Role of RIPK3‑CaMKII‑mPTP signaling pathway‑mediated necroptosis in cardiovascular diseases (Review)
- Authors:
- Sheng Chen
- Senhong Guan
- Zhaohan Yan
- Fengshan Ouyang
- Shuhuan Li
- Lanyuan Liu
- Jiankai Zhong
-
Affiliations: Department of Cardiology, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China, Department of Rehabilitation Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China, Department of Pediatrics, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China, Department of Ultrasound Medicine, Shunde Hospital, Southern Medical University (The First People's Hospital of Shunde Foshan), Foshan, Guangdong 528308, P.R. China - Published online on: August 30, 2023 https://doi.org/10.3892/ijmm.2023.5301
- Article Number: 98
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
Mathers CD and Loncar D: Projections of global mortality and burden of disease from 2002 to 2030. PLoS Med. 3:e4422006. View Article : Google Scholar : | |
Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI | |
Ruparelia N, Chai JT, Fisher EA and Choudhury RP: Inflammatory processes in cardiovascular disease: A route to targeted therapies. Nat Rev Cardiol. 14:133–144. 2017. View Article : Google Scholar : | |
D'Arcy MS: Cell death: A review of the major forms of apoptosis, necrosis and autophagy. Cell Biol Int. 43:582–592. 2019. View Article : Google Scholar | |
Bertheloot D, Latz E and Franklin BS: Necroptosis, pyroptosis and apoptosis: An intricate game of cell death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar : | |
He S, Wang L, Miao L, Wang T, Du F, Zhao L and Wang X: Receptor interacting protein kinase-3 determines cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009. View Article : Google Scholar : PubMed/NCBI | |
Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon JH, Koo JS, Kim SI, Kim SJ, Son MK, Hong SS, et al: Methylation-dependent loss of RIP3 expression in cancer represses programmed necrosis in response to chemotherapeutics. Cell Res. 25:707–725. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yatim N, Jusforgues-Saklani H, Orozco S, Schulz O, Barreira da Silva R, Reis e Sousa C, Green DR, Oberst A and Albert ML: RIPK1 and NF-κB signaling in dying cells determines cross-priming of CD8+ T cells. Science. 350:328–334. 2015. View Article : Google Scholar : PubMed/NCBI | |
Gupta K, Phan N, Wang Q and Liu B: Necroptosis in cardiovascular disease-a new therapeutic target. J Mol Cell Cardiol. 118:26–35. 2018. View Article : Google Scholar : PubMed/NCBI | |
Kung G, Konstantinidis K and Kitsis RN: Programmed necrosis, not apoptosis, in the heart. Circ Res. 108:1017–1036. 2011. View Article : Google Scholar : PubMed/NCBI | |
Zhe-Wei S, Li-Sha G and Yue-Chun L: The role of necroptosis in cardiovascular disease. Front Pharmacol. 9:7212018. View Article : Google Scholar : PubMed/NCBI | |
Ruan ZH, Xu ZX, Zhou XY, Zhang X and Shang L: Implications of necroptosis for cardiovascular diseases. Curr Med Sci. 39:513–522. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI | |
Wang W, Wang B, Sun S, Cao S, Zhai X, Zhang C, Zhang Q, Yuan Q, Sun Y, Xue M, et al: Inhibition of adenosine kinase attenuates myocardial ischaemia/reperfusion injury. J Cell Mol Med. 25:2931–2943. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wei B, Zhao H, Hu B, Dai L, Zhang G, Mo L, Huang N, Zou C, Zhang B, Zhou H, et al: T1AM attenuates the hypoxia/reoxygenation-induced necroptosis of H9C2 cardiomyocytes via RIPK1/RIPK3 pathway. Biomed Res Int. 2022:48337912022. View Article : Google Scholar : PubMed/NCBI | |
Xu T, Ding W, Tariq MA, Wang Y, Wan Q, Li M and Wang J: Molecular mechanism and therapy application of necrosis during myocardial injury. J Cell Mol Med. 22:2547–2557. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cao J, Zhang J, Qian J, Wang X, Zhang W and Chen X: Ca2+/calmodulin-dependent protein kinase II regulation by RIPK3 alleviates necroptosis in transverse arch constriction-induced heart failure. Front Cardiovasc Med. 9:8473622022. View Article : Google Scholar | |
Zhou T, DeRoo E, Yang H, Stranz A, Wang Q, Ginnan R, Singer HA and Liu B: MLKL and CaMKII are involved in RIPK3-mediated smooth muscle cell necroptosis. Cells. 10:23972021. View Article : Google Scholar : PubMed/NCBI | |
Maione AS, Cipolletta E, Sorriento D, Borriello F, Soprano M, Rusciano MR, D'Esposito V, Markabaoui AK, De Palma GD, Martino G, et al: Cellular subtype expression and activation of CaMKII regulate the fate of atherosclerotic plaque. Atherosclerosis. 256:53–61. 2017. View Article : Google Scholar | |
