You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
![]() |
|
Safari S, Malekvandfard F, Babashah S, Alizadehasl A, Sadeghizadeh M and Motavaf M: Mesenchymal stem cell-derived exosomes: A novel potential therapeutic avenue for cardiac regeneration. Cell Mol Biol (Noisy-le-grand). 62:66–73. 2016.PubMed/NCBI | |
|
Tarone G and Brancaccio M: Keep your heart in shape: Molecular chaperone networks for treating heart disease. Cardiovasc Res. 102:346–361. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Rabinovich-Nikitin I, Rasouli M, Reitz CJ, Posen I, Margulets V, Dhingra R, Khatua TN, Thliveris JA, Martino TA and Kirshenbaum LA: Mitochondrial autophagy and cell survival is regulated by the circadian Clock gene in cardiac myocytes during ischemic stress. Autophagy. 17:3794–3812. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Cicalese SM, da Silva JF, Priviero F, Webb RC, Eguchi S and Tostes RC: Vascular stress signaling in hypertension. Circ Res. 128:969–992. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ma T, Huang X, Zheng H, Huang G, Li W, Liu X, Liang J, Cao Y, Hu Y and Huang Y: SFRP2 improves mitochondrial dynamics and mitochondrial biogenesis, oxidative stress, and apoptosis in diabetic cardiomyopathy. Oxid Med Cell Longev. 2021:92650162021. View Article : Google Scholar : PubMed/NCBI | |
|
Ranek MJ, Stachowski MJ, Kirk JA and Willis MS: The role of heat shock proteins and co-chaperones in heart failure. Philos Trans R Soc Lond B Biol Sci. 373:201605302018. View Article : Google Scholar | |
|
Maejima Y: The critical roles of protein quality control systems in the pathogenesis of heart failure. J Cardiol. 75:219–227. 2020. View Article : Google Scholar | |
|
Schwabl S and Teis D: Protein quality control at the Golgi. Curr Opin Cell Biol. 75:1020742022. View Article : Google Scholar : PubMed/NCBI | |
|
Wang X and Robbins J: Heart failure and protein quality control. Circ Res. 99:1315–1328. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Brownstein AJ, Ganesan S, Summers CM, Pearce S, Hale BJ, Ross JW, Gabler N, Seibert JT, Rhoads RP, Baumgard LH and Selsby JT: Heat stress causes dysfunctional autophagy in oxidative skeletal muscle. Physiol Rep. 5:e133172017. View Article : Google Scholar : PubMed/NCBI | |
|
Hagymasi AT, Dempsey JP and Srivastava PK: Heat-shock proteins. Curr Protoc. 2:e5922022. View Article : Google Scholar : PubMed/NCBI | |
|
Tedesco B, Vendredy L, Timmerman V and Poletti A: The chaperone-assisted selective autophagy complex dynamics and dysfunctions. Autophagy. 19:1619–1641. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
Yun CW, Kim HJ, Lim JH and Lee SH: Heat Shock Proteins: Agents of cancer development and therapeutic targets in anti-cancer therapy. Cells. 9:602019. View Article : Google Scholar : PubMed/NCBI | |
|
Haslbeck M and Vierling E: A first line of stress defense: Small heat shock proteins and their function in protein homeostasis. J Mol Biol. 427:1537–1548. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Jacob P, Hirt H and Bendahmane A: The heat-shock protein/chaperone network and multiple stress resistance. Plant. Biotechnol J. 15:405–414. 2017. View Article : Google Scholar : | |
|
Schroder K and Tschopp J: The inflammasomes. Cell. 140:821–832. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Gomez-Pastor R, Burchfiel ET, Neef DW, Jaeger AM, Cabiscol E, McKinstry SU, Doss A, Aballay A, Lo DC, Akimov SS, et al: Abnormal degradation of the neuronal stress-protective transcription factor HSF1 in Huntington's disease. Nat Commun. 8:144052017. View Article : Google Scholar : PubMed/NCBI | |
|
Dowell J, Elser BA, Schroeder RE and Stevens HE: Cellular stress mechanisms of prenatal maternal stress: Heat shock factors and oxidative stress. Neurosci Lett. 709:1343682019. View Article : Google Scholar : PubMed/NCBI | |
|
Xie M, Kong Y, Tan W, May H, Battiprolu PK, Pedrozo Z, Wang ZV, Morales C, Luo X, Cho G, et al: Histone deacetylase inhibition blunts ischemia/reperfusion injury by inducing cardiomyocyte autophagy. Circulation. 129:1139–1151. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Blagonravov ML, Korshunova AY, Azova MM, Bondar' SA and Frolov VA: Cardiomyocyte autophagia and morphological alterations in the left ventricular myocardium during acute focal ischemia. Bull Exp Biol Med. 160:398–400. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang HL, Jia KY, Sun D and Yang M: Protective effect of HSP27 in atherosclerosis and coronary heart disease by inhibiting reactive oxygen species. J Cell Biochem. 120:2859–2868. 2019. View Article : Google Scholar | |
|
Shan R, Liu N, Yan Y and Liu B: Apoptosis, autophagy and atherosclerosis: Relationships and the role of Hsp27. Pharmacol Res. 166:1051692021. View Article : Google Scholar | |
|
Kovaleva OV, Shitova MS and Zborovskaya IB: Autophagy: Cell death or a way of survival? Clin Oncohematology. 7:103–113. 2014. | |
|
