dill MT, Camargo FD, Christofori G and Tang F: YAP/TAZ and ATF4 drive resistance to Sorafenib in hepatocellular carcinoma by preventing ferroptosis. EMBO Mol Med. 13:e143512021. View Article : Google Scholar : | |
|
Hsu CY, Chang GC, Chen YJ, Hsu YC, Hsiao YJ, Su KY, Chen HY, Lin CY, Chen JS, Chen YJ, et al: FAM198B is associated with prolonged survival and inhibits metastasis in lung adenocarcinoma via blockage of ERK-mediated MMP-1 expression. Clin Cancer Res. 24:916–926. 2018. View Article : Google Scholar | |
|
Guo Q, Wu Y, Guo X, Cao L, Xu F, Zhao H, Zhu J, Wen H, Ju X and Wu X: The RNA-binding protein CELF2 inhibits ovarian cancer progression by stabilizing FAM198B. Mol Ther Nucleic Acids. 23:169–184. 2021. View Article : Google Scholar | |
|
Zheng X, Chen J, Nan T, Zheng L, Lan J, Jin X, Cai Y, Liu H and Chen W: FAM198B promotes colorectal cancer progression by regulating the polarization of tumor-associated macrophages via the SMAD2 signaling pathway. Bioengineered. 13:12435–12445. 2022. View Article : Google Scholar : | |
|
Buchholz M, Schatz A, Wagner M, Michl P, Linhart T, Adler G, Gress TM and Ellenrieder V: Overexpression of c-myc in pancreatic cancer caused by ectopic activation of NFATc1 and the Ca2+/calcineurin signaling pathway. EMBO J. 25:3714–3724. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Xu W, Gu J, Ren Q, Shi Y, Xia Q and Wang J, Wang S, Wang Y and Wang J: NFATC1 promotes cell growth and tumorigenesis in ovarian cancer up-regulating c-Myc through ERK1/2/p38 MAPK signal pathway. Tumour Biol. 37:4493–4500. 2016. View Article : Google Scholar | |
|
Ren F, Zhu K, Wang Y, Zhou F, Pang S and Chen L: Proliferation, apoptosis and invasion of human lung cancer cells are associated with NFATc1. Exp Ther Med. 25:492023. View Article : Google Scholar : PubMed/NCBI | |
|
Russo R, Mallia S, Zito F and Lampiasi N: Long-lasting activity of ERK kinase depends on NFATc1 induction and is involved in cell migration-fusion in murine macrophages RAW264.7. Int J Mol Sci. 21:89652020. View Article : Google Scholar : PubMed/NCBI | |
|
Baumgart S, Chen NM, Siveke JT, König A, Zhang JS, Singh SK, Wolf E, Bartkuhn M, Esposito I, Heßmann E, et al: Inflammation-induced NFATc1-STAT3 transcription complex promotes pancreatic cancer initiation by KrasG12D. Cancer Discov. 4:688–701. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou L and Xie X: RNA-binding protein CELF2 inhibits breast cancer cell invasion and angiogenesis by downregulating NFATc1. Exp Ther Med. 22:8982021. View Article : Google Scholar : PubMed/NCBI | |
|
Faes S and Dormond O: PI3K and AKT: Unfaithful partners in cancer. Int J Mol Sci. 16:21138–21152. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hashemi M, Taheriazam A, Daneii P, Hassanpour A, Kakavand A, Rezaei S, Hejazi ES, Aboutalebi M, Gholamrezaie H, Saebfar H, et al: Targeting PI3K/Akt signaling in prostate cancer therapy. J Cell Commun Signal. Nov 11–2022. View Article : Google Scholar : Epub ahead of print. PubMed/NCBI | |
|
Ma RH, Ni ZJ, Thakur K, Cespedes-Acuña CL, Zhang JG and Wei ZJ: Transcriptome and proteomics conjoint analysis reveal metastasis inhibitory effect of 6-shogaol as ferroptosis activator through the PI3K/AKT pathway in human endometrial carcinoma in vitro and in vivo. Food Chem Toxicol. 170:1134992022. View Article : Google Scholar : PubMed/NCBI | |
|
Lu Y, Mao J, Xu Y, Pan H, Wang Y and Li W: Ropivacaine represses the ovarian cancer cell stemness and facilitates cell ferroptosis through inactivating the PI3K/AKT signaling pathway. Hum Exp Toxicol. 41:96032712211206522022. View Article : Google Scholar | |
|
Wang L, Wang J and Chen L: TIMP1 represses sorafenib-triggered ferroptosis in colorectal cancer cells by activating the PI3K/Akt signaling pathway. Immunopharmacol Immunotoxicol. 45:419–425. 2022. View Article : Google Scholar | |
|
Liu H, Zhao L, Wang M, Yang K, Jin Z, Zhao C and Shi G: FNDC5 causes resistance to sorafenib by activating the PI3K/Akt/Nrf2 pathway in hepatocellular carcinoma cells. Front Oncol. 12:8520952022. View Article : Google Scholar : PubMed/NCBI | |
|
Huang W, Chen K, Lu Y, Zhang D, Cheng Y, Li L, Huang W, He G, Liao H, Cai L, et al: ABCC5 facilitates the acquired resistance of sorafenib through the inhibition of SLC7A11-induced ferroptosis in hepatocellular carcinoma. Neoplasia. 23:1227–1239. 2021. View Article : Google Scholar : | |
|
Jain AK and Jaiswal AK: GSK-3beta acts upstream of Fyn kinase in regulation of nuclear export and degradation of NF-E2 related factor 2. J Biol Chem. 282:16502–16510. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Rizvi F, Shukla S and Kakkar P: Essential role of PH domain and leucine-rich repeat protein phosphatase 2 in Nrf2 suppression via modulation of Akt/GSK3 beta/Fyn kinase axis during oxidative hepatocellular toxicity. Cell Death Dis. 5:e11532014. View Article : Google Scholar | |