Sun L, Chen Y, Luo H, Xu M, Meng G and Zhang W: Ca2+/calmodulin-dependent protein kinase II regulation by inhibitor 1 of protein phosphatase 1 alleviates necroptosis in high glucose-induced cardiomyocytes injury. Biochem Pharmacol. 163:194–205. 2019. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li X, Hua Y, Ding Y, Meng G and Zhang W: RIPK3-mediated necroptosis in diabetic cardiomyopathy requires CaMKII activation. Oxid Med Cell Longev. 2021:66178162021.PubMed/NCBI | |
Zhang J, Qian J, Cao J, Wang X, Zhang W and Gu X: Ca2+/calmodulin-dependent protein kinase II regulation by inhibitor of RIPK3 protects against cardiac hypertrophy. Oxid Med Cell Longev. 2022:79413742022. | |
Wang X, Zhang J, Qian J, Cao J, Zhang W and Jiang Y: The regulatory mechanism and effect of receptor-interacting protein kinase 3 on phenylephrine-induced cardiomyocyte hypertrophy. J Cardiovasc Pharmacol. 80:236–250. 2022. View Article : Google Scholar : PubMed/NCBI | |
Fu Y, Jiang T, Sun H, Li T, Gao F, Fan B, Li X, Qin X and Zheng Q: Necroptosis is required for atrial fibrillation and involved in aerobic exercise-conferred cardioprotection. J Cell Mol Med. 25:8363–8375. 2021. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou X, Yang Y and Liu H: RIP1/RIP3/MLKL-mediated necroptosis contributes to vinblastine-induced myocardial damage. Mol Cell Biochem. 476:1233–1243. 2021. View Article : Google Scholar : | |
McMullen CJ, Chalmers S, Wood R, Cunningham MR and Currie S: Sunitinib and imatinib display differential cardiotoxicity in adult rat cardiac fibroblasts that involves a role for calcium/calmodulin dependent protein kinase II. Front Cardiovasc Med. 7:6304802021. View Article : Google Scholar : PubMed/NCBI | |
Reventun P, Sanchez-Esteban S, Cook A, Cuadrado I, Roza C, Moreno-Gomez-Toledano R, Muñoz C, Zaragoza C, Bosch RJ and Saura M: Bisphenol A induces coronary endothelial cell necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep. 10:41902020. View Article : Google Scholar : PubMed/NCBI | |
Galluzzi L, Kepp O and Kroemer G: RIP kinases initiate programmed necrosis. J Mol Cell Biol. 1:8–10. 2009. View Article : Google Scholar | |
Ingram JP, Thapa RJ, Fisher A, Tummers B, Zhang T, Yin C, Rodriguez DA, Guo H, Lane R, Williams R, et al: ZBP1/DAI drives RIPK3-mediated cell death induced by IFNs in the absence of RIPK1. J Immunol. 203:1348–1355. 2019. View Article : Google Scholar : PubMed/NCBI | |
Garvin AM, Jackson MA and Korzick DH: Inhibition of programmed necrosis limits infarct size through altered mitochondrial and immune responses in the aged female rat heart. Am J Physiol Heart Circ Physiol. 315:H1434–H1442. 2018. View Article : Google Scholar : PubMed/NCBI | |
Khoury MK, Gupta K, Franco SR and Liu B: Necroptosis in the pathophysiology of disease. Am J Pathol. 190:272–285. 2020. View Article : Google Scholar : | |
Cuny GD and Degterev A: RIPK protein kinase family: Atypical lives of typical kinases. Semin Cell Dev Biol. 109:96–105. 2021. View Article : Google Scholar : | |
Li J, McQuade T, Siemer AB, Napetschnig J, Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, et al: The RIP1/RIP3 necrosome forms a functional amyloid signaling complex required for programmed necrosis. Cell. 150:339–350. 2012. View Article : Google Scholar : PubMed/NCBI | |
Moquin DM, McQuade T and Chan FK: CYLD deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate kinase activation and programmed necrosis. PLoS One. 8:e768412013. View Article : Google Scholar | |
Zhang J, Yang Y, He W and Sun L: Necrosome core machinery: MLKL. Cell Mol Life Sci. 73:2153–2163. 2016. View Article : Google Scholar : PubMed/NCBI | |
Meng Y, Davies KA, Fitzgibbon C, Young SN, Garnish SE, Horne CR, Luo C, Garnier JM, Liang LY, Cowan AD, et al: Human RIPK3 maintains MLKL in an inactive conformation prior to cell death by necroptosis. Nat Commun. 12:67832021. View Article : Google Scholar : PubMed/NCBI | |
Sun L, Wang H, Wang Z, He S, Chen S, Liao D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase domain-like protein mediates necrosis signaling downstream of RIP3 kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI | |
Feng N and Anderson ME: CaMKII is a nodal signal for multiple programmed cell death pathways in heart. J Mol Cell Cardiol. 103:102–109. 2017. View Article : Google Scholar : | |