Del Re DP, Amgalan D, Linkermann A, Liu Q and Kitsis RN: Fundamental mechanisms of regulated cell death and implications for heart disease. Physiol Rev. 99:1765–1817. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Martine P and Rébé C: Heat shock proteins and inflammasomes. Int J Mol Sci. 20:45082019. View Article : Google Scholar : PubMed/NCBI | |
|
Choudhury A, Bullock D, Lim A, Argemi J, Orning P, Lien E, Bataller R and Mandrekar P: Inhibition of HSP90 and activation of HSF1 diminish macrophage NLRP3 inflammasome activity in alcohol-associated liver injury. Alcohol Clin Exp Res. 44:1300–1311. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jurisic V: Multiomic analysis of cytokines in immuno-oncology. Expert Rev Proteomics. 17:663–674. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Jurisic V, Srdic-Rajic V, Konjevic G, Bogdanovic G and Colic M: TNF-α induced apoptosis is accompanied with rapid CD30 and slower CD45 shedding from K-562 cells. J Membr Biol. 239:115–122. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Jurisic V, Terzic T, Colic S and Jurisic M: The concentration of TNF-alpha correlate with number of inflammatory cells and degree of vascularization in radicular cysts. Oral Dis. 14:600–605. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Swaroop S, Sengupta N, Suryawanshi AR, Adlakha YK and Basu A: HSP60 plays a regulatory role in IL-1β-induced microglial inflammation via TLR4-p38 MAPK axis. J Neuroinflammation. 13:272016. View Article : Google Scholar | |
|
Li XL, Wang YL, Zheng J, Zhang Y and Zhang XF: Inhibiting expression of HSP60 and TLR4 attenuates paraquat-induced microglial inflammation. Chem Biol Interact. 299:179–185. 2019. View Article : Google Scholar | |
|
Kelley N, Jeltema D, Duan Y and He Y: The NLRP3 Inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI | |
|
Swaroop S, Mahadevan A, Shankar SK, Adlakha YK and Basu A: HSP60 critically regulates endogenous IL-1β production in activated microglia by stimulating NLRP3 inflammasome pathway. J Neuroinflammation. 15:1772018. View Article : Google Scholar | |
|
Aslan JE and McCarty OJ: Rho GTPases in platelet function. J Thromb Haemost. 11:35–46. 2013. View Article : Google Scholar | |
|
Elvers M: RhoGAPs and Rho GTPases in platelets. Hamostaseologie. 36:168–177. 2016. View Article : Google Scholar | |
|
Ngo ATP, Parra-Izquierdo I, Aslan JE and McCarty OJT: Rho GTPase regulation of reactive oxygen species generation and signaling in platelet function and disease. Small GTPases. 12:440–457. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wang L, Wu Y, Zhou J, Ahmad SS, Mutus B, Garbi N, Hämmerling G, Liu J and Essex DW: Platelet-derived ERp57 mediates platelet incorporation into a growing thrombus by regulation of the αIIbβ3 integrin. Blood. 122:3642–3650. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Huang J, Li X, Shi X, Zhu M, Wang J, Huang S, Huang X, Wang H, Li L, Deng H, et al: Platelet integrin αIIbβ3: Signal transduction, regulation, and its therapeutic targeting. J Hematol Oncol. 12:262019. View Article : Google Scholar | |
|
Rigg RA, Healy LD, Nowak MS, Mallet J, Thierheimer ML, Pang J, McCarty OJ and Aslan JE: Heat shock protein 70 regulates platelet integrin activation, granule secretion and aggregation. Am J Physiol Cell Physiol. 310:C568–C575. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
De Maio A: Extracellular Hsp70: Export and function. Curr Protein Pept Sci. 15:225–231. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Krause M, Heck TG, Bittencourt A, Scomazzon SP, Newsholme P, Curi R and Homem de Bittencourt PI Jr: The chaperone balance hypothesis: The importance of the extracellular to intracellular HSP70 ratio to inflammation-driven type 2 diabetes, the effect of exercise, and the implications for clinical management. Mediators Inflamm. 2015:2492052015. View Article : Google Scholar : PubMed/NCBI | |
|
Jackson JW, Rivera-Marquez GM, Beebe K, Tran AD, Trepel JB, Gestwicki JE, Blagg BSJ, Ohkubo S and Neckers LM: Pharmacologic dissection of the overlapping impact of heat shock protein family members on platelet function. J Thromb Haemost. 18:1197–1209. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Blagonravov ML, Sklifasovskaya AP, Korshunova AY, Azova MM and Kurlaeva AO: Heat shock protein HSP60 in left ventricular cardiomyocytes of hypertensive rats with and without insulin-dependent diabetes mellitus. Bull Exp Biol Med. 170:10–14. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Henstridge DC, Whitham M and Febbraio MA: Chaperoning to the metabolic party: The emerging therapeutic role of heat-shock proteins in obesity and type 2 diabetes. Mol Metab. 3:781–793. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Archer AE, Von Schulze AT and Geiger PC: Exercise, heat shock proteins and insulin resistance. Philos Trans R Soc Lond B Biol Sci. 373:201605292018. View Article : Google Scholar | |
|
