|
1
|
Mathers CD and Loncar D: Projections of
global mortality and burden of disease from 2002 to 2030. PLoS Med.
3:e4422006. View Article : Google Scholar :
|
|
2
|
Del Re DP, Amgalan D, Linkermann A, Liu Q
and Kitsis RN: Fundamental mechanisms of regulated cell death and
implications for heart disease. Physiol Rev. 99:1765–1817. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Ruparelia N, Chai JT, Fisher EA and
Choudhury RP: Inflammatory processes in cardiovascular disease: A
route to targeted therapies. Nat Rev Cardiol. 14:133–144. 2017.
View Article : Google Scholar :
|
|
4
|
D'Arcy MS: Cell death: A review of the
major forms of apoptosis, necrosis and autophagy. Cell Biol Int.
43:582–592. 2019. View Article : Google Scholar
|
|
5
|
Bertheloot D, Latz E and Franklin BS:
Necroptosis, pyroptosis and apoptosis: An intricate game of cell
death. Cell Mol Immunol. 18:1106–1121. 2021. View Article : Google Scholar :
|
|
6
|
He S, Wang L, Miao L, Wang T, Du F, Zhao L
and Wang X: Receptor interacting protein kinase-3 determines
cellular necrotic response to TNF-alpha. Cell. 137:1100–1111. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Koo GB, Morgan MJ, Lee DG, Kim WJ, Yoon
JH, Koo JS, Kim SI, Kim SJ, Son MK, Hong SS, et al:
Methylation-dependent loss of RIP3 expression in cancer represses
programmed necrosis in response to chemotherapeutics. Cell Res.
25:707–725. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Yatim N, Jusforgues-Saklani H, Orozco S,
Schulz O, Barreira da Silva R, Reis e Sousa C, Green DR, Oberst A
and Albert ML: RIPK1 and NF-κB signaling in dying cells determines
cross-priming of CD8+ T cells. Science. 350:328–334. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Gupta K, Phan N, Wang Q and Liu B:
Necroptosis in cardiovascular disease-a new therapeutic target. J
Mol Cell Cardiol. 118:26–35. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Kung G, Konstantinidis K and Kitsis RN:
Programmed necrosis, not apoptosis, in the heart. Circ Res.
108:1017–1036. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Zhe-Wei S, Li-Sha G and Yue-Chun L: The
role of necroptosis in cardiovascular disease. Front Pharmacol.
9:7212018. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Ruan ZH, Xu ZX, Zhou XY, Zhang X and Shang
L: Implications of necroptosis for cardiovascular diseases. Curr
Med Sci. 39:513–522. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv
F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3
substrate mediating ischemia- and oxidative stress-induced
myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Wang W, Wang B, Sun S, Cao S, Zhai X,
Zhang C, Zhang Q, Yuan Q, Sun Y, Xue M, et al: Inhibition of
adenosine kinase attenuates myocardial ischaemia/reperfusion
injury. J Cell Mol Med. 25:2931–2943. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wei B, Zhao H, Hu B, Dai L, Zhang G, Mo L,
Huang N, Zou C, Zhang B, Zhou H, et al: T1AM attenuates the
hypoxia/reoxygenation-induced necroptosis of H9C2 cardiomyocytes
via RIPK1/RIPK3 pathway. Biomed Res Int. 2022:48337912022.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Xu T, Ding W, Tariq MA, Wang Y, Wan Q, Li
M and Wang J: Molecular mechanism and therapy application of
necrosis during myocardial injury. J Cell Mol Med. 22:2547–2557.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Cao J, Zhang J, Qian J, Wang X, Zhang W
and Chen X: Ca2+/calmodulin-dependent protein kinase II
regulation by RIPK3 alleviates necroptosis in transverse arch
constriction-induced heart failure. Front Cardiovasc Med.
9:8473622022. View Article : Google Scholar
|
|
18
|
Zhou T, DeRoo E, Yang H, Stranz A, Wang Q,
Ginnan R, Singer HA and Liu B: MLKL and CaMKII are involved in
RIPK3-mediated smooth muscle cell necroptosis. Cells. 10:23972021.
View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Maione AS, Cipolletta E, Sorriento D,
Borriello F, Soprano M, Rusciano MR, D'Esposito V, Markabaoui AK,
De Palma GD, Martino G, et al: Cellular subtype expression and
activation of CaMKII regulate the fate of atherosclerotic plaque.
Atherosclerosis. 256:53–61. 2017. View Article : Google Scholar
|
|
20
|
Sun L, Chen Y, Luo H, Xu M, Meng G and
Zhang W: Ca2+/calmodulin-dependent protein kinase II
regulation by inhibitor 1 of protein phosphatase 1 alleviates
necroptosis in high glucose-induced cardiomyocytes injury. Biochem
Pharmacol. 163:194–205. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen Y, Li X, Hua Y, Ding Y, Meng G and
Zhang W: RIPK3-mediated necroptosis in diabetic cardiomyopathy
requires CaMKII activation. Oxid Med Cell Longev.
