|
1
|
Ogurtsova K, da Rocha Fernandes JD, Huang
Y, Linnenkamp U, Guariguata L, Cho NH, Cavan D, Shaw JE and
Makaroff LE: IDF Diabetes Atlas: Global estimates for the
prevalence of diabetes for 2015-2040. Diabetes Res Clin Pract.
128:40–50. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Tomic D, Shaw JE and Magliano DJ: The
burden and risks of emerging complications of diabetes mellitus.
Nat Rev Endocrinol. 18:525–539. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Huang HK, Liu PP, Lin SM, Hsu JY, Yeh JI,
Lai EC, Peng CC, Munir KM, Loh CH and Tu YK: Diabetes-Related
complications and mortality in patients with atrial fibrillation
receiving different oral anticoagulants: A nationwide analysis. Ann
Intern Med. 175:490–498. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Zhu S, Li J and Zhao X: Comparative risk
of new-onset hyperkalemia for antihypertensive drugs in patients
with diabetic nephropathy: A Bayesian network meta-analysis. Int J
Clin Pract. 75:e139402021. View Article : Google Scholar
|
|
5
|
Kong L, Zhao H, Fan J, Wang Q, Li J, Bai J
and Mao J: Predictors of frailty among Chinese community-dwelling
older adults with type 2 diabetes: A cross-sectional survey. BMJ
Open. 11:e0415782021. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Chen Y, Wu G and Xu M: The effect of
L-thyroxine substitution on oxidative stress in early-stage
diabetic nephropathy patients with subclinical hypothyroidism: A
randomized double-blind and placebo-controlled study. Int Urol
Nephrol. 50:97–103. 2018. View Article : Google Scholar
|
|
7
|
Yao S, Fan LY and Lam EW: The FOXO3-FOXM1
axis: A key cancer drug target and a modulator of cancer drug
resistance. Semin Cancer Biol. 50:77–89. 2018. View Article : Google Scholar
|
|
8
|
Zhang Z, Liu W, Bao X, Sun T, Wang J, Li M
and Liu C: USP39 facilitates breast cancer cell proliferation
through stabilization of FOXM1. Am J Cancer Res. 12:3644–3661.
2022.PubMed/NCBI
|
|
9
|
Sawaya AP, Stone RC, Brooks SR, Pastar I,
Jozic I, Hasneen K, O'Neill K, Mehdizadeh S, Head CR, Strbo N, et
al: Deregulated immune cell recruitment orchestrated by FOXM1
impairs human diabetic wound healing. Nat Commun. 11:46782020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Sawaya AP, Stone RC, Mehdizadeh S, Pastar
I, Worrell S, Balukoff NC, Kaplan MJ, Tomic-Canic M and Morasso MI:
FOXM1 network in association with TREM1 suppression regulates NET
formation in diabetic foot ulcers. EMBO Rep. 23:e545582022.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Mondal A, Das S, Samanta J, Chakraborty S
and Sengupta A: YAP1 induces hyperglycemic stress-mediated cardiac
hypertrophy and fibrosis in an AKT-FOXM1 dependent signaling
pathway. Arch Biochem Biophys. 722:1091982022. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Cao J, Jiang X and Peng X: Forkhead box M1
inhibits endothelial cell apoptosis and cell-cycle arrest through
ROS generation. Int J Clin Exp Pathol. 11:4899–4907.
2018.PubMed/NCBI
|
|
13
|
Hamledari H, Sajjadi SF, Alikhah A,
Boroumand MA and Behmanesh M: ASGR1 but not FOXM1 expression
decreases in the peripheral blood mononuclear cells of diabetic
atherosclerotic patients. J Diabetes Complications. 33:539–546.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Xu X, Zhang L, Hua F, Zhang C, Zhang C, Mi
X, Qin N, Wang J, Zhu A, Qin Z and Zhou F: FOXM1-activated SIRT4
inhibits NF-κB signaling and NLRP3 inflammasome to alleviate kidney
injury and podocyte pyroptosis in diabetic nephropathy. Exp Cell
Res. 408:1128632021. View Article : Google Scholar
|
|
15
|
Yang Y, Zhang B, Yang Y, Peng B and Ye R:
FOXM1 accelerates wound healing in diabetic foot ulcer by inducing
M2 macrophage polarization through a mechanism involving
SEMA3C/NRP2/Hedgehog signaling. Diabetes Res Clin Pract.
