Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
October-2023 Volume 52 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
October-2023 Volume 52 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review)

  • Authors:
    • Sheng Chen
    • Senhong Guan
    • Zhaohan Yan
    • Fengshan Ouyang
    • Shuhuan Li
    • Lanyuan Liu
    • Jiankai Zhong
  • View Affiliations / Copyright

    Affiliations: Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China, Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China, Department of Pediatrics, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China, Department of Ultrasound Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 98
    |
    Published online on: August 30, 2023
       https://doi.org/10.3892/ijmm.2023.5301
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Necroptosis, which is distinct from apoptosis and necrosis, serves a crucial role in ontogeny and the maintenance of homeostasis. In the last decade, it has been demonstrated that the pathogenesis of cardiovascular diseases is also linked to necroptosis. Receptor interaction protein kinase (RIPK) 1, RIPK3 and mixed lineage kinase domain‑like protein serve vital roles in necroptosis. In addition to the aforementioned necroptosis‑related components, calcium/calmodulin‑dependent protein kinase II (CaMKII) has been identified as a novel substrate for RIPK3 that promotes the opening of the mitochondrial permeability transition pore (mPTP), and thus, mediates necroptosis of myocardial cells through the RIPK3‑CaMKII‑mPTP signaling pathway. The present review provides an overview of the current knowledge of the RIPK3‑CaMKII‑mPTP‑mediated necroptosis signaling pathway in cardiovascular diseases, focusing on the role of the RIPK3‑CaMKII‑mPTP signaling pathway in acute myocardial infarction, ischemia‑reperfusion injury, heart failure, abdominal aortic aneurysm, atherosclerosis, diabetic cardiomyopathy, hypertrophic cardiomyopathy, atrial fibrillation, and the cardiotoxicity associated with antitumor drugs and other chemicals. Finally, the present review discusses the research status of drugs targeting the RIPK3‑CaMKII‑mPTP signaling pathway.
View Figures

Figure 1

View References

1 

Mathers CD and Loncar D: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3:e4422006. View Article : Google Scholar :

2 

Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI

3 

Ruparelia N, Chai JT, Fisher EA and Choudhury RP: Inflammatory processes in cardiovascular disease: A route to targeted therapies. Nat Rev Cardiol. 14:133–144. 2017. View Article : Google Scholar :

4 

D'Arcy MS: Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 43:582–592. 2019. View Article : Google Scholar

5 

Bertheloot D, Latz E and Franklin BS: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar :

6 

He S, Wang L, Miao L, Wang T, Du F, Zhao L and Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009. View Article : Google Scholar : PubMed/NCBI

7 

Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, Kim SI, Kim SJ, Son MK, Hong SS, et al: Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25:707–725. 2015. View Article : Google Scholar : PubMed/NCBI

8 

Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, Green DR, Oberst A and Albert ML: RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science. 350:328–334. 2015. View Article : Google Scholar : PubMed/NCBI

9 

Gupta K, Phan N, Wang Q and Liu B: Necroptosis in cardiovascular disease-a new therapeutic target. J Mol Cell Cardiol. 118:26–35. 2018. View Article : Google Scholar : PubMed/NCBI

10 

Kung G, Konstantinidis K and Kitsis RN: Programmed necrosis, not apoptosis, in the heart. Circ Res. 108:1017–1036. 2011. View Article : Google Scholar : PubMed/NCBI

11 

Zhe-Wei S, Li-Sha G and Yue-Chun L: The role of necroptosis in cardiovascular disease. Front Pharmacol. 9:7212018. View Article : Google Scholar : PubMed/NCBI

12 

Ruan ZH, Xu ZX, Zhou XY, Zhang X and Shang L: Implications of necroptosis for cardiovascular diseases. Curr Med Sci. 39:513–522. 2019. View Article : Google Scholar : PubMed/NCBI

13 

Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Wang W, Wang B, Sun S, Cao S, Zhai X, Zhang C, Zhang Q, Yuan Q, Sun Y, Xue M, et al: Inhibition of adenosine kinase attenuates myocardial ischaemia/reperfusion injury. J Cell Mol Med. 25:2931–2943. 2021. View Article : Google Scholar : PubMed/NCBI

15 

Wei B, Zhao H, Hu B, Dai L, Zhang G, Mo L, Huang N, Zou C, Zhang B, Zhou H, et al: T1AM attenuates the hypoxia/reoxygenation-induced necroptosis of H9C2 cardiomyocytes via RIPK1/RIPK3 pathway. Biomed Res Int. 2022:48337912022. View Article : Google Scholar : PubMed/NCBI