2021:66178162021.PubMed/NCBI
|
|
22
|
Zhang J, Qian J, Cao J, Wang X, Zhang W
and Gu X: Ca2+/calmodulin-dependent protein kinase II
regulation by inhibitor of RIPK3 protects against cardiac
hypertrophy. Oxid Med Cell Longev. 2022:79413742022.
|
|
23
|
Wang X, Zhang J, Qian J, Cao J, Zhang W
and Jiang Y: The regulatory mechanism and effect of
receptor-interacting protein kinase 3 on phenylephrine-induced
cardiomyocyte hypertrophy. J Cardiovasc Pharmacol. 80:236–250.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Fu Y, Jiang T, Sun H, Li T, Gao F, Fan B,
Li X, Qin X and Zheng Q: Necroptosis is required for atrial
fibrillation and involved in aerobic exercise-conferred
cardioprotection. J Cell Mol Med. 25:8363–8375. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Zhou H, Liu L, Ma X, Wang J, Yang J, Zhou
X, Yang Y and Liu H: RIP1/RIP3/MLKL-mediated necroptosis
contributes to vinblastine-induced myocardial damage. Mol Cell
Biochem. 476:1233–1243. 2021. View Article : Google Scholar :
|
|
26
|
McMullen CJ, Chalmers S, Wood R,
Cunningham MR and Currie S: Sunitinib and imatinib display
differential cardiotoxicity in adult rat cardiac fibroblasts that
involves a role for calcium/calmodulin dependent protein kinase II.
Front Cardiovasc Med. 7:6304802021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Reventun P, Sanchez-Esteban S, Cook A,
Cuadrado I, Roza C, Moreno-Gomez-Toledano R, Muñoz C, Zaragoza C,
Bosch RJ and Saura M: Bisphenol A induces coronary endothelial cell
necroptosis by activating RIP3/CamKII dependent pathway. Sci Rep.
10:41902020. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Galluzzi L, Kepp O and Kroemer G: RIP
kinases initiate programmed necrosis. J Mol Cell Biol. 1:8–10.
2009. View Article : Google Scholar
|
|
29
|
Ingram JP, Thapa RJ, Fisher A, Tummers B,
Zhang T, Yin C, Rodriguez DA, Guo H, Lane R, Williams R, et al:
ZBP1/DAI drives RIPK3-mediated cell death induced by IFNs in the
absence of RIPK1. J Immunol. 203:1348–1355. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Garvin AM, Jackson MA and Korzick DH:
Inhibition of programmed necrosis limits infarct size through
altered mitochondrial and immune responses in the aged female rat
heart. Am J Physiol Heart Circ Physiol. 315:H1434–H1442. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Khoury MK, Gupta K, Franco SR and Liu B:
Necroptosis in the pathophysiology of disease. Am J Pathol.
190:272–285. 2020. View Article : Google Scholar :
|
|
32
|
Cuny GD and Degterev A: RIPK protein
kinase family: Atypical lives of typical kinases. Semin Cell Dev
Biol. 109:96–105. 2021. View Article : Google Scholar :
|
|
33
|
Li J, McQuade T, Siemer AB, Napetschnig J,
Moriwaki K, Hsiao YS, Damko E, Moquin D, Walz T, McDermott A, et
al: The RIP1/RIP3 necrosome forms a functional amyloid signaling
complex required for programmed necrosis. Cell. 150:339–350. 2012.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Moquin DM, McQuade T and Chan FK: CYLD
deubiquitinates RIP1 in the TNFα-induced necrosome to facilitate
kinase activation and programmed necrosis. PLoS One. 8:e768412013.
View Article : Google Scholar
|
|
35
|
Zhang J, Yang Y, He W and Sun L: Necrosome
core machinery: MLKL. Cell Mol Life Sci. 73:2153–2163. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Meng Y, Davies KA, Fitzgibbon C, Young SN,
Garnish SE, Horne CR, Luo C, Garnier JM, Liang LY, Cowan AD, et al:
Human RIPK3 maintains MLKL in an inactive conformation prior to
cell death by necroptosis. Nat Commun. 12:67832021. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Sun L, Wang H, Wang Z, He S, Chen S, Liao
D, Wang L, Yan J, Liu W, Lei X and Wang X: Mixed lineage kinase
domain-like protein mediates necrosis signaling downstream of RIP3
kinase. Cell. 148:213–227. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Feng N and Anderson ME: CaMKII is a nodal
signal for multiple programmed cell death pathways in heart. J Mol
Cell Cardiol. 103:102–109. 2017. View Article : Google Scholar :
|
|
39
|
Hudmon A and Schulman H:
Structure-function of the multifunctional Ca2+/calmodulin-dependent
protein kinase II. Biochem J. 364:593–611. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Luczak ED and Anderson ME: CaMKII
oxidative activation and the pathogenesis of cardiac disease. J Mol
Cell Cardiol. 73:112–116. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Beckendorf J, van den Hoogenhof MMG and
Backs J: Physiological and unappreciated roles of CaMKII in the
heart. Basic Res Cardiol. 113:292018. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Gui L, Guo X, Zhang Z, Xu H, Ji YW, Wang
RJ, Zhu JH and Chen QH: Activation of CaMKIIδA promotes
Ca2+ leak from the sarcoplasmic reticulum in
cardiomyocytes of chronic heart failure rats. Acta Pharmacol Sin.
