Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
November-2023 Volume 52 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
November-2023 Volume 52 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review)

  • Authors:
    • Yujia Zheng
    • Xiaolu Zhang
    • Ruifeng Zhang
    • Ziyu Wang
    • Jiali Gan
    • Qing Gao
    • Lin Yang
    • Pengjuan Xu
    • Xijuan Jiang
  • View Affiliations / Copyright

    Affiliations: Tianjin University of Traditional Chinese Medicine, Tianjin 301617, P.R. China
    Copyright: © Zheng et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 111
    |
    Published online on: October 4, 2023
       https://doi.org/10.3892/ijmm.2023.5314
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

The intricate nature of Alzheimer's disease (AD) pathogenesis poses a persistent obstacle to drug development. In recent times, neuroinflammation has emerged as a crucial pathogenic mechanism of AD, and the targeting of inflammation has become a viable approach for the prevention and management of AD. The present study conducted a comprehensive review of the literature between October 2012 and October 2022, identifying a total of 96 references, encompassing 91 distinct pharmaceuticals that have been investigated for their potential impact on AD by inhibiting neuroinflammation. Research has shown that pharmaceuticals have the potential to ameliorate AD by reducing neuroinflammation mainly through regulating inflammatory signaling pathways such as NF‑κB, MAPK, NLRP3, PPARs, STAT3, CREB, PI3K/Akt, Nrf2 and their respective signaling pathways. Among them, tanshinone IIA has been extensively studied for its anti‑inflammatory effects, which have shown significant pharmacological properties and can be applied clinically. Thus, it may hold promise as an effective drug for the treatment of AD. The present review elucidated the inflammatory signaling pathways of pharmaceuticals that have been investigated for their therapeutic efficacy in AD and elucidates their underlying mechanisms. This underscores the auspicious potential of pharmaceuticals in ameliorating AD by impeding neuroinflammation.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Wang X, Iyaswamy A, Xu D, Krishnamoorthi S, Sreenivasmurthy SG, Yang Y, Li Y, Chen C, Li M, Li HW and Wong MS: Real-time detection and visualization of amyloid-β aggregates induced by hydrogen peroxide in cell and mouse models of Alzheimer's disease. ACS Appl Mater Interfaces. 15:39–47. 2023. View Article : Google Scholar

2 

Shih YH, Tu LH, Chang TY, Ganesan K, Chang WW, Chang PS, Fang YS, Lin YT, Jin LW and Chen YR: TDP-43 interacts with amyloid-β, inhibits fibrillization, and worsens pathology in a model of Alzheimer's disease. Nat Commun. 11:59502020. View Article : Google Scholar

3 

Nasaruddin ML, Pan X, McGuinness B, Passmore P, Kehoe PG, Holscher C, Graham SF and Green BD: Evidence that parietal lobe fatty acids may be more profoundly affected in moderate Alzheimer's disease (AD) pathology than in severe AD pathology. Metabolites. 8:692018. View Article : Google Scholar : PubMed/NCBI

4 

Chen YG: Research progress in the pathogenesis of Alzheimer's disease. Chin Med J (Engl). 131:1618–1624. 2018. View Article : Google Scholar : PubMed/NCBI

5 

Ardura-Fabregat A, Boddeke EWGM, Boza-Serrano A, Brioschi S, Castro-Gomez S, Ceyzériat K, Dansokho C, Dierkes T, Gelders G, Heneka MT, et al: Targeting neuroinflammation to treat Alzheimer's disease. CNS Drugs. 31:1057–1082. 2017. View Article : Google Scholar : PubMed/NCBI

6 

Finneran DJ and Nash KR: Neuroinflammation and fractalkine signaling in Alzheimer's disease. J Neuroinflammation. 16:302019. View Article : Google Scholar : PubMed/NCBI

7 

Souza LC, Filho CB, Goes AT, Fabbro LD, de Gomes MG, Savegnago L, Oliveira MS and Jesse CR: Neuroprotective effect of physical exercise in a mouse model of Alzheimer's disease induced by β-amyloid 2013. 1-40 peptide. Neurotox Res. 24:148–163. 2013. View Article : Google Scholar : PubMed/NCBI

8 

Janelsins MC, Mastrangelo MA, Oddo S, LaFerla FM, Federoff HJ and Bowers WJ: Early correlation of microglial activation with enhanced tumor necrosis factor-alpha and monocyte chemoattractant protein-1 expression specifically within the entorhinal cortex of triple transgenic Alzheimer's disease mice. J Neuroinflammation. 2:232005. View Article : Google Scholar : PubMed/NCBI

9 

Ma K, Mount HTJ and McLaurin J: Region-specific distribution of β-amyloid peptide and cytokine expression in TgCRND8 mice. Neurosci Lett. 492:5–10. 2011. View Article : Google Scholar : PubMed/NCBI

10 

Wu YY, Hsu JL, Wang HC, Wu SJ, Hong CJ and Cheng IHJ: Alterations of the neuroinflammatory markers IL-6 and TRAIL in Alzheimer's disease. Dement Geriatr Cogn Dis Extra. 5:424–434. 2015. View Article : Google Scholar : PubMed/NCBI

11 

Takeda S, Sato N, Ikimura K, Nishino H, Rakugi H and Morishita R: Increased blood-brain barrier vulnerability to systemic inflammation in an Alzheimer disease mouse model. Neurobiol Aging. 34:2064–2070. 2013. View Article : Google Scholar : PubMed/NCBI

12 

Mann DM, Tucker CM and Yates PO: Alzheimer's disease: An olfactory connection? Mech Ageing Dev. 42:1–15. 1988. View Article : Google Scholar : PubMed/NCBI

13 

Christen-Zaech S, Kraftsik R, Pillevuit O, Kiraly M, Martins R, Khalili K and Miklossy J: Early olfactory involvement in Alzheimer's disease. Can J Neurol Sci. 30:20–25. 2003. View Article : Google Scholar : PubMed/NCBI

14 

Abe Y, Ikegawa N, Yoshida K, Muramatsu K, Hattori S, Kawai K, Murakami M, Tanaka T, Goda W, Goto M, et al: Behavioral and electrophysiological evidence for a neuroprotective role of aquaporin-4 in the 5xFAD transgenic mice model. Acta Neuropathol Commun. 8:672020. View Article : Google Scholar : PubMed/NCBI

15 

Walker DG, Dalsing-Hernandez JE, Campbell NA and Lue LF: Decreased expression of CD200 and CD200 receptor in Alzheimer's disease: A potential mechanism leading to chronic inflammation. Exp Neurol. 215:5–19. 2009. View Article : Google Scholar :

16 

Ham HJ, Lee YS, Yun J, Son DJ, Lee HP, Han SB and Hong JT: K284-6111 alleviates memory impairment and neuroinflammation in Tg2576 mice by inhibition of chitinase-3-like 1 regulating ERK-dependent PTX3 pathway. J Neuroinflammation. 17:3502020. View Article : Google Scholar : PubMed/NCBI

17 

Cullen NC, Malarstig AN, Stomrud E, Hansson O and Mattsson-Carlgren N: Accelerated inflammatory aging in Alzheimer's disease and its relation to amyloid, tau, and cognition. Sci Rep. 11:19652021. View Article : Google Scholar : PubMed/NCBI

18 

Voet S, Mc Guire C, Hagemeyer N, Martens A, Schroeder A, Wieghofer P, Daems C, Staszewski O, Vande Walle L, Jordao MJC, et al: A20 critically controls microglia activation and inhibits inflammasome-dependent neuroinflammation. Nat Commun. 9:20362018. View Article : Google Scholar : PubMed/NCBI

19 

Erny D, Hrabě de Angelis AL, Jaitin D, Wieghofer P, Staszewski O, David E, Keren-Shaul H, Mahlakoiv T, Jakobshagen K, Buch T, et al: Host microbiota constantly control maturation and function of microglia in the CNS. Nat Neurosci. 18:965–977. 2015. View Article : Google Scholar : PubMed/NCBI

20 

Sierra A, Beccari S, Diaz-Aparicio I, Encinas JM, Comeau S and Tremblay MÈ: Surveillance, phagocytosis, and inflammation: How never-resting microglia influence adult hippocampal neurogenesis. Neural Plast. 2014:6103432014. View Article : Google Scholar : PubMed/NCBI

21 

Ben-Yehuda H, Matcovitch-Natan O, Kertser A, Spinrad A, Prinz M, Amit I and Schwartz M: Maternal Type-I interferon signaling adversely affects the microglia and the behavior of the offspring accompanied by increased sensitivity to stress. Mol Psychiatr. 25:1050–1067. 2020. View Article : Google Scholar

22 

Town T, Nikolic V and Tan J: The microglial 'activation' continuum: From innate to adaptive responses. J Neuroinflammation. 2:242005. View Article : Google Scholar

23 

Leng F and Edison P: Neuroinflammation and microglial activation in Alzheimer disease: Where do we go from here? Nat Rev Neurol. 17:157–172. 2021. View Article : Google Scholar

24 

Song WM, Joshita S, Zhou Y, Ulland TK, Gilfillan S and Colonna M: Humanized TREM2 mice reveal microglia-intrinsic and -extrinsic effects of R47H polymorphism. J Exp Med. 215:745–760. 2018. View Article : Google Scholar : PubMed/NCBI

25 

Tansey MG, McCoy MK and Frank-Cannon TC: Neuroinflammatory mechanisms in Parkinson's disease: Potential environmental triggers, pathways, and targets for early therapeutic intervention. Exp Neurol. 208:1–25. 2007. View Article : Google Scholar : PubMed/NCBI

26 

Jankowsky JL and Patterson PH: Cytokine and growth factor involvement in long-term potentiation. Mol Cell Neurosci. 14:273–286. 1999. View Article : Google Scholar : PubMed/NCBI

27 

Das S and Basu A: Inflammation: A new candidate in modulating adult neurogenesis. J Neurosci Res. 86:1199–1208. 2008. View Article : Google Scholar

28 

Heneka MT, Carson MJ, El KJ, Landreth GE, Brosseron F, Feinstein DL, Jacobs AH, Wyss-Coray T, Vitorica J, Ransohoff RM, et al: Neuroinflammation in Alzheimer's disease. Lancet Neurol. 14:388–405. 2015. View Article : Google Scholar : PubMed/NCBI

29 

Giridharan S and Srinivasan M: Mechanisms of NF-κB p65 and strategies for therapeutic manipulation. J Inflamm Res. 11:407–419. 2018. View Article : Google Scholar :

30 

Noort AR, Tak PP and Tas SW: Non-canonical NF-κB signaling in rheumatoid arthritis: Dr Jekyll and Mr Hyde? Arthritis Res Ther. 17:152015. View Article : Google Scholar

31 

Mattson MP and Meffert MK: Roles for NF-kappaB in nerve cell survival, plasticity, and disease. Cell Death Differ. 13:852–860. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Miyauchi T, Uchida Y, Kadono K, Hirao H, Kawasoe J, Watanabe T, Ueda S, Okajima H, Terajima H and Uemoto S: Up-regulation of FOXO1 and reduced inflammation by β-hydroxybutyric acid are essential diet restriction benefits against liver injury. Proc Natl Acad Sci USA. 116:13533–13542. 2019. View Article : Google Scholar

33 

Liu Y, Li D, Jiang Q, Zhang Q, Liu P, Wang L, Zong M, Zhang Q, Li H, An Y, et al: (3R, 7R)-7-Acetoxyl-9-Oxo-de-O-methyllasiodiplodin, a secondary metabolite of penicillium Sp., inhibits LPS-mediated inflammation in RAW 264.7 macrophages through blocking ERK/MAPKs and NF-κB signaling pathways. Inflammation. 42:1463–1473. 2019. View Article : Google Scholar : PubMed/NCBI

34 

Christian F, Smith EL and Carmody RJ: The regulation of NF-κB subunits by phosphorylation. Cells. 5:122016. View Article : Google Scholar

35 

Oeckinghaus A and Ghosh S: The NF-kappaB family of transcription factors and its regulation. Cold Spring Harb Perspect Biol. 1:a0000342009. View Article : Google Scholar

36 

Yano H, Sakai M, Matsukawa T, Yagi T, Naganuma T, Mitsushima M, Iida S, Inaba Y, Inoue H, Unoki-Kubota H, et al: PHD3 regulates glucose metabolism by suppressing stress-induced signalling and optimising gluconeogenesis and insulin signalling in hepatocytes. Sci Rep. 8:142902018. View Article : Google Scholar : PubMed/NCBI

37 

Terai K, Matsuo A and McGeer PL: Enhancement of immunoreactivity for NF-kappa B in the hippocampal formation and cerebral cortex of Alzheimer's disease. Brain Res. 735:159–168. 1996. View Article : Google Scholar : PubMed/NCBI

38 

Kotilinek LA, Westerman MA, Wang Q, Panizzon K, Lim GP, Simonyi A, Lesne S, Falinska A, Younkin LH, Younkin SG, et al: Cyclooxygenase-2 inhibition improves amyloid-beta-mediated suppression of memory and synaptic plasticity. Brain. 131:651–664. 2008. View Article : Google Scholar : PubMed/NCBI

39 

Kolesnick R and Golde DW: The sphingomyelin pathway in tumor necrosis factor and interleukin-1 signaling. Cell. 77:325–328. 1994. View Article : Google Scholar : PubMed/NCBI

40 

Kitamura Y, Shimohama S, Ota T, Matsuoka Y, Nomura Y and Taniguchi T: Alteration of transcription factors NF-kappaB and STAT1 in Alzheimer's disease brains. Neurosci Lett. 237:17–20. 1997. View Article : Google Scholar : PubMed/NCBI

41 

Chen CH, Zhou W, Liu S, Deng Y, Cai F, Tone M, Tone Y, Tong Y and Song W: Increased NF-κB signalling up-regulates BACE1 expression and its therapeutic potential in Alzheimer's disease. Int J Neuropsychopharmacol. 15:77–90. 2012. View Article : Google Scholar

42 

Snow WM and Albensi BC: Neuronal gene targets of NF-κB and their dysregulation in Alzheimer's disease. Front Mol Neurosci. 9:1182016. View Article : Google Scholar

43 

Wang C, Fan L, Khawaja RR, Liu B, Zhan L, Kodama L, Chin M, Li Y, Le D, Zhou Y, et al: Microglial NF-κB drives tau spreading and toxicity in a mouse model of tauopathy. Nat Commun. 13:19692022. View Article : Google Scholar

