Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2023 Volume 52 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 52 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of heat shock proteins in the pathogenesis of heart failure (Review)

  • Authors:
    • Anastasia Pavlovna Sklifasovskaya
    • Mikhail Blagonravov
    • Anna Ryabinina
    • Vyacheslav Goryachev
    • Sergey Syatkin
    • Sergey Chibisov
    • Karina Akhmetova
    • Daniil Prokofiev
    • Enzo Agostinelli
  • View Affiliations / Copyright

    Affiliations: Institute of Medicine, RUDN University, 117198 Moscow, Russia, Department of Sensory Organs, Faculty of Medicine and Dentistry, Sapienza University of Rome, University Hospital Policlinico Umberto I, I‑00161 Rome, Italy
    Copyright: © Sklifasovskaya et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 106
    |
    Published online on: September 27, 2023
       https://doi.org/10.3892/ijmm.2023.5309
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The influence of heat shock proteins (HSPs) on protein quality control systems in cardiomyocytes is currently under investigation. The effect of HSPs on the regulated cell death of cardiomyocytes (CMCs) is of great importance, since they play a major role in the implementation of compensatory and adaptive mechanisms in the event of cardiac damage. HSPs mediate a number of mechanisms that activate the apoptotic cascade, playing both pro‑ and anti‑apoptotic roles depending on their location in the cell. Another type of cell death, autophagy, can in some cases lead to cell death, while in other situations it acts as a cell survival mechanism. The present review considered the characteristics of the expression of HSPs of different molecular weights in CMCs in myocardial damage caused by heart failure, as well as their role in the realization of certain types of regulated cell death.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Safari S, Malekvandfard F, Babashah S, Alizadehasl A, Sadeghizadeh M and Motavaf M: Mesenchymal stem cell-derived exosomes: A novel potential therapeutic avenue for cardiac regeneration. Cell Mol Biol (Noisy-le-grand). 62:66–73. 2016.PubMed/NCBI

2 

Tarone G and Brancaccio M: Keep your heart in shape: Molecular chaperone networks for treating heart disease. Cardiovasc Res. 102:346–361. 2014. View Article : Google Scholar : PubMed/NCBI

3 

Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA and Kirshenbaum LA: Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress. Autophagy. 17:3794–3812. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Cicalese SM, da Silva JF, Priviero F, Webb RC, Eguchi S and Tostes RC: Vascular stress signaling in hypertension. Circ Res. 128:969–992. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Ma T, Huang X, Zheng H, Huang G, Li W, Liu X, Liang J, Cao Y, Hu Y and Huang Y: SFRP2 improves mitochondrial dynamics and mitochondrial biogenesis, oxidative stress, and apoptosis in diabetic cardiomyopathy. Oxid Med Cell Longev. 2021:92650162021. View Article : Google Scholar : PubMed/NCBI

6 

Ranek MJ, Stachowski MJ, Kirk JA and Willis MS: The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci. 373:201605302018. View Article : Google Scholar

7 

Maejima Y: The critical roles of protein quality control systems in the pathogenesis of heart failure. J Cardiol. 75:219–227. 2020. View Article : Google Scholar

8 

Schwabl S and Teis D: Protein quality control at the Golgi. Curr Opin Cell Biol. 75:1020742022. View Article : Google Scholar : PubMed/NCBI

9 

Wang X and Robbins J: Heart failure and protein quality control. Circ Res. 99:1315–1328. 2006. View Article : Google Scholar : PubMed/NCBI

10 

Brownstein AJ, Ganesan S, Summers CM, Pearce S, Hale BJ, Ross JW, Gabler N, Seibert JT, Rhoads RP, Baumgard LH and Selsby JT: Heat stress causes dysfunctional autophagy in oxidative skeletal muscle. Physiol Rep. 5:e133172017. View Article : Google Scholar : PubMed/NCBI

11 

Hagymasi AT, Dempsey JP and Srivastava PK: Heat-shock proteins. Curr Protoc. 2:e5922022. View Article : Google Scholar : PubMed/NCBI

12 

Tedesco B, Vendredy L, Timmerman V and Poletti A: The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy. 19:1619–1641. 2023. View Article : Google Scholar : PubMed/NCBI

13 

Yun CW, Kim HJ, Lim JH and Lee SH: Heat Shock Proteins: Agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 9:602019. View Article : Google Scholar : PubMed/NCBI

14 

Haslbeck M and Vierling E: A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. J Mol Biol. 427:1537–1548. 2015. View Article : Google Scholar : PubMed/NCBI

15 

Jacob P, Hirt H and Bendahmane A: The heat-shock protein/chaperone network and multiple stress resistance. Plant. Biotechnol J. 15:405–414. 2017. View Article : Google Scholar :

16 

Schroder K and Tschopp J: The inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI

17 

Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, Doss A, Aballay A, Lo DC, Akimov SS, et al: Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nat Commun. 8:144052017. View Article : Google Scholar : PubMed/NCBI

18 

Dowell J, Elser BA, Schroeder RE and Stevens HE: Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett. 709:1343682019. View Article : Google Scholar : PubMed/NCBI

19 

Xie M, Kong Y, Tan W, May H, Battiprolu PK, Pedrozo Z, Wang ZV, Morales C, Luo X, Cho G, et al: Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 129:1139–1151. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Blagonravov ML, Korshunova AY, Azova MM, Bondar' SA and Frolov VA: Cardiomyocyte autophagia and morphological alterations in the left ventricular myocardium during acute focal ischemia. Bull Exp Biol Med. 160:398–400. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Zhang HL, Jia KY, Sun D and Yang M: Protective effect of HSP27 in atherosclerosis and coronary heart disease by inhibiting reactive oxygen species. J Cell Biochem. 120:2859–2868. 2019. View Article : Google Scholar

22 

Shan R, Liu N, Yan Y and Liu B: Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol Res. 166:1051692021. View Article : Google Scholar

23 

Kovaleva OV, Shitova MS and Zborovskaya IB: Autophagy: Cell death or a way of survival? Clin Oncohematology. 7:103–113. 2014.