|
Liao S, Wu JN, Liu RM, Wang SX, Luo J, Yang Y, Qin Y, Li T, Zheng X, Song J, et al: A novel compound DBZ ameliorates neuroinflammation in LPS-stimulated microglia and ischemic stroke rats: Role of Akt(Ser473)/GSK3β(Ser9)-mediated Nrf2 activation. Redox Biol. 36:1016442020. View Article : Google Scholar | |
|
Ichimura Y, Waguri S, Sou YS, Kageyama S, Hasegawa J, Ishimura R, Saito T, Yang Y, Kouno T, Fukutomi T, et al: Phosphorylation of p62 activates the Keap1-Nrf2 pathway during selective autophagy. Mol Cell. 51:618–631. 2013. View Article : Google Scholar | |
|
Yi J, Zhu J, Wu J, Thompson CB and Jiang X: Oncogenic activation of PI3K-AKT-mTOR signaling suppresses ferroptosis via SREBP-mediated lipogenesis. Proc Natl Acad Sci USA. 117:31189–31897. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Y, Wang Y, Liu J, Kang R and Tang D: Interplay between MTOR and GPX4 signaling modulates autophagy-dependent ferroptotic cancer cell death. Cancer Gene Ther. 28:55–63. 2021. View Article : Google Scholar | |
|
Zhang L, Liu W, Liu F, Wang Q, Song M, Yu Q, Tang K, Teng T, Wu D, Wang X, et al: IMCA induces ferroptosis mediated by SLC7A11 through the AMPK/mTOR pathway in colorectal cancer. Oxid Med Cell Longev. 2020:16756132020. View Article : Google Scholar : PubMed/NCBI | |
|
Li S, Oh YT, Yue P, Khuri FR and Sun SY: Inhibition of mTOR complex 2 induces GSK3/FBXW7-dependent degradation of sterol regulatory element-binding protein 1 (SREBP1) and suppresses lipogenesis in cancer cells. Oncogene. 35:642–650. 2016. View Article : Google Scholar | |
|
Yang Q, Mao Y, Wang J, Yu H, Zhang X, Pei X, Duan Z, Xiao C and Ma M: Gestational bisphenol A exposure impairs hepatic lipid metabolism by altering mTOR/CRTC2/SREBP1 in male rat offspring. Hum Exp Toxicol. 41:96032712211298522022. View Article : Google Scholar : PubMed/NCBI | |
|
Masoud GN and Li W: HIF-1α pathway: Role, regulation and intervention for cancer therapy. Acta Pharm Sin B. 5:378–389. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
van den Beucken T, Koritzinsky M and Wouters BG: Translational control of gene expression during hypoxia. Cancer Biol Ther. 5:749–755. 2006. View Article : Google Scholar | |
|
Alvarez-Tejado M, Alfranca A, Aragonés J, Vara A, Landázuri MO and del Peso L: Lack of evidence for the involvement of the phosphoinositide 3-kinase/Akt pathway in the activation of hypoxia-inducible factors by low oxygen tension. J Biol Chem. 277:13508–13517. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Arsham AM, Plas DR, Thompson CB and Simon MC: Phosphatidylinositol 3-kinase/Akt signaling is neither required for hypoxic stabilization of HIF-1 alpha nor sufficient for HIF-1-dependent target gene transcription. J Biol Chem. 277:15162–15170. 2002. View Article : Google Scholar : PubMed/NCBI | |
|
Tanaka H, Yamamoto M, Hashimoto N, Miyakoshi M, Tamakawa S, Yoshie M, Tokusashi Y, Yokoyama K, Yaginuma Y and Ogawa K: Hypoxia-independent overexpression of hypoxia-inducible factor 1alpha as an early change in mouse hepatocarcinogenesis. Cancer Res. 66:11263–11270. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Sun S, Guo C, Gao T, Ma D, Su X, Pang Q and Zhang R: Hypoxia enhances glioma resistance to sulfasalazine-induced ferroptosis by upregulating SLC7A11 via PI3K/AKT/HIF-1α axis. Oxid Med Cell Longev. 2022:78624302022. View Article : Google Scholar | |
|
Lin Z, Song J, Gao Y, Huang S, Dou R, Zhong P, Huang G, Han L, Zheng J, Zhang X, et al: Hypoxia-induced HIF-1α/lncRNA-PMAN inhibits ferroptosis by promoting the cytoplasmic translocation of ELAVL1 in peritoneal dissemination from gastric cancer. Redox Biol. 52:1023122022. View Article : Google Scholar | |
|
Guo S, Miyake M, Liu KJ and Shi H: Specific inhibition of hypoxia inducible factor 1 exaggerates cell injury induced by in vitro ischemia through deteriorating cellular redox environment. J Neurochem. 108:1309–1321. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Q and Wang Y: MiR-210-3p targets CELF2 to facilitate progression of lung squamous carcinoma through PI3K/AKT pathway. Med Oncol. 39:1612022. View Article : Google Scholar | |
|
Wu JZ, Jiang N, Lin JM and Liu X: STYXL1 promotes malignant progression of hepatocellular carcinoma via downregulating CELF2 through the PI3K/Akt pathway. Eur Rev Med Pharmacol Sci. 24:2977–2985. 2020.PubMed/NCBI | |
|
Shi M, Yang R, Lin J, Wei QI, Chen L, Gong W, Li Y and Guo X: LncRNA-SNHG16 promotes proliferation and migration of acute myeloid leukemia cells via PTEN/PI3K/AKT axis through suppressing CELF2 protein. J Biosci. 46:42021. View Article : Google Scholar : PubMed/NCBI | |
|