44 

López N, Tormo C, De Blas I, Llinares I and Alom J: Oxidative stress in Alzheimer's disease and mild cognitive impairment with high sensitivity and specificity. J Alzheimers Dis. 33:823–829. 2013. View Article : Google Scholar

45 

Wang SW, Yang SG, Liu W, Zhang YX, Xu PX, Wang T, Ling TJ and Liu RT: Alpha-tocopherol quinine ameliorates spatial memory deficits by reducing beta-amyloid oligomers, neuroinflammation and oxidative stress in transgenic mice with Alzheimer's disease. Behav Brain Res. 296:109–117. 2016. View Article : Google Scholar

46 

Sun HJ, Xue DD, Lu BZ, Li Y, Sheng LX, Zhu Z, Zhou YW, Zhang JX, Lin GJ, Lin SZ, et al: A novel synthetic steroid of 2β,3α,5α-trihydroxy-androst-6-one alleviates the loss of rat retinal ganglion cells caused by acute intraocular hypertension via inhibiting the inflammatory activation of microglia. Molecules. 24:2522019. View Article : Google Scholar

47 

Belkhelfa M, Rafa H, Medjeber O, Arroul-Lammali A, Behairi N, Abada-Bendib M, Makrelouf M, Belarbi S, Masmoudi AN, Tazir M and Touil-Boukoffa C: IFN-γ and TNF-α are involved during Alzheimer disease progression and correlate with nitric oxide production: a study in Algerian patients. J Interferon Cytokine Res. 34:839–847. 2014. View Article : Google Scholar : PubMed/NCBI

48 

Sui Y, Stehno-Bittel L, Li S, Loganathan R, Dhillon NK, Pinson D, Nath A, Kolson D, Narayan O and Buch S: CXCL10-induced cell death in neurons: Role of calcium dysregulation. Eur J Neurosci. 23:957–964. 2006. View Article : Google Scholar : PubMed/NCBI

49 

Xu PX, Wang SW, Yu XL, Su YJ, Wang T, Zhou WW, Zhang H, Wang YJ and Liu RT: Rutin improves spatial memory in Alzheimer's disease transgenic mice by reducing Aβ oligomer level and attenuating oxidative stress and neuroinflammation. Behav Brain Res. 264:173–180. 2014. View Article : Google Scholar : PubMed/NCBI

50 

Budzynska B, Faggio C, Kruk-Slomka M, Samec D, Nabavi SF, Sureda A, Devi KP and Nabavi SM: Rutin as neuroprotective agent: From bench to bedside. Curr Med Chem. 26:5152–5164. 2019. View Article : Google Scholar

51 

Sun XY, Li LJ, Dong QX, Zhu J, Huang YR, Hou SJ, Yu XL and Liu RT: Rutin prevents tau pathology and neuroinflammation in a mouse model of Alzheimer's disease. J Neuroinflammation. 18:1312021. View Article : Google Scholar : PubMed/NCBI

52 

Bernard CB, Krishanmurty HG, Chauret D, Durst T, Philogène BJ, Sánchez-Vindas P, Hasbun C, Poveda L, San Román L and Arnason JT: Insecticidal defenses of piperaceae from the neotropics. J Chem Ecol. 21:801–814. 1995. View Article : Google Scholar : PubMed/NCBI

53 

Gu SM, Lee HP, Ham YW, Son DJ, Kim HY, Oh KW, Han SB, Yun J and Hong JT: Piperlongumine improves lipopolysaccharide-induced amyloidogenesis by suppressing NF-KappaB pathway. Neuromolecular Med. 20:312–327. 2018. View Article : Google Scholar : PubMed/NCBI

54 

Son DJ, Lee JW, Lee YH, Song HS, Lee CK and Hong JT: Therapeutic application of anti-arthritis, pain-releasing, and anti-cancer effects of bee venom and its constituent compounds. Pharmacol Ther. 115:246–270. 2007. View Article : Google Scholar : PubMed/NCBI

55 

Gu SM, Park MH, Hwang CJ, Song HS, Lee US, Han SB, Oh KW, Ham YW, Song MJ, Son DJ and Hong JT: Bee venom ameliorates lipopolysaccharide-induced memory loss by preventing NF-kappaB pathway. J Neuroinflammation. 12:1242015. View Article : Google Scholar : PubMed/NCBI

56 

Lin CC, Hsu YF and Lin TC: Effects of punicalagin and punicalin on carrageenan-induced inflammation in rats. Am J Chin Med. 27:371–376. 1999. View Article : Google Scholar : PubMed/NCBI

57 

Kim YE, Hwang CJ, Lee HP, Kim CS, Son DJ, Ham YW, Hellström M, Han SB, Kim HS, Park EK and Hong JT: Inhibitory effect of punicalagin on lipopolysaccharide-induced neuroinflammation, oxidative stress and memory impairment via inhibition of nuclear factor-kappaB. Neuropharmacology. 117:21–32. 2017. View Article : Google Scholar : PubMed/NCBI

58 

Chen S and Jia J: Tenuifolin attenuates amyloid-β42-induced neuroinflammation in microglia through the NF-κB signaling pathway. J Alzheimers Dis. 76:195–205. 2020. View Article : Google Scholar

59 

Hammad AS, Ravindran S, Khalil A and Munusamy S: Structure-activity relationship of piperine and its synthetic amide analogs for therapeutic potential to prevent experimentally induced ER stress in vitro. Cell Stress Chaperones. 22:417–428. 2017. View Article : Google Scholar : PubMed/NCBI

60 

Shahbazi S, Zakerali T, Frycz B and Kaur J: Impact of novel N-aryl substituted piperamide on NF-kappa B translocation as a potent anti-neuroinflammatory agent. Biomed Pharmacother. 127:1101992020. View Article : Google Scholar : PubMed/NCBI

61 

Shahbazi S, Zakerali T, Frycz BA and Kaur J: The critical role of piperamide derivative D4 in the regulation of inflammatory response by the microglia and astrocytic glial cells. Biomed Pharmacother. 132:1108952020. View Article : Google Scholar : PubMed/NCBI

62 

Hsu YL, Kuo PL, Chiang LC and Lin CC: Involvement of p53, nuclear factor kappaB and Fas/Fas ligand in induction of apoptosis and cell cycle arrest by saikosaponin d in human hepatoma cell lines. Cancer Lett. 213:213–221. 2004. View Article : Google Scholar : PubMed/NCBI

63 

Park WH, Kang S, Piao Y, Pak CJ, Oh MS, Kim J, Kang MS and Pak YK: Ethanol extract of Bupleurum falcatum and saikosaponins inhibit neuroinflammation via inhibition of NF-κB. J Ethnopharmacol. 174:37–44. 2015. View Article : Google Scholar : PubMed/NCBI

64 

Leláková V, Béraud-Dufour S, Hošek J, Šmejkal K, Prachyawarakorn V, Pailee P, Widmann C, Václavík J, Coppola T, Mazella J, et al: Therapeutic potential of prenylated stilbenoid macasiamenene F through its anti-inflammatory and cytoprotective effects on LPS-challenged monocytes and microglia. J Ethnopharmacol. 263:1131472020. View Article : Google Scholar : PubMed/NCBI

65 

Najm FJ, Madhavan M, Zaremba A, Shick E, Karl RT, Factor DC, Miller TE, Nevin ZS, Kantor C, Sargent A, et al: Drug-based modulation of endogenous stem cells promotes functional remyelination in vivo. Nature. 522:216–220. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Yeo IJ, Yun J, Son DJ, Han SB and Hong JT: Antifungal drug miconazole ameliorated memory deficits in a mouse model of LPS-induced memory loss through targeting iNOS. Cell Death Dis. 11:6232020. View Article : Google Scholar : PubMed/NCBI

67 

Solberg NO, Chamberlin R, Vigil JR, Deck LM, Heidrich JE, Brown DC, Brady CI, Vander Jagt TA, Garwood M, Bisoffi M, et al: Optical and SPION-enhanced MR imaging shows that trans-stilbene inhibitors of NF-κB concomitantly lower Alzheimer's disease plaque formation and microglial activation in AβPP/PS-1 transgenic mouse brain. J Alzheimers Dis. 40:191–212. 2014. View Article : Google Scholar

68 

Lindsay A, Hickman D and Srinivasan M: A nuclear factor-kappa B inhibiting peptide suppresses innate immune receptors and gliosis in a transgenic mouse model of Alzheimer's disease. Biomed Pharmacother. 138:1114052021. View Article : Google Scholar : PubMed/NCBI

69 

Choi JY, Yeo IJ, Kim KC, Choi WR, Jung JK, Han SB and Hong JT: K284-6111 prevents the amyloid beta-induced neuroinflammation and impairment of recognition memory through inhibition of NF-κB-mediated CHI3L1 expression. J Neuroinflammation. 15:2242018. View Article : Google Scholar

70 

Lian W, Jia H, Xu L, Zhou W, Kang D, Liu A and Du G: Multi-protection of DL0410 in ameliorating cognitive defects in D-galactose induced aging mice. Front Aging Neurosci. 9:4092017. View Article : Google Scholar : PubMed/NCBI

71 

Heynekamp JJ, Weber WM, Hunsaker LA, Gonzales AM, Orlando RA, Deck LM and Jagt DL: Substituted trans-stilbenes, including analogues of the natural product resveratrol, inhibit the human tumor necrosis factor alpha-induced activation of transcription factor nuclear factor kappaB. J Med Chem. 49:7182–7189. 2006. View Article : Google Scholar : PubMed/NCBI

72 

Ayroldi E and Riccardi C: Glucocorticoid-induced leucine zipper (GILZ): A new important mediator of glucocorticoid action. FASEB J. 23:3649–3658. 2009. View Article : Google Scholar : PubMed/NCBI

73 

Cannarile L, Zollo O, D'Adamio F, Ayroldi E, Marchetti C, Tabilio A, Bruscoli S and Riccardi C: Cloning, chromosomal assignment and tissue distribution of human GILZ, a glucocorticoid hormone-induced gene. Cell Death Differ. 8:201–203. 2001. View Article : Google Scholar : PubMed/NCBI

74 

Bonneh-Barkay D, Wang G, Starkey A, Hamilton RL and Wiley CA: In vivo CHI3L1 (YKL-40) expression in astrocytes in acute and chronic neurological diseases. J Neuroinflammation. 7:342010. View Article : Google Scholar : PubMed/NCBI

75 

Muszyński P, Groblewska M, Kulczyńska-Przybik A, Kułakowska A and Mroczko B: YKL-40 as a potential biomarker and a possible target in therapeutic strategies of Alzheimer's disease. Curr Neuropharmacol. 15:906–917. 2017. View Article : Google Scholar

76 

Di Rosa M and Malaguarnera L: Chitinase 3 like-1: An emerging molecule involved in diabetes and diabetic complications. Pathobiology. 83:228–242. 2016. View Article : Google Scholar : PubMed/NCBI

77 

Billod JM, Lacetera A, Guzmán-Caldentey J and Martín-Santamaría S: Computational approaches to Toll-like receptor 4 modulation. Molecules. 21:9942016. View Article : Google Scholar : PubMed/NCBI

78 

Mertowski S, Grywalska E, Gosik K, Smarz-Widelska I, Hymos A, Dworacki G, Niedźwiedzka-Rystwej P, Drop B, Roliński J and Załuska W: TLR2 expression on select lymphocyte subsets as a new marker in glomerulonephritis. J Clin Med. 9:5412020. View Article : Google Scholar : PubMed/NCBI

79 

Elmaidomy AH, Alhadrami HA, Amin E, Aly HF, Othman AM, Rateb ME, Hetta MH, Abdelmohsen UR and M Hassan H: Anti-inflammatory and antioxidant activities of terpene- and polyphenol-rich premna odorata leaves on alcohol-inflamed female wistar albino rat liver. Molecules. 25:31162020. View Article : Google Scholar : PubMed/NCBI

80 

Zhong X, Liu M, Yao W, Du K, He M, Jin X, Jiao L, Ma G, Wei B and Wei M: Epigallocatechin-3-gallate attenuates microglial inflammation and neurotoxicity by suppressing the activation of canonical and noncanonical inflammasome via TLR4/NF-κB pathway. Mol Nutr Food Res. 63:e18012302019. View Article : Google Scholar

81 

Zhou X, Yuan L, Zhao X, Hou C, Ma W, Yu H and Xiao R: Genistein antagonizes inflammatory damage induced by β-amyloid peptide in microglia through TLR4 and NF-κB. Nutrition. 30:90–95. 2014. View Article : Google Scholar

82 

Chen R, Wang Z, Zhi Z, Tian J, Zhao Y and Sun J: Targeting the TLR4/NF-κB pathway in β-amyloid-stimulated microglial cells: A possible mechanism that oxysophoridine exerts anti-oxidative and anti-inflammatory effects in an in vitro model of Alzheimer's disease. Brain Res Bull. 175:150–157. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Onishi S, Meguro S, Pervin M, Kitazawa H, Yoto A, Ishino M, Shimba Y, Mochizuki Y, Miura S, Tokimitsu I and Unno K: Green tea extracts attenuate brain dysfunction in high-fat-diet-fed SAMP8 mice. Nutrients. 11:8212019. View Article : Google Scholar : PubMed/NCBI

84 

Balázs A, Faisal Z, Csepregi R, Kőszegi T, Kriszt B, Szabó I and Poór M: In Vitro evaluation of the individual and combined cytotoxic and estrogenic effects of zearalenone, its reduced metabolites, alternariol, and genistein. Int J Mol Sci. 22:62812021. View Article : Google Scholar : PubMed/NCBI

85 

Wang R, Deng X, Gao Q, Wu X, Han L, Gao X, Zhao S, Chen W, Zhou R, Li Z and Bai C: Sophora alopecuroides L.: An ethnopharmacological, phytochemical, and pharmacological review. J Ethnopharmacol. 248:1121722020. View Article : Google Scholar

86 

Rui C, Yuxiang L, Ning J, Ningtian M, Qingluan Z, Yinju H, Ru Z, Lin M, Tao S and Jianqiang Y: Anti-apoptotic and neuroprotective effects of oxysophoridine on cerebral ischemia both in vivo and in vitro. Planta Med. 79:916–923. 2013. View Article : Google Scholar : PubMed/NCBI

