|
1
|
Santoni M, Rizzo A, Mollica V, Matrana MR,
Rosellini M, Faloppi L, Marchetti A, Battelli N and Massari F: The
impact of gender on The efficacy of immune checkpoint inhibitors in
cancer patients: The MOUSEION-01 study. Crit Rev Oncol Hematol.
170:1035962022. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Santoni M, Rizzo A, Kucharz J, Mollica V,
Rosellini M, Marchetti A, Tassinari E, Monteiro FSM, Soares A,
Molina-Cerrillo J, et al: Complete remissions following
immunotherapy or immuno-oncology combinations in cancer patients:
The MOUSEION-03 meta-analysis. Cancer Immunol Immunother.
72:1365–1379. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Rizzo A, Cusmai A, Giovannelli F,
Acquafredda S, Rinaldi L, Misino A, Montagna ES, Ungaro V, Lorusso
M and Palmiotti G: Impact of Proton Pump Inhibitors and
Histamine-2-Receptor Antagonists on Non-Small Cell Lung Cancer
Immunotherapy: A Systematic Review and Meta-Analysis. Cancers
(Basel). 14:14042022. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Gout DY, Groen LS and van Egmond M: The
present and future of immunocytokines for cancer treatment. Cell
Mol Life Sci. 79:5092022. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mortara L, Balza E, Bruno A, Poggi A,
Orecchia P and Carnemolla B: Anti-cancer Therapies Employing IL-2
cytokine tumor targeting: Contribution of innate, adaptive and
immunosuppressive cells in the anti-tumor efficacy. Front Immunol.
9:29052018. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Kim JS, Jun SY and Kim YS: Critical issues
in the development of immunotoxins for anticancer therapy. J Pharm
Sci. 109:104–115. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Muyldermans S: Applications of Nanobodies.
Annu Rev Anim Biosci. 9:401–421. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Jovčevska I and Muyldermans S: The
therapeutic potential of nanobodies. BioDrugs. 34:11–26. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Verhaar ER, Woodham AW and Ploegh HL:
Nanobodies in cancer. Semin Immunol. 52:1014252021. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Muyldermans S: A guide to: Generation and
design of nanobodies. FEBS J. 288:2084–2102. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Naidoo DB and Chuturgoon AA: Nanobodies
enhancing cancer visualization, diagnosis and therapeutics. Int J
Mol Sci. 22:97782021. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Conlon KC, Miljkovic MD and Waldmann TA:
Cytokines in the treatment of cancer. J Interferon Cytokine Res.
39:6–21. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Waldmann TA: Cytokines in cancer
immunotherapy. Cold Spring Harb Perspect Biol. 10:a0284722018.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Dong C: Cytokine regulation and function
in T cells. Annu Rev Immunol. 39:51–76. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Ouyang W and O'Garra A: IL-10 Family
Cytokines IL-10 and IL-22: From basic science to clinical
translation. Immunity. 50:871–891. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Mantovani A, Dinarello CA, Molgora M and
Garlanda C: Interleukin-1 and related cytokines in the regulation
of inflammation and immunity. Immunity. 50:b778–795. 2019.
View Article : Google Scholar
|
|
17
|
Krayem I and Lipoldová M: Role of host
genetics and cytokines in Leishmania infection. Cytokine.
147:1552442021. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Fajgenbaum DC and June CH: Cytokine Storm.
N Engl J Med. 383:2255–2273. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Ragab D, Salah Eldin H, Taeimah M, Khattab
R and Salem R: The COVID-19 Cytokine Storm; What we know so far.
Front Immunol. 11:14462020. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Zhang W, Huang Z, Huang M and Zeng J:
Predicting severe enterovirus 71-infected hand, foot, and mouth
disease: Cytokines and chemokines. Mediators Inflamm.
2020:92732412020. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Long DL, Song HL and Qu PP: Cytokines
profiles in cervical mucosa in patients with cervical high-risk
human papillomavirus infection. J Infect Dev Ctries. 15:719–725.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Ji X, Yue H, Li G and Sang N: Maternal
smoking-induced lung injuries in dams and offspring via
inflammatory cytokines. Environ Int. 156:1066182021. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Kumari M, Mathur P, Aggarwal R, Madan K,
Sagar S, Gupta A, Khurana S, Sreenivas V and Kumar S: Changes in
extracellular cytokines in predicting disease severity and final
clinical outcome of patients with blunt chest trauma.