16 

Xu T, Ding W, Tariq MA, Wang Y, Wan Q, Li M and Wang J: Molecular mechanism and therapy application of necrosis during myocardial injury. J Cell Mol Med. 22:2547–2557. 2018. View Article : Google Scholar : PubMed/NCBI

17 

Cao J, Zhang J, Qian J, Wang X, Zhang W and Chen X: Ca2+/calmodulin-dependent protein kinase II regulation by RIPK3 alleviates necroptosis in transverse arch constriction-induced heart failure. Front Cardiovasc Med. 9:8473622022. View Article : Google Scholar

18 

Zhou T, DeRoo E, Yang H, Stranz A, Wang Q, Ginnan R, Singer HA and Liu B: MLKL and CaMKII are involved in RIPK3-mediated smooth muscle cell necroptosis. Cells. 10:23972021. View Article : Google Scholar : PubMed/NCBI

19 

Maione AS, Cipolletta E, Sorriento D, Borriello F, Soprano M, Rusciano MR, D'Esposito V, Markabaoui AK, De Palma GD, Martino G, et al: Cellular subtype expression and activation of CaMKII regulate the fate of atherosclerotic plaque. Atherosclerosis. 256:53–61. 2017. View Article : Google Scholar

20 

Sun L, Chen Y, Luo H, Xu M, Meng G and Zhang W: Ca2+/calmodulin-dependent protein kinase II regulation by inhibitor 1 of protein phosphatase 1 alleviates necroptosis in high glucose-induced cardiomyocytes injury. Biochem Pharmacol. 163:194–205. 2019. View Article : Google Scholar : PubMed/NCBI

21 

Chen Y, Li X, Hua Y, Ding Y, Meng G and Zhang W: RIPK3-mediated necroptosis in diabetic cardiomyopathy requires CaMKII activation. Oxid Med Cell Longev. 2021:66178162021.PubMed/NCBI

22 

Zhang J, Qian J, Cao J, Wang X, Zhang W and Gu X: Ca2+/calmodulin-dependent protein kinase II regulation by inhibitor of RIPK3 protects against cardiac hypertrophy. Oxid Med Cell Longev. 2022:79413742022.

23 

Wang X, Zhang J, Qian J, Cao J, Zhang W and Jiang Y: The regulatory mechanism and effect of receptor-interacting protein kinase 3 on phenylephrine-induced cardiomyocyte hypertrophy. J Cardiovasc Pharmacol. 80:236–250. 2022. View Article : Google Scholar : PubMed/NCBI

24 

Fu Y, Jiang T, Sun H, Li T, Gao F, Fan B, Li X, Qin X and Zheng Q: Necroptosis is required for atrial fibrillation and involved in aerobic exercise-conferred cardioprotection. J Cell Mol Med. 25:8363–8375. 2021. View Article : Google Scholar : PubMed/NCBI

25 

Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou X, Yang Y and Liu H: RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol Cell Biochem. 476:1233–1243. 2021. View Article : Google Scholar :

26 

McMullen CJ, Chalmers S, Wood R, Cunningham MR and Currie S: Sunitinib and imatinib display differential cardiotoxicity in adult rat cardiac fibroblasts that involves a role for calcium/calmodulin dependent protein kinase II. Front Cardiovasc Med. 7:6304802021. View Article : Google Scholar : PubMed/NCBI

27 

Reventun P, Sanchez-Esteban S, Cook A, Cuadrado I, Roza C, Moreno-Gomez-Toledano R, Muñoz C, Zaragoza C, Bosch RJ and Saura M: Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep. 10:41902020. View Article : Google Scholar : PubMed/NCBI

28 

Galluzzi L, Kepp O and Kroemer G: RIP kinases initiate programmed necrosis. J Mol Cell Biol. 1:8–10. 2009. View Article : Google Scholar

29 

Ingram JP, Thapa RJ, Fisher A, Tummers B, Zhang T, Yin C, Rodriguez DA, Guo H, Lane R, Williams R, et al: ZBP1/DAI drives RIPK3-mediated cell death induced by IFNs in the absence of RIPK1. J Immunol. 203:1348–1355. 2019. View Article : Google Scholar : PubMed/NCBI

30 

Garvin AM, Jackson MA and Korzick DH: Inhibition of programmed necrosis limits infarct size through altered mitochondrial and immune responses in the aged female rat heart. Am J Physiol Heart Circ Physiol. 315:H1434–H1442. 2018. View Article : Google Scholar : PubMed/NCBI