Hudmon A and Schulman H: Structure-function of the multifunctional Ca2+/calmodulin-dependent protein kinase II. Biochem J. 364:593–611. 2002. View Article : Google Scholar : PubMed/NCBI | |
Luczak ED and Anderson ME: CaMKII oxidative activation and the pathogenesis of cardiac disease. J Mol Cell Cardiol. 73:112–116. 2014. View Article : Google Scholar : PubMed/NCBI | |
Beckendorf J, van den Hoogenhof MMG and Backs J: Physiological and unappreciated roles of CaMKII in the heart. Basic Res Cardiol. 113:292018. View Article : Google Scholar : PubMed/NCBI | |
Gui L, Guo X, Zhang Z, Xu H, Ji YW, Wang RJ, Zhu JH and Chen QH: Activation of CaMKIIδA promotes Ca2+ leak from the sarcoplasmic reticulum in cardiomyocytes of chronic heart failure rats. Acta Pharmacol Sin. 39:1604–1612. 2018. View Article : Google Scholar : PubMed/NCBI | |
Szentesi P, Pignier C, Egger M, Kranias EG and Niggli E: Sarcoplasmic reticulum Ca2+ refilling controls recovery from Ca2+-induced Ca2+ release refractoriness in heart muscle. Circ Res. 95:807–813. 2004. View Article : Google Scholar : PubMed/NCBI | |
Chelu MG, Sarma S, Sood S, Wang S, van Oort RJ, Skapura DG, Li N, Santonastasi M, Müller FU, Schmitz W, et al: Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak promotes atrial fibrillation in mice. J Clin Invest. 119:1940–1951. 2009. | |
Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S, Li Y, Zhou H and Chen Y: Ripk3 promotes ER stress-induced necroptosis in cardiac IR injury: A mechanism involving calcium overload/XO/ROS/mPTP pathway. Redox Biol. 16:157–168. 2018. View Article : Google Scholar : PubMed/NCBI | |
Gonano LA and Petroff MV: Subcellular mechanisms underlying digitalis-induced arrhythmias: Role of calcium/calmodulin-dependent kinase II (CaMKII) in the transition from an inotropic to an arrhythmogenic effect. Heart Lung Circ. 23:1118–1124. 2014. View Article : Google Scholar : PubMed/NCBI | |
Joiner ML, Koval OM, Li J, He BJ, Allamargot C, Gao Z, Luczak ED, Hall DD, Fink BD, Chen B, et al: CaMKII determines mitochondrial stress responses in heart. Nature. 491:269–273. 2012. View Article : Google Scholar : PubMed/NCBI | |
Bonora M, Giorgi C and Pinton P: Molecular mechanisms and consequences of mitochondrial permeability transition. Nat Rev Mol Cell Biol. 23:266–285. 2022. View Article : Google Scholar | |
Zhou Y, Liao J, Mei Z, Liu X and Ge J: Insight into crosstalk between ferroptosis and necroptosis: Novel therapeutics in ischemic stroke. Oxid Med Cell Longev. 2021:99910012021. View Article : Google Scholar : PubMed/NCBI | |
Kist M and Vucic D: Cell death pathways: Intricate connections and disease implications. EMBO J. 40:e1067002021. View Article : Google Scholar : | |
Halestrap AP: A pore way to die: The role of mitochondria in reperfusion injury and cardioprotection. Biochem Soc Trans. 38:841–860. 2010. View Article : Google Scholar : PubMed/NCBI | |
Naryzhnaya NV, Maslov LN and Oeltgen PR: Pharmacology of mitochondrial permeability transition pore inhibitors. Drug Dev Res. 80:1013–1030. 2019. View Article : Google Scholar : PubMed/NCBI | |
Thygesen K, Alpert JS, Jaffe AS, Simoons ML, Chaitman BR, White HD; Joint ESC/ACCF/AHA/WHF Task Force for the Universal Definition of Myocardial Infarction; Katus HA, Lindahl B, Morrow DA, et al: Third universal definition of myocardial infarction. Circulation. 126:2020–2035. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pollard TJ: The acute myocardial infarction. Prim Care. 27:631–649. vi2000. View Article : Google Scholar : PubMed/NCBI | |
Lindsey ML, Bolli R, Canty JM Jr, Du XJ, Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner RA, et al: Guidelines for experimental models of myocardial ischemia and infarction. Am J Physiol Heart Circ Physiol. 314:H812–H838. 2018. View Article : Google Scholar : PubMed/NCBI | |
Cabrera-Fuentes HA, Aragones J, Bernhagen J, Boening A, Boisvert WA, Bøtker HE, Bulluck H, Cook S, Di Lisa F, Engel FB, et al: From basic mechanisms to clinical applications in heart protection, new players in cardiovascular diseases and cardiac theranostics: Meeting report from the third international symposium on 'New frontiers in cardiovascular research'. Basic Res Cardiol. 111:692016. View Article : Google Scholar | |
Hausenloy DJ and Yellon DM: Myocardial ischemia-reperfusion injury: A neglected therapeutic target. J Clin Invest. 123:92–100. 2013. View Article : Google Scholar : PubMed/NCBI | |