87 

Wang Y, Wang Y, Jia S, Dong Q, Chen Y, Lu S and Hou L: Effect of lipid-bound apolipoprotein A-I cysteine mutant on ATF3 in RAW264.7 cells. Biosci Rep. 37:BSR201603982017. View Article : Google Scholar : PubMed/NCBI

88 

Zeng KW, Zhao MB, Ma ZZ, Jiang Y and Tu PF: Protosappanin A inhibits oxidative and nitrative stress via interfering the interaction of transmembrane protein CD14 with Toll-like receptor-4 in lipopolysaccharide-induced BV-2 microglia. Int Immunopharmacol. 14:558–569. 2012. View Article : Google Scholar : PubMed/NCBI

89 

Mo Y, Sun YY and Liu KY: Autophagy and inflammation in ischemic stroke. Neural Regen Res. 15:1388–1396. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Capiralla H, Vingtdeux V, Zhao H, Sankowski R, Al-Abed Y, Davies P and Marambaud P: Resveratrol mitigates lipopolysaccharide- and Aβ-mediated microglial inflammation by inhibiting the TLR4/NF-κB/STAT signaling cascade. J Neurochem. 120:461–472. 2012. View Article : Google Scholar

91 

Xu Y, Huang X, Huangfu B, Hu Y, Xu J, Gao R, Huang K and He X: Sulforaphane ameliorates nonalcoholic fatty liver disease induced by high-fat and high-fructose diet via LPS/TLR4 in the gut-liver axis. Nutrients. 15:7432023. View Article : Google Scholar : PubMed/NCBI

92 

Song J, Feng L, Zhong R, Xia Z, Zhang L, Cui L, Yan H, Jia X and Zhang Z: Icariside II inhibits the EMT of NSCLC cells in inflammatory microenvironment via down-regulation of Akt/NF-κB signaling pathway. Mol Carcinogen. 56:36–48. 2017. View Article : Google Scholar

93 

Lee KS, Lee HJ, Ahn KS and Kim SH, Nam D, Kim DK, Choi DY, Ahn KS, Lu J and Kim SH: Cyclooxygenase-2/prostaglandin E2 pathway mediates icariside II induced apoptosis in human PC-3 prostate cancer cells. Cancer Lett. 280:93–100. 2009. View Article : Google Scholar : PubMed/NCBI

94 

Zhou J, Deng Y, Li F, Yin C, Shi J and Gong Q: Icariside II attenuates lipopolysaccharide-induced neuroinflammation through inhibiting TLR4/MyD88/NF-κB pathway in rats. Biomed Pharmacother. 111:315–324. 2019. View Article : Google Scholar

95 

Zhou D, Zhou W, Song JK, Feng ZY, Yang RY, Wu S, Wang L, Liu AL and Du GH: DL0410, a novel dual cholinesterase inhibitor, protects mouse brains against Aβ-induced neuronal damage via the Akt/JNK signaling pathway. Acta Pharmacol Sin. 37:1401–1412. 2016. View Article : Google Scholar : PubMed/NCBI

96 

Yang RY, Zhao G, Wang DM, Pang XC, Wang SB, Fang JS, Li C, Liu AL, Wu S and Du GH: DL0410 can reverse cognitive impairment, synaptic loss and reduce plaque load in APP/PS1 transgenic mice. Pharmacol Biochem Behav. 139:15–26. 2015. View Article : Google Scholar : PubMed/NCBI

97 

Zhang B, Lian W, Zhao J, Wang Z, Liu A and Du G: DL0410 Alleviates memory impairment in D-galactose-induced aging rats by suppressing neuroinflammation via the TLR4/MyD88/NF-κB pathway. Oxid Med Cell Longev. 2021:65211462021.

98 

Mao J, Huang S, Liu S, Feng XL, Yu M, Liu J, Sun YE, Chen G, Yu Y, Zhao J and Pei G: A herbal medicine for Alzheimer's disease and its active constituents promote neural progenitor proliferation. Aging Cell. 14:784–796. 2015. View Article : Google Scholar : PubMed/NCBI

99 

Geng Y, Li C, Liu J, Xing G, Zhou L, Dong M, Li X and Niu Y: Beta-asarone improves cognitive function by suppressing neuronal apoptosis in the beta-amyloid hippocampus injection rats. Biol Pharm Bull. 33:836–843. 2010. View Article : Google Scholar : PubMed/NCBI

100 

Zhong J, Qiu X, Yu Q, Chen H and Yan C: A novel polysaccharide from Acorus tatarinowii protects against LPS-induced neuroinflammation and neurotoxicity by inhibiting TLR4-mediated MyD88/NF-κB and PI3K/Akt signaling pathways. Int J Biol Macromol. 163:464–475. 2020. View Article : Google Scholar : PubMed/NCBI

101 

Liu M, Guo H, Li Z, Zhang C, Zhang X, Cui Q and Tian J: Molecular level insight into the benefit of myricetin and dihydromyricetin uptake in patients with Alzheimer's diseases. Front Aging Neurosci. 12:6016032020. View Article : Google Scholar : PubMed/NCBI

102 

Jing N and Li X: Dihydromyricetin attenuates inflammation through TLR4/NF-kappaB pathway. Open Med (Wars). 14:719–725. 2019. View Article : Google Scholar : PubMed/NCBI

103 

Gu RX, Gu H, Xie ZY, Wang JF, Arias HR, Wei DQ and Chou KC: Possible drug candidates for Alzheimer's disease deduced from studying their binding interactions with alpha7 nicotinic acetylcholine receptor. Med Chem. 5:250–262. 2009. View Article : Google Scholar : PubMed/NCBI

104 

Shi S, Liang D, Chen Y, Xie Y, Wang Y, Wang L, Wang Z and Qiao Z: Gx-50 reduces β-amyloid-induced TNF-α, IL-1β, NO, and PGE2 expression and inhibits NF-κB signaling in a mouse model of Alzheimer's disease. Eur J Immunol. 46:665–676. 2016. View Article : Google Scholar

105 

Zheng P, Huang C, Leng D, Sun B and Zhang XD: Transcriptome analysis of peripheral whole blood identifies crucial lncRNAs implicated in childhood asthma. Bmc Med Genomics. 13:1362020. View Article : Google Scholar : PubMed/NCBI

106 

Zhong X, Feng L, Xu WH, Wu X, Ding YD, Zhou Y, Lei CQ and Shu HB: The zinc-finger protein ZFYVE1 modulates TLR3-mediated signaling by facilitating TLR3 ligand binding. Cell Mol Immunol. 17:741–752. 2020. View Article : Google Scholar :

107 

Wang Z, Xia Q, Liu X, Liu W, Huang W, Mei X, Luo J, Shan M, Lin R, Zou D and Ma Z: Phytochemistry, pharmacology, quality control and future research of Forsythia suspensa (Thunb.) Vahl: A review. J Ethnopharmacol. 210:318–339. 2018. View Article : Google Scholar

108 

Kong F, Jiang X, Wang R, Zhai S, Zhang Y and Wang D: Forsythoside B attenuates memory impairment and neuroinflammation via inhibition on NF-κB signaling in Alzheimer's disease. J Neuroinflammation. 17:3052020. View Article : Google Scholar

109 

Lu TC, Wu YH, Chen WY and Hung YC: Targeting oxidative stress and endothelial dysfunction using tanshinone IIA for the treatment of tissue inflammation and fibrosis. Oxid Med Cell Longev. 2022:28117892022. View Article : Google Scholar : PubMed/NCBI

110 

Lu BL, Li J, Zhou J, Li WW and Wu HF: Tanshinone IIA decreases the levels of inflammation induced by Aβ1-42 in brain tissues of Alzheimer's disease model rats. Neuroreport. 27:883–893. 2016. View Article : Google Scholar : PubMed/NCBI

111 

Jiang P, Li C, Xiang Z and Jiao B: Tanshinone IIA reduces the risk of Alzheimer's disease by inhibiting iNOS, MMP-2 and NF-κBp65 transcription and translation in the temporal lobes of rat models of Alzheimer's disease. Mol Med Rep. 10:689–694. 2014. View Article : Google Scholar : PubMed/NCBI

112 

Maione F, Piccolo M, De Vita S, Chini MG, Cristiano C, De Caro C, Lippiello P, Miniaci MC, Santamaria R, Irace C, et al: Down regulation of pro-inflammatory pathways by tanshinone IIA and cryptotanshinone in a non-genetic mouse model of Alzheimer's disease. Pharmacol Res. 129:482–490. 2018. View Article : Google Scholar

113 

Ding B, Lin C, Liu Q, He Y, Ruganzu JB, Jin H, Peng X, Ji S, Ma Y and Yang W: Tanshinone IIA attenuates neuroinflammation via inhibiting RAGE/NF-κB signaling pathway in vivo and in vitro. J Neuroinflammation. 17:3022020. View Article : Google Scholar

114 

Xing L, Tan ZR, Cheng JL, Huang WH, Zhang W, Deng W, Yuan CS and Zhou HH: Bioavailability and pharmacokinetic comparison of tanshinones between two formulations of Salvia miltiorrhiza in healthy volunteers. Sci Rep. 7:47092017. View Article : Google Scholar : PubMed/NCBI

115 

Hu X, Zhang J, Deng L, Hu H, Hu J and Zheng G: Galactose-modified PH-sensitive niosomes for controlled release and hepatocellular carcinoma target delivery of tanshinone IIA. AAPS PharmSciTech. 22:962021. View Article : Google Scholar : PubMed/NCBI

116 

Zhang X, Kang X, Du L, Zhang L, Huang Y, Wang J, Wang S, Chang Y, Liu Y and Zhao Y: Tanshinone IIA loaded chitosan nanoparticles decrease toxicity of β-amyloid peptide in a Caenorhabditis elegans model of disease. Free Radical Bio Med. 193:81–94. 2022. View Article : Google Scholar

117 

Thundyil J, Pavlovski D, Sobey CG and Arumugam TV: Adiponectin receptor signalling in the brain. Brit J Pharmacol. 165:313–327. 2012. View Article : Google Scholar

118 

Ng RC, Cheng OY, Jian M, Kwan JS, Ho PW, Cheng KK, Yeung PK, Zhou LL, Hoo RL, Chung SK, et al: Chronic adiponectin deficiency leads to Alzheimer's disease-like cognitive impairments and pathologies through AMPK inactivation and cerebral insulin resistance in aged mice. Mol Neurodegener. 11:712016. View Article : Google Scholar : PubMed/NCBI

119 

Boza-Serrano A, Yang Y, Paulus A and Deierborg T: Innate immune alterations are elicited in microglial cells before plaque deposition in the Alzheimer's disease mouse model 5xFAD. Sci Rep. 8:15502018. View Article : Google Scholar : PubMed/NCBI

120 

Jian M, Kwan JSC, Bunting M, Ng RCL and Chan KH: Adiponectin suppresses amyloid-β oligomer (AβO)-induced inflammatory response of microglia via AdipoR1-AMPK-NF-κB signaling pathway. J Neuroinflammation. 16:1102019. View Article : Google Scholar

121 

Chen X, Su J, Wang R, Hao R, Fu C, Chen J, Li J and Wang X: Structural optimization of cannabidiol as multifunctional cosmetic raw materials. Antioxidants (Basel). 12:3142023. View Article : Google Scholar : PubMed/NCBI

122 

Malakoti F, Targhazeh N, Abadifard E, Zarezadeh R, Samemaleki S, Asemi Z, Younesi S, Mohammadnejad R, Hadi Hossini S, Karimian A, et al: DNA repair and damage pathways in mesothelioma development and therapy. Cancer Cell Int. 22:1762022. View Article : Google Scholar : PubMed/NCBI

123 

Schiffmann SN and Vanderhaeghen JJ: Distribution of cells containing mRNA encoding cholecystokinin in the rat central nervous system. J Comp Neurol. 304:219–233. 1991. View Article : Google Scholar : PubMed/NCBI

124 

Hensley K, Floyd RA, Zheng NY, Nael R, Robinson KA, Nguyen X, Pye QN, Stewart CA, Geddes J, Markesbery WR, et al: p38 kinase is activated in the Alzheimer's disease brain. J Neurochem. 72:2053–2058. 1999. View Article : Google Scholar : PubMed/NCBI

125 

Zhu X, Raina AK, Rottkamp CA, Aliev G, Perry G, Boux H and Smith MA: Activation and redistribution of c-jun N-terminal kinase/stress activated protein kinase in degenerating neurons in Alzheimer's disease. J Neurochem. 76:435–441. 2001. View Article : Google Scholar : PubMed/NCBI

126 

Jin Y, Yan EZ, Fan Y, Zong ZH, Qi ZM and Li Z: Sodium ferulate prevents amyloid-beta-induced neurotoxicity through suppression of p38 MAPK and upregulation of ERK-1/2 and Akt/protein kinase B in rat hippocampus. Acta Pharmacol Sin. 26:943–951. 2005. View Article : Google Scholar : PubMed/NCBI

127 

McDonald DR, Bamberger ME, Combs CK and Landreth GE: beta-Amyloid fibrils activate parallel mitogen-activated protein kinase pathways in microglia and THP1 monocytes. J Neurosci. 18:4451–4460. 1998. View Article : Google Scholar : PubMed/NCBI

128 

Koistinaho M and Koistinaho J: Role of p38 and p44/42 mitogen-activated protein kinases in microglia. Glia. 40:175–183. 2002. View Article : Google Scholar : PubMed/NCBI

129 

Kim SH, Smith CJ and Van Eldik LJ: Importance of MAPK pathways for microglial pro-inflammatory cytokine IL-1 beta production. Neurobiol Aging. 25:431–439. 2004. View Article : Google Scholar : PubMed/NCBI

130 

Liang Z, Zhang B, Xu M, Morisseau C, Hwang SH, Hammock BD and Li QX: 1-Trifluoromethoxyphenyl-3-(1-propionylpiperidin-4-yl) urea, a selective and potent dual inhibitor of soluble epoxide hydrolase and p38 kinase intervenes in Alzheimer's signaling in human nerve cells. ACS Chem Neurosci. 10:4018–4030. 2019. View Article : Google Scholar : PubMed/NCBI

131 

Chang D, Li H, Qian C and Wang Y: DiOHF protects against doxorubicin-induced cardiotoxicity through ERK1 signaling pathway. Front Pharmacol. 10:10812019. View Article : Google Scholar : PubMed/NCBI

132 

Lee HC, Yu HP, Liao CC, Chou AH and Liu FC: Escin protects against acetaminophen-induced liver injury in mice via attenuating inflammatory response and inhibiting ERK signaling pathway. Am J Transl Res. 11:5170–5182. 2019.PubMed/NCBI