Drew BG, Ribas V, Le JA, Henstridge DC, Phun J, Zhou Z, Soleymani T, Daraei P, Sitz D, Vergnes L, et al: HSP72 is a mitochondrial stress sensor critical for Parkin action, oxidative metabolism, and insulin sensitivity in skeletal muscle. Diabetes. 63:1488–1505. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Kitano S, Kondo T, Matsuyama R, Ono K, Goto R, Takaki Y, Hanatani S, Sakaguchi M, Igata M, Kawashima J, et al: Impact of hepatic HSP72 on insulin signaling. Am J Physiol Endocrinol Metab. 316:E305–E318. 2019. View Article : Google Scholar | |
|
Xu L, Ma X, Bagattin A and Mueller E: The transcriptional coactivator PGC1α protects against hyperthermic stress via cooperation with the heat shock factor HSF1. Cell Death Dis. 7:e21022016. View Article : Google Scholar | |
|
Jornayvaz FR and Shulman GI: Regulation of mitochondrial biogenesis. Essays Biochem. 47:69–84. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Charos AE, Reed BD, Raha D, Szekely AM, Weissman SM and Snyder M: A highly integrated and complex PPARGC1A transcription factor binding network in HepG2 cells. Genome Res. 22:1668–1679. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Ma X, Xu L, Alberobello AT, Gavrilova O, Bagattin A, Skarulis M, Liu J, Finkel T and Mueller E: Celastrol protects against obesity and metabolic dysfunction through activation of a HSF1-PGC1α transcriptional axis. Cell Metab. 22:695–708. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Dang X, Du G, Hu W, Ma L, Wang P and Li Y: Peroxisome proliferator-activated receptor gamma coactivator-1α/HSF1 axis effectively alleviates lipopolysaccharide-induced acute lung injury via suppressing oxidative stress and inflammatory response. J Cell Biochem. 120:544–551. 2019. View Article : Google Scholar | |
|
Meyer BA and Doroudgar S: ER Stress-induced secretion of proteins and their extracellular functions in the heart. Cells. 9:20662020. View Article : Google Scholar : PubMed/NCBI | |
|
García R, Merino D, Gómez JM, Nistal JF, Hurlé MA, Cortajarena AL and Villar AV: Extracellular heat shock protein 90 binding to TGFβ receptor I participates in TGFβ-mediated collagen production in myocardial fibroblasts. Cell Signal. 28:1563–1579. 2016. View Article : Google Scholar | |
|
Shi C, Ulke-Lemée A, Deng J, Batulan Z and O'Brien ER: Characterization of heat shock protein 27 in extracellular vesicles: A potential anti-inflammatory therapy. FASEB J. 33:1617–1630. 2019. View Article : Google Scholar | |
|
Liu P, Bao HY, Jin CC, Zhou JC, Hua F, Li K, Lv XX, Cui B, Hu ZW and Zhang XW: Targeting extracellular heat shock protein 70 ameliorates doxorubicin-induced heart failure through resolution of toll-like receptor 2-mediated myocardial inflammation. J Am Heart Assoc. 8:e0123382019. View Article : Google Scholar : PubMed/NCBI | |
|
Jan RL, Yang SC, Liu YC, Yang RC, Tsai SP, Huang SE, Yeh JL and Hsu JH: Extracellular heat shock protein HSC70 protects against lipopolysaccharide-induced hypertrophic responses in rat cardiomyocytes. Biomed Pharmacother. 128:1103702020. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang X, Xu Z, Zhou L, Chen Y, He M, Cheng L, Hu FB, Tanguay RM and Wu T: Plasma levels of Hsp70 and anti-Hsp70 antibody predict risk of acute coronary syndrome. Cell Stress Chaperones. 15:675–686. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Jenei ZM, Gombos T, Förhécz Z, Pozsonyi Z, Karádi I, Jánoskuti L and Prohászka Z: Elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker of mortality in patients with heart failure. Cell Stress Chaperones. 18:809–813. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Song YJ, Zhong CB and Wang XB: Heat shock protein 70: A promising therapeutic target for myocardial ischemia-reperfusion injury. J Cell Physiol. 234:1190–1207. 2019. View Article : Google Scholar | |
|
Yang J, Yu XF, Li YY, Xue FT and Zhang S: Decreased HSP70 expression on serum exosomes contributes to cardiac fibrosis during senescence. Eur Rev Med Pharmacol Sci. 23:3993–4001. 2019.PubMed/NCBI | |
|
Yoon S, Kim M, Min HK, Lee YU, Kwon DH, Lee M, Lee S, Kook T, Joung H, Nam KI, et al: Inhibition of heat shock protein 70 blocks the development of cardiac hypertrophy by modulating the phosphorylation of histone deacetylase 2. Cardiovasc Res. 115:1850–1860. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Rodriguez-Iturbe B, Johnson RJ, Sanchez-Lozada LG and Pons H: HSP70 and primary arterial hypertension. Biomolecules. 13:2722023. View Article : Google Scholar : PubMed/NCBI | |
|
Mathur S, Walley KR, Wang Y, Indrambarya T and Boyd JH: Extracellular heat shock protein 70 induces cardiomyocyte inflammation and contractile dysfunction via TLR2. Circ J. 75:2445–2452. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Birmpilis AI, Paschalis A, Mourkakis A, Christodoulou P, Kostopoulos IV, Antimissari E, Terzoudi G, Georgakilas AG, Armpilia C, Papageorgis P, et al: Immunogenic cell death, DAMPs and prothymosin α as a putative anticancer immune response biomarker. Cells. 11:14152022. View Article : Google Scholar | |
|