Yeung YT, Fan S, Lu B, Yin S, Yang S, Nie W, Wang M, Zhou L, Li T, Li X, et al: CELF2 suppresses non-small cell lung carcinoma growth by inhibiting the PREX2-PTEN interaction. Carcinogenesis. 41:377–389. 2020. View Article : Google Scholar : | |
|
Zhou B, Liu J, Kang R, Klionsky DJ, Kroemer G and Tang D: Ferroptosis is a type of autophagy-dependent cell death. Semin Cancer Biol. 66:89–100. 2020. View Article : Google Scholar | |
|
Kang R and Tang D: Autophagy and Ferroptosis-What's the connection? Curr Pathobiol Rep. 5:153–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Denton D and Kumar S: Autophagy-dependent cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar | |
|
Gao M, Monian P, Pan Q, Zhang W, Xiang J and Jiang X: Ferroptosis is an autophagic cell death process. Cell Res. 26:1021–1032. 2016. View Article : Google Scholar : | |
|
Hou W, Xie Y, Song X, Sun X, Lotze MT, Zeh HJ III, Kang R and Tang D: Autophagy promotes ferroptosis by degradation of ferritin. Autophagy. 12:1425–1428. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Park E and Chung SW: ROS-mediated autophagy increases intracellular iron levels and ferroptosis by ferritin and transferrin receptor regulation. Cell Death Dis. 10:8222019. View Article : Google Scholar : | |
|
Gryzik M, Srivastava A, Longhi G, Bertuzzi M, Gianoncelli A, Carmona F, Poli M and Arosio P: Expression and characterization of the ferritin binding domain of Nuclear Receptor Coactivator-4 (NCOA4). Biochim Biophys Acta Gen Subj. 1861:2710–2716. 2017. View Article : Google Scholar | |
|
Ohshima T, Yamamoto H, Sakamaki Y, Saito C and Mizushima N: NCOA4 drives ferritin phase separation to facilitate macroferritinophagy and microferritinophagy. J Cell Biol. 221:e2022031022022. View Article : Google Scholar : | |
|
Dowdle WE, Nyfeler B, Nagel J, Elling RA, Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, et al: Selective VPS34 inhibitor blocks autophagy and uncovers a role for NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat Cell Biol. 16:1069–1079. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Ohnstad AE, Delgado JM, North BJ, Nasa I, Kettenbach AN, Schultz SW and Shoemaker CJ: Receptor-mediated clustering of FIP200 bypasses the role of LC3 lipidation in autophagy. EMBO J. 39:e1049482020. View Article : Google Scholar : PubMed/NCBI | |
|
Kuno S, Fujita H, Tanaka YK, Ogra Y and Iwai K: Iron-induced NCOA4 condensation regulates ferritin fate and iron homeostasis. EMBO Rep. 23:e542782022. View Article : Google Scholar : PubMed/NCBI | |
|
Goodwin JM, Dowdle WE, DeJesus R, Wang Z, Bergman P, Kobylarz M, Lindeman A, Xavier RJ, McAllister G, Nyfeler B, et al: Autophagy-independent lysosomal targeting regulated by ULK1/2-FIP200 and ATG9. Cell Rep. 20:2341–2356. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Fuhrmann DC, Mondorf A, Beifuß J, Jung M and Brüne B: Hypoxia inhibits ferritinophagy, increases mitochondrial ferritin, and protects from ferroptosis. Redox Biol. 36:1016702020. View Article : Google Scholar : PubMed/NCBI | |
|
Hara Y, Yanatori I, Tanaka A, Kishi F, Lemasters JJ, Nishina S, Sasaki K and Hino K: Iron loss triggers mitophagy through induction of mitochondrial ferritin. EMBO Rep. 21:e502022020. View Article : Google Scholar : PubMed/NCBI | |
|
Zorov DB, Juhaszova M and Sollott SJ: Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 94:909–950. 2014. View Article : Google Scholar : | |
|
Rademaker G, Boumahd Y, Peiffer R, Anania S, Wissocq T, Liégeois M, Luis G, Sounni NE, Agirman F, Maloujahmoum N, et al: Myoferlin targeting triggers mitophagy and primes ferroptosis in pancreatic cancer cells. Redox Biol. 53:1023242022. View Article : Google Scholar : PubMed/NCBI | |
|
Basit F, van Oppen LM, Schöckel L, Bossenbroek HM, van Emst-de Vries SE, Hermeling JC, Grefte S, Kopitz C, Heroult M, Hgm Willems P and Koopman WJ: Mitochondrial complex I inhibition triggers a mitophagy-dependent ROS increase leading to necroptosis and ferroptosis in melanoma cells. Cell Death Dis. 8:e27162017. View Article : Google Scholar : PubMed/NCBI | |
|
Wei S, Qiu T, Yao X, Wang N, Jiang L, Jia X, Tao Y, Wang Z, Pei P, Zhang J, et al: Arsenic induces pancreatic dysfunction and ferroptosis via mitochondrial ROS-autophagy-lysosomal pathway. J Hazard Mater. 384:1213902020. View Article : Google Scholar | |
|
Liu M, Fan Y, Li D, Han B, Meng Y, Chen F, Liu T, Song Z, Han Y, Huang L, et al: Ferroptosis inducer erastin sensitizes NSCLC cells to celastrol through activation of the ROS-mitochondrial fission-mitophagy axis. Mol Oncol. 15:2084–2105. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xiao B, Deng X, Lim GGY, Xie S, Zhou ZD, Lim KL and Tan EK: Superoxide drives progression of Parkin/PINK1-dependent mitophagy following translocation of Parkin to mitochondria. Cell Death Dis. 8:e30972017. View Article : Google Scholar : PubMed/NCBI | |