39:1604–1612. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Szentesi P, Pignier C, Egger M, Kranias EG
and Niggli E: Sarcoplasmic reticulum Ca2+ refilling controls
recovery from Ca2+-induced Ca2+ release refractoriness in heart
muscle. Circ Res. 95:807–813. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Chelu MG, Sarma S, Sood S, Wang S, van
Oort RJ, Skapura DG, Li N, Santonastasi M, Müller FU, Schmitz W, et
al: Calmodulin kinase II-mediated sarcoplasmic reticulum Ca2+ leak
promotes atrial fibrillation in mice. J Clin Invest. 119:1940–1951.
2009.
|
|
45
|
Zhu P, Hu S, Jin Q, Li D, Tian F, Toan S,
Li Y, Zhou H and Chen Y: Ripk3 promotes ER stress-induced
necroptosis in cardiac IR injury: A mechanism involving calcium
overload/XO/ROS/mPTP pathway. Redox Biol. 16:157–168. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Gonano LA and Petroff MV: Subcellular
mechanisms underlying digitalis-induced arrhythmias: Role of
calcium/calmodulin-dependent kinase II (CaMKII) in the transition
from an inotropic to an arrhythmogenic effect. Heart Lung Circ.
23:1118–1124. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Joiner ML, Koval OM, Li J, He BJ,
Allamargot C, Gao Z, Luczak ED, Hall DD, Fink BD, Chen B, et al:
CaMKII determines mitochondrial stress responses in heart. Nature.
491:269–273. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Bonora M, Giorgi C and Pinton P: Molecular
mechanisms and consequences of mitochondrial permeability
transition. Nat Rev Mol Cell Biol. 23:266–285. 2022. View Article : Google Scholar
|
|
49
|
Zhou Y, Liao J, Mei Z, Liu X and Ge J:
Insight into crosstalk between ferroptosis and necroptosis: Novel
therapeutics in ischemic stroke. Oxid Med Cell Longev.
2021:99910012021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kist M and Vucic D: Cell death pathways:
Intricate connections and disease implications. EMBO J.
40:e1067002021. View Article : Google Scholar :
|
|
51
|
Halestrap AP: A pore way to die: The role
of mitochondria in reperfusion injury and cardioprotection. Biochem
Soc Trans. 38:841–860. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Naryzhnaya NV, Maslov LN and Oeltgen PR:
Pharmacology of mitochondrial permeability transition pore
inhibitors. Drug Dev Res. 80:1013–1030. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Thygesen K, Alpert JS, Jaffe AS, Simoons
ML, Chaitman BR, White HD; Joint ESC/ACCF/AHA/WHF Task Force for
the Universal Definition of Myocardial Infarction; Katus HA,
Lindahl B, Morrow DA, et al: Third universal definition of
myocardial infarction. Circulation. 126:2020–2035. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Pollard TJ: The acute myocardial
infarction. Prim Care. 27:631–649. vi2000. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Lindsey ML, Bolli R, Canty JM Jr, Du XJ,
Frangogiannis NG, Frantz S, Gourdie RG, Holmes JW, Jones SP, Kloner
RA, et al: Guidelines for experimental models of myocardial
ischemia and infarction. Am J Physiol Heart Circ Physiol.
314:H812–H838. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Cabrera-Fuentes HA, Aragones J, Bernhagen
J, Boening A, Boisvert WA, Bøtker HE, Bulluck H, Cook S, Di Lisa F,
Engel FB, et al: From basic mechanisms to clinical applications in
heart protection, new players in cardiovascular diseases and
cardiac theranostics: Meeting report from the third international
symposium on 'New frontiers in cardiovascular research'. Basic Res
Cardiol. 111:692016. View Article : Google Scholar
|
|
57
|
Hausenloy DJ and Yellon DM: Myocardial
ischemia-reperfusion injury: A neglected therapeutic target. J Clin
Invest. 123:92–100. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Adameova A, Horvath C, Abdul-Ghani S,
Varga ZV, Suleiman MS and Dhalla NS: Interplay of oxidative stress
and necrosis-like cell death in cardiac ischemia/reperfusion
injury: A focus on necroptosis. Biomedicines. 10:1272022.