Adameova A, Horvath C, Abdul-Ghani S, Varga ZV, Suleiman MS and Dhalla NS: Interplay of oxidative stress and necrosis-like cell death in cardiac ischemia/reperfusion injury: A focus on necroptosis. Biomedicines. 10:1272022. View Article : Google Scholar : PubMed/NCBI | |
Mishra PK, Adameova A, Hill JA, Baines CP, Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC, et al: Guidelines for evaluating myocardial cell death. Am J Physiol Heart Circ Physiol. 317:H891–H922. 2019. View Article : Google Scholar : PubMed/NCBI | |
DeRoo E, Zhou T and Liu B: The role of RIPK1 and RIPK3 in cardiovascular disease. Int J Mol Sci. 21:81742020. View Article : Google Scholar : PubMed/NCBI | |
Luedde M, Lutz M, Carter N, Sosna J, Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F, et al: RIP3, a kinase promoting necroptotic cell death, mediates adverse remodelling after myocardial infarction. Cardiovasc Res. 103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI | |
Zhang DY, Wang BJ, Ma M, Yu K, Zhang Q and Zhang XW: MicroRNA-325-3p protects the heart after myocardial infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC Mol Biol. 20:172019. View Article : Google Scholar : PubMed/NCBI | |
Oerlemans MI, Liu J, Arslan F, den Ouden K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of RIP1-dependent necrosis prevents adverse cardiac remodeling after myocardial ischemia-reperfusion in vivo. Basic Res Cardiol. 107:2702012. View Article : Google Scholar : PubMed/NCBI | |
Nakagawa T, Shimizu S, Watanabe T, Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T and Tsujimoto Y: Cyclophilin D-dependent mitochondrial permeability transition regulates some necrotic but not apoptotic cell death. Nature. 434:652–658. 2005. View Article : Google Scholar : PubMed/NCBI | |
Clarke SJ, McStay GP and Halestrap AP: Sanglifehrin A acts as a potent inhibitor of the mitochondrial permeability transition and reperfusion injury of the heart by binding to cyclophilin-D at a different site from cyclosporin A. J Biol Chem. 277:34793–34799. 2002. View Article : Google Scholar : PubMed/NCBI | |
Parks RJ, Menazza S, Holmström KM, Amanakis G, Fergusson M, Ma H, Aponte AM, Bernardi P, Finkel T and Murphy E: Cyclophilin D-mediated regulation of the permeability transition pore is altered in mice lacking the mitochondrial calcium uniporter. Cardiovasc Res. 115:385–394. 2019. View Article : Google Scholar : | |
Torrance N, Elliott AM, Lee AJ and Smith BH: Severe chronic pain is associated with increased 10 year mortality. A cohort record linkage study. Eur J Pain. 14:380–386. 2010. View Article : Google Scholar | |
Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu M, Shi Z, Mu N, Yu L and Ma H: Melatonin attenuates chronic pain related myocardial ischemic susceptibility through inhibiting RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol. 125:185–194. 2018. View Article : Google Scholar : PubMed/NCBI | |
Szobi A, Gonçalvesová E, Varga ZV, Leszek P, Kuśmierczyk M, Hulman M, Kyselovič J, Ferdinandy P and Adameová A: Analysis of necroptotic proteins in failing human hearts. J Transl Med. 15:862017. View Article : Google Scholar : | |
Lázár E, Sadek HA and Bergmann O: Cardiomyocyte renewal in the human heart: Insights from the fall-out. Eur Heart J. 38:2333–2342. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Li X, Lai W, Zhu F, Tan X, Xian W, Kang P and Wang H: RIP1/RIP3-MLKL signaling pathway correlates with occurrence, progression and prognosis of chronic heart failure. Nan Fang Yi Ke Da Xue Xue Bao. 41:1534–1539. 2021.In Chinese. | |
Piamsiri C, Maneechote C, Siri-Angkul N, Chattipakorn SC and Chattipakorn N: Targeting necroptosis as therapeutic potential in chronic myocardial infarction. J Biomed Sci. 28:252021. View Article : Google Scholar : PubMed/NCBI | |
Szobi A, Rajtik T, Carnicka S, Ravingerova T and Adameova A: Mitigation of postischemic cardiac contractile dysfunction by CaMKII inhibition: Effects on programmed necrotic and apoptotic cell death. Mol Cell Biochem. 388:269–276. 2014. View Article : Google Scholar | |
Zhang T and Brown JH: Role of Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy and heart failure. Cardiovasc Res. 63:476–486. 2004. View Article : Google Scholar : PubMed/NCBI | |
Kerfant BG, Verheule S and Schotten U: Leaky ryanodine receptors in the failing heart: The root of all evil? Cardiovasc Res. 90:399–401. 2011. View Article : Google Scholar : PubMed/NCBI | |