133 

Sclip A, Tozzi A, Abaza A, Cardinetti D, Colombo I, Calabresi P, Salmona M, Welker E and Borsello T: c-Jun N-terminal kinase has a key role in Alzheimer disease synaptic dysfunction in vivo. Cell Death Dis. 5:e10192014. View Article : Google Scholar : PubMed/NCBI

134 

Jeong YH, Li W, Go Y and Oh YC: Atractylodis rhizoma alba attenuates neuroinflammation in BV2 microglia upon LPS stimulation by inducing HO-1 activity and inhibiting NF-κB and MAPK. Int J Mol Sci. 20:40152019. View Article : Google Scholar

135 

Dang TK, Hong SM, Dao VT, Tran PTT, Tran HT, Do GH, Hai TN, Nguyet Pham HT and Kim SY: Anti-neuroinflammatory effects of alkaloid-enriched extract from Huperzia serrata on lipopolysaccharide-stimulated BV-2 microglial cells. Pharm Biol. 61:135–143. 2023. View Article : Google Scholar : PubMed/NCBI

136 

Sun A, Liu M, Nguyen XV and Bing G: P38 MAP kinase is activated at early stages in Alzheimer's disease brain. Exp Neurol. 183:394–405. 2003. View Article : Google Scholar : PubMed/NCBI

137 

Schnöder L, Hao W, Qin Y, Liu S, Tomic I, Liu X, Fassbender K and Liu Y: Deficiency of neuronal p38α MAPK attenuates amyloid pathology in Alzheimer disease mouse and cell models through facilitating lysosomal degradation of BACE1. J Biol Chem. 291:2067–2079. 2016. View Article : Google Scholar

138 

Wu H, Hu B, Zhou X, Zhou C, Meng J, Yang Y, Zhao X, Shi Z and Yan S: Artemether attenuates LPS-induced inflammatory bone loss by inhibiting osteoclastogenesis and bone resorption via suppression of MAPK signaling pathway. Cell Death Dis. 9:4982018. View Article : Google Scholar : PubMed/NCBI

139 

Xing B, Bachstetter AD and Van Eldik LJ: Microglial p38α MAPK is critical for LPS-induced neuron degeneration, through a mechanism involving TNFα. Mol Neurodegener. 6:842011. View Article : Google Scholar

140 

Munoz L, Ralay Ranaivo H, Roy SM, Hu W, Craft JM, McNamara LK, Chico LW, Van Eldik LJ and Watterson DM: A novel p38 alpha MAPK inhibitor suppresses brain proinflammatory cytokine up-regulation and attenuates synaptic dysfunction and behavioral deficits in an Alzheimer's disease mouse model. J Neuroinflammation. 4:212007. View Article : Google Scholar : PubMed/NCBI

141 

Maphis N, Jiang S, Xu G, Kokiko-Cochran ON, Roy SM, Van Eldik LJ, Watterson DM, Lamb BT and Bhaskar K: Selective suppression of the α isoform of p38 MAPK rescues late-stage tau pathology. Alzheimers Res Ther. 8:542016. View Article : Google Scholar

142 

Haddad JJ: VX-745. Vertex pharmaceuticals. Curr Opin Investig Drugs. 2:1070–1076. 2001.

143 

Alam JJ: Selective brain-targeted antagonism of p38 MAPKα reduces hippocampal IL-1β levels and improves morris water maze performance in aged rats. J Alzheimers Dis. 48:219–227. 2015. View Article : Google Scholar

144 

Hitti E, Iakovleva T, Brook M, Deppenmeier S, Gruber AD, Radzioch D, Clark AR, Blackshear PJ, Kotlyarov A and Gaestel M: Mitogen-activated protein kinase-activated protein kinase 2 regulates tumor necrosis factor mRNA stability and translation mainly by altering tristetraprolin expression, stability, and binding to adenine/uridine-rich element. Mol Cell Biol. 26:2399–2407. 2006. View Article : Google Scholar : PubMed/NCBI

145 

Culbert AA, Skaper SD, Howlett DR, Evans NA, Facci L, Soden PE, Seymour ZM, Guillot F, Gaestel M and Richardson JC: MAPK-activated protein kinase 2 deficiency in microglia inhibits pro-inflammatory mediator release and resultant neurotoxicity. Relevance to neuroinflammation in a transgenic mouse model of Alzheimer disease. J Biol Chem. 281:23658–23667. 2006. View Article : Google Scholar : PubMed/NCBI

146 

Brugnano JL, Chan BK, Seal BL and Panitch A: Cell-penetrating peptides can confer biological function: regulation of inflammatory cytokines in human monocytes by MK2 inhibitor peptides. J Control Release. 155:128–133. 2011. View Article : Google Scholar : PubMed/NCBI

147 

Jiang J, Wang Z, Liang X, Nie Y, Chang X, Xue H, Li S and Min C: Intranasal MMI-0100 attenuates Aβ1-42 - and LPS-induced neuroinflammation and memory impairments via the MK2 signaling pathway. Front Immunol. 10:27072019. View Article : Google Scholar

148 

Mittal D, Ali A, Md S, Baboota S, Sahni JK and Ali J: Insights into direct nose to brain delivery: current status and future perspective. Drug Deliv. 21:75–86. 2014. View Article : Google Scholar

149 

Mistry A, Stolnik S and Illum L: Nose-to-brain delivery: Investigation of the transport of nanoparticles with different surface characteristics and sizes in excised porcine olfactory epithelium. Mol Pharm. 12:2755–2766. 2015. View Article : Google Scholar : PubMed/NCBI

150 

Zakaria ZA, Patahuddin H, Mohamad AS, Israf DA and Sulaiman MR: In vivo anti-nociceptive and anti-inflammatory activities of the aqueous extract of the leaves of Piper sarmentosum. J Ethnopharmacol. 128:42–48. 2010. View Article : Google Scholar

151 

Chan EWL, Yeo ETY, Wong KWL, See ML, Wong KY and Gan SY: Piper sarmentosum Roxb. Root extracts confer neuroprotection by attenuating beta amyloid-induced pro-inflammatory cytokines released from microglial cells. Curr Alzheimer Res. 16:251–260. 2019. View Article : Google Scholar : PubMed/NCBI

152 

Wang X, Zhao X and Tang S: Inhibitory effects of EGb761 on the expression of matrix metalloproteinases (MMPs) and cartilage matrix destruction. Cell Stress Chaperon. 20:781–786. 2015. View Article : Google Scholar

153 

Meng M, Ai D, Sun L, Xu X and Cao X: EGb 761 inhibits Aβ1-42-induced neuroinflammatory response by suppressing P38 MAPK signaling pathway in BV-2 microglial cells. Neuroreport. 30:434–440. 2019. View Article : Google Scholar : PubMed/NCBI

154 

Marchand G, Wambang N, Pellegrini S, Molinaro C, Martoriati A, Bousquet T, Markey A, Lescuyer-Rousseau A, Bodart JF, Cailliau K, et al: Effects of ferrocenyl 4-(Imino)-1,4-dihydro-quinolines on xenopus laevis prophase I-arrested oocytes: Survival and hormonal-induced M-phase entry. Int J Mol Sci. 21:30492020. View Article : Google Scholar

155 

Chiu YJ, Hsieh YH, Lin TH, Lee GC, Hsieh-Li HM, Sun YC, Chen CM, Chang KH and Lee-Chen GJ: Novel compound VB-037 inhibits Aβ aggregation and promotes neurite outgrowth through enhancement of HSP27 and reduction of P38 and JNK-mediated inflammation in cell models for Alzheimer's disease. Neurochem Int. 125:175–186. 2019. View Article : Google Scholar : PubMed/NCBI

156 

Czarnecka K, Girek M, Maciejewska K, Skibiński R, Jończyk J, Bajda M, Kabziński J, Sołowiej P, Majsterek I and Szymański P: New cyclopentaquinoline hybrids with multifunctional capacities for the treatment of Alzheimer's disease. J Enzym Inhib Med Chem. 33:158–170. 2017. View Article : Google Scholar

157 

Olajide OA, Bhatia HS, de Oliveira AC, Wright CW and Fiebich BL: Inhibition of neuroinflammation in LPS-activated microglia by cryptolepine. Evid Based Complement Alternat Med. 2013:4597232013. View Article : Google Scholar : PubMed/NCBI

158 

Castro-Torres RD, Busquets O, Parcerisas A, Verdaguer E, Olloquequi J, Ettcheto M, Beas-Zarate C, Folch J, Camins A and Auladell C: Involvement of JNK1 in neuronal polarization during brain development. Cells. 9:18972020. View Article : Google Scholar : PubMed/NCBI

159 

Ma Z, Zang T, Birnbaum SG, Wang Z, Johnson JE, Zhang CL and Parada LF: TrkB dependent adult hippocampal progenitor differentiation mediates sustained ketamine antidepressant response. Nat Commun. 8:16682017. View Article : Google Scholar : PubMed/NCBI

160 

Guo YJ, Pan WW, Liu SB, Shen ZF, Xu Y and Hu LL: ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med. 19:1997–2007. 2020.PubMed/NCBI

161 

Paquet C, Nicoll JA, Love S, Mouton-Liger F, Holmes C, Hugon J and Boche D: Downregulated apoptosis and autophagy after anti-Aβ immunotherapy in Alzheimer's disease. Brain Pathol. 28:603–610. 2018. View Article : Google Scholar

162 

Yuan Y, Chen J, Ge X, Deng J, Xu X, Zhao Y and Wang H: Activation of ERK-Drp1 signaling promotes hypoxia-induced Aβ accumulation by upregulating mitochondrial fission and BACE1 activity. Febs Open Bio. 11:2740–2755. 2021. View Article : Google Scholar : PubMed/NCBI

163 

Ho WC, Hsu CC, Huang HJ, Wang HT and Lin AMY: Anti-inflammatory effect of AZD6244 on acrolein-induced neuroinflammation. Mol Neurobiol. 57:88–95. 2020. View Article : Google Scholar

164 

Qiu Z, Lu P, Wang K, Zhao X, Li Q, Wen J, Zhang H, Li R, Wei H, Lv Y, et al: Dexmedetomidine inhibits neuroinflammation by altering microglial M1/M2 polarization through MAPK/ERK pathway. Neurochem Res. 45:345–353. 2020. View Article : Google Scholar

165 

Goldfarb G, Doan Ba Tri and Duran A: Human placenta for chronic leg ulcers. Lancet. 2:401980. View Article : Google Scholar : PubMed/NCBI

166 

Lee KW, Ji HM, Kim DW, Choi SM, Kim S and Yang EJ: Effects of Hominis placenta on LPS-induced cell toxicity in BV2 microglial cells. J Ethnopharmacol. 147:286–292. 2013. View Article : Google Scholar : PubMed/NCBI

167 

Filocamo A, Bisignano C, Ferlazzo N, Cirmi S, Mandalari G and Navarra M: In vitro effect of bergamot (Citrus bergamia) juice against cagA-positive and-negative clinical isolates of Helicobacter pylori. BMC Complement Altern Med. 15:2562015. View Article : Google Scholar : PubMed/NCBI

168 

Currò M, Risitano R, Ferlazzo N, Cirmi S, Gangemi C, Caccamo D, Ientile R and Navarra M: Citrus bergamia juice extract attenuates β-amyloid-induced pro-inflammatory activation of THP-1 cells through MAPK and AP-1 pathways. Sci Rep. 6:208092016. View Article : Google Scholar

169 

Eglitis MA and Mezey E: Hematopoietic cells differentiate into both microglia and macroglia in the brains of adult mice. Proc Natl Acad Sci USA. 94:4080–4085. 1997. View Article : Google Scholar : PubMed/NCBI

170 

Hickey WF and Kimura H: Perivascular microglial cells of the CNS are bone marrow-derived and present antigen in vivo. Science. 239:290–292. 1988. View Article : Google Scholar : PubMed/NCBI

171 

Tao M, Zheng D, Liang X, Wu D, Hu K, Jin J and He Q: Tripterygium glycoside suppresses epithelial-to-mesenchymal transition of diabetic kidney disease podocytes by targeting autophagy through the mTOR/Twist1 pathway. Mol Med Rep. 24:5922021. View Article : Google Scholar :

172 

Tang L, Xiang Q, Xiang J, Zhang Y and Li J: Tripterygium glycoside ameliorates neuroinflammation in a mouse model of Aβ25-35-induced Alzheimer's disease by inhibiting the phosphorylation of IκBα and p38. Bioengineered. 12:8540–8554. 2021. View Article : Google Scholar : PubMed/NCBI

173 

Cao X, Jin Y, Zhang H, Yu L, Bao X, Li F and Xu Y: The antiinflammatory effects of 4-[(5-Bromo-3-chloro-2-hydroxybenzyl) amino]-2-hydroxybenzoic acid in lipopolysaccharide-activated primary microglial cells. Inflammation. 41:530–540. 2018. View Article : Google Scholar

174 

Kim ME, Jung I, Na JY, Lee Y, Lee J and Lee JS and Lee JS: Pseudane-VII regulates LPS-induced neuroinflammation in brain microglia cells through the inhibition of iNOS expression. Molecules. 23:31962018. View Article : Google Scholar : PubMed/NCBI

175 

Zhao H, Wang SL, Qian L, Jin JL, Li H, Xu Y and Zhu XL: Diammonium glycyrrhizinate attenuates Aβ(1-42)-induced neuroinflammation and regulates MAPK and NF-κB pathways in vitro and in vivo. CNS Neurosci Ther. 19:117–124. 2013. View Article : Google Scholar : PubMed/NCBI

176 

Ramana KV and Srivastava SK: Aldose reductase: A novel therapeutic target for inflammatory pathologies. Int J Biochem Cell Biol. 42:17–20. 2010. View Article : Google Scholar

177 

Song XM, Yu Q, Dong X, Yang HO, Zeng KW, Li J and Tu PF: Aldose reductase inhibitors attenuate β-amyloid-induced TNF-α production in microlgia via ROS-PKC-mediated NF-κB and MAPK pathways. Int Immunopharmacol. 50:30–37. 2017. View Article : Google Scholar : PubMed/NCBI

178 

Meza CA, La Favor JD, Kim DH and Hickner RC: Endothelial dysfunction: Is there a hyperglycemia-induced imbalance of NOX and NOS? Int J Mol Sci. 20:37752019. View Article : Google Scholar : PubMed/NCBI