|
Gan ZY, Callegari S, Cobbold SA, Cotton TR, Mlodzianoski MJ, Schubert AF, Geoghegan ND, Rogers KL, Leis A, Dewson G, et al: Activation mechanism of PINK1. Nature. 602:328–335. 2022. View Article : Google Scholar : | |
|
Wang C, Liu K, Cao J, Wang L, Zhao Q, Li Z, Zhang H, Chen Q and Zhao T: PINK1-mediated mitophagy maintains pluripotency through optineurin. Cell Prolif. 54:e130342021. View Article : Google Scholar | |
|
Matsuda N, Sato S, Shiba K, Okatsu K, Saisho K, Gautier CA, Sou YS, Saiki S, Kawajiri S, Sato F, et al: PINK1 stabilized by mitochondrial depolarization recruits Parkin to damaged mitochondria and activates latent Parkin for mitophagy. J Cell Biol. 189:211–221. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Li C, Zhang Y, Liu J, Kang R, Klionsky DJ and Tang D: Mitochondrial DNA stress triggers autophagy-dependent ferroptotic death. Autophagy. 17:948–960. 2021. View Article : Google Scholar : | |
|
Zhu L, Wu W, Jiang S, Yu S, Yan Y, Wang K, He J, Ren Y and Wang B: Pan-cancer analysis of the Mitophagy-Related protein PINK1 as a biomarker for the immunological and prognostic role. Front Oncol. 10:5698872020. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng Y, Huang C, Lu L, Yu K, Zhao J, Chen M, Liu L, Sun Q, Lin Z, Zheng J, et al: STOML2 potentiates metastasis of hepatocellular carcinoma by promoting PINK1-mediated mitophagy and regulates sensitivity to lenvatinib. J Hematol Oncol. 14:162021. View Article : Google Scholar : | |
|
Chen Y, Chen HN, Wang K, Zhang L, Huang Z, Liu J, Zhang Z, Luo M, Lei Y, Peng Y, et al: Ketoconazole exacerbates mitophagy to induce apoptosis by downregulating cyclooxygenase-2 in hepatocellular carcinoma. J Hepatol. 70:66–77. 2019. View Article : Google Scholar | |
|
Kung-Chun Chiu D, Pui-Wah Tse A, Law CT, Ming-Jing Xu I, Lee D, Chen M, Kit-Ho Lai R, Wai-Hin Yuen V, Wing-Sum Cheu J, Wai-Hung Ho D, et al: Hypoxia regulates the mitochondrial activity of hepatocellular carcinoma cells through HIF/HEY1/PINK1 pathway. Cell Death Dis. 10:9342019. View Article : Google Scholar : PubMed/NCBI | |
|
Wu H, Wang T, Liu Y, Li X, Xu S, Wu C, Zou H, Cao M, Jin G, Lang J, et al: Mitophagy promotes sorafenib resistance through hypoxia-inducible ATAD3A dependent Axis. J Exp Clin Cancer Res. 39:2742020. View Article : Google Scholar : PubMed/NCBI | |
|
Lv H and Shang P: The significance, trafficking and determination of labile iron in cytosol, mitochondria and lysosomes. Metallomics. 10:899–916. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rizzollo F, More S, Vangheluwe P and Agostinis P: The lysosome as a master regulator of iron metabolism. Trends Biochem Sci. 46:960–975. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Kurz T, Gustafsson B and Brunk UT: Cell sensitivity to oxidative stress is influenced by ferritin autophagy. Free Radic Biol Med. 50:1647–1658. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Torii S, Shintoku R, Kubota C, Yaegashi M, Torii R, Sasaki M, Suzuki T, Mori M, Yoshimoto Y, Takeuchi T, et al: An essential role for functional lysosomes in ferroptosis of cancer cells. Biochem J. 473:769–777. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Yang Z, Wang S, Ma Q, Li L, Wu X, Guo Q, Tao L and Shen X: Boosting ROS-Mediated lysosomal membrane permeabilization for cancer ferroptosis therapy. Adv Healthc Mater. 12:e22021502023. View Article : Google Scholar | |
|
Fernández B, Fdez E, Gómez-Suaga P, Gil F, Molina-Villalba I, Ferrer I, Patel S, Churchill GC and Hilfiker S: Iron overload causes endolysosomal deficits modulated by NAADP-regulated 2-pore channels and RAB7A. Autophagy. 12:1487–1506. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Halcrow PW, Lakpa KL, Khan N, Afghah Z, Miller N, Datta G, Chen X and Geiger JD: HIV-1 gp120-Induced endolysosome de-Acidification leads to efflux of endolysosome iron, and increases in mitochondrial iron and reactive oxygen species. J Neuroimmune Pharmacol. 17:181–194. 2022. View Article : Google Scholar | |
|
New J, Subramaniam D, Ramalingam S, Enders J, Sayed AAA, Ponnurangam S, Standing D, Ramamoorthy P, O'Neil M, Dixon DA, et al: Pleotropic role of RNA binding protein CELF2 in autophagy induction. Mol Carcinog. 58:1400–1409. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
He Y, She H, Zhang T, Xu H, Cheng L, Yepes M, Zhao Y and Mao Z: p38 MAPK inhibits autophagy and promotes microglial inflammatory responses by phosphorylating ULK1. J Cell Biol. 217:315–328. 2018. View Article : Google Scholar : | |
|
Trelford CB and Di Guglielmo GM: Canonical and Non-canonical TGFβ signaling activate autophagy in an ULK1-Dependent manner. Front Cell Dev Biol. 9:7121242021. View Article : Google Scholar | |