Bacmeister L, Schwarzl M, Warnke S, Stoffers B, Blankenberg S, Westermann D and Lindner D: Inflammation and fibrosis in murine models of heart failure. Basic Res Cardiol. 114:192019. View Article : Google Scholar : PubMed/NCBI | |
|
Shah AK, Bhullar SK, Elimban V and Dhalla NS: Oxidative stress as a mechanism for functional alterations in cardiac hypertrophy and heart failure. Antioxidants (Basel). 10:9312021. View Article : Google Scholar : PubMed/NCBI | |
|
Kruszewska J, Cudnoch-Jedrzejewska A and Czarzasta K: Remodeling and fibrosis of the cardiac muscle in the course of obesity-pathogenesis and involvement of the extracellular matrix. Int J Mol Sci. 23:41952022. View Article : Google Scholar : PubMed/NCBI | |
|
Khalil H, Kanisicak O, Prasad V, Correll RN, Fu X, Schips T, Vagnozzi RJ, Liu R, Huynh T, Lee SJ, et al: Fibroblast-specific TGF-β-Smad2/3 signaling underlies cardiac fibrosis. J Clin Invest. 127:3770–3783. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Tian J, Zhang M, Suo M, Liu D, Wang X, Liu M, Pan J, Jin T and An F: Dapagliflozin alleviates cardiac fibrosis through suppressing EndMT and fibroblast activation via AMPKα/TGF-β/Smad signalling in type 2 diabetic rats. J Cell Mol Med. 25:7642–7659. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ko T, Nomura S, Yamada S, Fujita K, Fujita T, Satoh M, Oka C, Katoh M, Ito M, Katagiri M, et al: Cardiac fibroblasts regulate the development of heart failure via Htra3-TGF-β-IGFBP7 axis. Nat Commun. 13:32752022. View Article : Google Scholar | |
|
Cáceres RA, Chavez T, Maestro D, Palanca AR, Bolado P, Madrazo F, Aires A, Cortajarena AL and Villar AV: Reduction of cardiac TGFβ-mediated profibrotic events by inhibition of Hsp90 with engineered protein. J Mol Cell Cardiol. 123:75–87. 2018. View Article : Google Scholar | |
|
Zhang X, Zhang Y, Miao Q, Shi Z, Hu L, Liu S, Gao J, Zhao S, Chen H, Huang Z, et al: Inhibition of HSP90 S-nitrosylation alleviates cardiac fibrosis via TGFβ/SMAD3 signalling pathway. Br J Pharmacol. 178:4608–4625. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhong W, Chen W, Liu Y, Zhang J, Lu Y, Wan X, Qiao Y, Huang H, Zeng Z, Li W, et al: Extracellular HSP90α promotes cellular senescence by modulating TGF-β signaling in pulmonary fibrosis. FASEB J. 36:e224752022. View Article : Google Scholar | |
|
Christians ES, Ishiwata T and Benjamin IJ: Small heat shock proteins in redox metabolism: Implications for cardiovascular diseases. Int J Biochem Cell Biol. 44:1632–1645. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Collier MP and Benesch JLP: Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones. 25:601–613. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Nguyen VC, Deck CA and Pamenter ME: Naked mole-rats reduce the expression of ATP-dependent but not ATP-independent heat shock proteins in acute hypoxia. J Exp Biol. 222(Pt 22): jeb2112432019. View Article : Google Scholar : PubMed/NCBI | |
|
Janowska MK, Baughman HER, Woods CN and Klevit RE: Mechanisms of small heat shock proteins. Cold Spring Harb Perspect Biol. 11:a0340252019. View Article : Google Scholar : PubMed/NCBI | |
|
Alagar Boopathy LR, Jacob-Tomas S, Alecki C and Vera M: Mechanisms tailoring the expression of heat shock proteins to proteostasis challenges. J Biol Chem. 298:1017962022. View Article : Google Scholar : PubMed/NCBI | |
|
Carver JA, Ecroyd H, Truscott RJW, Thorn DC and Holt C: Proteostasis and the regulation of intra- and extracellular protein aggregation by ATP-independent molecular chaperones: Lens α-crystallins and milk caseins. Acc Chem Res. 51:745–752. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Izumi M: Heat shock proteins support refolding and shredding of misfolded proteins. Plant Physiol. 180:1777–1778. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Choudhary D, Mediani L, Carra S and Cecconi C: Studying heat shock proteins through single-molecule mechanical manipulation. Cell Stress Chaperones. 25:615–628. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Dokladny K, Myers OB and Moseley PL: Heat shock response and autophagy-cooperation and control. Autophagy. 11:200–213. 2015. View Article : Google Scholar : | |
|
Shan Q, Ma F, Wei J, Li H, Ma H and Sun P: Physiological functions of heat shock proteins. Curr Protein Pept Sci. 21:751–760. 2020. View Article : Google Scholar | |
|
Hosaka Y, Araya J, Fujita Y and Kuwano K: Role of chaperone-mediated autophagy in the pathophysiology including pulmonary disorders. Inflamm Regen. 41:292021. View Article : Google Scholar : PubMed/NCBI | |
|
Wick G, Jakic B, Buszko M, Wick MC and Grundtman C: The role of heat shock proteins in atherosclerosis. Nat Rev Cardiol. 11:516–529. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Bakthisaran R, Tangirala R and Rao ChM: Small heat shock proteins: Role in cellular functions and pathology. Biochim Biophys Acta. 1854:291–319. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Hashikawa N, Ido M, Morita Y and Hashikawa-Hobara N: Effects from the induction of heat shock proteins in a murine model due to progression of aortic atherosclerosis. Sci Rep. 11:70252021. View Article : Google Scholar : PubMed/NCBI | |