184:1091212022. View Article : Google Scholar
|
|
16
|
Gerst F, Kemter E, Lorza-Gil E, Kaiser G,
Fritz AK, Nano R, Piemonti L, Gauder M, Dahl A, Nadalin S, et al:
The hepatokine fetuin-A disrupts functional maturation of
pancreatic beta cells. Diabetologia. 64:1358–1374. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Tabatabaei Dakhili SA, Perez DJ, Gopal K,
Haque M, Ussher JR, Kashfi K and Velázquez-Martínez CA:
SP1-independent inhibition of FOXM1 by modified thiazolidinediones.
Eur J Med Chem. 209:1129022021. View Article : Google Scholar
|
|
18
|
Shirakawa J and Terauchi Y: Newer
perspective on the coupling between glucose-mediated signaling and
β-cell functionality. Endocr J. 67:1–8. 2020. View Article : Google Scholar
|
|
19
|
Ma J, Xing B, Cao Y, He X, Bennett KE,
Tong C, An C, Hojnacki T, Feng Z, Deng S, et al: Menin-regulated
Pbk controls high fat diet-induced compensatory beta cell
proliferation. EMBO Mol Med. 13:e135242021. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Kohata M, Imai J, Izumi T, Yamamoto J,
Kawana Y, Endo A, Sugawara H, Seike J, Kubo H, Komamura H, et al:
Roles of FoxM1-driven basal β-cell proliferation in maintenance of
β-cell mass and glucose tolerance during adulthood. J Diabetes
Investig. 13:1666–1676. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen HY, Chen DT, Chiang YY, Lin SY and
Lee CN: The correlation of forkhead box protein M1 (FOXM1) with
gestational diabetes mellitus in maternal peripheral blood and
neonatal umbilical cord blood. Taiwan J Obstet Gynecol. 61:652–656.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Detarya M, Thaenkaew S, Seubwai W,
Indramanee S, Phoomak C, Saengboonmee C, Wongkham S and Wongkham C:
High glucose upregulates FOXM1 expression via EGFR/STAT3 dependent
activation to promote progression of cholangiocarcinoma. Life Sci.
271:1191142021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Peng G, Mosleh E, Yuhas A, Katada K,
Cherry C and Golson ML: FOXM1 acts sexually dimorphically to
regulate functional β-cell mass. bioRxiv. Jan 12–2023.Epub ahead of
print.
