Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2024 Volume 53 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2024 Volume 53 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review)

  • Authors:
    • Junmin Wang
    • Jiacheng Li
    • Yugang Fu
    • Yingying Zhu
    • Liubing Lin
    • Yong Li
  • View Affiliations / Copyright

    Affiliations: Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 32
    |
    Published online on: February 12, 2024
       https://doi.org/10.3892/ijmm.2024.5356
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Phospholipids (PLs) are principle constituents of biofilms, with their fatty acyl chain composition significantly impacting the biophysical properties of membranes, thereby influencing biological processes. Recent studies have elucidated that fatty acyl chains, under the enzymatic action of lyso‑phosphatidyl‑choline acyltransferases (LPCATs), expedite incorporation into the sn‑2 site of phosphatidyl‑choline (PC), profoundly affecting pathophysiology. Accumulating evidence suggests that alterations in LPCAT activity are implicated in various diseases, including non‑alcoholic fatty liver disease (NAFLD), hepatitis C, atherosclerosis and cancer. Specifically, LPCAT3 is instrumental in maintaining systemic lipid homeostasis through its roles in hepatic lipogenesis, intestinal lipid absorption and lipoprotein secretion. The liver X receptor (LXR), pivotal in lipid homeostasis, modulates cholesterol, fatty acid (FA) and PL metabolism. LXR's capacity to modify PL composition in response to cellular sterol fluctuations is a vital mechanism for protecting biofilms against lipid stress. Concurrently, LXR activation enhances LPCAT3 expression on cell membranes and elevates polyunsaturated PL levels. This activation can ameliorate saturated free FA effects in vitro or endoplasmic reticulum stress in vivo due to lipid accumulation in hepatic cells. Pharmacological interventions targeting LXR, LPCAT and membrane PL components could offer novel therapeutic directions for NAFLD management. The present review primarily focused on recent advancements in understanding the LPCAT3 signaling pathway's role in lipid metabolism related to NAFLD, aiming to identify new treatment targets for the disease.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Sanyal AJ: Past, present and future perspectives in nonalcoholic fatty liver disease. Nat Rev Gastroenterol Hepatol. 16:377–386. 2019.

2 

Leow WQ, Chan AW, Mendoza PGL, Lo R, Yap K and Kim H: Non-alcoholic fatty liver disease: The pathologist's perspective. Clin Mol Hepatol. 29(Suppl): S302–S318. 2023.

3 

Fan JG, Wei L and Zhuang H; National Workshop on Fatty Liver and Alcoholic Liver Disease, Chinese Society of Hepatology, Chinese Medical Association; Fatty Liver Disease Expert Committee, Chinese Medical Doctor Association: Guidelines of prevention and treatment for nonalcoholic fatty liver disease (2018, China). J Dig Dis. 20:163–173. 2019.

4 

Zhou J, Zhou F, Wang W, Zhang XJ, Ji YX, Zhang P, She ZG, Zhu L, Cai J and Li H: Epidemiological Features of NAFLD From 1999 to 2018 in China. Hepatology. 71:1851–1864. 2020.

5 

Younossi Z, Anstee QM, Marietti M, Hardy T, Henry L, Eslam M, George J and Bugianesi E: Global burden of NAFLD and NASH: Trends, predictions, risk factors and prevention. Nat Rev Gastroenterol Hepatol. 15:11–20. 2018.

6 

Raza S, Rajak S, Upadhyay A, Tewari A and Anthony Sinha R: Current treatment paradigms and emerging therapies for NAFLD/NASH. Front Biosci (Landmark Ed). 26:206–237. 2021.

7 

Meroni M, Longo M, Rustichelli A and Dongiovanni P: Nutrition and Genetics in NAFLD: The Perfect Binomium. Int J Mol Sci. 21:29862020.

8 

Papatheodoridi M and Cholongitas E: Diagnosis of non-alcoholic fatty liver disease (NAFLD): Current concepts. Curr Pharm Des. 24:4574–4586. 2018.

9 

Safari Z and Gérard P: The links between the gut microbiome and non-alcoholic fatty liver disease (NAFLD). Cell Mol Life Sci. 76:1541–1558. 2019.

10 

Buzzetti E, Pinzani M and Tsochatzis EA: The multiple-hit pathogenesis of non-alcoholic fatty liver disease (NAFLD). Metabolism. 65:1038–1048. 2016.

11 

Polyzos SA, Kountouras J, Zavos C and Deretzi G: Nonalcoholic fatty liver disease: Multimodal treatment options for a pathogenetically multiple-hit disease. J Clin Gastroenterol. 46:272–284. 2012.

12 

Karkucinska-Wieckowska A, Simoes ICM, Kalinowski P, Lebiedzinska-Arciszewska M, Zieniewicz K, Milkiewicz P, Górska-Ponikowska M, Pinton P, Malik AN, Krawczyk M, et al: Mitochondria, oxidative stress and nonalcoholic fatty liver disease: A complex relationship. Eur J Clin Invest. 52:e136222022.