24 

Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI

25 

Martine P and Rébé C: Heat shock proteins and inflammasomes. Int J Mol Sci. 20:45082019. View Article : Google Scholar : PubMed/NCBI

26 

Choudhury A, Bullock D, Lim A, Argemi J, Orning P, Lien E, Bataller R and Mandrekar P: Inhibition of HSP90 and activation of HSF1 diminish macrophage NLRP3 inflammasome activity in alcohol-associated liver injury. Alcohol Clin Exp Res. 44:1300–1311. 2020. View Article : Google Scholar : PubMed/NCBI

27 

Jurisic V: Multiomic analysis of cytokines in immuno-oncology. Expert Rev Proteomics. 17:663–674. 2020. View Article : Google Scholar : PubMed/NCBI

28 

Jurisic V, Srdic-Rajic V, Konjevic G, Bogdanovic G and Colic M: TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol. 239:115–122. 2011. View Article : Google Scholar : PubMed/NCBI

29 

Jurisic V, Terzic T, Colic S and Jurisic M: The concentration of TNF-alpha correlate with number of inflammatory cells and degree of vascularization in radicular cysts. Oral Dis. 14:600–605. 2008. View Article : Google Scholar : PubMed/NCBI

30 

Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK and Basu A: HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation. 13:272016. View Article : Google Scholar

31 

Li XL, Wang YL, Zheng J, Zhang Y and Zhang XF: Inhibiting expression of HSP60 and TLR4 attenuates paraquat-induced microglial inflammation. Chem Biol Interact. 299:179–185. 2019. View Article : Google Scholar

32 

Kelley N, Jeltema D, Duan Y and He Y: The NLRP3 Inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI

33 

Swaroop S, Mahadevan A, Shankar SK, Adlakha YK and Basu A: HSP60 critically regulates endogenous IL-1β production in activated microglia by stimulating NLRP3 inflammasome pathway. J Neuroinflammation. 15:1772018. View Article : Google Scholar

34 

Aslan JE and McCarty OJ: Rho GTPases in platelet function. J Thromb Haemost. 11:35–46. 2013. View Article : Google Scholar

35 

Elvers M: RhoGAPs and Rho GTPases in platelets. Hamostaseologie. 36:168–177. 2016. View Article : Google Scholar

36 

Ngo ATP, Parra-Izquierdo I, Aslan JE and McCarty OJT: Rho GTPase regulation of reactive oxygen species generation and signaling in platelet function and disease. Small GTPases. 12:440–457. 2021. View Article : Google Scholar : PubMed/NCBI

37 

Wang L, Wu Y, Zhou J, Ahmad SS, Mutus B, Garbi N, Hämmerling G, Liu J and Essex DW: Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the αIIbβ3 integrin. Blood. 122:3642–3650. 2013. View Article : Google Scholar : PubMed/NCBI

38 

Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, et al: Platelet integrin αIIbβ3: Signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol. 12:262019. View Article : Google Scholar

39 

Rigg RA, Healy LD, Nowak MS, Mallet J, Thierheimer ML, Pang J, McCarty OJ and Aslan JE: Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation. Am J Physiol Cell Physiol. 310:C568–C575. 2016. View Article : Google Scholar : PubMed/NCBI

40 

De Maio A: Extracellular Hsp70: Export and function. Curr Protein Pept Sci. 15:225–231. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Krause M, Heck TG, Bittencourt A, Scomazzon SP, Newsholme P, Curi R and Homem de Bittencourt PI Jr: The chaperone balance hypothesis: The importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediators Inflamm. 2015:2492052015. View Article : Google Scholar : PubMed/NCBI

42 

Jackson JW, Rivera-Marquez GM, Beebe K, Tran AD, Trepel JB, Gestwicki JE, Blagg BSJ, Ohkubo S and Neckers LM: Pharmacologic dissection of the overlapping impact of heat shock protein family members on platelet function. J Thromb Haemost. 18:1197–1209. 2020. View Article : Google Scholar : PubMed/NCBI

43 

Blagonravov ML, Sklifasovskaya AP, Korshunova AY, Azova MM and Kurlaeva AO: Heat shock protein HSP60 in left ventricular cardiomyocytes of hypertensive rats with and without insulin-dependent diabetes mellitus. Bull Exp Biol Med. 170:10–14. 2020. View Article : Google Scholar : PubMed/NCBI

44 

Henstridge DC, Whitham M and Febbraio MA: Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab. 3:781–793. 2014. View Article : Google Scholar : PubMed/NCBI

45 

Archer AE, Von Schulze AT and Geiger PC: Exercise, heat shock proteins and insulin resistance. Philos Trans R Soc Lond B Biol Sci. 373:201605292018. View Article : Google Scholar

46 

Drew BG, Ribas V, Le JA, Henstridge DC, Phun J, Zhou Z, Soleymani T, Daraei P, Sitz D, Vergnes L, et al: HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes. 63:1488–1505. 2014. View Article : Google Scholar : PubMed/NCBI