|
Cuerrier CM, Chen YX, Tremblay D, Rayner K, McNulty M, Zhao X, Kennedy CR, de BelleRoche J, Pelling AE and O'Brien ER: Chronic over-expression of heat shock protein 27 attenuates atherogenesis and enhances plaque remodeling: A combined histological and mechanical assessment of aortic lesions. PLoS One. 8:e558672013. View Article : Google Scholar : PubMed/NCBI | |
|
Liu A, Ming JY, Fiskesund R, Ninio E, Karabina SA, Bergmark C, Frostegård AG and Frostegård J: Induction of dendritic cell-mediated T-cell activation by modified but not native low-density lipoprotein in humans and inhibition by annexin a5: Involvement of heat shock proteins. Arterioscler Thromb Vasc Biol. 35:197–205. 2015. View Article : Google Scholar | |
|
Gong R, Li XY, Chen HJ, Xu CC, Fang HY, Xiang J and Wu YQ: Role of heat shock protein 22 in the protective effect of geranylgeranylacetone in response to oxidized-LDL. Drug Des Devel Ther. 13:2619–2632. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Nahomi RB, Palmer A, Green KM, Fort PE and Nagaraj RH: Pro-inflammatory cytokines downregulate Hsp27 and cause apoptosis of human retinal capillary endothelial cells. Biochim Biophys Acta. 1842:164–174. 2014. View Article : Google Scholar : | |
|
Batulan Z, Pulakazhi Venu VK, Li Y, Koumbadinga G, Alvarez-Olmedo DG, Shi C and O'Brien ER: Extracellular release and signaling by heat shock protein 27: Role in modifying vascular inflammation. Front Immunol. 7:2852016. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou XY, Sun JY, Wang WQ, Li SX, Li HX, Yang HJ, Yang MF, Yuan H, Zhang ZY, Sun BL and Han JX: TAT-HSP27 Peptide improves neurologic deficits via reducing apoptosis after experimental subarachnoid hemorrhage. Front Cell Neurosci. 16:8786732022. View Article : Google Scholar : PubMed/NCBI | |
|
Jin C, Cleveland JC, Ao L, Li J, Zeng Q, Fullerton DA and Meng X: Human myocardium releases heat shock protein 27 (HSP27) after global ischemia: The proinflammatory effect of extracellular HSP27 through toll-like receptor (TLR)-2 and TLR4. Mol Med. 20:280–289. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Inia JA and O'Brien ER: Role of Heat Shock Protein 27 in Modulating Atherosclerotic Inflammation. J Cardiovasc Transl Res. 14:3–12. 2021. View Article : Google Scholar | |
|
Forouzanfar F, Butler AE, Banach M, Barreto GE and Sahbekar A: Modulation of heat shock proteins by statins. Pharmacol Res. 134:134–144. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Sklifasovskaya AP and Blagonravov ML: Small heat shock proteins HSP10 and HSP27 in the left ventricular myocardium in rats with arterial hypertension and insulin-dependent diabetes mellitus. Bull Exp Biol Med. 170:699–705. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sada K, Nishikawa T, Kukidome D, Yoshinaga T, Kajihara N, Sonoda K, Senokuchi T, Motoshima H, Matsumura T and Araki E: Hyperglycemia induces cellular hypoxia through production of mitochondrial ROS followed by suppression of aquaporin-1. PLoS One. 11:e01586192016. View Article : Google Scholar : PubMed/NCBI | |
|
Yu L, Chen S, Liang Q, Huang C, Zhang W, Hu L, Yu Y, Liu L, Cheng X and Bao H: Rosiglitazone reduces diabetes angiopathy by inhibiting mitochondrial dysfunction dependent on regulating HSP22 expression. iScience. 26:1061942023. View Article : Google Scholar : PubMed/NCBI | |
|
Yu L, Liang Q, Zhang W, Liao M, Wen M, Zhan B, Bao H and Cheng X: HSP22 suppresses diabetes-induced endothelial injury by inhibiting mitochondrial reactive oxygen species formation. Redox Biol. 21:1010952019. View Article : Google Scholar : PubMed/NCBI | |
|
Li X, Fang P, Yang WY, Chan K, Lavallee M, Xu K, Gao T, Wang H and Yang X: Mitochondrial ROS, uncoupled from ATP synthesis, determine endothelial activation for both physiological recruitment of patrolling cells and pathological recruitment of inflammatory cells. Can J Physiol Pharmacol. 95:247–252. 2017. View Article : Google Scholar | |
|
Fang H, Hu N, Zhao Q, Wang B, Zhou H, Fu Q, Shen L, Chen X, Shen F and Lyu J: mtDNA haplogroup N9a increases the risk of type 2 diabetes by altering mitochondrial function and intracellular mitochondrial signals. Diabetes. 67:1441–1453. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Rodríguez ME, Cogno IS, Milla Sanabria LS, Morán YS and Rivarola VA: Heat shock proteins in the context of photodynamic therapy: Autophagy, apoptosis and immunogenic cell death. Photochem Photobiol Sci. 15:1090–1102. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Penke B, Bogár F, Crul T, Sántha M, Tóth ME and Vígh L: Heat shock proteins and autophagy pathways in neuroprotection: From molecular bases to pharmacological interventions. Int J Mol Sci. 19:3252018. View Article : Google Scholar : PubMed/NCBI | |
|