|
Keil E, Höcker R, Schuster M, Essmann F, Ueffing N, Hoffman B, Liebermann DA, Pfeffer K, Schulze-Osthoff K and Schmitz I: Phosphorylation of Atg5 by the Gadd45β-MEKK4-p38 pathway inhibits autophagy. Cell Death Differ. 20:321–332. 2013. View Article : Google Scholar | |
|
Comes F, Matrone A, Lastella P, Nico B, Susca FC, Bagnulo R, Ingravallo G, Modica S, Lo Sasso G, Moschetta A, et al: A novel cell type-specific role of p38alpha in the control of autophagy and cell death in colorectal cancer cells. Cell Death Differ. 14:693–702. 2007. View Article : Google Scholar | |
|
Webber JL and Tooze SA: Coordinated regulation of autophagy by p38alpha MAPK through mAtg9 and p38IP. EMBO J. 29:27–40. 2010. View Article : Google Scholar | |
|
Zhao Y, Wu H, Xing X, Ma Y, Ji S, Xu X, Zhao X, Wang S, Jiang W, Fang C, et al: CD13 induces autophagy to promote hepatocellular carcinoma cell chemoresistance through the P38/Hsp27/CREB/ATG7 pathway. J Pharmacol Exp Ther. 374:512–520. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Choi CH, Lee BH, Ahn SG and Oh SH: Proteasome inhibition-induced p38 MAPK/ERK signaling regulates autophagy and apoptosis through the dual phosphorylation of glycogen synthase kinase 3β. Biochem Biophys Res Commun. 418:759–764. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Xie X, Le L, Fan Y, Lv L and Zhang J: Autophagy is induced through the ROS-TP53-DRAM1 pathway in response to mitochondrial protein synthesis inhibition. Autophagy. 8:1071–1084. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Sun T, Li D, Wang L, Xia L, Ma J, Guan Z, Feng G and Zhu X: c-Jun NH2-terminal kinase activation is essential for up-regulation of LC3 during ceramide-induced autophagy in human nasopharyngeal carcinoma cells. J Transl Med. 9:1612011. View Article : Google Scholar : | |
|
Zhang XY, Wu XQ, Deng R, Sun T, Feng GK and Zhu XF: Upregulation of sestrin 2 expression via JNK pathway activation contributes to autophagy induction in cancer cells. Cell Signal. 25:150–158. 2013. View Article : Google Scholar | |
|
Li DD, Wang LL, Deng R, Tang J, Shen Y, Guo JF, Wang Y, Xia LP, Feng GK, Liu QQ, et al: The pivotal role of c-Jun NH2-terminal kinase-mediated Beclin 1 expression during anticancer agents-induced autophagy in cancer cells. Oncogene. 28:886–898. 2009. View Article : Google Scholar | |
|
Wong CH, Iskandar KB, Yadav SK, Hirpara JL, Loh T and Pervaiz S: Simultaneous induction of non-canonical autophagy and apoptosis in cancer cells by ROS-dependent ERK and JNK activation. PLoS One. 5:e99962010. View Article : Google Scholar : PubMed/NCBI | |
|
Byun JY, Yoon CH, An S, Park IC, Kang CM, Kim MJ and Lee SJ: The Rac1/MKK7/JNK pathway signals upregulation of Atg5 and subsequent autophagic cell death in response to oncogenic Ras. Carcinogenesis. 30:1880–1888. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Park JH, Ko J, Park YS, Park J, Hwang J and Koh HC: Clearance of damaged mitochondria through PINK1 stabilization by JNK and ERK MAPK signaling in Chlorpyrifos-Treated neuroblastoma cells. Mol Neurobiol. 54:1844–1857. 2017. View Article : Google Scholar | |
|
Dagda RK, Zhu J, Kulich SM and Chu CT: Mitochondrially localized ERK2 regulates mitophagy and autophagic cell stress: Implications for Parkinson's disease. Autophagy. 4:770–782. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Meng Y, Yang Z, Huo T and Jiang H: Realgar facilitates the Nrf2-Keap1-p62 positive feedback signaling axis via MAPKs and AKT to interfere with autophagy-induced apoptosis and oxidative stress in the hippocampus. Biomed Pharmacother. 150:1129642022. View Article : Google Scholar : PubMed/NCBI | |
|
Hosokawa N, Hara T, Kaizuka T, Kishi C, Takamura A, Miura Y, Iemura S, Natsume T, Takehana K, Yamada N, et al: Nutrient-dependent mTORC1 association with the ULK1-Atg13-FIP200 complex required for autophagy. Mol Biol Cell. 20:1981–1991. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Jung CH, Jun CB, Ro SH, Kim YM, Otto NM, Cao J, Kundu M and Kim DH: ULK-Atg13-FIP200 complexes mediate mTOR signaling to the autophagy machinery. Mol Biol Cell. 20:1992–2003. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Kim J, Kundu M, Viollet B and Guan KL: AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 13:132–141. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Nazio F, Strappazzon F, Antonioli M, Bielli P, Cianfanelli V, Bordi M, Gretzmeier C, Dengjel J, Piacentini M, Fimia GM and Cecconi F: mTOR inhibits autophagy by controlling ULK1 ubiquitylation, self-association and function through AMBRA1 and TRAF6. Nat Cell Biol. 15:406–416. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Zhang S, He L, Rong Y, Brier LW, Sun Q, Liu R, Fan W, Chen S, Yue Z, et al: MTORC1-mediated NRBF2 phosphorylation functions as a switch for the class III PtdIns3K and autophagy. Autophagy. 13:592–607. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Kim YM, Jung CH, Seo M, Kim EK, Park JM, Bae SS and Kim DH: mTORC1 phosphorylates UVRAG to negatively regulate autophagosome and endosome maturation. Mol Cell. 57:207–218. 2015. View Article : Google Scholar : | |