179 

Lee J, Narayan VP, Hong EY, Whang WK and Park T: Artemisia iwayomogi extract attenuates high-fat diet-induced hypertriglyceridemia in mice: Potential involvement of the adiponectin-AMPK pathway and very low density lipoprotein assembly in the liver. Int J Mol Sci. 18:17622017. View Article : Google Scholar : PubMed/NCBI

180 

Ju IG, Huh E, Kim N, Lee S, Choi JG, Hong J and Oh MS: Artemisiae iwayomogii herba inhibits lipopolysaccharide-induced neuroinflammation by regulating NF-κB and MAPK signaling pathways. Phytomedicine. 84:1535012021. View Article : Google Scholar

181 

Hilliard A, Mendonca P and Soliman KFA: Involvement of NFkB and MAPK signaling pathways in the preventive effects of Ganoderma lucidum on the inflammation of BV-2 microglial cells induced by LPS. J Neuroimmunol. 345:5772692020. View Article : Google Scholar

182 

Cheung WM, Hui WS, Chu PW, Chiu SW and Ip NY: Ganoderma extract activates MAP kinases and induces the neuronal differentiation of rat pheochromocytoma PC12 cells. FEBS Lett. 486:291–296. 2000. View Article : Google Scholar : PubMed/NCBI

183 

Geng X, Zhong D, Su L and Yang B: Preventive and therapeutic effect of ganoderma (Lingzhi) on renal diseases and clinical applications. Adv Exp Med Biol. 1182:243–262. 2019. View Article : Google Scholar : PubMed/NCBI

184 

Chen LG, Jan YS, Tsai PW, Norimoto H, Michihara S, Murayama C and Wang CC: Anti-inflammatory and antinociceptive constituents of atractylodes japonica koidzumi. J Agric Food Chem. 64:2254–2262. 2016. View Article : Google Scholar : PubMed/NCBI

185 

Tang JJ, Wang MR, Dong S, Huang LF, He QR and Gao JM: 1,10-Seco-Eudesmane sesquiterpenoids as a new type of anti-neuroinflammatory agents by suppressing TLR4/NF-κB/MAPK pathways. Eur J Med Chem. 224:1137132021. View Article : Google Scholar

186 

Choi MS, Jung UJ, Kim HJ, Do GM, Jeon SM, Kim MJ and Lee MK: Du-zhong (Eucommia ulmoides Oliver) leaf extract mediates hypolipidemic action in hamsters fed a high-fat diet. Am J Chin Med. 36:81–93. 2008. View Article : Google Scholar : PubMed/NCBI

187 

He X, Wang J, Li M, Hao D, Yang Y, Zhang C, He R and Tao R: Eucommia ulmoides Oliv.: Ethnopharmacology, phytochemistry and pharmacology of an important traditional Chinese medicine. J Ethnopharmacol. 151:78–92. 2014. View Article : Google Scholar

188 

Han R, Yuan T, Yang Z, Zhang Q, Wang WW, Lin LB, Zhu MQ and Gao JM: Ulmoidol, an unusual nortriterpenoid from Eucommia ulmoides Oliv. Leaves prevents neuroinflammation by targeting the PU.1 transcriptional signaling pathway. Bioorg Chem. 116:1053452021. View Article : Google Scholar : PubMed/NCBI

189 

Zhang C, Hu L, Liu D, Huang J and Lin W: Circumdatin D exerts neuroprotective effects by attenuating LPS-induced pro-inflammatory responses and downregulating acetylcholinesterase activity in vitro and in vivo. Front Pharmacol. 11:7602020. View Article : Google Scholar : PubMed/NCBI

190 

Gong P, Deng F, Zhang W, Ji J, Liu J, Sun Y and Hu J: Tectorigenin attenuates the MPP+-induced SH-SY5Y cell damage, indicating a potential beneficial role in Parkinson's disease by oxidative stress inhibition. Exp Ther Med. 14:4431–4437. 2017.PubMed/NCBI

191 

Oh KB, Kang H and Matsuoka H: Detection of antifungal activity in Belamcanda chinensis by a single-cell bioassay method and isolation of its active compound, tectorigenin. Biosci Biotechnol Biochem. 65:939–942. 2001. View Article : Google Scholar : PubMed/NCBI

192 

Lim HS, Kim YJ, Kim BY, Park G and Jeong SJ: The Anti-neuroinflammatory activity of tectorigenin pretreatment via downregulated NF-κB and ERK/JNK pathways in BV-2 microglial and microglia inactivation in mice with lipopolysaccharide. Front Pharmacol. 9:4622018. View Article : Google Scholar

193 

Wang BR, Shi JQ, Ge NN, Ou Z, Tian YY, Jiang T, Zhou JS, Xu J and Zhang YD: PM2.5 exposure aggravates oligomeric amyloid beta-induced neuronal injury and promotes NLRP3 inflammasome activation in an in vitro model of Alzheimer's disease. J Neuroinflammation. 15:1322018. View Article : Google Scholar : PubMed/NCBI

194 

Shao BZ, Xu ZQ, Han BZ, Su DF and Liu C: NLRP3 inflammasome and its inhibitors: A review. Front Pharmacol. 6:2622015. View Article : Google Scholar : PubMed/NCBI

195 

Feng YS, Tan ZX, Wu LY, Dong F and Zhang F: The involvement of NLRP3 inflammasome in the treatment of Alzheimer's disease. Ageing Res Rev. 64:1011922020. View Article : Google Scholar : PubMed/NCBI

196 

Heneka MT, Kummer MP, Stutz A, Delekate A, Schwartz S, Vieira-Saecker A, Griep A, Axt D, Remus A, Tzeng TC, et al: NLRP3 is activated in Alzheimer's disease and contributes to pathology in APP/PS1 mice. Nature. 493:674–678. 2013. View Article : Google Scholar

197 

Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ and Golenbock DT: The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 9:857–865. 2008. View Article : Google Scholar : PubMed/NCBI

198 

Lonnemann N, Hosseini S, Marchetti C, Skouras DB, Stefanoni D, D'Alessandro A, Dinarello CA and Korte M: The NLRP3 inflammasome inhibitor OLT1177 rescues cognitive impairment in a mouse model of Alzheimer's disease. Proc Natl Acad Sci USA. 117:32145–32154. 2020. View Article : Google Scholar : PubMed/NCBI

199 

Marchetti C, Swartzwelter B, Gamboni F, Neff CP, Richter K, Azam T, Carta S, Tengesdal I, Nemkov T, D'Alessandro A, et al: OLT1177, a β-sulfonyl nitrile compound, safe in humans, inhibits the NLRP3 inflammasome and reverses the metabolic cost of inflammation. Proc Natl Acad Sci USA. 115:E1530–E1539. 2018. View Article : Google Scholar

200 

Klück V, Jansen TLTA, Janssen M, Comarniceanu A, Efdé M, Tengesdal IW, Schraa K, Cleophas MCP, Scribner CL, Skouras DB, et al: Dapansutrile, an oral selective NLRP3 inflammasome inhibitor, for treatment of gout flares: An open-label, dose-adaptive, proof-of-concept, phase 2a trial. Lancet Rheumatol. 2:e270–e280. 2020. View Article : Google Scholar : PubMed/NCBI

201 

Dempsey C, Rubio Araiz A, Bryson KJ, Finucane O, Larkin C, Mills EL, Robertson AAB, Cooper MA, O'Neill LAJ and Lynch MA: Inhibiting the NLRP3 inflammasome with MCC950 promotes non-phlogistic clearance of amyloid-β and cognitive function in APP/PS1 mice. Brain Behav Immun. 61:306–316. 2017. View Article : Google Scholar

202 

Fekete C, Vastagh C, Dénes Á, Hrabovszky E, Nyiri G, Kalló I, Liposits Z and Sárvári M: Chronic amyloid β oligomer infusion evokes sustained inflammation and microglial changes in the rat hippocampus via NLRP3. Neuroscience. 405:35–46. 2019. View Article : Google Scholar

203 

Kuwar R, Rolfe A, Di L, Blevins H, Xu Y, Sun X, Bloom GS, Zhang S and Sun D: A novel inhibitor targeting NLRP3 inflammasome reduces neuropathology and improves cognitive function in Alzheimer's disease transgenic mice. J Alzheimers Dis. 82:1769–1783. 2021. View Article : Google Scholar : PubMed/NCBI

204 

Zhang Y, Zhao Y, Zhang J, Gao Y, Li S, Chang C, Yu D and Yang G: Ginkgolide B inhibits NLRP3 inflammasome activation and promotes microglial M2 polarization in Aβ1-42 -induced microglia cells. Neurosci Lett. 764:1362062021. View Article : Google Scholar

205 

Gu JH, Ge JB, Li M, Wu F, Zhang W and Qin ZH: Inhibition of NF-κB activation is associated with anti-inflammatory and anti-apoptotic effects of ginkgolide B in a mouse model of cerebral ischemia/reperfusion injury. Eur J Pharm Sci. 47:652–660. 2012. View Article : Google Scholar : PubMed/NCBI

206 

Kaur N, Dhiman M, Perez-Polo JR and Mantha AK: Ginkgolide B revamps neuroprotective role of apurinic/apyrimidinic endonuclease 1 and mitochondrial oxidative phosphorylation against Aβ25-35-induced neurotoxicity in human neuroblastoma cells. J Neurosci Res. 93:938–947. 2015. View Article : Google Scholar : PubMed/NCBI

207 

Zhang HR, Peng JH, Cheng XB, Shi BZ, Zhang MY and Xu RX: Paeoniflorin atttenuates amyloidogenesis and the inflammatory responses in a transgenic mouse model of Alzheimer's disease. Neurochem Res. 40:1583–1592. 2015. View Article : Google Scholar : PubMed/NCBI

208 

Liu HQ, Zhang WY, Luo XT, Ye Y and Zhu XZ: Paeoniflorin attenuates neuroinflammation and dopaminergic neurodegeneration in the MPTP model of Parkinson's disease by activation of adenosine A1 receptor. Brit J Pharmacol. 148:314–325. 2006. View Article : Google Scholar

209 

Liu DZ, Xie KQ, Ji XQ, Ye Y, Jiang CL and Zhu XZ: Neuroprotective effect of paeoniflorin on cerebral ischemic rat by activating adenosine A1 receptor in a manner different from its classical agonists. Br J Pharmacol. 146:604–611. 2005. View Article : Google Scholar : PubMed/NCBI

210 

English BK, Ihle JN, Myracle A and Yi T: Hck tyrosine kinase activity modulates tumor necrosis factor production by murine macrophages. J Exp Med. 178:1017–1022. 1993. View Article : Google Scholar : PubMed/NCBI

211 

Kong X, Liao Y, Zhou L, Zhang Y, Cheng J, Yuan Z and Wang S: Hematopoietic cell kinase (HCK) is essential for NLRP3 inflammasome activation and lipopolysaccharide-induced inflammatory response in vivo. Front Pharmacol. 11:5810112020. View Article : Google Scholar : PubMed/NCBI

212 

Cui W, Sun C, Ma Y, Wang S, Wang X and Zhang Y: Inhibition of TLR4 induces M2 microglial polarization and provides neuroprotection via the NLRP3 inflammasome in Alzheimer's disease. Front Neurosci. 14:4442020. View Article : Google Scholar : PubMed/NCBI

213 

Hua F, Tang H, Wang J, Prunty MC, Hua X, Sayeed I and Stein DG: TAK-242, an antagonist for Toll-like receptor 4, protects against acute cerebral ischemia/reperfusion injury in mice. J Cereb Blood Flow Metab. 35:536–542. 2015. View Article : Google Scholar : PubMed/NCBI

214 

Liu Y, Dai Y, Li Q, Chen C, Chen H, Song Y, Hua F and Zhang Z: Beta-amyloid activates NLRP3 inflammasome via TLR4 in mouse microglia. Neurosci Lett. 736:1352792020. View Article : Google Scholar : PubMed/NCBI

215 

Poulose SM, Thangthaeng N, Miller MG and Shukitt-Hale B: Effects of pterostilbene and resveratrol on brain and behavior. Neurochem Int. 89:227–233. 2015. View Article : Google Scholar : PubMed/NCBI

216 

Li Q, Chen L, Liu X, Li X, Cao Y, Bai Y and Qi F: Pterostilbene inhibits amyloid-β-induced neuroinflammation in a microglia cell line by inactivating the NLRP3/caspase-1 inflammasome pathway. J Cell Biochem. 119:7053–7062. 2018. View Article : Google Scholar : PubMed/NCBI

217 

Wang SY, Liu Y, Li XM, Algradi AM, Jiang H, Sun YP, Guan W, Pan J, Kuang HX and Yang BY: Discovery of active ingredients targeted TREM2 by SPR biosensor-UPLC/MS recognition system, and investigating the mechanism of anti-neuroinflammatory activity on the lignin-amides from Datura metel seeds. Molecules. 26:59462021. View Article : Google Scholar : PubMed/NCBI

218 

Liu Y, Yang X, Lei Q, Li Z, Hu J, Wen X, Wang H and Liu Z: PEG-PEI/siROCK2 protects against Aβ42-induced neurotoxicity in primary neuron cells for Alzheimer disease. Cell Mol Neurobiol. 35:841–848. 2015. View Article : Google Scholar : PubMed/NCBI

219 

Liu Y, Zhang H, Peng A, Cai X, Wang Y, Tang K, Wu X, Liang Y, Wang L and Li Z: PEG-PEI/siROCK2 inhibits Aβ42-induced microglial inflammation via NLRP3/caspase 1 pathway. Neuroreport. 33:26–32. 2022. View Article : Google Scholar

220 

Schneider KS, Groß CJ, Dreier RF, Saller BS, Mishra R, Gorka O, Heilig R, Meunier E, Dick MS, Ćiković T, et al: The inflammasome drives GSDMD-independent secondary pyroptosis and IL-1 release in the absence of caspase-1 protease activity. Cell Rep. 21:3846–3859. 2017. View Article : Google Scholar : PubMed/NCBI

221 

Han C, Hu Q, Yu A, Jiao Q and Yang Y: Mafenide derivatives inhibit neuroinflammation in Alzheimer's disease by regulating pyroptosis. J Cell Mol Med. 25:10534–10542. 2021. View Article : Google Scholar : PubMed/NCBI