Kanugovi Vijayavittal A, Kumar P, Sugunan S, Joseph C, Devaki B, Paithankar K and Amere Subbarao S: Heat shock transcription factor HSF2 modulates the autophagy response through the BTG2-SOD2 axis. Biochem Biophys Res Commun. 600:44–50. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Cuervo AM and Wong E: Chaperone-mediated autophagy: Roles in disease and aging. Cell Res. 24:92–104. 2014. View Article : Google Scholar : | |
|
Wu Z, Geng Y, Lu X, Shi Y, Wu G, Zhang M, Shan B, Pan H and Yuan J: Chaperone-mediated autophagy is involved in the execution of ferroptosis. Proc Natl Acad Sci USA. 116:2996–3005. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Hale BJ, Hager CL, Seibert JT, Selsby JT, Baumgard LH, Keating AF and Ross JW: Heat stress induces autophagy in pig ovaries during follicular development. Biol Reprod. 97:426–437. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Ganesan S, Pearce SC, Gabler NK, Baumgard LH, Rhoads RP and Selsby JT: Short-term heat stress results in increased apoptotic signaling and autophagy in oxidative skeletal muscle in Sus scrofa. J Therm Biol. 72:73–80. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Roths M, Freestone AD, Rudolph TE, Michael A, Baumgard LH and Selsby JT: Environment-induced heat stress causes structural and biochemical changes in the heart. J Therm Biol. 113:1034922023. View Article : Google Scholar : PubMed/NCBI | |
|
Li DL, Wang ZV, Ding G, Tan W, Luo X, Criollo A, Xie M, Jiang N, May H, Kyrychenko V, et al: Doxorubicin blocks cardiomyocyte autophagic flux by inhibiting lysosome acidification. Circulation. 26(133): 1668–1687. 2016. View Article : Google Scholar | |
|
Packer M: Role of impaired nutrient and oxygen deprivation signaling and deficient autophagic flux in diabetic CKD development: Implications for understanding the effects of sodium-glucose cotransporter 2-inhibitors. J Am Soc Nephrol. 31:907–919. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Gu S, Tan J, Li Q, Liu S, Ma J, Zheng Y, Liu J, Bi W, Sha P, Li X, et al: Downregulation of LAPTM4B contributes to the impairment of the autophagic flux via unopposed activation of mTORC1 signaling during myocardial ischemia/reperfusion injury. Circ Res. 127:e148–e165. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Sciarretta S, Maejima Y, Zablocki D and Sadoshima J: The role of autophagy in the heart. Annu Rev Physiol. 80:1–26. 2018. View Article : Google Scholar | |
|
Lavandero S, Troncoso R, Rothermel BA, Martinet W, Sadoshima J and Hill JA: Cardiovascular autophagy: Concepts, controversies, and perspectives. Autophagy. 9:1455–1466. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Ott C, Jung T, Brix S, John C, Betz IR, Foryst-Ludwig A, Deubel S, Kuebler WM, Grune T, Kintscher U and Grune J: Hypertrophy-reduced autophagy causes cardiac dysfunction by directly impacting cardiomyocyte contractility. Cells. 10:8052021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Liu D, Hu H, Zhang P, Xie R and Cui W: HIF-1α/BNIP3 signaling pathway-induced-autophagy plays protective role during myocardial ischemia-reperfusion injury. Biomed. Pharmacother. 120:1094642019. View Article : Google Scholar | |
|
Liu W, Chen C, Gu X, Zhang L, Mao X, Chen Z and Tao L: AM1241 alleviates myocardial ischemia-reperfusion injury in rats by enhancing Pink1/Parkin-mediated autophagy. Life Sci. 272:1192282021. View Article : Google Scholar : PubMed/NCBI | |
|
Sui Z, Wang MM, Xing Y, Qi J and Wang W: Targeting MCOLN1/TRPML1 channels to protect against ischemia-reperfusion injury by restoring the inhibited autophagic flux in cardiomyocytes. Autophagy. 18:3053–3055. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Liu L, Jin X, Hu CF, Li R, Zhou Z and Shen CX: Exosomes derived from mesenchymal stem cells rescue myocardial ischaemia/reperfusion injury by inducing cardiomyocyte autophagy via AMPK and Akt pathways. Cell Physiol Biochem. 43:52–68. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Xiang M, Lu Y, Xin L, Gao J, Shang C, Jiang Z, Lin H, Fang X, Qu Y, Wang Y, et al: Role of oxidative stress in reperfusion following myocardial ischemia and its treatments. Oxid Med Cell Longev. 2021:66140092021. View Article : Google Scholar : PubMed/NCBI | |
|
Xing Y, Sui Z, Liu Y, Wang MM, Wei X, Lu Q, Wang X, Liu N, Lu C, Chen R, et al: Blunting TRPML1 channels protects myocardial ischemia/reperfusion injury by restoring impaired cardiomyocyte autophagy. Basic Res Cardiol. 117:202022. View Article : Google Scholar : PubMed/NCBI | |
|
Kim YC and Guan KL: mTOR: A pharmacologic target for autophagy regulation. J Clin Invest. 125:25–32. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y and Zhang H: Regulation of autophagy by mTOR signaling pathway. Adv Exp Med Biol. 1206:67–83. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Al-Bari MAA and Xu P: Molecular regulation of autophagy machinery by mTOR-dependent and -independent pathways. Ann N Y Acad Sci. 1467:3–20. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Liu GS, Zhu H, Cai WF, Wang X, Jiang M, Essandoh K, Vafiadaki E, Haghighi K, Lam CK, Gardner G, et al: Regulation of BECN1-mediated autophagy by HSPB6: Insights from a human HSPB6S10F mutant. Autophagy. 14:80–97. 2018. View Article : Google Scholar : | |