Immunobiology. 226:1520872021. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Miller ES, Loftus TJ, Kannan KB, Plazas
JM, Efron PA and Mohr AM: Systemic Regulation of Bone Marrow
Stromal Cytokines After Severe Trauma. J Surg Res. 243:220–228.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Sun Z, Ren Z, Yang K, Liu Z, Cao S, Deng
S, Xu L, Liang Y, Guo J, Bian Y, et al: Author Correction: A
next-generation tumor-targeting IL-2 preferentially promotes
tumor-infiltrating CD8+ T-cell response and effective tumor
control. Nat Commun. 11:17162020. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Chandran E, Meininger L, Karzai F and
Madan RA: Signaling new therapeutic opportunities: Cytokines in
prostate cancer. Expert Opin Biol Ther. 22:1233–1243. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Cirella A, Luri-Rey C, Di Trani CA,
Teijeira A, Olivera I, Bolaños E, Castañón E, Palencia B, Brocco D,
Fernández-Sendin M, et al: Novel strategies exploiting
interleukin-12 in cancer immunotherapy. Pharmacol Ther.
239:1081892022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Shum T, Omer B, Tashiro H, Kruse RL,
Wagner DL, Parikh K, Yi Z, Sauer T, Liu D, Parihar R, et al:
Constitutive signaling from an engineered IL7 receptor promotes
durable tumor elimination by tumor-redirected T cells. Cancer
Discov. 7:1238–1247. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Nguyen KG, Vrabel MR, Mantooth SM, Hopkins
JJ, Wagner ES, Gabaldon TA and Zaharoff DA: Localized
interleukin-12 for cancer immunotherapy. Front Immunol.
11:5755972020. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Hicks KC, Chariou PL, Ozawa Y, Minnar CM,
Knudson KM, Meyer TJ, Bian J, Cam M, Schlom J and Gameiro SR:
Tumour-targeted interleukin-12 and entinostat combination therapy
improves cancer survival by reprogramming the tumour immune cell
landscape. Nat Commun. 12:51512021. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Tokunaga R, Zhang W, Naseem M, Puccini A,
Berger MD, Soni S, McSkane M, Baba H and Lenz HJ: CXCL9, CXCL10,
CXCL11/CXCR3 axis for immune activation-A target for novel cancer
therapy. Cancer Treat Rev. 63:40–47. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Humblin E and Kamphorst AO: CXCR3-CXCL9:
It's all in the tumor. Immunity. 50:1347–1349. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Karin N: Chemokines and cancer: New immune
checkpoints for cancer therapy. Curr Opin Immunol. 51:140–145.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Ivashkiv LB: IFNγ: Signalling, epigenetics
and roles in immunity, metabolism, disease and cancer
immunotherapy. Nat Rev Immunol. 8:545–558. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Rizzo A: Use of granulocyte
colony-stimulating factor for adult cancer patients: Current issues
and future directions. Future Oncol. 17:3411–3413. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Liu L, Liu Y, Yan X, Zhou C and Xiong X:
The role of granulocyte colony stimulating factor in breast cancer
development: A review. Mol Med Rep. 21:2019–2029. 2020.PubMed/NCBI
|
|
37
|
MaruYama T, Chen W and Shibata H: TGF-β
and cancer immunotherapy. Biol Pharm Bull. 45:155–161. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Märkl F, Huynh D, Endres S and Kobold S:
Utilizing chemokines in cancer immunotherapy. Trends Cancer.
8:670–682. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Hsu EJ, Cao X, Moon B, Bae J, Sun Z, Liu Z
and Fu YX: A cytokine receptor-masked IL2 prodrug selectively
activates tumor-infiltrating lymphocytes for potent antitumor
therapy. Nat Commun. 12:27682021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Hernandez R, Põder J, LaPorte KM and Malek
TR: Engineering IL-2 for immunotherapy of autoimmunity and cancer.
Nat Rev Immunol. 22:614–628. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Mirlekar B and Pylayeva-Gupta Y: IL-12
family cytokines in cancer and immunotherapy. Cancers (Basel).
13:1672021. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Qiu Y, Su M, Liu L, Tang Y, Pan Y and Sun
J: Clinical application of cytokines in cancer immunotherapy. Drug
Des Devel Ther. 15:2269–2287. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Runbeck E, Crescioli S, Karagiannis SN and
Papa S: Utilizing immunocytokines for cancer therapy. Antibodies
(Basel). 10:102021. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Coppola C, Hopkins B, Huhn S, Du Z, Huang
Z and Kelly WJ: Investigation of the Impact from IL-2, IL-7, and
IL-15 on the growth and signaling of activated CD4+ T Cells. Int J
Mol Sci. 21:78142020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Kim JH, Lee KJ and Lee SW: Cancer
immunotherapy with T-cell targeting cytokines: IL-2 and IL-7. BMB
Rep. 54:21–30. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Park JH, Waickman AT, Reynolds J, Castro M
and Molina-París C: IL7 receptor signaling in T cells: A
mathematical modeling perspective. Wiley Interdiscip Rev Syst Biol
Med. 11:e14472019. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Pol JG, Caudana P, Paillet J, Piaggio E
and Kroemer G: Effects of interleukin-2 in immunostimulation and
immunosuppression. J Exp Med. 217:e201912472020. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yang T, Li J, Li R, Yang C, Zhang W, Qiu
Y, Yang C and Rong R: Correlation between MDSC and immune tolerance
in transplantation: Cytokines, pathways and cell-cell interaction.