View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Mishra PK, Adameova A, Hill JA, Baines CP,
Kang PM, Downey JM, Narula J, Takahashi M, Abbate A, Piristine HC,
et al: Guidelines for evaluating myocardial cell death. Am J
Physiol Heart Circ Physiol. 317:H891–H922. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
DeRoo E, Zhou T and Liu B: The role of
RIPK1 and RIPK3 in cardiovascular disease. Int J Mol Sci.
21:81742020. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Luedde M, Lutz M, Carter N, Sosna J,
Jacoby C, Vucur M, Gautheron J, Roderburg C, Borg N, Reisinger F,
et al: RIP3, a kinase promoting necroptotic cell death, mediates
adverse remodelling after myocardial infarction. Cardiovasc Res.
103:206–216. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Zhang DY, Wang BJ, Ma M, Yu K, Zhang Q and
Zhang XW: MicroRNA-325-3p protects the heart after myocardial
infarction by inhibiting RIPK3 and programmed necrosis in mice. BMC
Mol Biol. 20:172019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Oerlemans MI, Liu J, Arslan F, den Ouden
K, van Middelaar BJ, Doevendans PA and Sluijter JP: Inhibition of
RIP1-dependent necrosis prevents adverse cardiac remodeling after
myocardial ischemia-reperfusion in vivo. Basic Res Cardiol.
107:2702012. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Nakagawa T, Shimizu S, Watanabe T,
Yamaguchi O, Otsu K, Yamagata H, Inohara H, Kubo T and Tsujimoto Y:
Cyclophilin D-dependent mitochondrial permeability transition
regulates some necrotic but not apoptotic cell death. Nature.
434:652–658. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Clarke SJ, McStay GP and Halestrap AP:
Sanglifehrin A acts as a potent inhibitor of the mitochondrial
permeability transition and reperfusion injury of the heart by
binding to cyclophilin-D at a different site from cyclosporin A. J
Biol Chem. 277:34793–34799. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Parks RJ, Menazza S, Holmström KM,
Amanakis G, Fergusson M, Ma H, Aponte AM, Bernardi P, Finkel T and
Murphy E: Cyclophilin D-mediated regulation of the permeability
transition pore is altered in mice lacking the mitochondrial
calcium uniporter. Cardiovasc Res. 115:385–394. 2019. View Article : Google Scholar :
|
|
67
|
Torrance N, Elliott AM, Lee AJ and Smith
BH: Severe chronic pain is associated with increased 10 year
mortality. A cohort record linkage study. Eur J Pain. 14:380–386.
2010. View Article : Google Scholar
|
|
68
|
Yang Z, Li C, Wang Y, Yang J, Yin Y, Liu
M, Shi Z, Mu N, Yu L and Ma H: Melatonin attenuates chronic pain
related myocardial ischemic susceptibility through inhibiting
RIP3-MLKL/CaMKII dependent necroptosis. J Mol Cell Cardiol.
125:185–194. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Szobi A, Gonçalvesová E, Varga ZV, Leszek
P, Kuśmierczyk M, Hulman M, Kyselovič J, Ferdinandy P and Adameová
A: Analysis of necroptotic proteins in failing human hearts. J
Transl Med. 15:862017. View Article : Google Scholar :
|
|
70
|
Lázár E, Sadek HA and Bergmann O:
Cardiomyocyte renewal in the human heart: Insights from the
fall-out. Eur Heart J. 38:2333–2342. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Chen Y, Li X, Lai W, Zhu F, Tan X, Xian W,
Kang P and Wang H: RIP1/RIP3-MLKL signaling pathway correlates with
occurrence, progression and prognosis of chronic heart failure. Nan
Fang Yi Ke Da Xue Xue Bao. 41:1534–1539. 2021.In Chinese.
|
|
72
|
Piamsiri C, Maneechote C, Siri-Angkul N,
Chattipakorn SC and Chattipakorn N: Targeting necroptosis as
therapeutic potential in chronic myocardial infarction. J Biomed
Sci. 28:252021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Szobi A, Rajtik T, Carnicka S, Ravingerova
T and Adameova A: Mitigation of postischemic cardiac contractile
dysfunction by CaMKII inhibition: Effects on programmed necrotic
and apoptotic cell death. Mol Cell Biochem. 388:269–276. 2014.
View Article : Google Scholar
|
|
74
|
Zhang T and Brown JH: Role of
Ca2+/calmodulin-dependent protein kinase II in cardiac hypertrophy
and heart failure. Cardiovasc Res. 63:476–486. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Kerfant BG, Verheule S and Schotten U:
Leaky ryanodine receptors in the failing heart: The root of all
evil? Cardiovasc Res. 90:399–401. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Sakalihasan N, Limet R and Defawe OD:
Abdominal aortic aneurysm. Lancet. 365:1577–1589. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Baxter BT, Terrin MC and Dalman RL:
Medical management of small abdominal aortic aneurysms.