|
Nicolaou P, Knöll R, Haghighi K, Fan GC, Dorn GW II, Hasenfub G and Kranias EG: Human mutation in the anti-apoptotic heat shock protein 20 abrogates its cardioprotective effects. J Biol Chem. 283:33465–33471. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Shatov VM and Gusev NB: Physico-chemical properties of two point mutants of small heat shock protein HspB6 (Hsp20) with abrogated cardioprotection. Biochimie. 174:126–135. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Lavandero S, Chiong M, Rothermel BA and Hill JA: Autophagy in cardiovascular biology. J Clin Invest. 125:55–64. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Parzych KR and Klionsky DJ: An overview of autophagy: Morphology, mechanism, and regulation. Antioxid Redox Signal. 20:460–473. 2014. View Article : Google Scholar : | |
|
Cao W, Li J, Yang K and Cao D: An overview of autophagy: Mechanism, regulation and research progress. Bull Cancer. 108:304–322. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Zhou Y, Manghwar H, Hu W and Liu F: Degradation mechanism of autophagy-related proteins and research progress. Int J Mol Sci. 23:73012022. View Article : Google Scholar : PubMed/NCBI | |
|
Li W, He P, Huang Y, Li YF, Lu J, Li M, Kurihara H, Luo Z, Meng T, Onishi M, et al: Selective autophagy of intracellular organelles: Recent research advances. Theranostics. 11:222–256. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Li Y, Li S and Wu H: Ubiquitination-proteasome system (UPS) and autophagy two main protein degradation machineries in response to cell stress. Cells. 11:8512022. View Article : Google Scholar : PubMed/NCBI | |
|
Popov SV, Mukhomedzyanov AV, Voronkov NS, Derkachev IA, Boshchenko AA, Fu F, Sufianova GZ, Khlestkina MS and Maslov LN: Regulation of autophagy of the heart in ischemia and reperfusion. Apoptosis. 28:55–80. 2023. View Article : Google Scholar | |
|
Dong Y, Chen H, Gao J, Liu Y, Li J and Wang J: Molecular machinery and interplay of apoptosis and autophagy in coronary heart disease. J Mol Cell Cardiol. 136:27–41. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Denton D and Kumar S: Autophagy-dependent cell death. Cell Death Differ. 26:605–616. 2019. View Article : Google Scholar : | |
|
Mahapatra KK, Mishra SR, Behera BP, Patil S, Gewirtz DA and Bhutia SK: The lysosome as an imperative regulator of autophagy and cell death. Cell Mol. Life Sci. 78:7435–7449. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Xu HD and Qin ZH: Beclin 1, Bcl-2 and Autophagy. Adv Exp Med Biol. 1206:109–126. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Liu J, Liu W and Yang H: Balancing apoptosis and autophagy for Parkinson's disease therapy: Targeting BCL-2. ACS Chem. Neurosci. 10:792–802. 2019. | |
|
Blagonravov ML, Sklifasovskaya AP, Demurov EA and Karimov AA: Beclin-1-dependent autophagy of left ventricular cardiomyocytes in SHR and Wistar-Kyoto rats with type 1 diabetes mellitus. Bull Exp Biol Med. 171:23–27. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Sklifasovskaya AP, Blagonravov ML, Ryabinina AY, Azova MM and Goryachev VA: Expression of Bax and Bcl-2 Proteins in Left-Ventricular Cardiomyocytes in Wistar-Kyoto and SHR Rats with Insulin-Dependent Diabetes Mellitus. Bull Exp Biol Med. 171:576–581. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Van Opdenbosch N and Lamkanfi M: Caspases in cell death, inflammation, and disease. Immunity. 50:1352–1364. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Araya LE, Soni IV, Hardy JA and Julien O: Deorphanizing caspase-3 and caspase-9 substrates in and out of apoptosis with deep substrate profiling. ACS Chem Biol. 16:2280–2296. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Green DR: Caspase activation and inhibition. Cold Spring Harb Perspect Biol. 14:a0410202022. View Article : Google Scholar : PubMed/NCBI | |
|
Kashyap D, Garg VK and Goel N: Intrinsic and extrinsic pathways of apoptosis: Role in cancer development and prognosis. Adv Protein Chem Struct Biol. 125:73–120. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Lossi L: The concept of intrinsic versus extrinsic apoptosis. Biochem J. 479:357–384. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Tang D, Kang R, Berghe TV, Vandenabeele P and Kroemer G: The molecular machinery of regulated cell death. Cell Res. 29:347–364. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Obeng E: Apoptosis (programmed cell death) and its signals-A review. Braz J Biol. 81:1133–1143. 2021. View Article : Google Scholar | |
|
Kennedy D, Jäger R, Mosser DD and Samali A: Regulation of apoptosis by heat shock proteins. IUBMB Life. 66:327–338. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Leung AM, Redlak MJ and Miller TA: Role of heat shock proteins in oxygen radical-induced gastric apoptosis. J Surg Res. 193:135–144. 2015. View Article : Google Scholar | |