Curr Gene Ther. 19:81–92. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Kucuksezer UC, Ozdemir C, Cevhertas L,
Ogulur I, Akdis M and Akdis CA: Mechanisms of allergen-specific
immunotherapy and allergen tolerance. Allergol Int. 69:549–560.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Lambrecht BN, Hammad H and Fahy JV: The
cytokines of asthma. Immunity. 50:975–991. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Propper DJ and Balkwill FR: Harnessing
cytokines and chemokines for cancer therapy. Nat Rev Clin Oncol.
19:237–253. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Spangler JB, Moraga I, Mendoza JL and
Garcia KC: Insights into cytokine-receptor interactions from
cytokine engineering. Annu Rev Immunol. 33:139–167. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Bentebibel SE and Diab A: Cytokines in the
treatment of melanoma. Curr Oncol Rep. 23:832021. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Guo J, Liang Y, Xue D, Shen J, Cai Y, Zhu
J, Fu YX and Peng H: Tumor-conditional IL-15 pro-cytokine
reactivates anti-tumor immunity with limited toxicity. Cell Res.
31:1190–1198. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Briukhovetska D, Dörr J, Endres S, Libby
P, Dinarello CA and Kobold S: Interleukins in cancer: From biology
to therapy. Nat Rev Cancer. 21:481–499. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Zheng X, Wu Y, Bi J, Huang Y, Cheng Y, Li
Y, Wu Y, Cao G and Tian Z: The use of supercytokines,
immunocytokines, engager cytokines, and other synthetic cytokines
in immunotherapy. Cell Mol Immunol. 19:192–209. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Weiss T, Puca E, Silginer M, Hemmerle T,
Pazahr S, Bink A, Weller M, Neri D and Roth P: Immunocytokines are
a promising immunotherapeutic approach against glioblastoma. Sci
Transl Med. 12:eabb23112020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Qiao J, Liu Z, Dong C, Luan Y, Zhang A,
Moore C, Fu K, Peng J, Wang Y, Ren Z, et al: Targeting Tumors with
IL-10 Prevents Dendritic Cell-Mediated CD8+ T Cell Apoptosis.
Cancer Cell. 35:901–915.e4. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Papadia F, Basso V, Patuzzo R, Maurichi A,
Di Florio A, Zardi L, Ventura E, González-Iglesias R, Lovato V,
Giovannoni L, et al: Isolated limb perfusion with the
tumor-targeting human monoclonal antibody-cytokine fusion protein
L19-TNF plus melphalan and mild hyperthermia in patients with
locally advanced extremity melanoma. J Surg Oncol. 107:173–179.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Morillon YM II, Su Z, Schlom J and Greiner
JW: Temporal changes within the (bladder) tumor microenvironment
that accompany the therapeutic effects of the immunocytokine
NHS-IL12. J Immunother Cancer. 7:1502019. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Halin C, Gafner V, Villani ME, Borsi L,
Berndt A, Kosmehl H, Zardi L and Neri D: Synergistic therapeutic
effects of a tumor targeting antibody fragment, fused to
interleukin 12 and to tumor necrosis factor alpha. Cancer Res.
63:3202–3210. 2003.PubMed/NCBI
|
|
62
|
Knudson KM, Hicks KC, Ozawa Y, Schlom J
and Gameiro SR: Functional and mechanistic advantage of the use of
a bifunctional anti-PD-L1/IL-15 superagonist. J Immunother Cancer.
8:e0004932020. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Deng S, Sun Z, Qiao J, Liang Y, Liu L,
Dong C, Shen A, Wang Y, Tang H, Fu YX and Peng H: Targeting tumors
with IL-21 reshapes the tumor microenvironment by proliferating
PD-1intTim-3-CD8+ T cells. JCI Insight. 5:e1320002020. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Hemmerle T, Doll F and Neri D:
Antibody-based delivery of IL4 to the neovasculature cures mice
with arthritis. Proc Natl Acad Sci USA. 111:12008–12012. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Li T, Cai H, Yao H, Zhou B, Zhang N, van
Vlissingen MF, Kuiken T, Han W, GeurtsvanKessel CH, Gong Y, et al:
A synthetic nanobody targeting RBD protects hamsters from
SARS-CoV-2 infection. Nat Commun. 12:46352021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mir MA, Mehraj U, Sheikh BA and Hamdani
SS: Nanobodies: The ‘Magic Bullets’ in therapeutics, drug delivery
and diagnostics. Hum Antibodies. 28:29–51. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Wicke N, Bedford MR and Howarth M:
Gastrobodies are engineered antibody mimetics resilient to pepsin
and hydrochloric acid. Commun Biol. 4:9602021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kang W, Ding C, Zheng D, Ma X, Yi L, Tong
X, Wu C, Xue C, Yu Y and Zhou Q: Nanobody conjugates for targeted
cancer therapy and imaging. Technol Cancer Res Treat.