Sakalihasan N, Limet R and Defawe OD: Abdominal aortic aneurysm. Lancet. 365:1577–1589. 2005. View Article : Google Scholar : PubMed/NCBI | |
Baxter BT, Terrin MC and Dalman RL: Medical management of small abdominal aortic aneurysms. Circulation. 117:1883–1889. 2008. View Article : Google Scholar : PubMed/NCBI | |
Legg JS and Legg LM: Abdominal aortic aneurysms. Radiol Technol. 88:145–163. 2016. | |
Jiang F, Jones GT and Dusting GJ: Failure of antioxidants to protect against angiotensin II-induced aortic rupture in aged apolipoprotein(E)-deficient mice. Br J Pharmacol. 152:880–890. 2007. View Article : Google Scholar : PubMed/NCBI | |
López-Candales A, Holmes DR, Liao S, Scott MJ, Wickline SA and Thompson RW: Decreased vascular smooth muscle cell density in medial degeneration of human abdominal aortic aneurysms. Am J Pathol. 150:993–1007. 1997.PubMed/NCBI | |
Guo DC, Papke CL, He R and Milewicz DM: Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y Acad Sci. 1085:339–352. 2006. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Liu Z, Ren J, Morgan S, Assa C and Liu B: Receptor-interacting protein kinase 3 contributes to abdominal aortic aneurysms via smooth muscle cell necrosis and inflammation. Circ Res. 116:600–611. 2015. View Article : Google Scholar : PubMed/NCBI | |
Zhou T, Wang Q, Phan N, Ren J, Yang H, Feldman CC, Feltenberger JB, Ye Z, Wildman SA, Tang W and Liu B: Identification of a novel class of RIP1/RIP3 dual inhibitors that impede cell death and inflammation in mouse abdominal aortic aneurysm models. Cell Death Dis. 10:2262019. View Article : Google Scholar : PubMed/NCBI | |
Wang Q, Zhou T, Liu Z, Ren J, Phan N, Gupta K, Stewart DM, Morgan S, Assa C, Kent KC and Liu B: Inhibition of receptor-interacting protein kinase 1 with necrostatin-1s ameliorates disease progression in elastase-induced mouse abdominal aortic aneurysm model. Sci Rep. 7:421592017. View Article : Google Scholar : PubMed/NCBI | |
Adamson PD, Dweck MR and Newby DE: The vulnerable atherosclerotic plaque: In vivo identification and potential therapeutic avenues. Heart. 101:1755–1766. 2015. View Article : Google Scholar : PubMed/NCBI | |
Finney AC, Funk SD, Green JM, Yurdagul A Jr, Rana MA, Pistorius R, Henry M, Yurochko A, Pattillo CB, Traylor JG, et al: EphA2 expression regulates inflammation and fibroproliferative remodeling in atherosclerosis. Circulation. 136:566–582. 2017. View Article : Google Scholar : PubMed/NCBI | |
Virmani R, Burke AP, Farb A and Kolodgie FD: Pathology of the vulnerable plaque. J Am Coll Cardiol. 47(8 Suppl): C13–C18. 2006. View Article : Google Scholar | |
Lin J, Li H, Yang M, Ren J, Huang Z, Han F, Huang J, Ma J, Zhang D, Zhang Z, et al: A role of RIP3-mediated macrophage necrosis in atherosclerosis development. Cell Rep. 3:200–210. 2013. View Article : Google Scholar : PubMed/NCBI | |
Karunakaran D, Geoffrion M, Wei L, Gan W, Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L, Maegdefessel L, et al: Targeting macrophage necroptosis for therapeutic and diagnostic interventions in atherosclerosis. Sci Adv. 2:e16002242016. View Article : Google Scholar : PubMed/NCBI | |
Liu C, Jiang Z, Pan Z and Yang L: The function, regulation and mechanism of programmed cell death of macrophages in atherosclerosis. Front Cell Dev Biol. 9:8095162021. View Article : Google Scholar | |
Jang WB, Park JH, Ji ST, Lee NK, Kim DY, Kim YJ, Jung SY, Kang S, Lamichane S, Lamichane BD, et al: Cytoprotective roles of a novel compound, MHY-1684, against hyperglycemia-induced oxidative stress and mitochondrial dysfunction in human cardiac progenitor cells. Oxid Med Cell Longev. 2018:45281842018. View Article : Google Scholar : PubMed/NCBI | |
Poornima IG, Parikh P and Shannon RP: Diabetic cardiomyopathy: The search for a unifying hypothesis. Circ Res. 98:596–605. 2006. View Article : Google Scholar | |
Task Force on diabetes, pre-diabetes, and cardiovascular diseases of the European Society of Cardiology (ESC); European Association for the Study of Diabetes (EASD); Rydén L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C, Escaned J, et al: ESC guidelines on diabetes, pre-diabetes, and cardiovascular diseases developed in collaboration with the EASD-summary. Diab Vasc Dis Res. 11:133–173. 2014. View Article : Google Scholar | |
Wei J, Zhao Y, Liang H, Du W and Wang L: Preliminary evidence for the presence of multiple forms of cell death in diabetes cardiomyopathy. Acta Pharm Sin B. 12:1–17. 2022. View Article : Google Scholar : PubMed/NCBI | |