|
|
24
|
Zhong L, Zhao Z, Hu Q, Li Y, Zhao W, Li C,
Xu Y, Rong R, Zhang J, Zhang Z, et al: Identification of
maturity-onset diabetes of the young caused by mutation in FOXM1
via whole-exome sequencing in Northern China. Front Endocrinol
(Lausanne). 11:–534362. 2021. View Article : Google Scholar
|
|
25
|
Imai J: Regulation of compensatory β-cell
proliferation by inter-organ networks from the liver to pancreatic
β-cells. Endocr J. 65:677–684. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Imai J: Regulation of adaptive cell
proliferation by vagal nerve signals for maintenance of whole-body
homeostasis: Potential therapeutic target for insulin-deficient
diabetes. Tohoku J Exp Med. 254:245–252. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Izumi T, Imai J, Yamamoto J, Kawana Y,
Endo A, Sugawara H, Kohata M, Asai Y, Takahashi K, Kodama S, et al:
Vagus-macrophage-hepatocyte link promotes post-injury liver
regeneration and whole-body survival through hepatic FoxM1
activation. Nat Commun. 9:53002018. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Chen M, Zhao S, Guo WH, Zhu YP, Pan L, Xie
ZW, Sun WL and Jiang JT: Maternal exposure to Di-n-butyl phthalate
(DBP) aggravate gestational diabetes mellitus via FoxM1 suppression
by pSTAT1 signalling. Ecotoxicol Environ Saf. 205:1111542020.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Shirakawa J, Tajima K, Okuyama T, Kyohara
M, Togashi Y, De Jesus DF, Basile G, Kin T, Shapiro AMJ, Kulkarni
RN and Terauchi Y: Luseogliflozin increases beta cell proliferation
through humoral factors that activate an insulin receptor- and
IGF-1 receptor-independent pathway. Diabetologia. 63:577–587. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sun X, Luo LH, Feng L and Li DS:
Down-regulation of lncRNA MEG3 promotes endothelial differentiation
of bone marrow derived mesenchymal stem cells in repairing erectile
dysfunction. Life Sci. 208:246–252. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Peng W, Zhu T, Xiang G, Ding T, Zhao J,
Xiong D, Zhong Y and Zhang Y: Identification of signalling
downstream of the transcription factor forkhead box protein M1 that
protects against endoplasmic reticulum stress in a diabetic foot
ulcer model. Diabet Med. 40:e150512023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zuppo DA, Missinato MA, Santana-Santos L,
Li G, Benos PV and Tsang M: Foxm1 regulates cardiomyocyte
proliferation in adult zebrafish after cardiac injury. Development.
150:dev2011632023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Zhang Z, Li M, Sun T, Zhang Z and Liu C:
FOXM1: Functional roles of FOXM1 in Non-Malignant diseases.
Biomolecules. 13:8572023. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Filipsson K, Sundler F, Hannibal J and
Ahren B: PACAP and PACAP receptors in insulin producing tissues:
Localization and effects. Regul Pept. 74:167–175. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Ahren B: Islet G protein-coupled receptors
as potential targets for treatment of type 2 diabetes. Nat Rev Drug
Discov. 8:369–385. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhang L, Jiang B, Zhu N, Tao M, Jun Y,
Chen X, Wang Q and Luo C: Mitotic checkpoint kinase Mps1/TTK
predicts prognosis of colon cancer patients and regulates tumor
proliferation and differentiation via PKCα/ERK1/2 and PI3K/Akt
pathway. Med Oncol. 37:52019. View Article : Google Scholar
|
|
37
|
Zheng J, Bu X, Wei X, Ma X and Zhao P: The
role of FoxM1 in immune cells. Clin Exp Med. Mar 13–2023.Epub ahead
of print.
|
|
38
|
Zhang H, Ackermann AM, Gusarova GA, Lowe
D, Feng X, Kopsombut UG, Costa RH and Gannon M: The FoxM1
transcription factor is required to maintain pancreatic beta-cell
mass. Mol Endocrinol. 20:1853–1866. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Mahmoodzadeh Sagheb M, Azarpira N,
Mokhtary M, Hosseini SE and Yaghobi R: The effects of Leptin and
Adiponectin on Pdx1, Foxm1, and PPARү Transcription in rat islets
of langerhans. Hepat Mon. 13:e90552013.
|
|
40
|
Liu MN, Zhang L, Dong XY, Liu M, Cheng G,
Zhang XL, He F and Wang GQ: Effects of Akkermansia muciniphila on
the proliferation, apoptosis and insulin secretion of rat islet
cell tumor cells. Sichuan Da Xue Xue Bao Yi Xue Ban. 51:13–17.