47 

Kitano S, Kondo T, Matsuyama R, Ono K, Goto R, Takaki Y, Hanatani S, Sakaguchi M, Igata M, Kawashima J, et al: Impact of hepatic HSP72 on insulin signaling. Am J Physiol Endocrinol Metab. 316:E305–E318. 2019. View Article : Google Scholar

48 

Xu L, Ma X, Bagattin A and Mueller E: The transcriptional coactivator PGC1α protects against hyperthermic stress via cooperation with the heat shock factor HSF1. Cell Death Dis. 7:e21022016. View Article : Google Scholar

49 

Jornayvaz FR and Shulman GI: Regulation of mitochondrial biogenesis. Essays Biochem. 47:69–84. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Charos AE, Reed BD, Raha D, Szekely AM, Weissman SM and Snyder M: A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells. Genome Res. 22:1668–1679. 2012. View Article : Google Scholar : PubMed/NCBI

51 

Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M, Liu J, Finkel T and Mueller E: Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab. 22:695–708. 2015. View Article : Google Scholar : PubMed/NCBI

52 

Dang X, Du G, Hu W, Ma L, Wang P and Li Y: Peroxisome proliferator-activated receptor gamma coactivator-1α/HSF1 axis effectively alleviates lipopolysaccharide-induced acute lung injury via suppressing oxidative stress and inflammatory response. J Cell Biochem. 120:544–551. 2019. View Article : Google Scholar

53 

Meyer BA and Doroudgar S: ER Stress-induced secretion of proteins and their extracellular functions in the heart. Cells. 9:20662020. View Article : Google Scholar : PubMed/NCBI

54 

García R, Merino D, Gómez JM, Nistal JF, Hurlé MA, Cortajarena AL and Villar AV: Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts. Cell Signal. 28:1563–1579. 2016. View Article : Google Scholar

55 

Shi C, Ulke-Lemée A, Deng J, Batulan Z and O'Brien ER: Characterization of heat shock protein 27 in extracellular vesicles: A potential anti-inflammatory therapy. FASEB J. 33:1617–1630. 2019. View Article : Google Scholar

56 

Liu P, Bao HY, Jin CC, Zhou JC, Hua F, Li K, Lv XX, Cui B, Hu ZW and Zhang XW: Targeting extracellular heat shock protein 70 ameliorates doxorubicin-induced heart failure through resolution of toll-like receptor 2-mediated myocardial inflammation. J Am Heart Assoc. 8:e0123382019. View Article : Google Scholar : PubMed/NCBI

57 

Jan RL, Yang SC, Liu YC, Yang RC, Tsai SP, Huang SE, Yeh JL and Hsu JH: Extracellular heat shock protein HSC70 protects against lipopolysaccharide-induced hypertrophic responses in rat cardiomyocytes. Biomed Pharmacother. 128:1103702020. View Article : Google Scholar : PubMed/NCBI

58 

Zhang X, Xu Z, Zhou L, Chen Y, He M, Cheng L, Hu FB, Tanguay RM and Wu T: Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones. 15:675–686. 2010. View Article : Google Scholar : PubMed/NCBI

59 

Jenei ZM, Gombos T, Förhécz Z, Pozsonyi Z, Karádi I, Jánoskuti L and Prohászka Z: Elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker of mortality in patients with heart failure. Cell Stress Chaperones. 18:809–813. 2013. View Article : Google Scholar : PubMed/NCBI

60 

Song YJ, Zhong CB and Wang XB: Heat shock protein 70: A promising therapeutic target for myocardial ischemia-reperfusion injury. J Cell Physiol. 234:1190–1207. 2019. View Article : Google Scholar

61 

Yang J, Yu XF, Li YY, Xue FT and Zhang S: Decreased HSP70 expression on serum exosomes contributes to cardiac fibrosis during senescence. Eur Rev Med Pharmacol Sci. 23:3993–4001. 2019.PubMed/NCBI

62 

Yoon S, Kim M, Min HK, Lee YU, Kwon DH, Lee M, Lee S, Kook T, Joung H, Nam KI, et al: Inhibition of heat shock protein 70 blocks the development of cardiac hypertrophy by modulating the phosphorylation of histone deacetylase 2. Cardiovasc Res. 115:1850–1860. 2019. View Article : Google Scholar : PubMed/NCBI

63 

Rodriguez-Iturbe B, Johnson RJ, Sanchez-Lozada LG and Pons H: HSP70 and primary arterial hypertension. Biomolecules. 13:2722023. View Article : Google Scholar : PubMed/NCBI

64 

Mathur S, Walley KR, Wang Y, Indrambarya T and Boyd JH: Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J. 75:2445–2452. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Birmpilis AI, Paschalis A, Mourkakis A, Christodoulou P, Kostopoulos IV, Antimissari E, Terzoudi G, Georgakilas AG, Armpilia C, Papageorgis P, et al: Immunogenic cell death, DAMPs and prothymosin α as a putative anticancer immune response biomarker. Cells. 11:14152022. View Article : Google Scholar

66 

Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D and Lindner D: Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol. 114:192019. View Article : Google Scholar : PubMed/NCBI

67 

Shah AK, Bhullar SK, Elimban V and Dhalla NS: Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants (Basel). 10:9312021. View Article : Google Scholar : PubMed/NCBI

68 

Kruszewska J, Cudnoch-Jedrzejewska A and Czarzasta K: Remodeling and fibrosis of the cardiac muscle in the course of obesity-pathogenesis and involvement of the extracellular matrix. Int J Mol Sci. 23:41952022. View Article : Google Scholar : PubMed/NCBI

69 

Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, et al: Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 127:3770–3783. 2017. View Article : Google Scholar : PubMed/NCBI