31 

Khoury MK, Gupta K, Franco SR and Liu B: Necroptosis in the pathophysiology of disease. Am J Pathol. 190:272–285. 2020. View Article : Google Scholar :

32 

Cuny GD and Degterev A: RIPK protein kinase family: Atypical lives of typical kinases. Semin Cell Dev Biol. 109:96–105. 2021. View Article : Google Scholar :

33 

Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, et al: The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 150:339–350. 2012. View Article : Google Scholar : PubMed/NCBI

34 

Moquin DM, McQuade T and Chan FK: CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One. 8:e768412013. View Article : Google Scholar

35 

Zhang J, Yang Y, He W and Sun L: Necrosome core machinery: MLKL. Cell Mol Life Sci. 73:2153–2163. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Meng Y, Davies KA, Fitzgibbon C, Young SN, Garnish SE, Horne CR, Luo C, Garnier JM, Liang LY, Cowan AD, et al: Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nat Commun. 12:67832021. View Article : Google Scholar : PubMed/NCBI

37 

Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI

38 

Feng N and Anderson ME: CaMKII is a nodal signal for multiple programmed cell death pathways in heart. J Mol Cell Cardiol. 103:102–109. 2017. View Article : Google Scholar :

39 

Hudmon A and Schulman H: Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J. 364:593–611. 2002. View Article : Google Scholar : PubMed/NCBI

40 

Luczak ED and Anderson ME: CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol. 73:112–116. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Beckendorf J, van den Hoogenhof MMG and Backs J: Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol. 113:292018. View Article : Google Scholar : PubMed/NCBI

42 

Gui L, Guo X, Zhang Z, Xu H, Ji YW, Wang RJ, Zhu JH and Chen QH: Activation of CaMKIIδA promotes Ca2+ leak from the sarcoplasmic reticulum in cardiomyocytes of chronic heart failure rats. Acta Pharmacol Sin. 39:1604–1612. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Szentesi P, Pignier C, Egger M, Kranias EG and Niggli E: Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart muscle. Circ Res. 95:807–813. 2004. View Article : Google Scholar : PubMed/NCBI

44 

Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Müller FU, Schmitz W, et al: Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest. 119:1940–1951. 2009.

45 

Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, Li Y, Zhou H and Chen Y: Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 16:157–168. 2018. View Article : Google Scholar : PubMed/NCBI

46 

Gonano LA and Petroff MV: Subcellular mechanisms underlying digitalis-induced arrhythmias: Role of calcium/calmodulin-dependent kinase II (CaMKII) in the transition from an inotropic to an arrhythmogenic effect. Heart Lung Circ. 23:1118–1124. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, Luczak ED, Hall DD, Fink BD, Chen B, et al: CaMKII determines mitochondrial stress responses in heart. Nature. 491:269–273. 2012. View Article : Google Scholar : PubMed/NCBI

48 

Bonora M, Giorgi C and Pinton P: Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol. 23:266–285. 2022. View Article : Google Scholar

49 

Zhou Y, Liao J, Mei Z, Liu X and Ge J: Insight into crosstalk between ferroptosis and necroptosis: Novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021:99910012021. View Article : Google Scholar : PubMed/NCBI

50 

Kist M and Vucic D: Cell death pathways: Intricate connections and disease implications. EMBO J. 40:e1067002021. View Article : Google Scholar :

51 

Halestrap AP: A pore way to die: The role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 38:841–860. 2010. View Article : Google Scholar : PubMed/NCBI

52 

Naryzhnaya NV, Maslov LN and Oeltgen PR: Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res. 80:1013–1030. 2019. View Article : Google Scholar : PubMed/NCBI

53 

Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction; Katus HA, Lindahl B, Morrow DA, et al: Third universal definition of myocardial infarction. Circulation. 126:2020–2035. 2012. View Article : Google Scholar : PubMed/NCBI

54 

Pollard TJ: The acute myocardial infarction. Prim Care. 27:631–649. vi2000. View Article : Google Scholar : PubMed/NCBI

55 

Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, et al: Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol. 314:H812–H838. 2018. View Article : Google Scholar : PubMed/NCBI

56 

Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, Bulluck H, Cook S, Di Lisa F, Engel FB, et al: From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: Meeting report from the third international symposium on 'New frontiers in cardiovascular research'. Basic Res Cardiol. 111:692016. View Article : Google Scholar

57 

Hausenloy DJ and Yellon DM: Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest. 123:92–100. 2013. View Article : Google Scholar : PubMed/NCBI