2020.In Chinese. PubMed/NCBI
|
|
41
|
Saavedra-García P, Nichols K, Mahmud Z,
Fan LY and Lam EW: Unravelling the role of fatty acid metabolism in
cancer through the FOXO3-FOXM1 axis. Mol Cell Endocrinol. 462(Pt
B): 82–92. 2018. View Article : Google Scholar
|
|
42
|
Yamamoto J, Imai J, Izumi T, Takahashi H,
Kawana Y, Takahashi K, Kodama S, Kaneko K, Gao J, Uno K, et al:
Neuronal signals regulate obesity induced β-cell proliferation by
FoxM1 dependent mechanism. Nat Commun. 8:19302017. View Article : Google Scholar
|
|
43
|
Imai J and Katagiri H: Regulation of
systemic metabolism by the autonomic nervous system consisting of
afferent and efferent innervation. Int Immunol. 34:67–79. 2022.
View Article : Google Scholar
|
|
44
|
Shang R, Wang M, Dai B, Du J, Wang J, Liu
Z, Qu S, Yang X, Liu J, Xia C, et al: Long noncoding RNA SLC2A1-AS1
regulates aerobic glycolysis and progression in hepatocellular
carcinoma via inhibiting the STAT3/FOXM1/GLUT1 pathway. Mol Oncol.
14:1381–1396. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Yang Y, Cai Z, Pan Z, Liu F, Li D, Ji Y,
Zhong J, Luo H, Hu S, Song L, et al: Rheb1 promotes
glucose-stimulated insulin secretion in human and mouse β-cells by
upregulating GLUT expression. Metabolism. 123:1548632021.
View Article : Google Scholar
|
|
46
|
Heo YJ, Choi SE, Jeon JY, Han SJ, Kim DJ,
Kang Y, Lee KW and Kim HJ: Visfatin induces inflammation and
insulin resistance via the NF-κB and STAT3 signaling pathways in
hepatocytes. J Diabetes Res. 2019:40216232019. View Article : Google Scholar
|
|
47
|
Alaaeldin R, Abdel-Rahman IAM, Hassan HA,
Youssef N, Allam AE, Abdelwahab SF, Zhao QL and Fathy M:
Carpachromene ameliorates insulin resistance in HepG2 cells via
modulating IR/IRS1/PI3k/Akt/GSK3/FoxO1 pathway. Molecules.
26:76292021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Gao W, Du X, Lei L, Wang H, Zhang M, Wang
Z and Li X, Liu G and Li X: NEFA-induced ROS impaired insulin
signalling through the JNK and p38MAPK pathways in non-alcoholic
steatohepatitis. J Cell Mol Med. 22:3408–3422. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Shrestha S, Kumar Singh V, Kumar Sarkar S,
Shanmugasundaram B, Jeevaratnam K and Chandra Koner B: Effect of
sub-toxic exposure to Malathion on glucose uptake and insulin
signaling in L6 myoblast derived myotubes. Drug Chem Toxicol.
43:663–670. 2020. View Article : Google Scholar
|
|
50
|
Saltiel AR: Insulin signaling in health
and disease. J Clin Invest. 131:e1422412021. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Zarrouki B, Benterki I, Fontés G, Peyot
ML, Seda O, Prentki M and Poitout V: Epidermal growth factor
receptor signaling promotes pancreatic β-cell proliferation in
response to nutrient excess in rats through mTOR and FOXM1.
Diabetes. 63:982–993. 2014. View Article : Google Scholar :
|
|
52
|
Zhao C, Chen HY, Zhao F, Feng HJ and Su
JP: Acylglycerol kinase promotes paclitaxel resistance in
nasopharyngeal carcinoma cells by regulating FOXM1 via the
JAK2/STAT3 pathway. Cytokine. 148:1555952021. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Li Y, Lu L, Tu J, Zhang J, Xiong T, Fan W,
Wang J, Li M, Chen Y, Steggerda J, et al: Reciprocal regulation
between forkhead box M1/NF-κB and methionine adenosyltransferase 1A
drives liver cancer. Hepatology. 72:1682–1700. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Bodis K and Roden M: Energy metabolism of
white adipose tissue and insulin resistance in humans. Eur J Clin
Invest. 48:e130172018. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Zheng S, Chen N, Kang X, Hu Y and Shi S:
Irisin alleviates FFA induced β-cell insulin resistance and
inflammatory response through activating PI3K/AKT/FOXO1 signaling
pathway. Endocrine. 75:740–751. 2022. View Article : Google Scholar
|
|
56
|
Zhang Q, Kong X, Yuan H, Guan H, Li Y and
Niu Y: Mangiferin improved palmitate-induced-insulin resistance by
promoting free fatty acid metabolism in HepG2 and C2C12 cells via
PPARα: Mangiferin improved insulin resistance. J Diabetes Res.