70 

Tian J, Zhang M, Suo M, Liu D, Wang X, Liu M, Pan J, Jin T and An F: Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats. J Cell Mol Med. 25:7642–7659. 2021. View Article : Google Scholar : PubMed/NCBI

71 

Ko T, Nomura S, Yamada S, Fujita K, Fujita T, Satoh M, Oka C, Katoh M, Ito M, Katagiri M, et al: Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat Commun. 13:32752022. View Article : Google Scholar

72 

Cáceres RA, Chavez T, Maestro D, Palanca AR, Bolado P, Madrazo F, Aires A, Cortajarena AL and Villar AV: Reduction of cardiac TGFβ-mediated profibrotic events by inhibition of Hsp90 with engineered protein. J Mol Cell Cardiol. 123:75–87. 2018. View Article : Google Scholar

73 

Zhang X, Zhang Y, Miao Q, Shi Z, Hu L, Liu S, Gao J, Zhao S, Chen H, Huang Z, et al: Inhibition of HSP90 S-nitrosylation alleviates cardiac fibrosis via TGFβ/SMAD3 signalling pathway. Br J Pharmacol. 178:4608–4625. 2021. View Article : Google Scholar : PubMed/NCBI

74 

Zhong W, Chen W, Liu Y, Zhang J, Lu Y, Wan X, Qiao Y, Huang H, Zeng Z, Li W, et al: Extracellular HSP90α promotes cellular senescence by modulating TGF-β signaling in pulmonary fibrosis. FASEB J. 36:e224752022. View Article : Google Scholar

75 

Christians ES, Ishiwata T and Benjamin IJ: Small heat shock proteins in redox metabolism: Implications for cardiovascular diseases. Int J Biochem Cell Biol. 44:1632–1645. 2012. View Article : Google Scholar : PubMed/NCBI

76 

Collier MP and Benesch JLP: Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones. 25:601–613. 2020. View Article : Google Scholar : PubMed/NCBI

77 

Nguyen VC, Deck CA and Pamenter ME: Naked mole-rats reduce the expression of ATP-dependent but not ATP-independent heat shock proteins in acute hypoxia. J Exp Biol. 222(Pt 22): jeb2112432019. View Article : Google Scholar : PubMed/NCBI

78 

Janowska MK, Baughman HER, Woods CN and Klevit RE: Mechanisms of small heat shock proteins. Cold Spring Harb Perspect Biol. 11:a0340252019. View Article : Google Scholar : PubMed/NCBI

79 

Alagar Boopathy LR, Jacob-Tomas S, Alecki C and Vera M: Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem. 298:1017962022. View Article : Google Scholar : PubMed/NCBI

80 

Carver JA, Ecroyd H, Truscott RJW, Thorn DC and Holt C: Proteostasis and the regulation of intra- and extracellular protein aggregation by ATP-independent molecular chaperones: Lens α-crystallins and milk caseins. Acc Chem Res. 51:745–752. 2018. View Article : Google Scholar : PubMed/NCBI

81 

Izumi M: Heat shock proteins support refolding and shredding of misfolded proteins. Plant Physiol. 180:1777–1778. 2019. View Article : Google Scholar : PubMed/NCBI

82 

Choudhary D, Mediani L, Carra S and Cecconi C: Studying heat shock proteins through single-molecule mechanical manipulation. Cell Stress Chaperones. 25:615–628. 2020. View Article : Google Scholar : PubMed/NCBI

83 

Dokladny K, Myers OB and Moseley PL: Heat shock response and autophagy-cooperation and control. Autophagy. 11:200–213. 2015. View Article : Google Scholar :

84 

Shan Q, Ma F, Wei J, Li H, Ma H and Sun P: Physiological functions of heat shock proteins. Curr Protein Pept Sci. 21:751–760. 2020. View Article : Google Scholar

85 

Hosaka Y, Araya J, Fujita Y and Kuwano K: Role of chaperone-mediated autophagy in the pathophysiology including pulmonary disorders. Inflamm Regen. 41:292021. View Article : Google Scholar : PubMed/NCBI

86 

Wick G, Jakic B, Buszko M, Wick MC and Grundtman C: The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol. 11:516–529. 2014. View Article : Google Scholar : PubMed/NCBI

87 

Bakthisaran R, Tangirala R and Rao ChM: Small heat shock proteins: Role in cellular functions and pathology. Biochim Biophys Acta. 1854:291–319. 2015. View Article : Google Scholar : PubMed/NCBI

88 

Hashikawa N, Ido M, Morita Y and Hashikawa-Hobara N: Effects from the induction of heat shock proteins in a murine model due to progression of aortic atherosclerosis. Sci Rep. 11:70252021. View Article : Google Scholar : PubMed/NCBI

89 

Cuerrier CM, Chen YX, Tremblay D, Rayner K, McNulty M, Zhao X, Kennedy CR, de BelleRoche J, Pelling AE and O'Brien ER: Chronic over-expression of heat shock protein 27 attenuates atherogenesis and enhances plaque remodeling: A combined histological and mechanical assessment of aortic lesions. PLoS One. 8:e558672013. View Article : Google Scholar : PubMed/NCBI

90 

Liu A, Ming JY, Fiskesund R, Ninio E, Karabina SA, Bergmark C, Frostegård AG and Frostegård J: Induction of dendritic cell-mediated T-cell activation by modified but not native low-density lipoprotein in humans and inhibition by annexin a5: Involvement of heat shock proteins. Arterioscler Thromb Vasc Biol. 35:197–205. 2015. View Article : Google Scholar