58 

Adameova A, Horvath C, Abdul-Ghani S, Varga ZV, Suleiman MS and Dhalla NS: Interplay of oxidative stress and necrosis-like cell death in cardiac ischemia/reperfusion injury: A focus on necroptosis. Biomedicines. 10:1272022. View Article : Google Scholar : PubMed/NCBI

59 

Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, et al: Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol. 317:H891–H922. 2019. View Article : Google Scholar : PubMed/NCBI

60 

DeRoo E, Zhou T and Liu B: The role of RIPK1 and RIPK3 in cardiovascular disease. Int J Mol Sci. 21:81742020. View Article : Google Scholar : PubMed/NCBI

61 

Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F, et al: RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res. 103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Zhang DY, Wang BJ, Ma M, Yu K, Zhang Q and Zhang XW: MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC Mol Biol. 20:172019. View Article : Google Scholar : PubMed/NCBI

63 

Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 107:2702012. View Article : Google Scholar : PubMed/NCBI

64 

Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T and Tsujimoto Y: Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 434:652–658. 2005. View Article : Google Scholar : PubMed/NCBI

65 

Clarke SJ, McStay GP and Halestrap AP: Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem. 277:34793–34799. 2002. View Article : Google Scholar : PubMed/NCBI

66 

Parks RJ, Menazza S, Holmström KM, Amanakis G, Fergusson M, Ma H, Aponte AM, Bernardi P, Finkel T and Murphy E: Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Cardiovasc Res. 115:385–394. 2019. View Article : Google Scholar :

67 

Torrance N, Elliott AM, Lee AJ and Smith BH: Severe chronic pain is associated with increased 10 year mortality. A cohort record linkage study. Eur J Pain. 14:380–386. 2010. View Article : Google Scholar

68 

Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu M, Shi Z, Mu N, Yu L and Ma H: Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol. 125:185–194. 2018. View Article : Google Scholar : PubMed/NCBI

69 

Szobi A, Gonçalvesová E, Varga ZV, Leszek P, Kuśmierczyk M, Hulman M, Kyselovič J, Ferdinandy P and Adameová A: Analysis of necroptotic proteins in failing human hearts. J Transl Med. 15:862017. View Article : Google Scholar :

70 

Lázár E, Sadek HA and Bergmann O: Cardiomyocyte renewal in the human heart: Insights from the fall-out. Eur Heart J. 38:2333–2342. 2017. View Article : Google Scholar : PubMed/NCBI

71 

Chen Y, Li X, Lai W, Zhu F, Tan X, Xian W, Kang P and Wang H: RIP1/RIP3-MLKL signaling pathway correlates with occurrence, progression and prognosis of chronic heart failure. Nan Fang Yi Ke Da Xue Xue Bao. 41:1534–1539. 2021.In Chinese.

72 

Piamsiri C, Maneechote C, Siri-Angkul N, Chattipakorn SC and Chattipakorn N: Targeting necroptosis as therapeutic potential in chronic myocardial infarction. J Biomed Sci. 28:252021. View Article : Google Scholar : PubMed/NCBI

73 

Szobi A, Rajtik T, Carnicka S, Ravingerova T and Adameova A: Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: Effects on programmed necrotic and apoptotic cell death. Mol Cell Biochem. 388:269–276. 2014. View Article : Google Scholar

74 

Zhang T and Brown JH: Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res. 63:476–486. 2004. View Article : Google Scholar : PubMed/NCBI

75 

Kerfant BG, Verheule S and Schotten U: Leaky ryanodine receptors in the failing heart: The root of all evil? Cardiovasc Res. 90:399–401. 2011. View Article : Google Scholar : PubMed/NCBI

76 

Sakalihasan N, Limet R and Defawe OD: Abdominal aortic aneurysm. Lancet. 365:1577–1589. 2005. View Article : Google Scholar : PubMed/NCBI

77 

Baxter BT, Terrin MC and Dalman RL: Medical management of small abdominal aortic aneurysms. Circulation. 117:1883–1889. 2008. View Article : Google Scholar : PubMed/NCBI

78 

Legg JS and Legg LM: Abdominal aortic aneurysms. Radiol Technol. 88:145–163. 2016.