2019:20526752019. View Article : Google Scholar
|
|
57
|
Choi HJ, Jhe YL, Kim J, Lim JY, Lee JE,
Shin MK and Cheong JH: FoxM1-dependent and fatty acid
oxidation-mediated ROS modulation is a cell-intrinsic drug
resistance mechanism in cancer stem-like cells. Redox Biol.
36:1015892020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Longo M, Zatterale F, Naderi J, Parrillo
L, Formisano P, Raciti GA, Beguinot F and Miele C: Adipose tissue
dysfunction as determinant of obesity-associated metabolic
complications. Int J Mol Sci. 20:23582019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Tian S, Lei I, Gao W, Liu L, Guo Y, Creech
J, Herron TJ, Xian S, Ma PX, Eugene Chen Y, et al: HDAC inhibitor
valproic acid protects heart function through Foxm1 pathway after
acute myocardial infarction. EBioMedicine. 39:83–94. 2019.
View Article : Google Scholar :
|
|
60
|
Tang SCW and Yiu WH: Innate immunity in
diabetic kidney disease. Nat Rev Nephrol. 16:206–222. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Vaidya VS, Niewczas MA, Ficociello LH,
Johnson AC, Collings FB, Warram JH, Krolewski AS and Bonventre JV:
Regression of microalbuminuria in type 1 diabetes is associated
with lower levels of urinary tubular injury biomarkers, kidney
injury molecule-1, and N-acetyl-β-D-glucosaminidase. Kidney Int.
79:464–470. 2011. View Article : Google Scholar
|
|
62
|
Alicic RZ, Johnson EJ and Tuttle KR:
Inflammatory mechanisms as new biomarkers and therapeutic targets
for diabetic kidney disease. Adv Chronic Kidney Dis. 25:181–191.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Nastase MV, Zeng-Brouwers J, Beckmann J,
Tredup C, Christen U, Radeke HH, Wygrecka M and Schaefer L:
Biglycan, a novel trigger of Th1 and Th17 cell recruitment into the
kidney. Matrix Biol. 68-69:293–317. 2018. View Article : Google Scholar
|
|
64
|
Xie H, Miao N, Xu D, Zhou Z, Ni J, Yin F,
Wang Y, Cheng Q, Chen P, Li J, et al: FoxM1 promotes Wnt/β-catenin
pathway activation and renal fibrosis via transcriptionally
regulating multi-Wnts expressions. J Cell Mol Med. 25:1958–1971.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhu-Ge D, Yang YP and Jiang ZJ: Knockdown
CRNDE alleviates LPS-induced inflammation injury via FOXM1 in WI-38
cells. Biomed Pharmacother. 103:1678–1687. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Zhou M, Shi J, Lan S and Gong X: FOXM1
regulates the proliferation, apoptosis and inflammatory response of
keratinocytes through the NF-κB signaling pathway. Hum Exp Toxicol.
40:1130–1140. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Song S, Zhang R, Cao W, Fang G, Yu Y, Wan
Y, Wang C, Li Y and Wang Q: Foxm1 is a critical driver of
TGF-β-induced EndMT in endothelial cells through Smad2/3 and binds
to the Snail promoter. J Cell Physiol. 234:9052–9064. 2019.
View Article : Google Scholar
|
|
68
|
Chen Y, Li Y, Xue J, Gong A, Yu G, Zhou A,
Lin K, Zhang S, Zhang N, Gottardi CJ and Huang S: Wnt-induced
deubiquitination FoxM1 ensures nucleus β-catenin transactivation.