20:153303382110101172021. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Yu S, Li Z, Li J, Zhao S, Wu S, Liu H, Bi
X, Li D, Dong J, Duan S and Hammock BD: Generation of dual
functional nanobody-nanoluciferase fusion and its potential in
bioluminescence enzyme immunoassay for trace glypican-3 in serum.
Sens Actuators B Chem. 336:1297172021. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
de Marco A: Recombinant expression of
nanobodies and nanobody-derived immunoreagents. Protein Expr Purif.
172:1056452020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Hamers-Casterman C, Atarhouch T,
Muyldermans S, Robinson G, Hamers C, Songa EB, Bendahman N and
Hamers R: Naturally occurring antibodies devoid of light chains.
Nature. 363:446–448. 1993. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Eggers M, Rühl F, Haag F and Koch-Nolte F:
Nanobodies as probes to investigate purinergic signaling. Biochem
Pharmacol. 187:1143942021. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Salema V and Fernández LÁ: Escherichia
coli surface display for the selection of nanobodies. Microb
Biotechnol. 10:1468–1484. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Liu B and Yang D: Easily established and
multifunctional synthetic nanobody libraries as research tools. Int
J Mol Sci. 23:14822022. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Verkhivker G: Structural and computational
studies of the SARS-CoV-2 spike protein binding mechanisms with
nanobodies: From structure and dynamics to avidity-driven nanobody
engineering. Int J Mol Sci. 23:29282022. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Manoutcharian K, Perez-Garmendia R and
Gevorkian G: Recombinant antibody fragments for neurodegenerative
diseases. Curr Neuropharmacol. 15:779–788. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Liu M, Li L, Jin D and Liu Y: Nanobody-A
versatile tool for cancer diagnosis and therapeutics. Wiley
Interdiscip Rev Nanomed Nanobiotechnol. 13:e16972021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mei Y, Chen Y, Sivaccumar JP, An Z, Xia N
and Luo W: Research progress and applications of nanobody in human
infectious diseases. Front Pharmacol. 13:9639782022. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Koenig PA, Das H, Liu H, Kümmerer BM, Gohr
FN, Jenster LM, Schiffelers LDJ, Tesfamariam YM, Uchima M, Wuerth
JD, et al: Structure-guided multivalent nanobodies block SARS-CoV-2
infection and suppress mutational escape. Science.
371:eabe62302021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Yu S, Xiong G, Zhao S, Tang Y, Tang H,
Wang K, Liu H, Lan K, Bi X and Duan S: Nanobodies targeting immune
checkpoint molecules for tumor immunotherapy and immunoimaging
(Review). Int J Mol Med. 47:444–454. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lecocq Q, De Vlaeminck Y, Hanssens H,
D'Huyvetter M, Raes G, Goyvaerts C, Keyaerts M, Devoogdt N and
Breckpot K: Theranostics in immuno-oncology using nanobody
derivatives. Theranostics. 9:7772–7791. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Sun S, Ding Z, Yang X, Zhao X, Zhao M, Gao
L, Chen Q, Xie S, Liu A, Yin S, et al: Nanobody: A small antibody
with big implications for tumor therapeutic strategy. Int J
Nanomedicine. 16:2337–2356. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Gurbatri CR, Lia I, Vincent R, Coker C,
Castro S, Treuting PM, Hinchliffe TE, Arpaia N and Danino T:
Engineered probiotics for local tumor delivery of checkpoint
blockade nanobodies. Sci Transl Med. 12:eaax08762020. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Di Nitto C, Neri D, Weiss T, Weller M and
De Luca R: Design and characterization of novel antibody-cytokine
fusion proteins based on interleukin-21. Antibodies (Basel).
11:192022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Hutmacher C and Neri D: Antibody-cytokine
fusion proteins: Biopharmaceuticals with immunomodulatory
properties for cancer therapy. Adv Drug Deliv Rev. 141:67–91. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Murer P and Neri D: Antibody-cytokine
fusion proteins: A novel class of biopharmaceuticals for the
therapy of cancer and of chronic inflammation. N Biotechnol.
52:42–53. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Valedkarimi Z, Nasiri H, Aghebati-Maleki L
and Majidi J: Antibody-cytokine fusion proteins for improving
efficacy and safety of cancer therapy. Biomed Pharmacother.
95:731–742. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Neri D: Antibody-Cytokine Fusions:
Versatile products for the modulation of anticancer immunity.