91 

Gong R, Li XY, Chen HJ, Xu CC, Fang HY, Xiang J and Wu YQ: Role of heat shock protein 22 in the protective effect of geranylgeranylacetone in response to oxidized-LDL. Drug Des Devel Ther. 13:2619–2632. 2019. View Article : Google Scholar : PubMed/NCBI

92 

Nahomi RB, Palmer A, Green KM, Fort PE and Nagaraj RH: Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochim Biophys Acta. 1842:164–174. 2014. View Article : Google Scholar :

93 

Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C and O'Brien ER: Extracellular release and signaling by heat shock protein 27: Role in modifying vascular inflammation. Front Immunol. 7:2852016. View Article : Google Scholar : PubMed/NCBI

94 

Zhou XY, Sun JY, Wang WQ, Li SX, Li HX, Yang HJ, Yang MF, Yuan H, Zhang ZY, Sun BL and Han JX: TAT-HSP27 Peptide improves neurologic deficits via reducing apoptosis after experimental subarachnoid hemorrhage. Front Cell Neurosci. 16:8786732022. View Article : Google Scholar : PubMed/NCBI

95 

Jin C, Cleveland JC, Ao L, Li J, Zeng Q, Fullerton DA and Meng X: Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: The proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med. 20:280–289. 2014. View Article : Google Scholar : PubMed/NCBI

96 

Inia JA and O'Brien ER: Role of Heat Shock Protein 27 in Modulating Atherosclerotic Inflammation. J Cardiovasc Transl Res. 14:3–12. 2021. View Article : Google Scholar

97 

Forouzanfar F, Butler AE, Banach M, Barreto GE and Sahbekar A: Modulation of heat shock proteins by statins. Pharmacol Res. 134:134–144. 2018. View Article : Google Scholar : PubMed/NCBI

98 

Sklifasovskaya AP and Blagonravov ML: Small heat shock proteins HSP10 and HSP27 in the left ventricular myocardium in rats with arterial hypertension and insulin-dependent diabetes mellitus. Bull Exp Biol Med. 170:699–705. 2021. View Article : Google Scholar : PubMed/NCBI

99 

Sada K, Nishikawa T, Kukidome D, Yoshinaga T, Kajihara N, Sonoda K, Senokuchi T, Motoshima H, Matsumura T and Araki E: Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1. PLoS One. 11:e01586192016. View Article : Google Scholar : PubMed/NCBI

100 

Yu L, Chen S, Liang Q, Huang C, Zhang W, Hu L, Yu Y, Liu L, Cheng X and Bao H: Rosiglitazone reduces diabetes angiopathy by inhibiting mitochondrial dysfunction dependent on regulating HSP22 expression. iScience. 26:1061942023. View Article : Google Scholar : PubMed/NCBI

101 

Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B, Bao H and Cheng X: HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol. 21:1010952019. View Article : Google Scholar : PubMed/NCBI

102 

Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H and Yang X: Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol. 95:247–252. 2017. View Article : Google Scholar

103 

Fang H, Hu N, Zhao Q, Wang B, Zhou H, Fu Q, Shen L, Chen X, Shen F and Lyu J: mtDNA haplogroup N9a increases the risk of type 2 diabetes by altering mitochondrial function and intracellular mitochondrial signals. Diabetes. 67:1441–1453. 2018. View Article : Google Scholar : PubMed/NCBI

104 

Rodríguez ME, Cogno IS, Milla Sanabria LS, Morán YS and Rivarola VA: Heat shock proteins in the context of photodynamic therapy: Autophagy, apoptosis and immunogenic cell death. Photochem Photobiol Sci. 15:1090–1102. 2016. View Article : Google Scholar : PubMed/NCBI

105 

Penke B, Bogár F, Crul T, Sántha M, Tóth ME and Vígh L: Heat shock proteins and autophagy pathways in neuroprotection: From molecular bases to pharmacological interventions. Int J Mol Sci. 19:3252018. View Article : Google Scholar : PubMed/NCBI

106 

Kanugovi Vijayavittal A, Kumar P, Sugunan S, Joseph C, Devaki B, Paithankar K and Amere Subbarao S: Heat shock transcription factor HSF2 modulates the autophagy response through the BTG2-SOD2 axis. Biochem Biophys Res Commun. 600:44–50. 2022. View Article : Google Scholar : PubMed/NCBI

107 

Cuervo AM and Wong E: Chaperone-mediated autophagy: Roles in disease and aging. Cell Res. 24:92–104. 2014. View Article : Google Scholar :

108 

Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H and Yuan J: Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 116:2996–3005. 2019. View Article : Google Scholar : PubMed/NCBI

109 

Hale BJ, Hager CL, Seibert JT, Selsby JT, Baumgard LH, Keating AF and Ross JW: Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod. 97:426–437. 2017. View Article : Google Scholar : PubMed/NCBI

110 

Ganesan S, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP and Selsby JT: Short-term heat stress results in increased apoptotic signaling and autophagy in oxidative skeletal muscle in Sus scrofa. J Therm Biol. 72:73–80. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Roths M, Freestone AD, Rudolph TE, Michael A, Baumgard LH and Selsby JT: Environment-induced heat stress causes structural and biochemical changes in the heart. J Therm Biol. 113:1034922023. View Article : Google Scholar : PubMed/NCBI

112 

Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, Xie M, Jiang N, May H, Kyrychenko V, et al: Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation. 26(133): 1668–1687. 2016. View Article : Google Scholar

113 

Packer M: Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: Implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors. J Am Soc Nephrol. 31:907–919. 2020. View Article : Google Scholar : PubMed/NCBI