222 

Wang CZ, Du GJ, Zhen Z, Calway T and Yuan CS: Significant dose differences in donepezil purchased from the United States and Canada. Ann Intern Med. 155:279–280. 2011. View Article : Google Scholar : PubMed/NCBI

223 

Birks JS and Harvey RJ: Donepezil for dementia due to Alzheimer's disease. Cochrane Database Syst Rev. 6:CD0011902018.PubMed/NCBI

224 

Wang H, Zong Y, Han Y, Zhao J, Liu H and Liu Y: Compared of efficacy and safety of high-dose donepezil vs standard-dose donepezil among elderly patients with Alzheimer's disease: A systematic review and meta-analysis. Expert Opin Drug Saf. 21:407–415. 2022. View Article : Google Scholar : PubMed/NCBI

225 

Kim J, Lee HJ, Park SK, Park JH, Jeong HR, Lee S, Lee H, Seol E and Hoe HS: Donepezil regulates LPS and Aβ-stimulated neuroinflammation through MAPK/NLRP3 inflammasome/STAT3 signaling. Int J Mol Sci. 22:106372021. View Article : Google Scholar

226 

Kim HG, Moon M, Choi JG, Park G, Kim AJ, Hur J, Lee KT and Oh MS: Donepezil inhibits the amyloid-beta oligomer-induced microglial activation in vitro and in vivo. Neurotoxicology. 40:23–32. 2014. View Article : Google Scholar

227 

Chen M, Chen Z, Wang Y, Tan Z, Zhu C, Li Y, Han Z, Chen L, Gao R, Liu L and Chen Q: Mitophagy receptor FUNDC1 regulates mitochondrial dynamics and mitophagy. Autophagy. 12:689–702. 2016. View Article : Google Scholar : PubMed/NCBI

228 

Devi TS, Somayajulu M, Kowluru RA and Singh LP: TXNIP regulates mitophagy in retinal Müller cells under high-glucose conditions: Implications for diabetic retinopathy. Cell Death Dis. 8:e27772017. View Article : Google Scholar

229 

Gao Y, Li J, Li J, Hu C and Zhang L, Yan J, Li L and Zhang L: Tetrahydroxy stilbene glycoside alleviated inflammatory damage by mitophagy via AMPK related PINK1/Parkin signaling pathway. Biochem Pharmacol. 177:1139972020. View Article : Google Scholar : PubMed/NCBI

230 

Li F, Zhang T, He Y, Gu W, Yang X, Zhao R and Yu J: Inflammation inhibition and gut microbiota regulation by TSG to combat atherosclerosis in ApoE−/− mice. J Ethnopharmacol. 247:1122322020. View Article : Google Scholar

231 

Mu Y, Xu Z, Zhou X, Zhang H, Yang Q, Zhang Y, Xie Y, Kang J, Li F and Wang S: 2,3,5,4'-Tetrahydroxystilbene-2-O-β-D-gluc oside attenuates ischemia/reperfusion-induced brain injury in rats by promoting angiogenesis. Planta Med. 83:676–683. 2017.

232 

Zhou W, Yang Y, Mei C, Dong P, Mu S, Wu H, Zhou Y, Zheng Y, Guo F and Yang JQ: Inhibition of rho-kinase downregulates Th17 cells and ameliorates hepatic fibrosis by schistosoma japonicum infection. Cells. 8:12622019. View Article : Google Scholar : PubMed/NCBI

233 

Kimura T, Horikoshi Y, Kuriyagawa C and Niiyama Y: Rho/ROCK pathway and noncoding RNAs: Implications in ischemic stroke and spinal cord injury. Int J Mol Sci. 22:115732021. View Article : Google Scholar : PubMed/NCBI

234 

Zhou Y, Su Y, Li B, Liu F, Ryder JW, Wu X, Gonzalez-DeWhitt PA, Gelfanova V, Hale JE, May PC, et al: Nonsteroidal anti-inflammatory drugs can lower amyloidogenic Abeta42 by inhibiting Rho. Science. 302:1215–1217. 2003. View Article : Google Scholar : PubMed/NCBI

235 

Scheiblich H and Bicker G: Regulation of microglial phagocytosis by RhoA/ROCK-inhibiting drugs. Cell Mol Neurobiol. 37:461–473. 2017. View Article : Google Scholar

236 

Alokam R, Singhal S, Srivathsav GS, Garigipati S, Puppala S, Sriram D and Perumal Y: Design of dual inhibitors of ROCK-I and NOX2 as potential leads for the treatment of neuroinflammation associated with various neurological diseases including autism spectrum disorder. Mol Biosyst. 11:607–617. 2015. View Article : Google Scholar

237 

Moon MY, Kim HJ, Li Y, Kim JG, Jeon YJ, Won HY, Kim JS, Kwon HY, Choi IG, Ro E, et al: Involvement of small GTPase RhoA in the regulation of superoxide production in BV2 cells in response to fibrillar Aβ peptides. Cell Signal. 25:1861–1869. 2013. View Article : Google Scholar : PubMed/NCBI

238 

Zhang X, Ye P, Wang D, Liu Y, Cao L, Wang Y, Xu Y and Zhu C: Involvement of RhoA/ROCK signaling in Aβ-induced chemotaxis, cytotoxicity and inflammatory response of microglial BV2 cells. Cell Mol Neurobiol. 39:637–650. 2019. View Article : Google Scholar : PubMed/NCBI

239 

van der Meer DLM, Degenhardt T, Väisänen S, de Groot PJ, Heinäniemi M, de Vries SC, Müller M, Carlberg C and Kersten S: Profiling of promoter occupancy by PPARalpha in human hepatoma cells via ChIP-chip analysis. Nucleic Acids Res. 38:2839–2850. 2010. View Article : Google Scholar : PubMed/NCBI

240 

Xia P, Pan Y, Zhang F, Wang N, Wang E, Guo Q and Ye Z: Pioglitazone confers neuroprotection against ischemia-induced pyroptosis due to its inhibitory effects on HMGB-1/RAGE and Rac1/ROS pathway by activating PPAR-ɤ. Cell Physiol Biochem. 45:2351–2368. 2018. View Article : Google Scholar

241 

Janani C and Ranjitha Kumari BD: PPAR gamma gene-a review. Diabetes Metab Syndr. 9:46–50. 2015. View Article : Google Scholar

242 

Stark JM, Coquet JM and Tibbitt CA: The role of PPAR-γ in allergic disease. Curr Allergy Asthma Rep. 21:452021. View Article : Google Scholar

243 

Kumar AP, P P, Kumar BRP, Jeyarani V, Dhanabal SP and Justin A: Glitazones, PPAR-γ and neuroprotection. Mini Rev Med Chem. 21:1457–1464. 2021. View Article : Google Scholar

244 

Furth N, Pateras IS, Rotkopf R, Vlachou V, Rivkin I, Schmitt I, Bakaev D, Gershoni A, Ainbinder E, Leshkowitz D, et al: LATS1 and LATS2 suppress breast cancer progression by maintaining cell identity and metabolic state. Life Sci Alliance. 1:e2018001712018. View Article : Google Scholar : PubMed/NCBI

245 

Villapol S: Roles of peroxisome proliferator-activated receptor gamma on brain and peripheral inflammation. Cell Mol Neurobiol. 38:121–132. 2018. View Article : Google Scholar

246 

Moosecker S, Gomes P, Dioli C, Yu S, Sotiropoulos I and Almeida OFX: Activated PPARγ abrogates misprocessing of amyloid precursor protein, tau missorting and synaptotoxicity. Front Cell Neurosci. 13:2392019. View Article : Google Scholar

247 

de la Monte SM and Wands JR: Molecular indices of oxidative stress and mitochondrial dysfunction occur early and often progress with severity of Alzheimer's disease. J Alzheimers Dis. 9:167–181. 2006. View Article : Google Scholar : PubMed/NCBI

248 

Watson GS, Cholerton BA, Reger MA, Baker LD, Plymate SR, Asthana S, Fishel MA, Kulstad JJ, Green PS, Cook DG, et al: Preserved cognition in patients with early Alzheimer disease and amnestic mild cognitive impairment during treatment with rosiglitazone: A preliminary study. Am J Geriatr Psychiatry. 13:950–958. 2005.PubMed/NCBI

249 

Risner ME, Saunders AM, Altman JF, Ormandy GC, Craft S, Foley IM, Zvartau-Hind ME, Hosford DA and Roses AD; Rosiglitazone in Alzheimer's Disease Study Group: Efficacy of rosiglitazone in a genetically defined population with mild-to-moderate Alzheimer's disease. Pharmacogenomics J. 6:246–254. 2006. View Article : Google Scholar : PubMed/NCBI

250 

Mandrekar-Colucci S, Karlo JC and Landreth GE: Mechanisms underlying the rapid peroxisome proliferator-activated receptor-γ-mediated amyloid clearance and reversal of cognitive deficits in a murine model of Alzheimer's disease. J Neurosci. 32:10117–10128. 2012. View Article : Google Scholar : PubMed/NCBI

251 

Moreno S, Farioli-Vecchioli S and Cerù MP: Immunolocalization of peroxisome proliferator-activated receptors and retinoid X receptors in the adult rat CNS. Neuroscience. 123:131–145. 2004. View Article : Google Scholar

252 

Liu ZJ, Liu W, Liu L, Xiao C, Wang Y and Jiao JS: Curcumin protects neuron against cerebral ischemia-induced inflammation through improving PPAR-gamma function. Evid Based Complement Alternat Med. 2013:4709752013.PubMed/NCBI

253 

Song GJ, Nam Y, Jo M, Jung M, Koo JY, Cho W, Koh M, Park SB and Suk K: A novel small-molecule agonist of PPAR-γ potentiates an anti-inflammatory M2 glial phenotype. Neuropharmacology. 109:159–169. 2016. View Article : Google Scholar : PubMed/NCBI

254 

Qi Y, Zhang Q and Zhu H: Huang-Lian Jie-Du decoction: A review on phytochemical, pharmacological and pharmacokinetic investigations. Chin Med. 14:572019. View Article : Google Scholar : PubMed/NCBI

255 

Wong LR, Tan EA, Lim MEJ, Shen W, Lian XL, Wang Y, Chen L and Ho PCL: Functional effects of berberine in modulating mitochondrial dysfunction and inflammatory response in the respective amyloidogenic cells and activated microglial cells-in vitro models simulating Alzheimer's disease pathology. Life Sci. 282:1198242012. View Article : Google Scholar

256 

Hagl S, Asseburg H, Heinrich M, Sus N, Blumrich EM, Dringen R, Frank J and Eckert GP: Effects of long-term rice bran extract supplementation on survival, cognition and brain mitochondrial function in aged NMRI mice. Neuromolecular Med. 18:347–363. 2016. View Article : Google Scholar : PubMed/NCBI

257 

El-Din SS, Abd ES, Rashed L, Fayez S, Aboulhoda BE, Heikal OA, Galal AF and Nour ZA: Possible role of rice bran extract in microglial modulation through PPAR-gamma receptors in alzheimer's disease mice model. Metab Brain Dis. 36:1903–1915. 2021. View Article : Google Scholar : PubMed/NCBI

258 

De Felice FG and Ferreira ST: Inflammation, defective insulin signaling, and mitochondrial dysfunction as common molecular denominators connecting type 2 diabetes to Alzheimer disease. Diabetes. 63:2262–2272. 2014. View Article : Google Scholar : PubMed/NCBI

259 

Bouriche H, Meziti H, Senator A and Arnhold J: Anti-inflammatory, free radical-scavenging, and metal-chelating activities of Malva parviflora. Pharm Biol. 49:942–946. 2011. View Article : Google Scholar : PubMed/NCBI

260 

Medrano-Jiménez E, Jiménez-Ferrer Carrillo I, Pedraza-Escalona M, Ramírez-Serrano CE, Álvarez-Arellano L, Cortés-Mendoza J, Herrera-Ruiz M, Jiménez-Ferrer E, Zamilpa A, Tortoriello J, et al: Malva parviflora extract ameliorates the deleterious effects of a high fat diet on the cognitive deficit in a mouse model of Alzheimer's disease by restoring microglial function via a PPAR-γ-dependent mechanism. J Neuroinflammation. 16:1432019. View Article : Google Scholar

261 

Villapol S, Yaszemski AK, Logan TT, Sanchez-Lemus E, Saavedra JM and Symes AJ: Candesartan, an angiotensin II AT1-receptor blocker and PPAR-γ agonist, reduces lesion volume and improves motor and memory function after traumatic brain injury in mice. Neuropsychopharmacology. 37:2817–2829. 2012. View Article : Google Scholar : PubMed/NCBI

262 

Shindo T, Takasaki K, Uchida K, Onimura R, Kubota K, Uchida N, Irie K, Katsurabayashi S, Mishima K, Nishimura R, et al: Ameliorative effects of telmisartan on the inflammatory response and impaired spatial memory in a rat model of Alzheimer's disease incorporating additional cerebrovascular disease factors. Biol Pharm Bull. 35:2141–2147. 2012. View Article : Google Scholar : PubMed/NCBI

263 

Li NC, Lee A, Whitmer RA, Kivipelto M, Lawler E, Kazis LE and Wolozin B: Use of angiotensin receptor blockers and risk of dementia in a predominantly male population: Prospective cohort analysis. BMJ. 340:b54652010. View Article : Google Scholar : PubMed/NCBI

264 

Wang ZF, Li J, Ma C, Huang C and Li ZQ: Telmisartan ameliorates Aβ oligomer-induced inflammation via PPARγ/PTEN pathway in BV2 microglial cells. Biochem Pharmacol. 171:1136742020. View Article : Google Scholar

265 

He Z, Li X, Han S, Ren B, Hu X, Li N, Du X, Ni J, Yang X and Liu Q: Bis(ethylmaltolato)oxidovanadium (IV) attenuates amyloid-beta-mediated neuroinflammation by inhibiting NF-κB signaling pathway via a PPARγ-dependent mechanism. Metallomics. 13:mfab0362021. View Article : Google Scholar

266 

Yang Z, Liu B, Yang LE and Zhang C: Platycodigenin as potential drug candidate for Alzheimer's disease via modulating microglial polarization and neurite regeneration. Molecules. 24:32072019. View Article : Google Scholar : PubMed/NCBI

267 

Pan D, Xu Y, Zhang L, Su Q, Chen M, Li B, Xiao Q, Gao Q, Peng X, Jiang B, et al: Gene expression profile in peripheral blood mononuclear cells of postpartum depression patients. Sci Rep. 8:101392018. View Article : Google Scholar : PubMed/NCBI