Circulation. 117:1883–1889. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Legg JS and Legg LM: Abdominal aortic
aneurysms. Radiol Technol. 88:145–163. 2016.
|
|
79
|
Jiang F, Jones GT and Dusting GJ: Failure
of antioxidants to protect against angiotensin II-induced aortic
rupture in aged apolipoprotein(E)-deficient mice. Br J Pharmacol.
152:880–890. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
López-Candales A, Holmes DR, Liao S, Scott
MJ, Wickline SA and Thompson RW: Decreased vascular smooth muscle
cell density in medial degeneration of human abdominal aortic
aneurysms. Am J Pathol. 150:993–1007. 1997.PubMed/NCBI
|
|
81
|
Guo DC, Papke CL, He R and Milewicz DM:
Pathogenesis of thoracic and abdominal aortic aneurysms. Ann N Y
Acad Sci. 1085:339–352. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Wang Q, Liu Z, Ren J, Morgan S, Assa C and
Liu B: Receptor-interacting protein kinase 3 contributes to
abdominal aortic aneurysms via smooth muscle cell necrosis and
inflammation. Circ Res. 116:600–611. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Zhou T, Wang Q, Phan N, Ren J, Yang H,
Feldman CC, Feltenberger JB, Ye Z, Wildman SA, Tang W and Liu B:
Identification of a novel class of RIP1/RIP3 dual inhibitors that
impede cell death and inflammation in mouse abdominal aortic
aneurysm models. Cell Death Dis. 10:2262019. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Wang Q, Zhou T, Liu Z, Ren J, Phan N,
Gupta K, Stewart DM, Morgan S, Assa C, Kent KC and Liu B:
Inhibition of receptor-interacting protein kinase 1 with
necrostatin-1s ameliorates disease progression in elastase-induced
mouse abdominal aortic aneurysm model. Sci Rep. 7:421592017.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Adamson PD, Dweck MR and Newby DE: The
vulnerable atherosclerotic plaque: In vivo identification and
potential therapeutic avenues. Heart. 101:1755–1766. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Finney AC, Funk SD, Green JM, Yurdagul A
Jr, Rana MA, Pistorius R, Henry M, Yurochko A, Pattillo CB, Traylor
JG, et al: EphA2 expression regulates inflammation and
fibroproliferative remodeling in atherosclerosis. Circulation.
136:566–582. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Virmani R, Burke AP, Farb A and Kolodgie
FD: Pathology of the vulnerable plaque. J Am Coll Cardiol. 47(8
Suppl): C13–C18. 2006. View Article : Google Scholar
|
|
88
|
Lin J, Li H, Yang M, Ren J, Huang Z, Han
F, Huang J, Ma J, Zhang D, Zhang Z, et al: A role of RIP3-mediated
macrophage necrosis in atherosclerosis development. Cell Rep.
3:200–210. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Karunakaran D, Geoffrion M, Wei L, Gan W,
Richards L, Shangari P, DeKemp EM, Beanlands RA, Perisic L,
Maegdefessel L, et al: Targeting macrophage necroptosis for
therapeutic and diagnostic interventions in atherosclerosis. Sci
Adv. 2:e16002242016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Liu C, Jiang Z, Pan Z and Yang L: The
function, regulation and mechanism of programmed cell death of
macrophages in atherosclerosis. Front Cell Dev Biol. 9:8095162021.
View Article : Google Scholar
|
|
91
|
Jang WB, Park JH, Ji ST, Lee NK, Kim DY,
Kim YJ, Jung SY, Kang S, Lamichane S, Lamichane BD, et al:
Cytoprotective roles of a novel compound, MHY-1684, against
hyperglycemia-induced oxidative stress and mitochondrial
dysfunction in human cardiac progenitor cells. Oxid Med Cell
Longev. 2018:45281842018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Poornima IG, Parikh P and Shannon RP:
Diabetic cardiomyopathy: The search for a unifying hypothesis. Circ
Res. 98:596–605. 2006. View Article : Google Scholar
|
|
93
|
Task Force on diabetes, pre-diabetes, and
cardiovascular diseases of the European Society of Cardiology
(ESC); European Association for the Study of Diabetes (EASD); Rydén
L, Grant PJ, Anker SD, Berne C, Cosentino F, Danchin N, Deaton C,
Escaned J, et al: ESC guidelines on diabetes, pre-diabetes, and
cardiovascular diseases developed in collaboration with the
EASD-summary. Diab Vasc Dis Res. 11:133–173. 2014. View Article : Google Scholar
|
|
94
|
Wei J, Zhao Y, Liang H, Du W and Wang L:
Preliminary evidence for the presence of multiple forms of cell
death in diabetes cardiomyopathy. Acta Pharm Sin B. 12:1–17. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Frustaci A, Kajstura J, Chimenti C,
Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B and Anversa P:
Myocardial cell death in human diabetes. Circ Res. 87:1123–1132.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Chen Y, Hua Y, Li X, Arslan IM, Zhang W
and Meng G: Distinct types of cell death and the implication in
diabetic cardiomyopathy. Front Pharmacol. 11:422020. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Liu YS, Huang ZW, Wang L, Liu XX, Wang YM,
Zhang Y and Zhang M: Sitagliptin alleviated myocardial remodeling
of the left ventricle and improved cardiac diastolic dysfunction in
diabetic rats. J Pharmacol Sci. 127:260–274. 2015. View Article : Google Scholar
|
|
98
|
Liang W, Chen M, Zheng D, He J, Song M, Mo
L, Feng J and Lan J: A novel damage mechanism: Contribution of the
interaction between necroptosis and ROS to high glucose-induced
injury and inflammation in H9c2 cardiac cells. Int J Mol Med.