114 

Gu S, Tan J, Li Q, Liu S, Ma J, Zheng Y, Liu J, Bi W, Sha P, Li X, et al: Downregulation of LAPTM4B contributes to the impairment of the autophagic flux via unopposed activation of mTORC1 signaling during myocardial ischemia/reperfusion injury. Circ Res. 127:e148–e165. 2020. View Article : Google Scholar : PubMed/NCBI

115 

Sciarretta S, Maejima Y, Zablocki D and Sadoshima J: The role of autophagy in the heart. Annu Rev Physiol. 80:1–26. 2018. View Article : Google Scholar

116 

Lavandero S, Troncoso R, Rothermel BA, Martinet W, Sadoshima J and Hill JA: Cardiovascular autophagy: Concepts, controversies, and perspectives. Autophagy. 9:1455–1466. 2013. View Article : Google Scholar : PubMed/NCBI

117 

Ott C, Jung T, Brix S, John C, Betz IR, Foryst-Ludwig A, Deubel S, Kuebler WM, Grune T, Kintscher U and Grune J: Hypertrophy-reduced autophagy causes cardiac dysfunction by directly impacting cardiomyocyte contractility. Cells. 10:8052021. View Article : Google Scholar : PubMed/NCBI

118 

Zhang Y, Liu D, Hu H, Zhang P, Xie R and Cui W: HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed. Pharmacother. 120:1094642019. View Article : Google Scholar

119 

Liu W, Chen C, Gu X, Zhang L, Mao X, Chen Z and Tao L: AM1241 alleviates myocardial ischemia-reperfusion injury in rats by enhancing Pink1/Parkin-mediated autophagy. Life Sci. 272:1192282021. View Article : Google Scholar : PubMed/NCBI

120 

Sui Z, Wang MM, Xing Y, Qi J and Wang W: Targeting MCOLN1/TRPML1 channels to protect against ischemia-reperfusion injury by restoring the inhibited autophagic flux in cardiomyocytes. Autophagy. 18:3053–3055. 2022. View Article : Google Scholar : PubMed/NCBI

121 

Liu L, Jin X, Hu CF, Li R, Zhou Z and Shen CX: Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem. 43:52–68. 2017. View Article : Google Scholar : PubMed/NCBI

122 

Xiang M, Lu Y, Xin L, Gao J, Shang C, Jiang Z, Lin H, Fang X, Qu Y, Wang Y, et al: Role of oxidative stress in reperfusion following myocardial ischemia and its treatments. Oxid Med Cell Longev. 2021:66140092021. View Article : Google Scholar : PubMed/NCBI

123 

Xing Y, Sui Z, Liu Y, Wang MM, Wei X, Lu Q, Wang X, Liu N, Lu C, Chen R, et al: Blunting TRPML1 channels protects myocardial ischemia/reperfusion injury by restoring impaired cardiomyocyte autophagy. Basic Res Cardiol. 117:202022. View Article : Google Scholar : PubMed/NCBI

124 

Kim YC and Guan KL: mTOR: A pharmacologic target for autophagy regulation. J Clin Invest. 125:25–32. 2015. View Article : Google Scholar : PubMed/NCBI

125 

Wang Y and Zhang H: Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol. 1206:67–83. 2019. View Article : Google Scholar : PubMed/NCBI

126 

Al-Bari MAA and Xu P: Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci. 1467:3–20. 2020. View Article : Google Scholar : PubMed/NCBI

127 

Liu GS, Zhu H, Cai WF, Wang X, Jiang M, Essandoh K, Vafiadaki E, Haghighi K, Lam CK, Gardner G, et al: Regulation of BECN1-mediated autophagy by HSPB6: Insights from a human HSPB6S10F mutant. Autophagy. 14:80–97. 2018. View Article : Google Scholar :

128 

Nicolaou P, Knöll R, Haghighi K, Fan GC, Dorn GW II, Hasenfub G and Kranias EG: Human mutation in the anti-apoptotic heat shock protein 20 abrogates its cardioprotective effects. J Biol Chem. 283:33465–33471. 2008. View Article : Google Scholar : PubMed/NCBI

129 

Shatov VM and Gusev NB: Physico-chemical properties of two point mutants of small heat shock protein HspB6 (Hsp20) with abrogated cardioprotection. Biochimie. 174:126–135. 2020. View Article : Google Scholar : PubMed/NCBI

130 

Lavandero S, Chiong M, Rothermel BA and Hill JA: Autophagy in cardiovascular biology. J Clin Invest. 125:55–64. 2015. View Article : Google Scholar : PubMed/NCBI

131 

Parzych KR and Klionsky DJ: An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. 2014. View Article : Google Scholar :

132 

Cao W, Li J, Yang K and Cao D: An overview of autophagy: Mechanism, regulation and research progress. Bull Cancer. 108:304–322. 2021. View Article : Google Scholar : PubMed/NCBI

133 

Zhou Y, Manghwar H, Hu W and Liu F: Degradation mechanism of autophagy-related proteins and research progress. Int J Mol Sci. 23:73012022. View Article : Google Scholar : PubMed/NCBI

134 

Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, et al: Selective autophagy of intracellular organelles: Recent research advances. Theranostics. 11:222–256. 2021. View Article : Google Scholar : PubMed/NCBI

135 

Li Y, Li S and Wu H: Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells. 11:8512022. View Article : Google Scholar : PubMed/NCBI

136 

Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS and Maslov LN: Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis. 28:55–80. 2023. View Article : Google Scholar

137 

Dong Y, Chen H, Gao J, Liu Y, Li J and Wang J: Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 136:27–41. 2019. View Article : Google Scholar : PubMed/NCBI

138 

Denton D and Kumar S: Autophagy-dependent cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar :

139 

Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA and Bhutia SK: The lysosome as an imperative regulator of autophagy and cell death. Cell Mol. Life Sci. 78:7435–7449. 2021. View Article : Google Scholar : PubMed/NCBI

140 

Xu HD and Qin ZH: Beclin 1, Bcl-2 and Autophagy. Adv Exp Med Biol. 1206:109–126. 2019. View Article : Google Scholar : PubMed/NCBI

141 

Liu J, Liu W and Yang H: Balancing apoptosis and autophagy for Parkinson's disease therapy: Targeting BCL-2. ACS Chem. Neurosci. 10:792–802. 2019.