|
Yu Y, Hu LL, Liu L, Yu LL, Li JP, Rao JA, Zhu LJ, Bao HH and Cheng XS: Hsp22 ameliorates lipopolysaccharide-induced myocardial injury by inhibiting inflammation, oxidative stress, and apoptosis. Bioengineered. 12:12544–12554. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ruan L, Zhou C, Jin E, Kucharavy A, Zhang Y, Wen Z, Florens L and Li R: Cytosolic proteostasis through importing of misfolded proteins into mitochondria. Nature. 543:443–446. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Koike N, Hatano Y and Ushimaru T: Heat shock transcriptional factor mediates mitochondrial unfolded protein response. Curr Genet. 64:907–917. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Verma A, Sumi S and Seervi M: Heat shock proteins-driven stress granule dynamics: Yet another avenue for cell survival. Apoptosis. 26:371–384. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Liyanagamage DSNK and Martinus RD: Role of mitochondrial stress protein HSP60 in diabetes-induced neuroinflammation. Mediators Inflamm. 2020:80735162020. View Article : Google Scholar : PubMed/NCBI | |
|
Kumar R, Chaudhary AK, Woytash J, Inigo JR, Gokhale AA, Bshara W, Attwood K, Wang J, Spernyak JA, Rath E, et al: A mitochondrial unfolded protein response inhibitor suppresses prostate cancer growth in mice via HSP60. J Clin Invest. 132:e1499062022. View Article : Google Scholar : PubMed/NCBI | |
|
Duan Y, Tang H, Mitchell-Silbaugh K, Fang X, Han Z and Ouyang K: Heat shock protein 60 in cardiovascular physiology and diseases. Front Mol Biosci. 7:732020. View Article : Google Scholar : PubMed/NCBI | |
|
Song E, Tang S, Xu J, Yin B, Bao E and Hartung J: Lenti-siRNA Hsp60 promote bax in mitochondria and induces apoptosis during heat stress. Biochem Biophys Res Commun. 481:125–131. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Tian X, Zhao L, Song X, Yan Y, Liu N, Li T, Yan B and Liu B: HSP27 inhibits homocysteine-induced endothelial apoptosis by modulation of ROS production and mitochondrial caspase-dependent apoptotic pathway. Biomed Res Int. 2016:48478742016. View Article : Google Scholar : PubMed/NCBI | |
|
Kennedy D, Mnich K, Oommen D, Chakravarthy R, Almeida-Souza L, Krols M, Saveljeva S, Doyle K, Gupta S, Timmerman V, et al: HSPB1 facilitates ERK-mediated phosphorylation and degradation of BIM to attenuate endoplasmic reticulum stress-induced apoptosis. Cell Death Dis. 8:e30262017. View Article : Google Scholar : PubMed/NCBI | |
|
Önay Uçar E and Şengelen A: Resveratrol and siRNA in combination reduces Hsp27 expression and induces caspase-3 activity in human glioblastoma cells. Cell Stress Chaperones. 24:763–775. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Guo S, Gao C, Xiao W, Zhang J, Qu Y, Li J and Ye F: Matrine protects cardiomyocytes from ischemia/reperfusion injury by regulating HSP70 expression via activation of the JAK2/STAT3 pathway. Shock. 50:664–670. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Xin BR, Li P, Liu XL and Zhang XF: Visfatin relieves myocardial ischemia-reperfusion injury through activation of PI3K/Akt/HSP70 signaling axis. Eur Rev Med Pharmacol Sci. 24:10779–10789. 2020.PubMed/NCBI | |
|
Huang C, Deng H, Zhao W and Xian L: Knockdown of miR-384-3p protects against myocardial ischemia-reperfusion injury in rats through targeting HSP70. Heart Surg Forum. 24:E143–E150. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Song N, Ma J, Meng XW, Liu H, Wang H, Song SY, Chen QC, Liu HY, Zhang J, Peng K and Ji FH: Heat shock protein 70 protects the heart from ischemia/reperfusion injury through inhibition of p38 MAPK Signaling. Oxid Med Cell Longev. 2020:39086412020. View Article : Google Scholar : PubMed/NCBI | |
|
Choudhury S, Bae S, Ke Q, Lee JY, Kim J and Kang PM: Mitochondria to nucleus translocation of AIF in mice lacking Hsp70 during ischemia/reperfusion. Basic Res Cardiol. 106:397–407. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang C, Liu X, Miao J, Wang S, Wu L, Yan D, Li J, Guo W, Wu X and Shen A: Heat shock protein 70 protects cardiomyocytes through suppressing SUMOylation and nucleus translocation of phosphorylated eukaryotic elongation factor 2 during myocardial ischemia and reperfusion. Apoptosis. 22:608–625. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Sun A, Zou Y, Wang P, Xu D, Gong H, Wang S, Qin Y, Zhang P, Chen Y, Harada M, et al: Mitochondrial aldehyde dehydrogenase 2 plays protective roles in heart failure after myocardial infarction via suppression of the cytosolic JNK/p53 pathway in mice. J Am Heart Assoc. 3:e0007792014. View Article : Google Scholar : PubMed/NCBI | |
|
Jenei ZM, Széplaki G, Merkely B, Karádi I, Zima E and Prohászka Z: Persistently elevated extracellular HSP70 (HSPA1A) level as an independent prognostic marker in post-cardiac-arrest patients. Cell Stress Chaperones. 18:447–454. 2013. View Article : Google Scholar : PubMed/NCBI |