40:201–208. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Luo M, Guan X, Luczak ED, Lang D, Kutschke
W, Gao Z, Yang J, Glynn P, Sossalla S, Swaminathan PD, et al:
Diabetes increases mortality after myocardial infarction by
oxidizing CaMKII. J Clin Invest. 123:1262–1274. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Hegyi B, Bers DM and Bossuyt J: CaMKII
signaling in heart diseases: Emerging role in diabetic
cardiomyopathy. J Mol Cell Cardiol. 127:246–259. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Yamagishi S, Fukami K and Matsui T:
Evaluation of tissue accumulation levels of advanced glycation end
products by skin autofluorescence: A novel marker of vascular
complications in high-risk patients for cardiovascular disease. Int
J Cardiol. 185:263–268. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Simó-Servat O, Planas A, Ciudin A, Simó R
and Hernández C: Assessment of advanced glycation end-products as a
biomarker of diabetic outcomes. Endocrinol Diabetes Nutr (Engl Ed).
65:540–545. 2018.PubMed/NCBI
|
|
103
|
Hua Y, Qian J, Cao J, Wang X, Zhang W and
Zhang J: Ca2+/calmodulin-dependent protein kinase II
regulation by inhibitor of receptor interacting protein kinase 3
alleviates necroptosis in glycation end products-induced
cardiomyocytes injury. Int J Mol Sci. 23:69882022. View Article : Google Scholar
|
|
104
|
Fang L, Beale A, Ellims AH, Moore XL, Ling
LH, Taylor AJ, Chin-Dusting J and Dart AM: Associations between
fibrocytes and postcontrast myocardial T1 times in hypertrophic
cardiomyopathy. J Am Heart Assoc. 2:e0002702013. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Maron BJ and Maron MS: Hypertrophic
cardiomyopathy. Lancet. 381:242–255. 2013. View Article : Google Scholar
|
|
106
|
Yao J, Qin X, Zhu J and Sheng H:
Dyrk1A-ASF-CaMKIIδ signaling is involved in valsartan inhibition of
cardiac hypertrophy in renovascular hypertensive rats. Cardiology.
133:198–204. 2016. View Article : Google Scholar
|
|
107
|
Li C, Cai X, Sun H, Bai T, Zheng X, Zhou
XW, Chen X, Gill DL, Li J and Tang XD: The δA isoform of calmodulin
kinase II mediates pathological cardiac hypertrophy by interfering
with the HDAC4-MEF2 signaling pathway. Biochem Biophys Res Commun.
409:125–130. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Staerk L, Sherer JA, Ko D, Benjamin EJ and
Helm RH: Atrial fibrillation: Epidemiology, pathophysiology, and
clinical outcomes. Circ Res. 120:1501–1517. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Nattel S and Harada M: Atrial remodeling
and atrial fibrillation: Recent advances and translational
perspectives. J Am Coll Cardiol. 63:2335–2345. 2014. View Article : Google Scholar
|
|
110
|
Wakili R, Voigt N, Kääb S, Dobrev D and
Nattel S: Recent advances in the molecular pathophysiology of
atrial fibrillation. J Clin Invest. 121:2955–2968. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Calvo D, Filgueiras-Rama D and Jalife J:
Mechanisms and drug development in atrial fibrillation. Pharmacol
Rev. 70:505–525. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Liu Z, Finet JE, Wolfram JA, Anderson ME,
Ai X and Donahue JK: Calcium/calmodulin-dependent protein kinase II
causes atrial structural remodeling associated with atrial
fibrillation and heart failure. Heart Rhythm. 16:1080–1088. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Lee JM, Yoshida M, Kim MS, Lee JH, Baek
AR, Jang AS, Kim DJ, Minagawa S, Chin SS, Park CS, et al:
Involvement of alveolar epithelial cell necroptosis in idiopathic
pulmonary fibrosis pathogenesis. Am J Respir Cell Mol Biol.
59:215–224. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Wei S, Zhou H, Wang Q, Zhou S, Li C, Liu
R, Qiu J, Shi C and Lu L: RIP3 deficiency alleviates liver fibrosis
by inhibiting ROCK1-TLR4-NF-κB pathway in macrophages. FASEB J.