Cancer Immunol Res. 7:348–354. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Ziffels B, Stringhini M, Probst P, Fugmann
T, Sturm T and Neri D: Antibody-Based delivery of cytokine payloads
to carbonic anhydrase IX leads to cancer cures in immunocompetent
tumor-bearing mice. Mol Cancer Ther. 18:1544–1554. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Corbellari R, Nadal L, Villa A, Neri D and
De Luca R: The immunocytokine L19-TNF eradicates sarcomas in
combination with chemotherapy agents or with immune check-point
inhibitors. Anticancer Drugs. 31:799–805. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Lutz EA, Jailkhani N, Momin N, Huang Y,
Sheen A, Kang BH, Wittrup KD and Hynes RO: Intratumoral
nanobody-IL-2 fusions that bind the tumor extracellular matrix
suppress solid tumor growth in mice. PNAS Nexus. 1:pgac2442022.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Rhode PR, Egan JO, Xu W, Hong H, Webb GM,
Chen X, Liu B, Zhu X, Wen J, You L, et al: Comparison of the
superagonist complex, ALT-803, to IL15 as cancer immunotherapeutics
in animal models. Cancer Immunol Res. 4:49–60. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Xu H, Buhtoiarov IN, Guo H and Cheung NV:
A novel multimeric IL15/IL15Rα-Fc complex to enhance cancer
immunotherapy. Oncoimmunology. 10:18935002021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Corbellari R, Stringhini M, Mock J, Ongaro
T, Villa A, Neri D and De Luca R: A novel Antibody-IL15 fusion
protein selectively localizes to tumors, synergizes with TNF-based
immunocytokine, and inhibits Metastasis. Mol Cancer Ther.
20:859–871. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Liu Y, Wang Y, Xing J, Li Y, Liu J and
Wang Z: A novel multifunctional anti-CEA-IL15 molecule displays
potent antitumor activities. Drug Des Devel Ther. 12:2645–2654.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Zelová H and Hošek J: TNF-α signalling and
inflammation: Interactions between old acquaintances. Inflamm Res.
62:641–651. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Vanamee ÉS and Faustman DL: Structural
principles of tumor necrosis factor superfamily signaling. Sci
Signal. 11:eaao49102018. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Mitoma H, Horiuchi T, Tsukamoto H and Ueda
N: Molecular mechanisms of action of anti-TNF-α agents-Comparison
among therapeutic TNF-α antagonists. Cytokine. 101:56–63. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhang Y, Li X, Chihara T, Dong H and
Kagami H: Effect of TNF-α and IL-6 on compact bone-derived cells.
Tissue Eng Regen Med. 18:441–451. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Tsimberidou AM and Giles FJ: TNF-alpha
targeted therapeutic approaches in patients with hematologic
malignancies. Expert Rev Anticancer Ther. 2:277–286. 2002.
View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Kemanetzoglou E and Andreadou E: CNS
Demyelination with TNF-α Blockers. Curr Neurol Neurosci Rep.
17:362017. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Jang DI, Lee AH, Shin HY, Song HR, Park
JH, Kang TB, Lee SR and Yang SH: The role of tumor necrosis factor
alpha (TNF-α) in autoimmune disease and current TNF-α inhibitors in
therapeutics. Int J Mol Sci. 22:27192021. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Osaki T, Nakanishi T, Aoki M, Omizu T,
Nishiura D and Kitamura M: Soluble expression in escherichia coli
of a single-domain antibody-tumor necrosis factor α fusion protein
specific for epidermal growth factor receptor. Monoclon Antib
Immunodiagn Immunother. 37:20–25. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Tang Y, Sun J, Pan H, Yao F, Yuan Y, Zeng
M, Ye G, Yang G, Zheng B, Fan J, et al: Aberrant cytokine
expression in COVID-19 patients: Associations between cytokines and
disease severity. Cytokine. 143:1555232021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Saxton RA, Glassman CR and Garcia KC:
Emerging principles of cytokine pharmacology and therapeutics. Nat
Rev Drug Discov. 21:21–37. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Oppenheim JJ: The future of the cytokine
discipline. Cold Spring Harb Perspect Biol. 10:a0284982018.
View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Kaur S, Bansal Y, Kumar R and Bansal G: A
panoramic review of IL-6: Structure, pathophysiological roles and
inhibitors. Bioorg Med Chem. 28:1153272020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Yen M, Ren J, Liu Q, Glassman CR, Sheahan
TP, Picton LK, Moreira FR, Rustagi A, Jude KM, Zhao X, et al:
Facile discovery of surrogate cytokine agonists. Cell.
185:1414–1430.e19. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Schinocca C, Rizzo C, Fasano S, Grasso G,
La Barbera L, Ciccia F and Guggino G: Role of the IL-23/IL-17
pathway in rheumatic diseases: An overview. Front Immunol.