79 

Jiang F, Jones GT and Dusting GJ: Failure of antioxidants to protect against angiotensin II-induced aortic rupture in aged apolipoprotein(E)-deficient mice. Br J Pharmacol. 152:880–890. 2007. View Article : Google Scholar : PubMed/NCBI

80 

López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA and Thompson RW: Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol. 150:993–1007. 1997.PubMed/NCBI

81 

Guo DC, Papke CL, He R and Milewicz DM: Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y Acad Sci. 1085:339–352. 2006. View Article : Google Scholar : PubMed/NCBI

82 

Wang Q, Liu Z, Ren J, Morgan S, Assa C and Liu B: Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circ Res. 116:600–611. 2015. View Article : Google Scholar : PubMed/NCBI

83 

Zhou T, Wang Q, Phan N, Ren J, Yang H, Feldman CC, Feltenberger JB, Ye Z, Wildman SA, Tang W and Liu B: Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models. Cell Death Dis. 10:2262019. View Article : Google Scholar : PubMed/NCBI

84 

Wang Q, Zhou T, Liu Z, Ren J, Phan N, Gupta K, Stewart DM, Morgan S, Assa C, Kent KC and Liu B: Inhibition of receptor-interacting protein kinase 1 with necrostatin-1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model. Sci Rep. 7:421592017. View Article : Google Scholar : PubMed/NCBI

85 

Adamson PD, Dweck MR and Newby DE: The vulnerable atherosclerotic plaque: In vivo identification and potential therapeutic avenues. Heart. 101:1755–1766. 2015. View Article : Google Scholar : PubMed/NCBI

86 

Finney AC, Funk SD, Green JM, Yurdagul A Jr, Rana MA, Pistorius R, Henry M, Yurochko A, Pattillo CB, Traylor JG, et al: EphA2 expression regulates inflammation and fibroproliferative remodeling in atherosclerosis. Circulation. 136:566–582. 2017. View Article : Google Scholar : PubMed/NCBI

87 

Virmani R, Burke AP, Farb A and Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol. 47(8 Suppl): C13–C18. 2006. View Article : Google Scholar

88 

Lin J, Li H, Yang M, Ren J, Huang Z, Han F, Huang J, Ma J, Zhang D, Zhang Z, et al: A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3:200–210. 2013. View Article : Google Scholar : PubMed/NCBI

89 

Karunakaran D, Geoffrion M, Wei L, Gan W, Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L, Maegdefessel L, et al: Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv. 2:e16002242016. View Article : Google Scholar : PubMed/NCBI

90 

Liu C, Jiang Z, Pan Z and Yang L: The function, regulation and mechanism of programmed cell death of macrophages in atherosclerosis. Front Cell Dev Biol. 9:8095162021. View Article : Google Scholar

91 

Jang WB, Park JH, Ji ST, Lee NK, Kim DY, Kim YJ, Jung SY, Kang S, Lamichane S, Lamichane BD, et al: Cytoprotective roles of a novel compound, MHY-1684, against hyperglycemia-induced oxidative stress and mitochondrial dysfunction in human cardiac progenitor cells. Oxid Med Cell Longev. 2018:45281842018. View Article : Google Scholar : PubMed/NCBI

92 

Poornima IG, Parikh P and Shannon RP: Diabetic cardiomyopathy: The search for a unifying hypothesis. Circ Res. 98:596–605. 2006. View Article : Google Scholar

93 

Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC); European Association for the Study of Diabetes (EASD); Rydén L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, et al: ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD-summary. Diab Vasc Dis Res. 11:133–173. 2014. View Article : Google Scholar

94 

Wei J, Zhao Y, Liang H, Du W and Wang L: Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B. 12:1–17. 2022. View Article : Google Scholar : PubMed/NCBI

95 

Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B and Anversa P: Myocardial cell death in human diabetes. Circ Res. 87:1123–1132. 2000. View Article : Google Scholar : PubMed/NCBI

96 

Chen Y, Hua Y, Li X, Arslan IM, Zhang W and Meng G: Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol. 11:422020. View Article : Google Scholar : PubMed/NCBI

97 

Liu YS, Huang ZW, Wang L, Liu XX, Wang YM, Zhang Y and Zhang M: Sitagliptin alleviated myocardial remodeling of the left ventricle and improved cardiac diastolic dysfunction in diabetic rats. J Pharmacol Sci. 127:260–274. 2015. View Article : Google Scholar

98 

Liang W, Chen M, Zheng D, He J, Song M, Mo L, Feng J and Lan J: A novel damage mechanism: Contribution of the interaction between necroptosis and ROS to high glucose-induced injury and inflammation in H9c2 cardiac cells. Int J Mol Med. 40:201–208. 2017. View Article : Google Scholar : PubMed/NCBI

99 

Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, et al: Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest. 123:1262–1274. 2013. View Article : Google Scholar : PubMed/NCBI

100 

Hegyi B, Bers DM and Bossuyt J: CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol. 127:246–259. 2019. View Article : Google Scholar : PubMed/NCBI