33:11180–11193. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Mukherjee S, Sheng W, Sun R and Janssen
LJ: Ca2+/calmodulin-dependent protein kinase IIβ and IIδ
mediate TGFβ-induced transduction of fibronectin and collagen in
human pulmonary fibroblasts. Am J Physiol Lung Cell Mol Physiol.
312:L510–L519. 2017. View Article : Google Scholar
|
|
116
|
Cui H, Zuo S, Liu Z, Liu H, Wang J, You T,
Zheng Z, Zhou Y, Qian X, Yao H, et al: The support of genetic
evidence for cardiovascular risk induced by antineoplastic drugs.
Sci Adv. 6:eabb85432020. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Yeh ETH and Bickford CL: Cardiovascular
complications of cancer therapy: Incidence, pathogenesis,
diagnosis, and management. J Am Coll Cardiol. 53:2231–2247. 2009.
View Article : Google Scholar
|
|
118
|
Curigliano G, Cardinale D, Dent S,
Criscitiello C, Aseyev O, Lenihan D and Cipolla CM: Cardiotoxicity
of anticancer treatments: Epidemiology, detection, and management.
CA Cancer J Clin. 66:309–325. 2016. View Article : Google Scholar
|
|
119
|
Liang Z, He Y and Hu X: Cardio-oncology:
Mechanisms, drug combinations, and reverse cardio-oncology. Int J
Mol Sci. 23:106172022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Carvalho C, Santos RX, Cardoso S, Correia
S, Oliveira PJ, Santos MS and Moreira PI: Doxorubicin: The good,
the bad and the ugly effect. Curr Med Chem. 16:3267–3285. 2009.
View Article : Google Scholar
|
|
121
|
Fer reira AL, Matsubara LS and Matsubara
BB: Anthracycline-induced cardiotoxicity. Cardiovasc Hematol Agents
Med Chem. 6:278–281. 2008. View Article : Google Scholar
|
|
122
|
Stefenelli T, Kuzmits R, Ulrich W and
Glogar D: Acute vascular toxicity after combination chemotherapy
with cisplatin, vinblastine, and bleomycin for testicular cancer.
Eur Heart J. 9:552–556. 1988. View Article : Google Scholar
|
|
123
|
Lejonc JL, Vernant JP, Macquin J and
Castaigne A: Myocardial infarction following vinblastine treatment.
Lancet. 2:6921980. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Calafat AM, Ye X, Wong LY, Reidy JA and
Needham LL: Exposure of the U.S. population to bisphenol A and
4-tertiary-octylphenol: 2003-2004. Environ Health Perspect.
116:39–44. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Vandenberg LN, Hauser R, Marcus M, Olea N
and Welshons WV: Human exposure to bisphenol A (BPA). Reprod
Toxicol. 24:139–177. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Gao X and Wang HS: Impact of bisphenol a
on the cardiovascular system-epidemiological and experimental
evidence and molecular mechanisms. Int J Environ Res Public Health.
11:8399–8413. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Moon S, Yu SH, Lee CB, Park YJ, Yoo HJ and
Kim DS: Effects of bisphenol A on cardiovascular disease: An
epidemiological study using national health and nutrition
examination survey 2003-2016 and meta-analysis. Sci Total Environ.
763:1429412021. View Article : Google Scholar
|
|
128
|
Conrad M, Angeli JP, Vandenabeele P and
Stockwell BR: Regulated necrosis: Disease relevance and therapeutic
opportunities. Nat Rev Drug Discov. 15:348–366. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Kaiser WJ, Sridharan H, Huang C, Mandal P,
Upton JW, Gough PJ, Sehon CA, Marquis RW, Bertin J and Mocarski ES:
Toll-like receptor 3-mediated necrosis via TRIF, RIP3, and MLKL. J
Biol Chem. 288:31268–31279. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Mandal P, Berger SB, Pillay S, Moriwaki K,
Huang C, Guo H, Lich JD, Finger J, Kasparcova V, Votta B, et al:
RIP3 induces apoptosis independent of pronecrotic kinase activity.
Mol Cell. 56:481–495. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Lim SY, Davidson SM, Mocanu MM, Yellon DM
and Smith CCT: The cardioprotective effect of necrostatin requires
the cyclophilin-D component of the mitochondrial permeability
transition pore. Cardiovasc Drugs Ther. 21:467–469. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Smith CCT, Davidson SM, Lim SY, Simpkin
JC, Hothersall JS and Yellon DM: Necrostatin: A potentially novel
cardioprotective agent? Cardiovasc Drugs Ther. 21:227–233. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Zhou H, Hu B and Liu X: Thyroid hormone
metabolite 3-iodothyronamine (T1AM) alleviates
hypoxia/reoxygenation-induced cardiac myocyte apoptosis via
Akt/FoxO1 pathway. Med Sci Monit. 26:e9231952020.PubMed/NCBI
|
|
134
|
Meng Y, Tao Z, Zhou S, Da W and Tao L:
Research hot spots and trends on melatonin from 2000 to 2019. Front
Endocrinol (Lausanne). 12:7539232021. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Hu Q, Wu D, Ma F, Yang S, Tan B, Xin H, Gu
X, Chen X, Chen S, Mao Y and Zhu YZ: Novel angiogenic activity and
molecular mechanisms of ZYZ-803, a slow-releasing hydrogen
sulfide-nitric oxide hybrid molecule. Antioxid Redox Signal.