EMBO J. 35:668–684. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Xie H, Gao YM, Zhang YC, Jia MW, Peng F,
Meng QH and Wang YC: Low let-7d exosomes from pulmonary vascular
endothelial cells drive lung pericyte fibrosis through the
TGFβRI/FoxM1/Smad/β-catenin pathway. J Cell Mol Med.
24:13913–13926. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Jalgaonkar MP, Parmar UM, Kulkarni YA and
Oza MJ: SIRT1-FOXOs activity regulates diabetic complications.
Pharmacol Res. 175:1060142022. View Article : Google Scholar
|
|
71
|
Inoue Y, Moriwaki K, Ueda Y, Takeuchi T,
Higuchi K and Asahi M: Elevated O-GlcNAcylation stabilizes FOXM1 by
its reduced degradation through GSK-3β inactivation in a human
gastric carcinoma cell line, MKN45 cells. Biochem Biophys Res
Commun. 495:1681–1687. 2018. View Article : Google Scholar
|
|
72
|
Behl T, Wadhwa M, Sehgal A, Singh S,
Sharma N, Bhatia S, Al-Harrasi A, Aleya L and Bungau S: Mechanistic
insights into the role of FOXO in diabetic retinopathy. Am J Transl
Res. 14:3584–3602. 2022.PubMed/NCBI
|
|
73
|
Sengupta A, Kalinichenko VV and Yutzey KE:
FoxO1 and FoxM1 transcription factors have antagonistic functions
in neonatal cardiomyocyte cell-cycle withdrawal and IGF1 gene
regulation. Circ Res. 112:267–277. 2013. View Article : Google Scholar
|
|
74
|
Ioannou K: Diabetic nephropathy: Is it
always there? Assumptions, weaknesses and pitfalls in the
diagnosis. Hormones (Athens). 16:351–361. 2017.
|
|
75
|
Sanajou D, Ghorbani Haghjo A, Argani H and
Aslani S: AGE-RAGE axis blockade in diabetic nephropathy: Current
status and future directions. Eur J Pharmacol. 833:158–164. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Tziomalos K and Athyros VG: Diabetic
Nephropathy: New risk factors and improvements in diagnosis. Rev
Diabet Stud. 12:110–118. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Qi C, Mao X, Zhang Z and Wu H:
Classification and differential diagnosis of diabetic nephropathy.
J Diabetes Res. 2017:86371382017. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Sinha S, Dwivedi N, Woodgett J, Tao S,
Howard C, Fields TA, Jamadar A and Rao R: Glycogen synthase
kinase-3β inhibits tubular regeneration in acute kidney injury by a
FoxM1-dependent mechanism. FASEB J. 34:13597–13608. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Chang-Panesso M, Kadyrov FF, Lalli M, Wu
H, Ikeda S, Kefaloyianni E, Abdelmageed MM, Herrlich A, Kobayashi A
and Humphreys BD: FOXM1 drives proximal tubule proliferation during
repair from acute ischemic kidney injury. J Clin Invest.
129:5501–5517. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang Y, Zhou Q, Tang R, Huang Y and He T:
FoxM1 inhibition ameliorates renal interstitial fibrosis by
decreasing extracellular matrix and epithelial-mesenchymal
transition. J Pharmacol Sci. 143:281–289. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Yu W, Wang G, Li LX, Zhang H, Gui X, Zhou
JX, Calvet JP and Li X: Transcription factor FoxM1 promotes cyst
growth in PKD1 mutant ADPKD. Hum Mol Genet. 32:1114–1126. 2023.
View Article : Google Scholar
|
|
82
|
Halasi M and Gartel AL: Targeting FOXM1 in
cancer. Biochem Pharmacol. 85:644–652. 2013. View Article : Google Scholar
|
|
83
|
Liao GB, Li XZ, Zeng S, Liu C, Yang SM,
Yang L, Hu CJ and Bai JY: Regulation of the master regulator FOXM1
in cancer. Cell Commun Signal. 16:572018. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Zhu X, Yu M, Wang K, Zou W and Zhu L:
FoxM1 affects adhesive, migratory, and invasive abilities of human
retinoblastoma Y-79 cells by targeting matrix metalloproteinase 2.