Frustaci A, Kajstura J, Chimenti C, Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B and Anversa P: Myocardial cell death in human diabetes. Circ Res. 87:1123–1132. 2000. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Hua Y, Li X, Arslan IM, Zhang W and Meng G: Distinct types of cell death and the implication in diabetic cardiomyopathy. Front Pharmacol. 11:422020. View Article : Google Scholar : PubMed/NCBI | |
Liu YS, Huang ZW, Wang L, Liu XX, Wang YM, Zhang Y and Zhang M: Sitagliptin alleviated myocardial remodeling of the left ventricle and improved cardiac diastolic dysfunction in diabetic rats. J Pharmacol Sci. 127:260–274. 2015. View Article : Google Scholar | |
Liang W, Chen M, Zheng D, He J, Song M, Mo L, Feng J and Lan J: A novel damage mechanism: Contribution of the interaction between necroptosis and ROS to high glucose-induced injury and inflammation in H9c2 cardiac cells. Int J Mol Med. 40:201–208. 2017. View Article : Google Scholar : PubMed/NCBI | |
Luo M, Guan X, Luczak ED, Lang D, Kutschke W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, et al: Diabetes increases mortality after myocardial infarction by oxidizing CaMKII. J Clin Invest. 123:1262–1274. 2013. View Article : Google Scholar : PubMed/NCBI | |
Hegyi B, Bers DM and Bossuyt J: CaMKII signaling in heart diseases: Emerging role in diabetic cardiomyopathy. J Mol Cell Cardiol. 127:246–259. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yamagishi S, Fukami K and Matsui T: Evaluation of tissue accumulation levels of advanced glycation end products by skin autofluorescence: A novel marker of vascular complications in high-risk patients for cardiovascular disease. Int J Cardiol. 185:263–268. 2015. View Article : Google Scholar : PubMed/NCBI | |
Simó-Servat O, Planas A, Ciudin A, Simó R and Hernández C: Assessment of advanced glycation end-products as a biomarker of diabetic outcomes. Endocrinol Diabetes Nutr (Engl Ed). 65:540–545. 2018.PubMed/NCBI | |
Hua Y, Qian J, Cao J, Wang X, Zhang W and Zhang J: Ca2+/calmodulin-dependent protein kinase II regulation by inhibitor of receptor interacting protein kinase 3 alleviates necroptosis in glycation end products-induced cardiomyocytes injury. Int J Mol Sci. 23:69882022. View Article : Google Scholar | |
Fang L, Beale A, Ellims AH, Moore XL, Ling LH, Taylor AJ, Chin-Dusting J and Dart AM: Associations between fibrocytes and postcontrast myocardial T1 times in hypertrophic cardiomyopathy. J Am Heart Assoc. 2:e0002702013. View Article : Google Scholar : PubMed/NCBI | |
Maron BJ and Maron MS: Hypertrophic cardiomyopathy. Lancet. 381:242–255. 2013. View Article : Google Scholar | |
Yao J, Qin X, Zhu J and Sheng H: Dyrk1A-ASF-CaMKIIδ signaling is involved in valsartan inhibition of cardiac hypertrophy in renovascular hypertensive rats. Cardiology. 133:198–204. 2016. View Article : Google Scholar | |
Li C, Cai X, Sun H, Bai T, Zheng X, Zhou XW, Chen X, Gill DL, Li J and Tang XD: The δA isoform of calmodulin kinase II mediates pathological cardiac hypertrophy by interfering with the HDAC4-MEF2 signaling pathway. Biochem Biophys Res Commun. 409:125–130. 2011. View Article : Google Scholar : PubMed/NCBI | |
Staerk L, Sherer JA, Ko D, Benjamin EJ and Helm RH: Atrial fibrillation: Epidemiology, pathophysiology, and clinical outcomes. Circ Res. 120:1501–1517. 2017. View Article : Google Scholar : PubMed/NCBI | |
Nattel S and Harada M: Atrial remodeling and atrial fibrillation: Recent advances and translational perspectives. J Am Coll Cardiol. 63:2335–2345. 2014. View Article : Google Scholar | |
Wakili R, Voigt N, Kääb S, Dobrev D and Nattel S: Recent advances in the molecular pathophysiology of atrial fibrillation. J Clin Invest. 121:2955–2968. 2011. View Article : Google Scholar : PubMed/NCBI | |
Calvo D, Filgueiras-Rama D and Jalife J: Mechanisms and drug development in atrial fibrillation. Pharmacol Rev. 70:505–525. 2018. View Article : Google Scholar : PubMed/NCBI | |
Liu Z, Finet JE, Wolfram JA, Anderson ME, Ai X and Donahue JK: Calcium/calmodulin-dependent protein kinase II causes atrial structural remodeling associated with atrial fibrillation and heart failure. Heart Rhythm. 16:1080–1088. 2019. View Article : Google Scholar : PubMed/NCBI | |