101 

Yamagishi S, Fukami K and Matsui T: Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int J Cardiol. 185:263–268. 2015. View Article : Google Scholar : PubMed/NCBI

102 

Simó-Servat O, Planas A, Ciudin A, Simó R and Hernández C: Assessment of advanced glycation end-products as a biomarker of diabetic outcomes. Endocrinol Diabetes Nutr (Engl Ed). 65:540–545. 2018.PubMed/NCBI

103 

Hua Y, Qian J, Cao J, Wang X, Zhang W and Zhang J: Ca2+/calmodulin-dependent protein kinase II regulation by inhibitor of receptor interacting protein kinase 3 alleviates necroptosis in glycation end products-induced cardiomyocytes injury. Int J Mol Sci. 23:69882022. View Article : Google Scholar

104 

Fang L, Beale A, Ellims AH, Moore XL, Ling LH, Taylor AJ, Chin-Dusting J and Dart AM: Associations between fibrocytes and postcontrast myocardial T1 times in hypertrophic cardiomyopathy. J Am Heart Assoc. 2:e0002702013. View Article : Google Scholar : PubMed/NCBI

105 

Maron BJ and Maron MS: Hypertrophic cardiomyopathy. Lancet. 381:242–255. 2013. View Article : Google Scholar

106 

Yao J, Qin X, Zhu J and Sheng H: Dyrk1A-ASF-CaMKIIδ signaling is involved in valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats. Cardiology. 133:198–204. 2016. View Article : Google Scholar

107 

Li C, Cai X, Sun H, Bai T, Zheng X, Zhou XW, Chen X, Gill DL, Li J and Tang XD: The δA isoform of calmodulin kinase II mediates pathological cardiac hypertrophy by interfering with the HDAC4-MEF2 signaling pathway. Biochem Biophys Res Commun. 409:125–130. 2011. View Article : Google Scholar : PubMed/NCBI

108 

Staerk L, Sherer JA, Ko D, Benjamin EJ and Helm RH: Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ Res. 120:1501–1517. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Nattel S and Harada M: Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J Am Coll Cardiol. 63:2335–2345. 2014. View Article : Google Scholar

110 

Wakili R, Voigt N, Kääb S, Dobrev D and Nattel S: Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 121:2955–2968. 2011. View Article : Google Scholar : PubMed/NCBI

111 

Calvo D, Filgueiras-Rama D and Jalife J: Mechanisms and drug development in atrial fibrillation. Pharmacol Rev. 70:505–525. 2018. View Article : Google Scholar : PubMed/NCBI

112 

Liu Z, Finet JE, Wolfram JA, Anderson ME, Ai X and Donahue JK: Calcium/calmodulin-dependent protein kinase II causes atrial structural remodeling associated with atrial fibrillation and heart failure. Heart Rhythm. 16:1080–1088. 2019. View Article : Google Scholar : PubMed/NCBI

113 

Lee JM, Yoshida M, Kim MS, Lee JH, Baek AR, Jang AS, Kim DJ, Minagawa S, Chin SS, Park CS, et al: Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am J Respir Cell Mol Biol. 59:215–224. 2018. View Article : Google Scholar : PubMed/NCBI

114 

Wei S, Zhou H, Wang Q, Zhou S, Li C, Liu R, Qiu J, Shi C and Lu L: RIP3 deficiency alleviates liver fibrosis by inhibiting ROCK1-TLR4-NF-κB pathway in macrophages. FASEB J. 33:11180–11193. 2019. View Article : Google Scholar : PubMed/NCBI

115 

Mukherjee S, Sheng W, Sun R and Janssen LJ: Ca2+/calmodulin-dependent protein kinase IIβ and IIδ mediate TGFβ-induced transduction of fibronectin and collagen in human pulmonary fibroblasts. Am J Physiol Lung Cell Mol Physiol. 312:L510–L519. 2017. View Article : Google Scholar

116 

Cui H, Zuo S, Liu Z, Liu H, Wang J, You T, Zheng Z, Zhou Y, Qian X, Yao H, et al: The support of genetic evidence for cardiovascular risk induced by antineoplastic drugs. Sci Adv. 6:eabb85432020. View Article : Google Scholar : PubMed/NCBI

117 

Yeh ETH and Bickford CL: Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 53:2231–2247. 2009. View Article : Google Scholar

118 

Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D and Cipolla CM: Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin. 66:309–325. 2016. View Article : Google Scholar

119 

Liang Z, He Y and Hu X: Cardio-oncology: Mechanisms, drug combinations, and reverse cardio-oncology. Int J Mol Sci. 23:106172022. View Article : Google Scholar : PubMed/NCBI