|
Koren I, Reem E and Kimchi A: DAP1, a novel substrate of mTOR, negatively regulates autophagy. Curr Biol. 20:1093–1098. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Yang C, Li Y, Hu W, Wang X, Hu J, Yuan C, Zhou C, Wang H, Du J, Wang Y and Tong X: TEOA promotes autophagic cell death via ROS-Mediated inhibition of mTOR/p70S6k signaling pathway in pancreatic cancer cells. Front Cell Dev Biol. 9:7348182021. View Article : Google Scholar : | |
|
Nàger M, Sallán MC, Visa A, Pushparaj C, Santacana M, Macià A, Yeramian A, Cantí C and Herreros J: Inhibition of WNT-CTNNB1 signaling upregulates SQSTM1 and sensitizes glioblastoma cells to autophagy blockers. Autophagy. 14:619–636. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Petherick KJ, Williams AC, Lane JD, Ordóñez-Morán P, Huelsken J, Collard TJ, Smartt HJ, Batson J, Malik K, Paraskeva C and Greenhough A: Autolysosomal β-catenin degradation regulates Wnt-autophagy-p62 crosstalk. EMBO J. 32:1903–1916. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Fan B, Su B, Song G, Liu X, Yan Z, Wang S, Hu F and Yang J: miR-363-3p induces EMT via the Wnt/β-catenin pathway in glioma cells by targeting CELF2. J Cell Mol Med. 25:10418–10429 | |
|
Wei H, Tang X, Chen Q, Yue T and Dong B: An endoplasmic reticulum-targeting fluorescent probe for the visualization of the viscosity fluctuations during ferroptosis in live cells. Anal Chim Acta. 1232:3404542022. View Article : Google Scholar : PubMed/NCBI | |
|
Song W, Zhang W, Yue L and Lin W: Revealing the effects of endoplasmic reticulum stress on ferroptosis by Two-Channel Real-Time Imaging of pH and viscosity. Anal Chem. 94:6557–6565. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao C, Yu D, He Z, Bao L, Feng L, Chen L, Liu Z, Hu X, Zhang N, Wang T and Fu Y: Endoplasmic reticulum stress-mediated autophagy activation is involved in cadmium-induced ferroptosis of renal tubular epithelial cells. Free Radic Biol Med. 175:236–248. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
He Z, Shen P, Feng L, Hao H, He Y, Fan G, Liu Z, Zhu K, Wang Y, Zhang N, et al: Cadmium induces liver dysfunction and ferroptosis through the endoplasmic stress-ferritinophagy axis. Ecotoxicol Environ Saf. 245:1141232022. View Article : Google Scholar : PubMed/NCBI | |
|
Fu F, Wang W, Wu L, Wang W, Huang Z, Huang Y, Wu C and Pan X: Inhalable biomineralized liposomes for cyclic Ca2+-Burst-Centered endoplasmic reticulum stress enhanced lung cancer ferroptosis therapy. ACS Nano. 17:5486–5502. 2023. View Article : Google Scholar | |
|
Chen PH, Wu J, Xu Y, Ding CC, Mestre AA, Lin CC, Yang WH and Chi JT: Zinc transporter ZIP7 is a novel determinant of ferroptosis. Cell Death Dis. 12:1982021. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Mi Y, Zhang X, Ma Q, Song Y, Zhang L, Wang D, Xing J, Hou B, Li H, et al: Dihydroartemisinin-induced unfolded protein response feedback attenuates ferroptosis via PERK/ATF4/HSPA5 pathway in glioma cells. J Exp Clin Cancer Res. 38:4022019. View Article : Google Scholar : | |
|
Wei R, Zhao Y, Wang J, Yang X, Li S, Wang Y, Yang X, Fei J, Hao X, Zhao Y, et al: Tagitinin C induces ferroptosis through PERK-Nrf2-HO-1 signaling pathway in colorectal cancer cells. Int J Biol Sci. 17:2703–1277. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zheng X, Liu B, Liu X, Li P, Zhang P, Ye F, Zhao T, Kuang Y, Chen W, Jin X and Li Q: PERK regulates the sensitivity of hepatocellular carcinoma cells to High-LET carbon ions via either apoptosis or ferroptosis. J Cancer. 13:669–680. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Zhao R, Lv Y, Feng T, Zhang R, Ge L, Pan J, Han B, Song G and Wang L: ATF6α promotes prostate cancer progression by enhancing PLA2G4A-mediated arachidonic acid metabolism and protecting tumor cells against ferroptosis. Prostate. 82:617–629. 2022. View Article : Google Scholar : | |
|
Hwang J and Qi L: Quality control in the endoplasmic reticulum: Crosstalk between ERAD and UPR pathways. Trends Biochem Sci. 43:593–605. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Krshnan L, van de Weijer ML and Carvalho P: Endoplasmic reticulum-associated protein degradation. Cold Spring Harb Perspect Biol. 14:a0412472022. View Article : Google Scholar : PubMed/NCBI | |
|
Lopata A, Kniss A, Löhr F, Rogov VV and Dötsch V: Ubiquitination in the ERAD process. Int J Mol Sci. 21:53692020. View Article : Google Scholar : PubMed/NCBI | |