12:6378292021. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Neurath MF: IL-23 in inflammatory bowel
diseases and colon cancer. Cytokine Growth Factor Rev. 45:1–8.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Huang J, Wang L, Yu C, Fu Z, Liu C, Zhang
H, Wang K, Guo X and Wang J: Characterization of a reliable
cell-based reporter gene assay for measuring bioactivities of
therapeutic anti-interleukin-23 monoclonal antibodies. Int
Immunopharmacol. 85:1066472020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Desmyter A, Spinelli S, Boutton C,
Saunders M, Blachetot C, de Haard H, Denecker G, Van Roy M,
Cambillau C and Rommelaere H: Neutralization of human interleukin
23 by multivalent nanobodies explained by the structure of
cytokine-nanobody complex. Front Immunol. 8:8842017. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Gevenois PJY, De Pauw P, Schoonooghe S,
Delporte C, Sebti T, Amighi K, Muyldermans S and Wauthoz N:
Development of neutralizing multimeric nanobody constructs directed
against IL-13: From immunization to lead optimization. J Immunol.
207:2608–2620. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
von Stebut E, Boehncke WH, Ghoreschi K,
Gori T, Kaya Z, Thaci D and Schäffler A: IL-17A in psoriasis and
beyond: Cardiovascular and metabolic implications. Front Immunol.
10:30962020. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Brevi A, Cogrossi LL, Grazia G,
Masciovecchio D, Impellizzieri D, Lacanfora L, Grioni M and Bellone
M: Much more than IL-17A: Cytokines of the IL-17 family between
microbiota and cancer. Front Immunol. 11:5654702020. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Yao G, Huang C, Ji F, Ren J, Zang B and
Jia L: Nanobody-loaded immunosorbent for highly-specific removal of
interleukin-17A from blood. J Chromatogr A. 1654:4624782021.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Papp KA, Weinberg MA, Morris A and Reich
K: IL17A/F nanobody sonelokimab in patients with plaque psoriasis:
A multicentre, randomised, placebo-controlled, phase 2b study.
Lancet. 397:1564–1575. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Svecova D, Lubell MW, Casset-Semanaz F,
Mackenzie H, Grenningloh R and Krueger JG: A randomized,
double-blind, placebo-controlled phase 1 study of multiple
ascending doses of subcutaneous M1095, an anti-interleukin 17A/F
nanobody, in moderate-to-severe psoriasis. J Am Acad Dermatol.
81:196–203. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Low S, Wu H, Jerath K, Tibolla A, Fogal B,
Conrad R, MacDougall M, Kerr S, Berger V, Dave R, et al: VHH
antibody targeting the chemokine receptor CX3CR1 inhibits
progression of atherosclerosis. MAbs. 12:17093222020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Ji X, Han T, Kang N, Huang S and Liu Y:
Preparation of RGD4C fused anti-TNFα nanobody and inhibitory
activity on triple-negative breast cancer in vivo. Life Sci.
260:1182742020. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Nie J, Ma X, Hu F, Miao H, Feng X, Zhang
P, Han MH, You F, Yang Y, Zhang W and Zheng W: Designing and
constructing a phage display synthesized single domain antibodies
library based on camel VHHs frame for screening and identifying
humanized TNF-α-specific nanobody. Biomed Pharmacother.
137:1113282021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Morais M, Cantante C, Gano L, Santos I,
Lourenço S, Santos C, Fontes C, Aires da Silva F, Gonçalves J and
Correia JD: Biodistribution of a (67)Ga-labeled anti-TNF VHH
single-domain antibody containing a bacterial albumin-binding
domain (Zag). Nucl Med Biol. 41 (Suppl):e44–e48. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Ishiwatari-Ogata C, Kyuuma M, Ogata H,
Yamakawa M, Iwata K, Ochi M, Hori M, Miyata N and Fujii Y:
Ozoralizumab, a Humanized Anti-TNFα NANOBODY® compound,
exhibits efficacy not only at the onset of arthritis in a human TNF
transgenic mouse but also during secondary failure of
administration of an Anti-TNFα IgG. Front Immunol. 13:8530082022.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Vandenbroucke K, de Haard H, Beirnaert E,
Dreier T, Lauwereys M, Huyck L, Van Huysse J, Demetter P, Steidler
L, Remaut E, et al: Orally administered L: Lactis secreting an
anti-TNF Nanobody demonstrate efficacy in chronic colitis. Mucosal
Immunol. 3:49–56. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Moazzami R, Mirzahosein H, Nematollahi L,
Barkhordari F, Raigani M, Hajari Taheri F, Mahboudi F and Davami F:
Woodchuck hepatitis virus post-transcriptional regulation element
(WPRE) Promotes Anti-CD19 BiTE Expression in Expi293 Cells. Iran
Biomed J. 25:275–283. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Sarhan D, Brandt L, Felices M, Guldevall
K, Lenvik T, Hinderlie P, Curtsinger J, Warlick E, Spellman SR,
Blazar BR, et al: 161533 TriKE stimulates NK-cell function to
overcome myeloid-derived suppressor cells in MDS. Blood Adv.