142 

Blagonravov ML, Sklifasovskaya AP, Demurov EA and Karimov AA: Beclin-1-dependent autophagy of left ventricular cardiomyocytes in SHR and Wistar-Kyoto rats with type 1 diabetes mellitus. Bull Exp Biol Med. 171:23–27. 2021. View Article : Google Scholar : PubMed/NCBI

143 

Sklifasovskaya AP, Blagonravov ML, Ryabinina AY, Azova MM and Goryachev VA: Expression of Bax and Bcl-2 Proteins in Left-Ventricular Cardiomyocytes in Wistar-Kyoto and SHR Rats with Insulin-Dependent Diabetes Mellitus. Bull Exp Biol Med. 171:576–581. 2021. View Article : Google Scholar : PubMed/NCBI

144 

Van Opdenbosch N and Lamkanfi M: Caspases in cell death, inflammation, and disease. Immunity. 50:1352–1364. 2019. View Article : Google Scholar : PubMed/NCBI

145 

Araya LE, Soni IV, Hardy JA and Julien O: Deorphanizing caspase-3 and caspase-9 substrates in and out of apoptosis with deep substrate profiling. ACS Chem Biol. 16:2280–2296. 2021. View Article : Google Scholar : PubMed/NCBI

146 

Green DR: Caspase activation and inhibition. Cold Spring Harb Perspect Biol. 14:a0410202022. View Article : Google Scholar : PubMed/NCBI

147 

Kashyap D, Garg VK and Goel N: Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 125:73–120. 2021. View Article : Google Scholar : PubMed/NCBI

148 

Lossi L: The concept of intrinsic versus extrinsic apoptosis. Biochem J. 479:357–384. 2022. View Article : Google Scholar : PubMed/NCBI

149 

Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI

150 

Obeng E: Apoptosis (programmed cell death) and its signals-A review. Braz J Biol. 81:1133–1143. 2021. View Article : Google Scholar

151 

Kennedy D, Jäger R, Mosser DD and Samali A: Regulation of apoptosis by heat shock proteins. IUBMB Life. 66:327–338. 2014. View Article : Google Scholar : PubMed/NCBI

152 

Leung AM, Redlak MJ and Miller TA: Role of heat shock proteins in oxygen radical-induced gastric apoptosis. J Surg Res. 193:135–144. 2015. View Article : Google Scholar

153 

Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, Zhu LJ, Bao HH and Cheng XS: Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered. 12:12544–12554. 2021. View Article : Google Scholar : PubMed/NCBI

154 

Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y, Wen Z, Florens L and Li R: Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature. 543:443–446. 2017. View Article : Google Scholar : PubMed/NCBI

155 

Koike N, Hatano Y and Ushimaru T: Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet. 64:907–917. 2018. View Article : Google Scholar : PubMed/NCBI

156 

Verma A, Sumi S and Seervi M: Heat shock proteins-driven stress granule dynamics: Yet another avenue for cell survival. Apoptosis. 26:371–384. 2021. View Article : Google Scholar : PubMed/NCBI

157 

Liyanagamage DSNK and Martinus RD: Role of mitochondrial stress protein HSP60 in diabetes-induced neuroinflammation. Mediators Inflamm. 2020:80735162020. View Article : Google Scholar : PubMed/NCBI

158 

Kumar R, Chaudhary AK, Woytash J, Inigo JR, Gokhale AA, Bshara W, Attwood K, Wang J, Spernyak JA, Rath E, et al: A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. J Clin Invest. 132:e1499062022. View Article : Google Scholar : PubMed/NCBI

159 

Duan Y, Tang H, Mitchell-Silbaugh K, Fang X, Han Z and Ouyang K: Heat shock protein 60 in cardiovascular physiology and diseases. Front Mol Biosci. 7:732020. View Article : Google Scholar : PubMed/NCBI

160 

Song E, Tang S, Xu J, Yin B, Bao E and Hartung J: Lenti-siRNA Hsp60 promote bax in mitochondria and induces apoptosis during heat stress. Biochem Biophys Res Commun. 481:125–131. 2016. View Article : Google Scholar : PubMed/NCBI

161 

Tian X, Zhao L, Song X, Yan Y, Liu N, Li T, Yan B and Liu B: HSP27 inhibits homocysteine-induced endothelial apoptosis by modulation of ROS production and mitochondrial caspase-dependent apoptotic pathway. Biomed Res Int. 2016:48478742016. View Article : Google Scholar : PubMed/NCBI

162 

Kennedy D, Mnich K, Oommen D, Chakravarthy R, Almeida-Souza L, Krols M, Saveljeva S, Doyle K, Gupta S, Timmerman V, et al: HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death Dis. 8:e30262017. View Article : Google Scholar : PubMed/NCBI