Lee JM, Yoshida M, Kim MS, Lee JH, Baek AR, Jang AS, Kim DJ, Minagawa S, Chin SS, Park CS, et al: Involvement of alveolar epithelial cell necroptosis in idiopathic pulmonary fibrosis pathogenesis. Am J Respir Cell Mol Biol. 59:215–224. 2018. View Article : Google Scholar : PubMed/NCBI | |
Wei S, Zhou H, Wang Q, Zhou S, Li C, Liu R, Qiu J, Shi C and Lu L: RIP3 deficiency alleviates liver fibrosis by inhibiting ROCK1-TLR4-NF-κB pathway in macrophages. FASEB J. 33:11180–11193. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mukherjee S, Sheng W, Sun R and Janssen LJ: Ca2+/calmodulin-dependent protein kinase IIβ and IIδ mediate TGFβ-induced transduction of fibronectin and collagen in human pulmonary fibroblasts. Am J Physiol Lung Cell Mol Physiol. 312:L510–L519. 2017. View Article : Google Scholar | |
Cui H, Zuo S, Liu Z, Liu H, Wang J, You T, Zheng Z, Zhou Y, Qian X, Yao H, et al: The support of genetic evidence for cardiovascular risk induced by antineoplastic drugs. Sci Adv. 6:eabb85432020. View Article : Google Scholar : PubMed/NCBI | |
Yeh ETH and Bickford CL: Cardiovascular complications of cancer therapy: Incidence, pathogenesis, diagnosis, and management. J Am Coll Cardiol. 53:2231–2247. 2009. View Article : Google Scholar | |
Curigliano G, Cardinale D, Dent S, Criscitiello C, Aseyev O, Lenihan D and Cipolla CM: Cardiotoxicity of anticancer treatments: Epidemiology, detection, and management. CA Cancer J Clin. 66:309–325. 2016. View Article : Google Scholar | |
Liang Z, He Y and Hu X: Cardio-oncology: Mechanisms, drug combinations, and reverse cardio-oncology. Int J Mol Sci. 23:106172022. View Article : Google Scholar : PubMed/NCBI | |
Carvalho C, Santos RX, Cardoso S, Correia S, Oliveira PJ, Santos MS and Moreira PI: Doxorubicin: The good, the bad and the ugly effect. Curr Med Chem. 16:3267–3285. 2009. View Article : Google Scholar | |
Fer reira AL, Matsubara LS and Matsubara BB: Anthracycline-induced cardiotoxicity. Cardiovasc Hematol Agents Med Chem. 6:278–281. 2008. View Article : Google Scholar | |
Stefenelli T, Kuzmits R, Ulrich W and Glogar D: Acute vascular toxicity after combination chemotherapy with cisplatin, vinblastine, and bleomycin for testicular cancer. Eur Heart J. 9:552–556. 1988. View Article : Google Scholar | |
Lejonc JL, Vernant JP, Macquin J and Castaigne A: Myocardial infarction following vinblastine treatment. Lancet. 2:6921980. View Article : Google Scholar : PubMed/NCBI | |
Calafat AM, Ye X, Wong LY, Reidy JA and Needham LL: Exposure of the U.S. population to bisphenol A and 4-tertiary-octylphenol: 2003-2004. Environ Health Perspect. 116:39–44. 2008. View Article : Google Scholar : PubMed/NCBI | |
Vandenberg LN, Hauser R, Marcus M, Olea N and Welshons WV: Human exposure to bisphenol A (BPA). Reprod Toxicol. 24:139–177. 2007. View Article : Google Scholar : PubMed/NCBI | |
Gao X and Wang HS: Impact of bisphenol a on the cardiovascular system-epidemiological and experimental evidence and molecular mechanisms. Int J Environ Res Public Health. 11:8399–8413. 2014. View Article : Google Scholar : PubMed/NCBI | |
Moon S, Yu SH, Lee CB, Park YJ, Yoo HJ and Kim DS: Effects of bisphenol A on cardiovascular disease: An epidemiological study using national health and nutrition examination survey 2003-2016 and meta-analysis. Sci Total Environ. 763:1429412021. View Article : Google Scholar | |
Conrad M, Angeli JP, Vandenabeele P and Stockwell BR: Regulated necrosis: Disease relevance and therapeutic opportunities. Nat Rev Drug Discov. 15:348–366. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kaiser WJ, Sridharan H, Huang C, Mandal P, Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES: Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI | |
Mandal P, Berger SB, Pillay S, Moriwaki K, Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, et al: RIP3 induces apoptosis independent of pronecrotic kinase activity. Mol Cell. 56:481–495. 2014. View Article : Google Scholar : PubMed/NCBI | |
Lim SY, Davidson SM, Mocanu MM, Yellon DM and Smith CCT: The cardioprotective effect of necrostatin requires the cyclophilin-D component of the mitochondrial permeability transition pore. Cardiovasc Drugs Ther. 21:467–469. 2007. View Article : Google Scholar : PubMed/NCBI | |
Smith CCT, Davidson SM, Lim SY, Simpkin JC, Hothersall JS and Yellon DM: Necrostatin: A potentially novel cardioprotective agent? Cardiovasc Drugs Ther. 21:227–233. 2007. View Article : Google Scholar : PubMed/NCBI | |