|
Haynes CM, Titus EA and Cooper AA: Degradation of misfolded proteins prevents ER-derived oxidative stress and cell death. Mol Cell. 15:767–776. 2004. View Article : Google Scholar : PubMed/NCBI | |
|
Liu Q, Yang X, Long G, Hu Y, Gu Z, Boisclair YR and Long Q: ERAD deficiency promotes mitochondrial dysfunction and transcriptional rewiring in human hepatic cells. J Biol Chem. 295:16743–16753. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Z, Torres M, Sha H, Halbrook CJ, Van den Bergh F, Reinert RB, Yamada T, Wang S, Luo Y, Hunter AH, et al: Endoplasmic reticulum-associated degradation regulates mitochondrial dynamics in brown adipocytes. Science. 368:54–60. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X, Wang QC, Sun Z, Li T, Yang K, An C, Guo C and Tang TS: ER stress mediated degradation of diacylglycerol acyltransferase impairs mitochondrial functions in TMCO1 deficient cells. Biochem Biophys Res Commun. 512:914–920. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Takashi Y, Tomita K, Kuwahara Y, Roudkenar MH, Roushandeh AM, Igarashi K, Nagasawa T, Nishitani Y and Sato T: Mitochondrial dysfunction promotes aquaporin expression that controls hydrogen peroxide permeability and ferroptosis. Free Radic Biol Med. 161:60–70. 2020. View Article : Google Scholar : | |
|
Sereti E, Tsimplouli C, Kalaitsidou E, Sakellaridis N and Dimas K: Study of the Relationship between sigma receptor expression levels and some common sigma ligand activity in cancer using human cancer cell lines of the NCI-60 cell line panel. Biomedicines. 9:382021. View Article : Google Scholar : PubMed/NCBI | |
|
Oyer HM, Sanders CM and Kim FJ: Small-molecule modulators of sigma1 and Sigma2/TMEM97 in the context of cancer: Foundational concepts and emerging themes. Front Pharmacol. 10:11412019. View Article : Google Scholar : PubMed/NCBI | |
|
Gueguinou M, Crottès D, Chantôme A, Rapetti-Mauss R, Potier-Cartereau M, Clarysse L, Girault A, Fourbon Y, Jézéquel P, Guérin-Charbonnel C, et al: The SigmaR1 chaperone drives breast and colorectal cancer cell migration by tuning SK3-dependent Ca2+ homeostasis. Oncogene. 36:3640–3647. 2017. View Article : Google Scholar | |
|
Bai T, Lei P, Zhou H, Liang R, Zhu R, Wang W, Zhou L and Sun Y: Sigma-1 receptor protects against ferroptosis in hepatocellular carcinoma cells. J Cell Mol Med. 23:7349–7359. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Bai T, Wang S, Zhao Y, Zhu R, Wang W and Sun Y: Haloperidol, a sigma receptor 1 antagonist, promotes ferroptosis in hepatocellular carcinoma cells. Biochem Biophys Res Commun. 491:919–925. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Zou Y, Li H, Graham ET, Deik AA, Eaton JK, Wang W, Sandoval-Gomez G, Clish CB, Doench JG and Schreiber SL: Cytochrome P450 oxidoreductase contributes to phospholipid peroxidation in ferroptosis. Nat Chem Biol. 16:302–309. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Acharya P, Liao M, Engel JC and Correia MA: Liver cytochrome P450 3A endoplasmic reticulum-associated degradation: A major role for the p97 AAA ATPase in cytochrome P450 3A extraction into the cytosol. J Biol Chem. 286:3815–3828. 2011. View Article : Google Scholar : | |
|
Prochazka L, Tesarik R and Turanek J: Regulation of alternative splicing of CD44 in cancer. Cell Signal. 26:2234–2239. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Lai S, Wang Y, Li T, Dong Y, Lin Y, Wang L, Weng S, Zhang X and Lin C: N6-methyladenosine-mediated CELF2 regulates CD44 alternative splicing affecting tumorigenesis via ERAD pathway in pancreatic cancer. Cell Biosci. 12:1252022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zhao G, Condello S, Huang H, Cardenas H, Tanner EJ, Wei J, Ji Y, Li J, Tan Y, et al: Frizzled-7 identifies platinum-tolerant ovarian cancer cells susceptible to ferroptosis. Cancer Res. 81:384–399. 2021. View Article : Google Scholar : | |
|
Nuñez F, Bravo S, Cruzat F, Montecino M and De Ferrari GV: Wnt/β-catenin signaling enhances cyclooxygenase-2 (COX2) transcriptional activity in gastric cancer cells. PLoS One. 6:e185622011. View Article : Google Scholar | |
|
Wang H, Zhang H, Chen Y, Wang H, Tian Y, Yi X, Shi Q, Zhao T, Zhang B, Gao T, et al: Targeting Wnt/β-Catenin signaling exacerbates ferroptosis and increases the efficacy of melanoma immunotherapy via the regulation of MITF. Cells. 11:35802022. View Article : Google Scholar | |
|
Chen QF, Shi F, Huang T, Huang C, Shen L, Wu P and Li W: ASTN1 is associated with immune infiltrates in hepatocellular carcinoma, and inhibits the migratory and invasive capacity of liver cancer via the Wnt/β-catenin signaling pathway. Oncol Rep. 44:1425–1440. 2020.PubMed/NCBI | |
|