163 

Önay Uçar E and Şengelen A: Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells. Cell Stress Chaperones. 24:763–775. 2019. View Article : Google Scholar : PubMed/NCBI

164 

Guo S, Gao C, Xiao W, Zhang J, Qu Y, Li J and Ye F: Matrine protects cardiomyocytes from ischemia/reperfusion injury by regulating HSP70 expression via activation of the JAK2/STAT3 pathway. Shock. 50:664–670. 2018. View Article : Google Scholar : PubMed/NCBI

165 

Xin BR, Li P, Liu XL and Zhang XF: Visfatin relieves myocardial ischemia-reperfusion injury through activation of PI3K/Akt/HSP70 signaling axis. Eur Rev Med Pharmacol Sci. 24:10779–10789. 2020.PubMed/NCBI

166 

Huang C, Deng H, Zhao W and Xian L: Knockdown of miR-384-3p protects against myocardial ischemia-reperfusion injury in rats through targeting HSP70. Heart Surg Forum. 24:E143–E150. 2021. View Article : Google Scholar : PubMed/NCBI

167 

Song N, Ma J, Meng XW, Liu H, Wang H, Song SY, Chen QC, Liu HY, Zhang J, Peng K and Ji FH: Heat shock protein 70 protects the heart from ischemia/reperfusion injury through inhibition of p38 MAPK Signaling. Oxid Med Cell Longev. 2020:39086412020. View Article : Google Scholar : PubMed/NCBI

168 

Choudhury S, Bae S, Ke Q, Lee JY, Kim J and Kang PM: Mitochondria to nucleus translocation of AIF in mice lacking Hsp70 during ischemia/reperfusion. Basic Res Cardiol. 106:397–407. 2011. View Article : Google Scholar : PubMed/NCBI

169 

Zhang C, Liu X, Miao J, Wang S, Wu L, Yan D, Li J, Guo W, Wu X and Shen A: Heat shock protein 70 protects cardiomyocytes through suppressing SUMOylation and nucleus translocation of phosphorylated eukaryotic elongation factor 2 during myocardial ischemia and reperfusion. Apoptosis. 22:608–625. 2017. View Article : Google Scholar : PubMed/NCBI

170 

Sun A, Zou Y, Wang P, Xu D, Gong H, Wang S, Qin Y, Zhang P, Chen Y, Harada M, et al: Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J Am Heart Assoc. 3:e0007792014. View Article : Google Scholar : PubMed/NCBI

171 

Jenei ZM, Széplaki G, Merkely B, Karádi I, Zima E and Prohászka Z: Persistently elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker in post-cardiac-arrest patients. Cell Stress Chaperones. 18:447–454. 2013. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Sklifasovskaya AP, Blagonravov M, Ryabinina A, Goryachev V, Syatkin S, Chibisov S, Akhmetova K, Prokofiev D and Agostinelli E: The role of heat shock proteins in the pathogenesis of heart failure (Review). Int J Mol Med 52: 106, 2023.
APA
Sklifasovskaya, A.P., Blagonravov, M., Ryabinina, A., Goryachev, V., Syatkin, S., Chibisov, S. ... Agostinelli, E. (2023). The role of heat shock proteins in the pathogenesis of heart failure (Review). International Journal of Molecular Medicine, 52, 106. https://doi.org/10.3892/ijmm.2023.5309
MLA
Sklifasovskaya, A. P., Blagonravov, M., Ryabinina, A., Goryachev, V., Syatkin, S., Chibisov, S., Akhmetova, K., Prokofiev, D., Agostinelli, E."The role of heat shock proteins in the pathogenesis of heart failure (Review)". International Journal of Molecular Medicine 52.5 (2023): 106.
Chicago
Sklifasovskaya, A. P., Blagonravov, M., Ryabinina, A., Goryachev, V., Syatkin, S., Chibisov, S., Akhmetova, K., Prokofiev, D., Agostinelli, E."The role of heat shock proteins in the pathogenesis of heart failure (Review)". International Journal of Molecular Medicine 52, no. 5 (2023): 106. https://doi.org/10.3892/ijmm.2023.5309
Copy and paste a formatted citation
x
Spandidos Publications style
Sklifasovskaya AP, Blagonravov M, Ryabinina A, Goryachev V, Syatkin S, Chibisov S, Akhmetova K, Prokofiev D and Agostinelli E: The role of heat shock proteins in the pathogenesis of heart failure (Review). Int J Mol Med 52: 106, 2023.
APA
Sklifasovskaya, A.P., Blagonravov, M., Ryabinina, A., Goryachev, V., Syatkin, S., Chibisov, S. ... Agostinelli, E. (2023). The role of heat shock proteins in the pathogenesis of heart failure (Review). International Journal of Molecular Medicine, 52, 106. https://doi.org/10.3892/ijmm.2023.5309
MLA
Sklifasovskaya, A. P., Blagonravov, M., Ryabinina, A., Goryachev, V., Syatkin, S., Chibisov, S., Akhmetova, K., Prokofiev, D., Agostinelli, E."The role of heat shock proteins in the pathogenesis of heart failure (Review)". International Journal of Molecular Medicine 52.5 (2023): 106.
Chicago
Sklifasovskaya, A. P., Blagonravov, M., Ryabinina, A., Goryachev, V., Syatkin, S., Chibisov, S., Akhmetova, K., Prokofiev, D., Agostinelli, E."The role of heat shock proteins in the pathogenesis of heart failure (Review)". International Journal of Molecular Medicine 52, no. 5 (2023): 106. https://doi.org/10.3892/ijmm.2023.5309
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team