2:1459–1469. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Yun HD, Felices M, Vallera DA, Hinderlie
P, Cooley S, Arock M, Gotlib J, Ustun C and Miller JS: Trispecific
killer engager CD16×IL15×CD33 potently induces NK cell activation
and cytotoxicity against neoplastic mast cells. Blood Adv.
2:1580–1584. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Vallera DA, Felices M, McElmurry R,
McCullar V, Zhou X, Schmohl JU, Zhang B, Lenvik AJ,
Panoskaltsis-Mortari A, Verneris MR, et al: IL15 trispecific killer
engagers (TriKE) make natural killer cells specific to CD33+
targets while also inducing persistence, in vivo expansion, and
enhanced function. Clin Cancer Res. 22:3440–3450. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Toffoli EC, Sheikhi A, Lameris R, King LA,
van Vliet A, Walcheck B, Verheul HMW, Spanholtz J, Tuynman J, de
Gruijl TD and van der Vliet HJ: Enhancement of NK Cell antitumor
effector functions using a bispecific single domain antibody
targeting CD16 and the epidermal growth factor receptor. Cancers
(Basel). 13:54462021. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Vallera DA, Oh F, Kodal B, Hinderlie P,
Geller MA, Miller JS and Felices M: A HER2 Tri-Specific NK cell
engager mediates efficient targeting of human ovarian cancer.
Cancers (Basel). 13:39942021. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Narazaki M, Tanaka T and Kishimoto T: The
role and therapeutic targeting of IL-6 in rheumatoid arthritis.
Expert Rev Clin Immunol. 13:535–551. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Baran P, Hansen S, Waetzig GH, Akbarzadeh
M, Lamertz L, Huber HJ, Ahmadian MR, Moll JM and Scheller J: The
balance of interleukin (IL)-6, IL-6·soluble IL-6 receptor (sIL-6R),
and IL-6·sIL-6R·sgp130 complexes allows simultaneous classic and
trans-signaling. J Biol Chem. 293:6762–6775. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Van Roy M, Ververken C, Beirnaert E,
Hoefman S, Kolkman J, Vierboom M, Breedveld E, 't Hart B, Poelmans
S, Bontinck L, et al: The preclinical pharmacology of the high
affinity anti-IL-6R Nanobody® ALX-0061 supports its
clinical development in rheumatoid arthritis. Arthritis Res Ther.
17:1352015. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Chang YJ, Zhao XY and Huang XJ:
Granulocyte colony-stimulating factor-primed unmanipulated
haploidentical blood and marrow transplantation. Front Immunol.
10:25162019. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Karagiannidis I, Salataj E, Said Abu Egal
E and Beswick EJ: G-CSF in tumors: Aggressiveness, tumor
microenvironment and immune cell regulation. Cytokine.
142:1554792021. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Christensen AD, Haase C, Cook AD and
Hamilton JA: Granulocyte colony-stimulating factor (G-CSF) plays an
important role in immune complex-mediated arthritis. Eur J Immunol.
46:1235–1245. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Tsai ST, Chu SC, Liu SH, Pang CY, Hou TW,
Lin SZ and Chen SY: Neuroprotection of granulocyte
colony-stimulating factor for early stage Parkinson's disease. Cell
Transplant. 26:409–416. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Bakherad H, Farahmand M, Setayesh N and
Ebrahim-Habibi A: Engineering an anti-granulocyte colony
stimulating factor receptor nanobody for improved affinity. Life
Sci. 257:1180522020. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Bakherad H, Gargari SLM, Sepehrizadeh Z,
Aghamollaei H, Taheri RA, Torshabi M, Yazdi MT, Ebrahimizadeh W and
Setayesh N: Identification and in vitro characterization of novel
nanobodies against human granulocyte colony-stimulating factor
receptor to provide inhibition of G-CSF function. Biomed
Pharmacother. 93:245–254. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Cheng K, Liu CF and Rao GW:
Anti-angiogenic Agents: A review on vascular endothelial growth
factor receptor-2 (VEGFR-2) inhibitors. Curr Med Chem.