120 

Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS and Moreira PI: Doxorubicin: The good, the bad and the ugly effect. Curr Med Chem. 16:3267–3285. 2009. View Article : Google Scholar

121 

Fer reira AL, Matsubara LS and Matsubara BB: Anthracycline-induced cardiotoxicity. Cardiovasc Hematol Agents Med Chem. 6:278–281. 2008. View Article : Google Scholar

122 

Stefenelli T, Kuzmits R, Ulrich W and Glogar D: Acute vascular toxicity after combination chemotherapy with cisplatin, vinblastine, and bleomycin for testicular cancer. Eur Heart J. 9:552–556. 1988. View Article : Google Scholar

123 

Lejonc JL, Vernant JP, Macquin J and Castaigne A: Myocardial infarction following vinblastine treatment. Lancet. 2:6921980. View Article : Google Scholar : PubMed/NCBI

124 

Calafat AM, Ye X, Wong LY, Reidy JA and Needham LL: Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 116:39–44. 2008. View Article : Google Scholar : PubMed/NCBI

125 

Vandenberg LN, Hauser R, Marcus M, Olea N and Welshons WV: Human exposure to bisphenol A (BPA). Reprod Toxicol. 24:139–177. 2007. View Article : Google Scholar : PubMed/NCBI

126 

Gao X and Wang HS: Impact of bisphenol a on the cardiovascular system-epidemiological and experimental evidence and molecular mechanisms. Int J Environ Res Public Health. 11:8399–8413. 2014. View Article : Google Scholar : PubMed/NCBI

127 

Moon S, Yu SH, Lee CB, Park YJ, Yoo HJ and Kim DS: Effects of bisphenol A on cardiovascular disease: An epidemiological study using national health and nutrition examination survey 2003-2016 and meta-analysis. Sci Total Environ. 763:1429412021. View Article : Google Scholar

128 

Conrad M, Angeli JP, Vandenabeele P and Stockwell BR: Regulated necrosis: Disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 15:348–366. 2016. View Article : Google Scholar : PubMed/NCBI

129 

Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES: Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI

130 

Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, et al: RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 56:481–495. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Lim SY, Davidson SM, Mocanu MM, Yellon DM and Smith CCT: The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther. 21:467–469. 2007. View Article : Google Scholar : PubMed/NCBI

132 

Smith CCT, Davidson SM, Lim SY, Simpkin JC, Hothersall JS and Yellon DM: Necrostatin: A potentially novel cardioprotective agent? Cardiovasc Drugs Ther. 21:227–233. 2007. View Article : Google Scholar : PubMed/NCBI

133 

Zhou H, Hu B and Liu X: Thyroid hormone metabolite 3-iodothyronamine (T1AM) alleviates hypoxia/reoxygenation-induced cardiac myocyte apoptosis via Akt/FoxO1 pathway. Med Sci Monit. 26:e9231952020.PubMed/NCBI

134 

Meng Y, Tao Z, Zhou S, Da W and Tao L: Research hot spots and trends on melatonin from 2000 to 2019. Front Endocrinol (Lausanne). 12:7539232021. View Article : Google Scholar : PubMed/NCBI

135 

Hu Q, Wu D, Ma F, Yang S, Tan B, Xin H, Gu X, Chen X, Chen S, Mao Y and Zhu YZ: Novel angiogenic activity and molecular mechanisms of ZYZ-803, a slow-releasing hydrogen sulfide-nitric oxide hybrid molecule. Antioxid Redox Signal. 25:498–514. 2016. View Article : Google Scholar

136 

Chang L, Wang Z, Ma F, Tran B, Zhong R, Xiong Y, Dai T, Wu J, Xin X, Guo W, et al: ZYZ-803 Mitigates endoplasmic reticulum stress-related necroptosis after acute myocardial infarction through downregulating the RIP3-CaMKII signaling pathway. Oxid Med Cell Longev. 2019:61736852019. View Article : Google Scholar : PubMed/NCBI

137 

Adameova A, Carnicka S, Rajtik T, Szobi A, Nemcekova M, Svec P and Ravingerova T: Upregulation of CaMKIIδ during ischaemia-reperfusion is associated with reperfusion-induced arrhythmias and mechanical dysfunction of the rat heart: Involvement of sarcolemmal Ca2+-cycling proteins. Can J Physiol Pharmacol. 90:1127–1134. 2012. View Article : Google Scholar : PubMed/NCBI

138 

Pallien T and Klussmann E: New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans. 48:39–49. 2020. View Article : Google Scholar : PubMed/NCBI