Zhou H, Hu B and Liu X: Thyroid hormone metabolite 3-iodothyronamine (T1AM) alleviates hypoxia/reoxygenation-induced cardiac myocyte apoptosis via Akt/FoxO1 pathway. Med Sci Monit. 26:e9231952020.PubMed/NCBI | |
Meng Y, Tao Z, Zhou S, Da W and Tao L: Research hot spots and trends on melatonin from 2000 to 2019. Front Endocrinol (Lausanne). 12:7539232021. View Article : Google Scholar : PubMed/NCBI | |
Hu Q, Wu D, Ma F, Yang S, Tan B, Xin H, Gu X, Chen X, Chen S, Mao Y and Zhu YZ: Novel angiogenic activity and molecular mechanisms of ZYZ-803, a slow-releasing hydrogen sulfide-nitric oxide hybrid molecule. Antioxid Redox Signal. 25:498–514. 2016. View Article : Google Scholar | |
Chang L, Wang Z, Ma F, Tran B, Zhong R, Xiong Y, Dai T, Wu J, Xin X, Guo W, et al: ZYZ-803 Mitigates endoplasmic reticulum stress-related necroptosis after acute myocardial infarction through downregulating the RIP3-CaMKII signaling pathway. Oxid Med Cell Longev. 2019:61736852019. View Article : Google Scholar : PubMed/NCBI | |
Adameova A, Carnicka S, Rajtik T, Szobi A, Nemcekova M, Svec P and Ravingerova T: Upregulation of CaMKIIδ during ischaemia-reperfusion is associated with reperfusion-induced arrhythmias and mechanical dysfunction of the rat heart: Involvement of sarcolemmal Ca2+-cycling proteins. Can J Physiol Pharmacol. 90:1127–1134. 2012. View Article : Google Scholar : PubMed/NCBI | |
Pallien T and Klussmann E: New aspects in cardiac L-type Ca2+ channel regulation. Biochem Soc Trans. 48:39–49. 2020. View Article : Google Scholar : PubMed/NCBI | |
Gao H, Wang F, Wang W, Makarewich CA, Zhang H, Kubo H, Berretta RM, Barr LA, Molkentin JD and Houser SR: Ca(2+) influx through L-type Ca(2+) channels and transient receptor potential channels activates pathological hypertrophy signaling. J Mol Cell Cardiol. 53:657–667. 2012. View Article : Google Scholar : PubMed/NCBI | |
Ikeda S, Matsushima S, Okabe K, Ikeda M, Ishikita A, Tadokoro T, Enzan N, Yamamoto T, Sada M, Deguchi H, et al: Blockade of L-type Ca2+ channel attenuates doxorubicin-induced cardiomyopathy via suppression of CaMKII-NF-κB pathway. Sci Rep. 9:98502019. View Article : Google Scholar | |
Lim WY, Messow CM and Berry C: Cyclosporin variably and inconsistently reduces infarct size in experimental models of reperfused myocardial infarction: A systematic review and meta-analysis. Br J Pharmacol. 165:2034–2043. 2012. View Article : Google Scholar | |
Piot C, Croisille P, Staat P, Thibault H, Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant D, et al: Effect of cyclosporine on reperfusion injury in acute myocardial infarction. N Engl J Med. 359:473–481. 2008. View Article : Google Scholar : PubMed/NCBI | |
Cung TT, Morel O, Cayla G, Rioufol G, Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E, Guérin P, Elbaz M, Delarche N, et al: Cyclosporine before PCI in patients with acute myocardial infarction. N Engl J Med. 373:1021–1031. 2015. View Article : Google Scholar : PubMed/NCBI | |
Ottani F, Latini R, Staszewsky L, La Vecchia L, Locuratolo N, Sicuro M, Masson S, Barlera S, Milani V, Lombardi M, et al: Cyclosporine A in reperfused myocardial infarction: The multicenter, controlled, open-label CYCLE trial. J Am Coll Cardiol. 67:365–374. 2016. View Article : Google Scholar : PubMed/NCBI | |
Gill RS, Bigam DL and Cheung PY: The role of cyclosporine in the treatment of myocardial reperfusion injury. Shock. 37:341–347. 2012. View Article : Google Scholar : PubMed/NCBI | |
Zhang CX, Cheng Y, Liu DZ, Liu M, Cui H, Zhang BL, Mei QB and Zhou SY: Mitochondria-targeted cyclosporin A delivery system to treat myocardial ischemia reperfusion injury of rats. J Nanobiotechnology. 17:182019. View Article : Google Scholar : PubMed/NCBI | |
Yao LL, Huang XW, Wang YG, Cao YX, Zhang CC and Zhu YC: Hydrogen sulfide protects cardiomyocytes from hypoxia/reoxygenation-induced apoptosis by preventing GSK-3beta-dependent opening of mPTP. Am J Physiol Heart Circ Physiol. 298:H1310–H1319. 2010. View Article : Google Scholar : PubMed/NCBI | |
Kar S, Kambis TN and Mishra PK: Hydrogen sulfide-mediated regulation of cell death signaling ameliorates adverse cardiac remodeling and diabetic cardiomyopathy. Am J Physiol Heart Circ Physiol. 316:H1237–H1252. 2019. View Article : Google Scholar : | |
Sun HJ, Wu ZY, Nie XW, Wang XY and Bian JS: An updated insight into molecular mechanism of hydrogen sulfide in cardiomyopathy and myocardial ischemia/reperfusion injury under diabetes. Front Pharmacol. 12:6518842021. View Article : Google Scholar : PubMed/NCBI |