268 

Ahn S, Jang DM, Park SC, An S, Shin J, Han BW and Noh M: Cyclin-dependent kinase 5 inhibitor butyrolactone I elicits a partial agonist activity of peroxisome proliferator-activated receptor γ. Biomolecules. 10:2752020. View Article : Google Scholar

269 

Wang J, Zhu G, Sun C, Xiong K, Yao T, Su Y and Fang H: TAK-242 ameliorates DSS-induced colitis by regulating the gut microbiota and the JAK2/STAT3 signaling pathway. Microb Cell Fact. 19:1582020. View Article : Google Scholar : PubMed/NCBI

270 

Kulesza DW, Ramji K, Maleszewska M, Mieczkowski J, Dabrowski M, Chouaib S and Kaminska B: Search for novel STAT3-dependent genes reveals SERPINA3 as a new STAT3 target that regulates invasion of human melanoma cells. Lab Invest. 99:1607–1621. 2019. View Article : Google Scholar : PubMed/NCBI

271 

Lee DY, Hwang CJ, Choi JY, Park MH, Song MJ, Oh KW, Han SB, Park WK, Cho HY, Cho SY, et al: KRICT-9 inhibits neuroinflammation, amyloidogenesis and memory loss in Alzheimer's disease models. Oncotarget. 8:68654–68667. 2017. View Article : Google Scholar : PubMed/NCBI

272 

Zhang ZH, Yu LJ, Hui XC, Wu ZZ, Yin KL, Yang H and Xu Y: Hydroxy-safflor yellow A attenuates Aβ1-42-induced inflammation by modulating the JAK2/STAT3/NF-κB pathway. Brain Res. 1563:72–80. 2014. View Article : Google Scholar : PubMed/NCBI

273 

Zheng ZV, Chen J, Lyu H, Lam S, Lu G, Chan WY and Wong GKC: Novel role of STAT3 in microglia-dependent neuroinflammation after experimental subarachnoid haemorrhage. Stroke Vasc Neurol. 7:62–70. 2022. View Article : Google Scholar :

274 

Wan J, Fu AK, Ip FC, Ng HK, Hugon J, Page G, Wang JH, Lai KO, Wu Z and Ip NY: Tyk2/STAT3 signaling mediates beta-amyloid-induced neuronal cell death: Implications in Alzheimer's disease. J Neurosci. 30:6873–6881. 2010. View Article : Google Scholar : PubMed/NCBI

275 

Carret-Rebillat AS, Pace C, Gourmaud S, Ravasi L, Montagne-Stora S, Longueville S, Tible M, Sudol E, Chang RC, Paquet C, et al: Neuroinflammation and Aβ accumulation linked to systemic inflammation are decreased by genetic PKR down-regulation. Sci Rep. 5:84892015. View Article : Google Scholar

276 

Jin P, Kim JA, Choi DY, Lee YJ, Jung HS and Hong JT: Anti-inflammatory and anti-amyloidogenic effects of a small molecule, 2,4-bis(p-hydroxyphenyl)-2-butenal in Tg2576 Alzheimer's disease mice model. J Neuroinflammation. 10:22013. View Article : Google Scholar : PubMed/NCBI

277 

Choi JY, Hwang CJ, Lee DY, Gu SM, Lee HP, Choi DY, Oh KW, Han SB and Hong JT: (E)-2-methoxy-4-(3-(4-methoxyphenyl) prop-1-en-1-yl) phenol ameliorates LPS-mediated memory impairment by inhibition of STAT3 pathway. Neuromolecular Med. 19:555–570. 2017. View Article : Google Scholar : PubMed/NCBI

278 

Hussein G, Sankawa U, Goto H, Matsumoto K and Watanabe H: Astaxanthin, a carotenoid with potential in human health and nutrition. J Nat Prod. 69:443–449. 2006. View Article : Google Scholar : PubMed/NCBI

279 

Han JH, Lee YS, Im JH, Ham YW, Lee HP, Han SB and Hong JT: Astaxanthin ameliorates lipopolysaccharide-induced neuroinflammation, oxidative stress and memory dysfunction through inactivation of the signal transducer and activator of transcription 3 pathway. Mar Drugs. 17:1232019. View Article : Google Scholar : PubMed/NCBI

280 

Safar MM, Shahin NN, Mohamed AF and Abdelkader NF: Suppression of BACE1 and amyloidogenic/RAGE axis by sitagliptin ameliorates PTZ kindling-induced cognitive deficits in rats. Chem Biol Interact. 328:1091442020. View Article : Google Scholar : PubMed/NCBI

281 

Wen Y, Yu WH, Maloney B, Bailey J, Ma J, Marié I, Maurin T, Wang L, Figueroa H, Herman M, et al: Transcriptional regulation of beta-secretase by p25/cdk5 leads to enhanced amyloidogenic processing. Neuron. 57:680–690. 2008. View Article : Google Scholar : PubMed/NCBI

282 

Millot P, San C, Bennana E, Porte B, Vignal N, Hugon J, Paquet C, Hosten B and Mouton-Liger F: STAT3 inhibition protects against neuroinflammation and BACE1 upregulation induced by systemic inflammation. Immunol Lett. 228:129–134. 2020. View Article : Google Scholar : PubMed/NCBI

283 

Long QH, Wu YG, He LL, Ding L, Tan AH, Shi HY and Wang P: Suan-Zao-Ren decoction ameliorates synaptic plasticity through inhibition of the Aβ deposition and JAK2/STAT3 signaling pathway in AD model of APP/PS1 transgenic mice. Chin Med. 16:142021. View Article : Google Scholar

284 

Jia T, Xing Z, Wang And H and Li G: Protective effect of dexmedetomidine on intestinal mucosal barrier function in rats after cardiopulmonary bypass. Exp Biol Med (Maywood). 247:498–508. 2022. View Article : Google Scholar

285 

Wang LC, Liao LX, Zhao MB, Dong X, Zeng KW and Tu PF: Protosappanin A exerts anti-neuroinflammatory effect by inhibiting JAK2-STAT3 pathway in lipopolysaccharide-induced BV2 microglia. Chin J Nat Med. 15:674–679. 2017.PubMed/NCBI

286 

Porro C, Cianciulli A, Trotta T, Lofrumento DD and Panaro MA: Curcumin regulates anti-inflammatory responses by JAK/STAT/SOCS signaling pathway in BV-2 microglial cells. Biology (Basel). 8:512019.PubMed/NCBI

287 

Amalraj A, Pius A and Gopi S and Gopi S: Biological activities of curcuminoids, other biomolecules from turmeric and their derivatives-a review. J Tradit Complement Med. 7:205–233. 2016. View Article : Google Scholar

288 

He G and Karin M: NF-κB and STAT3-key players in liver inflammation and cancer. Cell Res. 21:159–168. 2011. View Article : Google Scholar

289 

Sim DY, Lee HJ, Jung JH, Im E, Hwang J, Kim DS and Kim SH: Suppression of STAT3 phosphorylation and RelA/p65 acetylation mediated by MicroRNA134 plays a pivotal role in the apoptotic effect of lambertianic acid. Int J Mol Sci. 20:29932019. View Article : Google Scholar : PubMed/NCBI

290 

Song SY, Jung YY, Hwang CJ, Lee HP, Sok CH, Kim JH, Lee SM, Seo HO, Hyun BK, Choi DY, et al: Inhibitory effect of ent-Sauchinone on amyloidogenesis via inhibition of STAT3-mediated NF-κB activation in cultured astrocytes and microglial BV-2 cells. J Neuroinflammation. 11:1182014. View Article : Google Scholar

291 

Kim J, Park JH, Park SK and Hoe HS: Sorafenib modulates the LPS- and Aβ-induced neuroinflammatory response in cells, wild-type mice, and 5xFAD mice. Front Immunol. 12:6843442021. View Article : Google Scholar

292 

Hei YY, Xin M, Zhang H, Xie XX, Mao S and Zhang SQ: Synthesis and antitumor activity evaluation of 4,6-disubstituted quinazoline derivatives as novel PI3K inhibitors. Bioorg Med Chem Lett. 26:4408–4413. 2016. View Article : Google Scholar : PubMed/NCBI

293 

You JS, Li CY, Chen W, Wu XL, Huang LJ, Li RK, Gao F, Zhang MY, Liu HL and Qu WL: A network pharmacology-based study on Alzheimer disease prevention and treatment of Qiong Yu Gao. BioData Min. 13:22020. View Article : Google Scholar : PubMed/NCBI

294 

Yang S, Chen Z, Cao M, Li R, Wang Z and Zhang M: Pioglitazone ameliorates Aβ42 deposition in rats with diet-induced insulin resistance associated with AKT/GSK3β activation. Mol Med Rep. 15:2588–2594. 2017. View Article : Google Scholar : PubMed/NCBI

295 

Liu X, Wang H, Bei J, Zhao J, Jiang G and Liu X: The protective role of miR-132 targeting HMGA2 through the PI3K/AKT pathway in mice with Alzheimer's disease. Am J Transl Res. 13:4632–4643. 2021.PubMed/NCBI

296 

Hwang SY, Jung JS, Lim SJ, Kim JY, Kim TH, Cho KH and Han IO: LY294002 inhibits interferon-gamma-stimulated inducible nitric oxide synthase expression in BV2 microglial cells. Biochem Biophys Res Commun. 318:691–697. 2004. View Article : Google Scholar : PubMed/NCBI

297 

He Y, Zhou A and Jiang W: Toll-like receptor 4-mediated signaling participates in apoptosis of hippocampal neurons. Neural Regen Res. 8:2744–2753. 2013.

298 

Zu HB, Liu XY and Yao K: DHCR24 overexpression modulates microglia polarization and inflammatory response via Akt/GSK3β signaling in Aβ25-35 treated BV-2 cells. Life Sci. 260:1184702020. View Article : Google Scholar

299 

Sarajärvi T, Haapasalo A, Viswanathan J, Mäkinen P, Laitinen M, Soininen H and Hiltunen M: Down-regulation of seladin-1 increases BACE1 levels and activity through enhanced GGA3 depletion during apoptosis. J Biol Chem. 284:34433–34443. 2009. View Article : Google Scholar : PubMed/NCBI

300 

Yang W, Liu Y, Xu QQ, Xian YF and Lin ZX: Sulforaphene ameliorates neuroinflammation and hyperphosphorylated tau protein via regulating the PI3K/Akt/GSK-3 β pathway in experimental models of Alzheimer's disease. Oxid Med Cell Longev. 2020:47541952020. View Article : Google Scholar

301 

Ivanovics G and Horvath S: Raphanin, an antibacterial principle of the radish (Raphanus sativus). Nature. 160:2971947. View Article : Google Scholar : PubMed/NCBI

302 

Lonze BE and Ginty DD: Function and regulation of CREB family transcription factors in the nervous system. Neuron. 35:605–623. 2002. View Article : Google Scholar : PubMed/NCBI

303 

Ahn SH, Suh JS, Jang YK, Kim HS, Choi GH, Kim E and Kim TJ: Rhynchosia volubilis promotes cell survival via cAMP-PKA/ERK-CREB pathway. Pharmaceuticals (Basel). 15:732022. View Article : Google Scholar : PubMed/NCBI

304 

Hu YJ, Sun Q, Zhang WH, Huo YJ, Xu CJ and Liu JF: Specific activation of mGlu2 induced IGF-1R transactivation in vitro through FAK phosphorylation. Acta Pharmacol Sin. 40:460–467. 2019. View Article : Google Scholar :

305 

Viola H, Furman M, Izquierdo LA, Alonso M, Barros DM, de Souza MM, Izquierdo I and Medina JH: Phosphorylated cAMP response element-binding protein as a molecular marker of memory processing in rat hippocampus: effect of novelty. J Neurosci. 20:RC1122000. View Article : Google Scholar : PubMed/NCBI

306 

Dineley KT, Westerman M, Bui D, Bell K, Ashe KH and Sweatt JD: Beta-amyloid activates the mitogen-activated protein kinase cascade via hippocampal alpha7 nicotinic acetylcholine receptors: In vitro and in vivo mechanisms related to Alzheimer's disease. J Neurosci. 21:4125–4133. 2001. View Article : Google Scholar : PubMed/NCBI

307 

Yamamoto-Sasaki M, Ozawa H, Saito T, Rösler M and Riederer P: Impaired phosphorylation of cyclic AMP response element binding protein in the hippocampus of dementia of the Alzheimer type. Brain Res. 824:300–303. 1999. View Article : Google Scholar : PubMed/NCBI

308 

Mizuno M, Yamada K, Maekawa N, Saito K, Seishima M and Nabeshima T: CREB phosphorylation as a molecular marker of memory processing in the hippocampus for spatial learning. Behav Brain Res. 133:135–141. 2002. View Article : Google Scholar : PubMed/NCBI

309 

Sharma VK and Singh TG: CREB: A multifaceted target for Alzheimer's disease. Curr Alzheimer Res. 17:1280–1293. 2020. View Article : Google Scholar

310 

Li C, Chen T, Zhou H, Feng Y, Hoi MPM, Ma D, Zhao C, Zheng Y and Lee SMY: BHDPC is a novel neuroprotectant that provides anti-neuroinflammatory and neuroprotective effects by inactivating NF-κB and activating PKA/CREB. Front Pharmacol. 9:6142018. View Article : Google Scholar

311 

Ghosh M, Xu Y and Pearse DD: Cyclic AMP is a key regulator of M1 to M2a phenotypic conversion of microglia in the presence of Th2 cytokines. J Neuroinflammation. 13:92016. View Article : Google Scholar : PubMed/NCBI

312 

Tripathi MK, Kartawy M and Amal H: The role of nitric oxide in brain disorders: Autism spectrum disorder and other psychiatric, neurological, and neurodegenerative disorders. Redox Biol. 34:1015672020. View Article : Google Scholar : PubMed/NCBI

313 

Zhang J, Guo J, Zhao X, Chen Z, Wang G, Liu A, Wang Q, Zhou W, Xu Y and Wang C: Phosphodiesterase-5 inhibitor sildenafil prevents neuroinflammation, lowers beta-amyloid levels and improves cognitive performance in APP/PS1 transgenic mice. Behav Brain Res. 250:230–237. 2013. View Article : Google Scholar : PubMed/NCBI