139 

Gao H, Wang F, Wang W, Makarewich CA, Zhang H, Kubo H, Berretta RM, Barr LA, Molkentin JD and Houser SR: Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling. J Mol Cell Cardiol. 53:657–667. 2012. View Article : Google Scholar : PubMed/NCBI

140 

Ikeda S, Matsushima S, Okabe K, Ikeda M, Ishikita A, Tadokoro T, Enzan N, Yamamoto T, Sada M, Deguchi H, et al: Blockade of L-type Ca2+ channel attenuates doxorubicin-induced cardiomyopathy via suppression of CaMKII-NF-κB pathway. Sci Rep. 9:98502019. View Article : Google Scholar

141 

Lim WY, Messow CM and Berry C: Cyclosporin variably and inconsistently reduces infarct size in experimental models of reperfused myocardial infarction: A systematic review and meta-analysis. Br J Pharmacol. 165:2034–2043. 2012. View Article : Google Scholar

142 

Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, et al: Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 359:473–481. 2008. View Article : Google Scholar : PubMed/NCBI

143 

Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E, Guérin P, Elbaz M, Delarche N, et al: Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 373:1021–1031. 2015. View Article : Google Scholar : PubMed/NCBI

144 

Ottani F, Latini R, Staszewsky L, La Vecchia L, Locuratolo N, Sicuro M, Masson S, Barlera S, Milani V, Lombardi M, et al: Cyclosporine A in reperfused myocardial infarction: The multicenter, controlled, open-label CYCLE trial. J Am Coll Cardiol. 67:365–374. 2016. View Article : Google Scholar : PubMed/NCBI

145 

Gill RS, Bigam DL and Cheung PY: The role of cyclosporine in the treatment of myocardial reperfusion injury. Shock. 37:341–347. 2012. View Article : Google Scholar : PubMed/NCBI

146 

Zhang CX, Cheng Y, Liu DZ, Liu M, Cui H, Zhang BL, Mei QB and Zhou SY: Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology. 17:182019. View Article : Google Scholar : PubMed/NCBI

147 

Yao LL, Huang XW, Wang YG, Cao YX, Zhang CC and Zhu YC: Hydrogen sulfide protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by preventing GSK-3beta-dependent opening of mPTP. Am J Physiol Heart Circ Physiol. 298:H1310–H1319. 2010. View Article : Google Scholar : PubMed/NCBI

148 

Kar S, Kambis TN and Mishra PK: Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 316:H1237–H1252. 2019. View Article : Google Scholar :

149 

Sun HJ, Wu ZY, Nie XW, Wang XY and Bian JS: An updated insight into molecular mechanism of hydrogen sulfide in cardiomyopathy and myocardial ischemia/reperfusion injury under diabetes. Front Pharmacol. 12:6518842021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen S, Guan S, Yan Z, Ouyang F, Li S, Liu L and Zhong J: Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review). Int J Mol Med 52: 98, 2023.
APA
Chen, S., Guan, S., Yan, Z., Ouyang, F., Li, S., Liu, L., & Zhong, J. (2023). Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review). International Journal of Molecular Medicine, 52, 98. https://doi.org/10.3892/ijmm.2023.5301
MLA
Chen, S., Guan, S., Yan, Z., Ouyang, F., Li, S., Liu, L., Zhong, J."Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review)". International Journal of Molecular Medicine 52.4 (2023): 98.
Chicago
Chen, S., Guan, S., Yan, Z., Ouyang, F., Li, S., Liu, L., Zhong, J."Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review)". International Journal of Molecular Medicine 52, no. 4 (2023): 98. https://doi.org/10.3892/ijmm.2023.5301
Copy and paste a formatted citation
x
Spandidos Publications style
Chen S, Guan S, Yan Z, Ouyang F, Li S, Liu L and Zhong J: Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review). Int J Mol Med 52: 98, 2023.
APA
Chen, S., Guan, S., Yan, Z., Ouyang, F., Li, S., Liu, L., & Zhong, J. (2023). Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review). International Journal of Molecular Medicine, 52, 98. https://doi.org/10.3892/ijmm.2023.5301
MLA
Chen, S., Guan, S., Yan, Z., Ouyang, F., Li, S., Liu, L., Zhong, J."Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review)". International Journal of Molecular Medicine 52.4 (2023): 98.
Chicago
Chen, S., Guan, S., Yan, Z., Ouyang, F., Li, S., Liu, L., Zhong, J."Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review)". International Journal of Molecular Medicine 52, no. 4 (2023): 98. https://doi.org/10.3892/ijmm.2023.5301
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team