Acta Biochim Biophys Sin (Shanghai). 52:294–301. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Zhu X, Xue L, Yao Y, Wang K, Tan C, Zhuang
M, Zhou F and Zhu L: The FoxM1-ABCC4 axis mediates carboplatin
resistance in human retinoblastoma Y-79 cells. Acta Biochim Biophys
Sin (Shanghai). 50:914–920. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Wang RT, Miao RC, Zhang X, Yang GH, Mu YP,
Zhang ZY, Qu K and Liu C: Fork head box M1 regulates vascular
endothelial growth factor-A expression to promote the angiogenesis
and tumor cell growth of gallbladder cancer. World J Gastroenterol.
27:692–707. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Zhang Y, Cheng C, Wang S, Xu M, Zhang D
and Zeng W: Knockdown of FOXM1 inhibits activation of keloid
fibroblasts and extracellular matrix production via inhibition of
TGF-β1/Smad pathway. Life Sci. 232:1166372019. View Article : Google Scholar
|
|
88
|
Mencalha AL, Binato R, Ferreira GM, Du
Rocher B and Abdelhay E: Forkhead box M1 (FoxM1) gene is a new
STAT3 transcriptional factor target and is essential for
proliferation, survival and DNA repair of K562 cell line. PLoS One.
7:e481602012. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Imai J, Katagiri H, Yamada T, Ishigaki Y,
Suzuki T, Kudo H, Uno K, Hasegawa Y, Gao J, Kaneko K, et al:
Regulation of pancreatic beta cell mass by neuronal signals from
the liver. Science. 322:1250–1254. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Frustaci A, Kajstura J, Chimenti C,
Jakoniuk I, Leri A, Maseri A, Nadal-Ginard B and Anversa P:
Myocardial cell death in human diabetes. Circ Res. 87:1123–1132.
2000. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Dai Z, Zhu MM, Peng Y, Jin H, Machireddy
N, Qian Z, Zhang X and Zhao YY: Endothelial and Smooth muscle cell
interaction via FoxM1 Signaling mediates vascular remodeling and
pulmonary hypertension. Am J Respir Crit Care Med. 198:788–802.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Wang Y, Li Y, Feng J, Liu W, Li Y, Liu J,
Yin Q, Lian H, Liu L and Nie Y: Mydgf promotes Cardiomyocyte
proliferation and Neonatal Heart regeneration. Theranostics.
10:9100–9112. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Eltoft A, Arntzen KA, Wilsgaard T,
Mathiesen EB and Johnsen SH: Interleukin-6 is an independent
predictor of progressive atherosclerosis in the carotid artery: The
Tromso Study. Atherosclerosis. 271:1–8. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Li H, Horke S and Forstermann U: Vascular
oxidative stress, nitric oxide and atherosclerosis.
Atherosclerosis. 237:208–219. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Nahrendorf M and Swirski FK: Cholesterol,
CCR2, and monocyte phenotypes in atherosclerosis. Eur Heart J.
38:1594–1596. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Balli D, Ren X, Chou FS, Cross E, Zhang Y,
Kalinichenko VV and Kalin TV: Foxm1 transcription factor is
required for macrophage migration during lung inflammation and
tumor formation. Oncogene. 31:3875–3888. 2012. View Article : Google Scholar :
|
|
97
|
Lok GT, Chan DW, Liu VW, Hui WW, Leung TH,
Yao KM and Ngan HY: Aberrant activation of ERK/FOXM1 signaling
cascade triggers the cell migration/invasion in ovarian cancer
cells. PLoS One. 6:e237902011. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Xie Y, Cui D, Sui L, Xu Y, Zhang N, Ma Y,
Li Y and Kong Y: Induction of forkhead box M1 (FoxM1) by EGF
through ERK signaling pathway promotes trophoblast cell invasion.