25:498–514. 2016. View Article : Google Scholar
|
|
136
|
Chang L, Wang Z, Ma F, Tran B, Zhong R,
Xiong Y, Dai T, Wu J, Xin X, Guo W, et al: ZYZ-803 Mitigates
endoplasmic reticulum stress-related necroptosis after acute
myocardial infarction through downregulating the RIP3-CaMKII
signaling pathway. Oxid Med Cell Longev. 2019:61736852019.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Adameova A, Carnicka S, Rajtik T, Szobi A,
Nemcekova M, Svec P and Ravingerova T: Upregulation of CaMKIIδ
during ischaemia-reperfusion is associated with reperfusion-induced
arrhythmias and mechanical dysfunction of the rat heart:
Involvement of sarcolemmal Ca2+-cycling proteins. Can J Physiol
Pharmacol. 90:1127–1134. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Pallien T and Klussmann E: New aspects in
cardiac L-type Ca2+ channel regulation. Biochem Soc Trans.
48:39–49. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Gao H, Wang F, Wang W, Makarewich CA,
Zhang H, Kubo H, Berretta RM, Barr LA, Molkentin JD and Houser SR:
Ca(2+) influx through L-type Ca(2+) channels and transient receptor
potential channels activates pathological hypertrophy signaling. J
Mol Cell Cardiol. 53:657–667. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Ikeda S, Matsushima S, Okabe K, Ikeda M,
Ishikita A, Tadokoro T, Enzan N, Yamamoto T, Sada M, Deguchi H, et
al: Blockade of L-type Ca2+ channel attenuates
doxorubicin-induced cardiomyopathy via suppression of CaMKII-NF-κB
pathway. Sci Rep. 9:98502019. View Article : Google Scholar
|
|
141
|
Lim WY, Messow CM and Berry C: Cyclosporin
variably and inconsistently reduces infarct size in experimental
models of reperfused myocardial infarction: A systematic review and
meta-analysis. Br J Pharmacol. 165:2034–2043. 2012. View Article : Google Scholar
|
|
142
|
Piot C, Croisille P, Staat P, Thibault H,
Rioufol G, Mewton N, Elbelghiti R, Cung TT, Bonnefoy E, Angoulvant
D, et al: Effect of cyclosporine on reperfusion injury in acute
myocardial infarction. N Engl J Med. 359:473–481. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Cung TT, Morel O, Cayla G, Rioufol G,
Garcia-Dorado D, Angoulvant D, Bonnefoy-Cudraz E, Guérin P, Elbaz
M, Delarche N, et al: Cyclosporine before PCI in patients with
acute myocardial infarction. N Engl J Med. 373:1021–1031. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Ottani F, Latini R, Staszewsky L, La
Vecchia L, Locuratolo N, Sicuro M, Masson S, Barlera S, Milani V,
Lombardi M, et al: Cyclosporine A in reperfused myocardial
infarction: The multicenter, controlled, open-label CYCLE trial. J
Am Coll Cardiol. 67:365–374. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Gill RS, Bigam DL and Cheung PY: The role
of cyclosporine in the treatment of myocardial reperfusion injury.
Shock. 37:341–347. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Zhang CX, Cheng Y, Liu DZ, Liu M, Cui H,
Zhang BL, Mei QB and Zhou SY: Mitochondria-targeted cyclosporin A
delivery system to treat myocardial ischemia reperfusion injury of
rats. J Nanobiotechnology. 17:182019. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Yao LL, Huang XW, Wang YG, Cao YX, Zhang
CC and Zhu YC: Hydrogen sulfide protects cardiomyocytes from
hypoxia/reoxygenation-induced apoptosis by preventing
GSK-3beta-dependent opening of mPTP. Am J Physiol Heart Circ
Physiol. 298:H1310–H1319. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Kar S, Kambis TN and Mishra PK: Hydrogen
sulfide-mediated regulation of cell death signaling ameliorates
adverse cardiac remodeling and diabetic cardiomyopathy. Am J
Physiol Heart Circ Physiol. 316:H1237–H1252. 2019. View Article : Google Scholar :
|
|
149
|
Sun HJ, Wu ZY, Nie XW, Wang XY and Bian
JS: An updated insight into molecular mechanism of hydrogen sulfide
in cardiomyopathy and myocardial ischemia/reperfusion injury under
diabetes. Front Pharmacol. 12:6518842021. View Article : Google Scholar : PubMed/NCBI
|