28:2540–2564. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Behdani M, Zeinali S, Khanahmad H,
Karimipour M, Asadzadeh N, Azadmanesh K, Khabiri A, Schoonooghe S,
Habibi Anbouhi M, Hassanzadeh-Ghassabeh G and Muyldermans S:
Generation and characterization of a functional Nanobody against
the vascular endothelial growth factor receptor-2; angiogenesis
cell receptor. Mol Immunol. 50:35–41. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Tian B, Wong WY, Uger MD, Wisniewski P and
Chao H: Development and characterization of a camelid single domain
antibody-urease conjugate that targets vascular endothelial growth
factor receptor 2. Front Immunol. 8:9562017. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Hajari Taheri F, Hassani M, Sharifzadeh Z,
Behdani M, Arashkia A and Abolhassani M: T cell engineered with a
novel nanobody-based chimeric antigen receptor against VEGFR2 as a
candidate for tumor immunotherapy. IUBMB Life. 71:1259–1267. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
144
|
Rajaram P, Chandra P, Ticku S, Pallavi BK,
Rudresh KB and Mansabdar P: Epidermal growth factor receptor: Role
in human cancer. Indian J Dent Res. 28:687–694. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Liang R, Yang L and Zhu X: Nimotuzumab, an
Anti-EGFR monoclonal antibody, in the treatment of nasopharyngeal
carcinoma. Cancer Control. 28:10732748219893012021. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Gottlin EB, Xiangrong Guan, Pegram C,
Cannedy A, Campa MJ and Patz EF Jr: Isolation of novel
EGFR-specific VHH domains. J Biomol Screen. 14:77–85. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Schmitz KR, Bagchi A, Roovers RC, van
Bergen en Henegouwen PM and Ferguson KM: Structural evaluation of
EGFR inhibition mechanisms for nanobodies/VHH domains. Structure.
21:1214–1224. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Oliveira S, van Dongen GA, Stigter-van
Walsum M, Roovers RC, Stam JC, Mali W, van Diest PJ and van Bergen
en Henegouwen PM: Rapid visualization of human tumor xenografts
through optical imaging with a near-infrared fluorescent
anti-epidermal growth factor receptor nanobody. Mol Imaging.
11:33–46. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
van Driel PB, van der Vorst JR, Verbeek
FP, Oliveira S, Snoeks TJ, Keereweer S, Chan B, Boonstra MC,
Frangioni JV, van Bergen en Henegouwen PM, et al: Intraoperative
fluorescence delineation of head and neck cancer with a fluorescent
anti-epidermal growth factor receptor nanobody. Int J Cancer.
134:2663–2673. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
van Lith SAM, van den Brand D, Wallbrecher
R, van Duijnhoven SMJ, Brock R and Leenders WPJ: A conjugate of an
anti-epidermal growth factor receptor (EGFR) VHH and a
cell-penetrating peptide drives receptor internalization and blocks
EGFR activation. Chembiochem. 18:2390–2394. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
van Lith SAM, van den Brand D, Wallbrecher
R, Wübbeke L, van Duijnhoven SMJ, Mäkinen PI, Hoogstad-van Evert
JS, Massuger L, Ylä-Herttuala S, Brock R and Leenders WPJ: The
effect of subcellular localization on the efficiency of
EGFR-targeted VHH photosensitizer conjugates. Eur J Pharm Biopharm.
124:63–72. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Krüwel T, Nevoltris D, Bode J, Dullin C,
Baty D, Chames P and Alves F: In vivo detection of small tumour
lesions by multi-pinhole SPECT applying a (99m)Tc-labelled nanobody
targeting the Epidermal Growth Factor Receptor. Sci Rep.
6:218342016. View Article : Google Scholar : PubMed/NCBI
|
|
153
|
Piramoon M, Hosseinimehr SJ, Omidfar K,
Noaparast Z and Abedi SM: 99m Tc-anti-epidermal growth
factor receptor nanobody for tumor imaging. Chem Biol Drug Des.
89:498–504. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Li C, Wen B, Wang L, Feng H, Xia X, Ding
Z, Gao B, Zhang Y and Lan X: 99mTc-labeled single-domain antibody
EG2 in targeting epidermal growth factor receptor: An in vitro and
mouse model in-vivo study. Nucl Med Commun. 36:452–460. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Vosjan MJ, Perk LR, Roovers RC, Visser GW,
Stigter-van Walsum M, van Bergen En Henegouwen PM and van Dongen
GA: Facile labelling of an anti-epidermal growth factor receptor
Nanobody with 68Ga via a novel bifunctional desferal chelate for
immuno-PET. Eur J Nucl Med Mol Imaging. 38:753–763. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
156
|
Renard E, Collado Camps E, Canovas C, Kip
A, Gotthardt M, Rijpkema M, Denat F, Goncalves V and van Lith SAM:
Site-Specific Dual-Labeling of a VHH with a chelator and a
photosensitizer for nuclear imaging and targeted photodynamic
therapy of EGFR-Positive tumors. Cancers (Basel). 13:4282021.
View Article : Google Scholar : PubMed/NCBI
|
|
157
|
Li C, Feng H, Xia X, Wang L, Gao B, Zhang
Y and Lan X: (99m) Tc-labeled tetramer and pentamer of
single-domain antibody for targeting epidermal growth factor
receptor in xenografted tumors. J Labelled Comp Radiopharm.
59:305–312. 2016. View Article : Google Scholar : PubMed/NCBI
|