Cell Tissue Res. 362:421–430. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Brem H and Tomic-Canic M: Cellular and
molecular basis of wound healing in diabetes. J Clin Invest.
117:1219–1222. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Armstrong DG, Swerdlow MA, Armstrong AA,
Conte MS, Padula WV and Bus SA: Five year mortality and direct
costs of care for people with diabetic foot complications are
comparable to cancer. J Foot Ankle Res. 13:162020. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Soo BP, Rajbhandari S, Egun A, Ranasinghe
U, Lahart IM and Pappachan JM: Survival at 10 years following lower
extremity amputations in patients with diabetic foot disease.
Endocrine. 69:100–106. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Smirnov A, Panatta E, Lena A, Castiglia D,
Di Daniele N, Melino G and Candi E: FOXM1 regulates proliferation,
senescence and oxidative stress in keratinocytes and cancer cells.
Aging (Albany NY). 8:1384–1397. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Brinkmann V, Reichard U, Goosmann C,
Fauler B, Uhlemann Y, Weiss DS, Weinrauch Y and Zychlinsky A:
Neutrophil extracellular traps kill bacteria. Science.
303:1532–1535. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Lood C, Blanco LP, Purmalek MM,
Carmona-Rivera C, De Ravin SS, Smith CK, Malech HL, Ledbetter JA,
Elkon KB and Kaplan MJ: Neutrophil extracellular traps enriched in
oxidized mitochondrial DNA are interferogenic and contribute to
lupus-like disease. Nat Med. 22:146–153. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Carrasco K, Boufenzer A, Jolly L, Le
Cordier H, Wang G, Heck AJ, Cerwenka A, Vinolo E, Nazabal A,
Kriznik A, et al: TREM-1 multimerization is essential for its
activation on monocytes and neutrophils. Cell Mol Immunol.
16:460–472. 2019. View Article : Google Scholar :
|
|
106
|
Palmer WC and Patel T: Are common factors
involved in the pathogenesis of primary liver cancers? A
meta-analysis of risk factors for intrahepatic cholangiocarcinoma.
J Hepatol. 57:69–76. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
de Beer JC and Liebenberg L: Does cancer
risk increase with HbA1c, independent of diabetes? Br J Cancer.
110:2361–2368. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Hosokawa T, Kurosaki M, Tsuchiya K,
Matsuda S, Muraoka M, Suzuki Y, Tamaki N, Yasui Y, Nakata T,
Nishimura T, et al: Hyperglycemia is a significant prognostic
factor of hepatocellular carcinoma after curative therapy. World J
Gastroenterol. 19:249–257. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Casagrande V, Mauriello A, Anemona L,
Mavilio M, Iuliani G, De Angelis L, D'Onofrio M, Arisi I, Federici
M and Menghini R: Timp3 deficiency affects the progression of
DEN-related hepatocellular carcinoma during diet-induced obesity in
mice. Acta Diabetol. 56:1265–1274. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Andrei LG: Thiazole antibiotics siomycin a
and thiostrepton inhibit the transcriptional activity of FOXM1.
Front Oncol. 3:1502013.
|
|
111
|
Shirakawa J, Fernandez M, Takatani T, El
Ouaamari A, Jungtrakoon P, Okawa ER, Zhang W, Yi P, Doria A and
Kulkarni RN: Insulin signaling regulates the FoxM1/PLK1/CENP-A
pathway to promote adaptive pancreatic β cell proliferation. Cell
Metab. 25:868–882 e5. 2017. View Article : Google Scholar
|
|
112
|
Ma Y, Wang X, Peng Y and Ding X: Forkhead
box O1 promotes INS-1 cell apoptosis by reducing the expression of
CD24. Mol Med Rep. 13:2991–2998. 2016. View Article : Google Scholar : PubMed/NCBI
|