314 

Zeitlin R, Patel S, Burgess S, Arendash GW and Echeverria V: Caffeine induces beneficial changes in PKA signaling and JNK and ERK activities in the striatum and cortex of Alzheimer's transgenic mice. Brain Res. 1417:127–136. 2011. View Article : Google Scholar : PubMed/NCBI

315 

Bitner RS, Markosyan S, Nikkel AL and Brioni JD: In-vivo histamine H3 receptor antagonism activates cellular signaling suggestive of symptomatic and disease modifying efficacy in Alzheimer's disease. Neuropharmacology. 60:460–466. 2011. View Article : Google Scholar

316 

Medhurst AD, Atkins AR, Beresford IJ, Brackenborough K, Briggs MA, Calver AR, Cilia J, Cluderay JE, Crook B, Davis JB, et al: GSK189254, a novel H3 receptor antagonist that binds to histamine H3 receptors in Alzheimer's disease brain and improves cognitive performance in preclinical models. J Pharmacol Exp Ther. 321:1032–1045. 2007. View Article : Google Scholar : PubMed/NCBI

317 

Wang J, Liu B, Sun F, Xu Y, Luan H, Yang M, Wang C, Zhang T, Zhou Z and Yan H: Histamine H3R antagonist counteracts the impaired hippocampal neurogenesis in lipopolysaccharide-induced neuroinflammation. Int Immunopharmacol. 110:1090452022. View Article : Google Scholar : PubMed/NCBI

318 

Hiraga N, Adachi N, Liu K, Nagaro T and Arai T: Suppression of inflammatory cell recruitment by histamine receptor stimulation in ischemic rat brains. Eur J Pharmacol. 557:236–244. 2007. View Article : Google Scholar

319 

Amin FU, Shah SA, Badshah H, Khan M and Kim MO: Anthocyanins encapsulated by PLGA@PEG nanoparticles potentially improved its free radical scavenging capabilities via p38/JNK pathway against Aβ1-42-induced oxidative stress. J Nanobiotechnology. 15:122017. View Article : Google Scholar

320 

von Otter M, Landgren S, Nilsson S, Zetterberg M, Celojevic D, Bergström P, Minthon L, Bogdanovic N, Andreasen N, Gustafson DR, et al: Nrf2-encoding NFE2L2 haplotypes influence disease progression but not risk in Alzheimer's disease and age-related cataract. Mech Ageing Dev. 131:105–110. 2010. View Article : Google Scholar : PubMed/NCBI

321 

Kanninen K, Malm TM, Jyrkkänen HK, Goldsteins G, Keksa-Goldsteine V, Tanila H, Yamamoto M, Ylä-Herttuala S, Levonen AL and Koistinaho J: Nuclear factor erythroid 2-related factor 2 protects against beta amyloid. Mol Cell Neurosci. 39:302–313. 2008. View Article : Google Scholar

322 

Li XX, Zheng X, Liu Z, Xu Q, Tang H, Feng J, Yang S, Vong CT, Gao H and Wang Y: Cryptotanshinone from Salvia miltiorrhiza Bunge (Danshen) inhibited inflammatory responses via TLR4/MyD88 signaling pathway. Chin Med. 15:202020. View Article : Google Scholar : PubMed/NCBI

323 

Fragoulis A, Siegl S, Fendt M, Jansen S, Soppa U, Brandenburg LO, Pufe T, Weis J and Wruck CJ: Oral administration of methysticin improves cognitive deficits in a mouse model of Alzheimer's disease. Redox Biol. 12:843–853. 2017. View Article : Google Scholar : PubMed/NCBI

324 

Bilia AR, Scalise L, Bergonzi MC and Vincieri FF: Analysis of kavalactones from Piper methysticum (kava-kava). J Chromatogr B Analyt Technol Biomed Life Sci. 812:203–214. 2004. View Article : Google Scholar : PubMed/NCBI

325 

Mattioli R, Francioso A, d'Erme M, Trovato M, Mancini P, Piacentini L, Casale AM, Wessjohann L, Gazzino R, Costantino P and Mosca L: Anti-inflammatory activity of a polyphenolic extract from Arabidopsis thaliana in in vitro and in vivo models of Alzheimer's disease. Int J Mol Sci. 20:7082019. View Article : Google Scholar : PubMed/NCBI

326 

Rateb ME, Houssen WE, Schumacher M, Harrison WT, Diederich M, Ebel R and Jaspars M: Bioactive diterpene derivatives from the marine sponge Spongionella sp. J Nat Prod. 72:1471–1476. 2009. View Article : Google Scholar : PubMed/NCBI

327 

Alvariño R, Alonso E, Abbasov ME, Chaheine CM, Conner ML, Romo D, Alfonso A and Botana LM: Gracilin A derivatives target early events in Alzheimer's disease: In vitro effects on neuroinflammation and oxidative stress. ACS Chem Neurosci. 10:4102–4111. 2019. View Article : Google Scholar : PubMed/NCBI

328 

Wang X and Asghar M: Protein disulfide isomerase regulates renal AT1 receptor function and blood pressure in rats. Am J Physiol Renal Physiol. 313:F461–F466. 2017. View Article : Google Scholar :

329 

Itoh K, Mimura J and Yamamoto M: Discovery of the negative regulator of Nrf2, Keap1: A historical overview. Antioxid Redox Signal. 13:1665–1678. 2010. View Article : Google Scholar : PubMed/NCBI

330 

Wu H, Zhao G, Jiang K, Li C, Qiu C and Deng G: Engeletin alleviates lipopolysaccharide-induced endometritis in mice by inhibiting TLR4-mediated NF-κB activation. J Agric Food Chem. 64:6171–6178. 2016. View Article : Google Scholar : PubMed/NCBI

331 

Huang Z, Ji H, Shi J, Zhu X and Zhi Z: Engeletin attenuates Aβ1-42-induced oxidative stress and neuroinflammation by Keap1/Nrf2 pathway. Inflammation. 43:1759–1771. 2020. View Article : Google Scholar : PubMed/NCBI

332 

Barone E, Di Domenico F, Sultana R, Coccia R, Mancuso C, Perluigi M and Butterfield DA: Heme oxygenase-1 posttranslational modifications in the brain of subjects with Alzheimer disease and mild cognitive impairment. Free Radic Biol Med. 52:2292–2301. 2012. View Article : Google Scholar : PubMed/NCBI

333 

Zou Y, Hong B, Fan L, Zhou L, Liu Y, Wu Q, Zhang X and Dong M: Protective effect of puerarin against beta-amyloid-induced oxidative stress in neuronal cultures from rat hippocampus: Involvement of the GSK-3β/Nrf2 signaling pathway. Free Radic Res. 47:55–63. 2013. View Article : Google Scholar

334 

Eom HW, Park SY, Kim YH, Seong SJ, Jin ML, Ryu EY, Kim MJ and Lee SJ: Bambusae caulis in taeniam modulates neuroprotective and anti-neuroinflammatory effects in hippocampal and microglial cells via HO-1- and Nrf-2-mediated pathways. Int J Mol Med. 30:1512–1520. 2012. View Article : Google Scholar : PubMed/NCBI

335 

Chen J, Yin W, Tu Y, Wang S, Yang X, Chen Q, Zhang X, Han Y and Pi R: L-F001, a novel multifunctional ROCK inhibitor, suppresses neuroinflammation in vitro and in vivo: Involvement of NF-κB inhibition and Nrf2 pathway activation. Eur J Pharmacol. 806:1–9. 2017. View Article : Google Scholar : PubMed/NCBI

336 

Zhan TW, Tian YX, Wang Q, Wu ZX, Zhang WP, Lu YB and Wu M: Cangrelor alleviates pulmonary fibrosis by inhibiting GPR17-mediated inflammation in mice. Int Immunopharmacol. 62:261–269. 2018. View Article : Google Scholar : PubMed/NCBI

337 

Jin S, Wang X, Xiang X, Wu Y, Hu J, Li Y, Lin DY, Tan Y and Wu X: Inhibition of GPR17 with cangrelor improves cognitive impairment and synaptic deficits induced by Aβ1-42 through Nrf2/HO-1 and NF-κB signaling pathway in mice. Int Immunopharmacol. 101:1083352021. View Article : Google Scholar

338 

Gao X, He D, Liu D, Hu G, Zhang Y, Meng T, Su Y, Zhou A, Huang B, Du J and Fu S: Beta-naphthoflavone inhibits LPS-induced inflammation in BV-2 cells via AKT/Nrf-2/HO-1-NF-kappaB signaling axis. Immunobiology. 225:1519652020. View Article : Google Scholar

339 

Just PA, Charawi S, Denis RGP, Savall M, Traore M, Foretz M, Bastu S, Magassa S, Senni N, Sohier P, et al: Lkb1 suppresses amino acid-driven gluconeogenesis in the liver. Nat Commun. 11:61272020. View Article : Google Scholar : PubMed/NCBI

340 

Marinangeli C, Didier S, Ahmed T, Caillerez R, Domise M, Laloux C, Bégard S, Carrier S, Colin M, Marchetti P, et al: AMP-activated protein kinase is essential for the maintenance of energy levels during synaptic activation. iScience. 9:1–13. 2018. View Article : Google Scholar : PubMed/NCBI

341 

Vingtdeux V, Davies P, Dickson DW and Marambaud P: AMPK is abnormally activated in tangle- and pre-tangle-bearing neurons in Alzheimer's disease and other tauopathies. Acta Neuropathol. 121:337–349. 2011. View Article : Google Scholar :

342 

Shah SA, Yoon GH, Chung SS, Abid MN, Kim TH, Lee HY and Kim MO: Novel osmotin inhibits SREBP2 via the AdipoR1/AMPK/SIRT1 pathway to improve Alzheimer's disease neuropathological deficits. Mol Psychiatry. 22:407–416. 2017. View Article : Google Scholar :

343 

Vingtdeux V, Chandakkar P, Zhao H, d'Abramo C, Davies P and Marambaud P: Novel synthetic small-molecule activators of AMPK as enhancers of autophagy and amyloid-β peptide degradation. FASEB J. 25:219–231. 2011. View Article : Google Scholar :

344 

Domise M, Didier S, Marinangeli C, Zhao H, Chandakkar P, Buée L, Viollet B, Davies P, Marambaud P and Vingtdeux V: AMP-activated protein kinase modulates tau phosphorylation and tau pathology in vivo. Sci Rep. 6:267582016. View Article : Google Scholar : PubMed/NCBI

345 

Li C, Zhang C, Zhou H, Feng Y, Tang F, Hoi M, He C, Ma D, Zhao C and Lee S: Inhibitory effects of betulinic acid on LPS-induced neuroinflammation involve M2 microglial polarization via CaMKKβ-Dependent AMPK activation. Front Mol Neurosci. 11:982018. View Article : Google Scholar

346 

Voss U and Ekblad E: Lipopolysaccharide-induced loss of cultured rat myenteric neurons-role of AMP-activated protein kinase. PLoS One. 9:e1140442014. View Article : Google Scholar

347 

Zhou Z, Zhang L, Liu Y, Huang C, Xia W, Zhou H, Zhou Z and Zhou X: Luteolin protects chondrocytes from H O oxidative injury and attenuates osteoarthritis progression by 2 2-induced activating AMPK-Nrf2 signaling. Oxid Med Cell Longev. 2022:56357972022. View Article : Google Scholar

348 

Zhou F, Wang M, Ju J, Wang Y, Liu Z, Zhao X, Yan Y, Yan S, Luo X and Fang Y: Schizandrin A protects against cerebral ischemia-reperfusion injury by suppressing inflammation and oxidative stress and regulating the AMPK/Nrf2 pathway regulation. Am J Transl Res. 11:199–209. 2019.PubMed/NCBI

349 

Park SY, Choi MH, Park G and Choi YW: Petasites japonicus bakkenolide B inhibits lipopolysaccharide-induced pro-inflammatory cytokines via AMPK/Nrf2 induction in microglia. Int J Mol Med. 41:1683–1692. 2018.

350 

Lee KP, Kang S, Park SJ, Choi YW, Lee YG and Im DS: Anti-allergic and anti-inflammatory effects of bakkenolide B isolated from Petasites japonicus leaves. J Ethnopharmacol. 148:890–894. 2013. View Article : Google Scholar : PubMed/NCBI

351 

Li J, Wen PY, Li WW and Zhou J: Upregulation effects of tanshinone IIA on the expressions of NeuN, Nissl body, and IκB and downregulation effects on the expressions of GFAP and NF-κB in the brain tissues of rat models of Alzheimer's disease. Neuroreport. 26:758–766. 2015. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P and Jiang X: Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 52: 111, 2023.
APA
Zheng, Y., Zhang, X., Zhang, R., Wang, Z., Gan, J., Gao, Q. ... Jiang, X. (2023). Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). International Journal of Molecular Medicine, 52, 111. https://doi.org/10.3892/ijmm.2023.5314
MLA
Zheng, Y., Zhang, X., Zhang, R., Wang, Z., Gan, J., Gao, Q., Yang, L., Xu, P., Jiang, X."Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review)". International Journal of Molecular Medicine 52.5 (2023): 111.
Chicago
Zheng, Y., Zhang, X., Zhang, R., Wang, Z., Gan, J., Gao, Q., Yang, L., Xu, P., Jiang, X."Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review)". International Journal of Molecular Medicine 52, no. 5 (2023): 111. https://doi.org/10.3892/ijmm.2023.5314
Copy and paste a formatted citation
x
Spandidos Publications style
Zheng Y, Zhang X, Zhang R, Wang Z, Gan J, Gao Q, Yang L, Xu P and Jiang X: Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). Int J Mol Med 52: 111, 2023.
APA
Zheng, Y., Zhang, X., Zhang, R., Wang, Z., Gan, J., Gao, Q. ... Jiang, X. (2023). Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review). International Journal of Molecular Medicine, 52, 111. https://doi.org/10.3892/ijmm.2023.5314
MLA
Zheng, Y., Zhang, X., Zhang, R., Wang, Z., Gan, J., Gao, Q., Yang, L., Xu, P., Jiang, X."Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review)". International Journal of Molecular Medicine 52.5 (2023): 111.
Chicago
Zheng, Y., Zhang, X., Zhang, R., Wang, Z., Gan, J., Gao, Q., Yang, L., Xu, P., Jiang, X."Inflammatory signaling pathways in the treatment of Alzheimer's disease with inhibitors, natural products and metabolites (Review)". International Journal of Molecular Medicine 52, no. 5 (2023): 111. https://doi.org/10.3892/ijmm.2023.5314
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team