Tu B, Ma TT, Peng XQ, Wang Q, Yang H and Huang XL: Targeting of COX-2 expression by recombinant adenovirus shRNA attenuates the malignant biological behavior of breast cancer cells. Asian Pac J Cancer Prev. 15:8829–8836. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y, Zheng L, Shang W, Yang Z, Li T, Liu F, Shao W, Lv L, Chai L, Qu L, et al: Wnt/beta-catenin signaling confers ferroptosis resistance by targeting GPX4 in gastric cancer. Cell Death Differ. 29:2190–2202. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu W, Zhou Y, Duan W, Song J, Wei S, Xia S, Wang Y, Du X, Li E, Ren C, et al: Glutathione peroxidase 4-dependent glutathione high-consumption drives acquired platinum chemoresistance in lung cancer-derived brain metastasis. Clin Transl Med. 11:e5172021. View Article : Google Scholar : PubMed/NCBI | |
|
Krejci P, Aklian A, Kaucka M, Sevcikova E, Prochazkova J, Masek JK, Mikolka P, Pospisilova T, Spoustova T, Weis M, et al: Receptor tyrosine kinases activate canonical WNT/β-catenin signaling via MAP kinase/LRP6 pathway and direct β-catenin phosphorylation. PLoS One. 7:e358262012. View Article : Google Scholar | |
|
Červenka I, Wolf J, Mašek J, Krejci P, Wilcox WR, Kozubík A, Schulte G, Gutkind JS and Bryja V: Mitogen-activated protein kinases promote WNT/beta-catenin signaling via phosphorylation of LRP6. Mol Cell Biol. 31:179–189. 2011. View Article : Google Scholar | |
|
Siddharth S, Mohapatra P, Preet R, Das D, Satapathy SR, Choudhuri T and Kundu CN: Induction of apoptosis by 4-(3-(tert-butylamino)imidazo[1,2-α]pyridine-2-yl) benzoic acid in breast cancer cells via upregulation of PTEN. Oncol Res. 21:1–13. 2013. View Article : Google Scholar | |
|
Khare V, Dammann K, Asboth M, Krnjic A, Jambrich M and Gasche C: Overexpression of PAK1 promotes cell survival in inflammatory bowel diseases and colitis-associated cancer. Inflamm Bowel Dis. 21:287–296. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Ji H, Wang J, Nika H, Hawke D, Keezer S, Ge Q, Fang B, Fang X, Fang D, Litchfield DW, et al: EGF-induced ERK activation promotes CK2-mediated disassociation of alpha-Catenin from beta-Catenin and transactivation of beta-Catenin. Mol Cell. 36:547–559. 2009. View Article : Google Scholar : | |
|
Gao C, Cao W, Bao L, Zuo W, Xie G, Cai T, Fu W, Zhang J, Wu W, Zhang X and Chen YG: Autophagy negatively regulates Wnt signalling by promoting Dishevelled degradation. Nat Cell Biol. 12:781–790. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Nasiri-Aghdam M, Garcia-Garduño TC and Jave-Suárez LF: CELF family proteins in cancer: Highlights on the RNA-binding protein/noncoding RNA regulatory axis. Int J Mol Sci. 22:110562021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Yin C, Wei C, Xia S, Qiao Z, Zhang XW, Yu B, Zhou J and Wang R: Exosomal miR-625-3p secreted by cancer-associated fibroblasts in colorectal cancer promotes EMT and chemotherapeutic resistance by blocking the CELF2/WWOX pathway. Pharmacol Res. 186:1065342022. View Article : Google Scholar | |
|
Zhao Y, Zhou H and Dong W: LncRNA RHPN1-AS1 promotes the progression of nasopharyngeal carcinoma by targeting CELF2 expression. Exp Mol Pathol. 122:1046712021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang J, Liu L, Sun Y, Xue Y, Qu J, Pan S, Li H, Qu H, Wang J and Zhang J: miR-615-3p promotes proliferation and migration and inhibits apoptosis through its potential target CELF2 in gastric cancer. Biomed Pharmacother. 101:406–413. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xu H, Wang F and Wang L: Suppression of miR-106a-5p expression inhibits tumorigenesis via increasing CELF-2 expression in spinal cord glioma. Oncol Lett. 22:6272021. View Article : Google Scholar : PubMed/NCBI | |
|
Ge L, Zhou F, Nie J, Wang X and Zhao Q: Hypoxic colorectal cancer-secreted exosomes deliver miR-210-3p to normoxic tumor cells to elicit a protumoral effect. Exp Biol Med (Maywood). 246:1895–1906. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Fan HN, Zhao XY, Liang R, Chen XY, Zhang J, Chen NW and Zhu JS: CircPTK2 inhibits the tumorigenesis and metastasis of gastric cancer by sponging miR-134-5p and activating CELF2/PTEN signaling. Pathol Res Pract. 227:1536152021. View Article : Google Scholar | |
|
Xie SC, Zhang JQ, Jiang XL, Hua YY, Xie SW, Qin YA and Yang YJ: LncRNA CRNDE facilitates epigenetic suppression of CELF2 and LATS2 to promote proliferation, migration and chemoresistance in hepatocellular carcinoma. Cell Death Dis. 11:6762020. View Article : Google Scholar : PubMed/NCBI | |
|
Subramaniam D, Ramalingam S, Linehan DC, Dieckgraefe BK, Postier RG, Houchen CW, Jensen RA and Anant S: RNA binding protein CUGBP2/CELF2 mediates curcumin-induced mitotic catastrophe of pancreatic cancer cells. PLoS One. 6:e169582011. View Article : Google Scholar : PubMed/NCBI |