13 

Tilg H, Adolph TE, Dudek M and Knolle P: Non-alcoholic fatty liver disease: The interplay between metabolism, microbes and immunity. Nat Metab. 3:1596–1607. 2021.

14 

Albillos A, de Gottardi A and Rescigno M: The gut-liver axis in liver disease: Pathophysiological basis for therapy. J Hepatol. 72:558–577. 2020.

15 

Filipovic B, Lukic S, Mijac D, Marjanovic-Haljilji M, Vojnovic M, Bogdanovic J, Glisic T, Filipovic N, Al Kiswani J, Djokovic A, et al: The new therapeutic approaches in the treatment of non-alcoholic fatty liver disease. Int J Mol Sci. 22:132192021.

16 

Singh S, Osna NA and Kharbanda KK: Treatment options for alcoholic and non-alcoholic fatty liver disease: A review. World J Gastroenterol. 23:6549–6570. 2017.

17 

Townsend SA and Newsome PN: Review article: New treatments in non-alcoholic fatty liver disease. Aliment Pharmacol Ther. 46:494–507. 2017.

18 

Albhaisi SAM and Sanyal AJ: New drugs for NASH. Liver Int. 41(Suppl 1): S112–S118. 2021.

19 

Gofton C and George J: Updates in fatty liver disease: Pathophysiology, diagnosis and management. Aust J Gen Pract. 50:702–707. 2021.

20 

Klińska S, Jasieniecka-Gazarkiewicz K and Banaś A: Acyl-CoA: lysophosphatidylcholine acyltransferases (LPCATs) of Camelina sativa seeds: Biochemical properties and function. Planta. 250:1655–1670. 2019.

21 

Zhang Q, Yao D, Rao B, Jian L, Chen Y, Hu K, Xia Y, Li S, Shen Y, Qin A, et al: The structural basis for the phospholipid remodeling by lysophosphatidylcholine acyltransferase 3. Nat Commun. 12:68692021.

22 

Law SH, Chan ML, Marathe GK, Parveen F, Chen CH and Ke LY: An updated review of lysophosphatidylcholine metabolism in human diseases. Int J Mol Sci. 20:11492019.

23 

Shao G, Qian Y, Lu L, Liu Y, Wu T, Ji G and Xu H: Research progress in the role and mechanism of LPCAT3 in metabolic related diseases and cancer. J Cancer. 13:2430–2439. 2022.

24 

Wang B and Tontonoz P: Phospholipid remodeling in physiology and disease. Annu Rev Physiol. 81:165–188. 2019.

25 

Hong C and Tontonoz P: Liver X receptors in lipid metabolism: Opportunities for drug discovery. Nat Rev Drug Discov. 13:433–444. 2014.

26 

Rong X, Albert CJ, Hong C, Duerr MA, Chamberlain BT, Tarling EJ, Ito A, Gao J, Wang B, Edwards PA, et al: LXRs regulate ER stress and inflammation through dynamic modulation of membrane phospholipid composition. Cell Metab. 18:685–697. 2013.

27 

Morita SY and Ikeda Y: Regulation of membrane phospholipid biosynthesis in mammalian cells. Biochem Pharmacol. 206:1152962022.

28 

Vance JE: Phospholipid synthesis and transport in mammalian cells. Traffic. 16:1–18. 2015.

29 

Patton-Vogt J and de Kroon AIPM: Phospholipid turnover and acyl chain remodeling in the yeast ER. Biochim Biophys Acta Mol Cell Biol Lipids. 1865:1584622020.

30 

Vance DE: Phospholipid methylation in mammals: From biochemistry to physiological function. Biochim Biophys Acta. 1838:1477–1487. 2014.

31 

Kennedy EP and Weiss SB: The function of cytidine coenzymes in the biosynthesis of phospholipides. J Biol Chem. 222:193–214. 1956.

32 

Kennedy EP: Biosynthesis of phospholipides. Fed Proc. 16:847–853. 1957.

33 

Lands WE: Stories about acyl chains. Biochim Biophys Acta. 1483:1–14. 2000.

34 

Dahlman I, Nilsson M, Jiao H, Hoffstedt J, Lindgren CM, Humphreys K, Kere J, Gustafsson JA, Arner P and Dahlman-Wright K: Liver X receptor gene polymorphisms and adipose tissue expression levels in obesity. Pharmacogenet Genomics. 16:881–889. 2006.

35 

Han M, Liang L, Liu LR, Yue J, Zhao YL and Xiao HP: Liver X receptor gene polymorphisms in tuberculosis: Effect on susceptibility. PLoS One. 9:e959542014.

36 

Yu M, Geiger B, Deeb N and Rothschild MF: Liver X receptor alpha and beta genes have the potential role on loin lean and fat content in pigs. J Anim Breed Genet. 123:81–88. 2006.

37 

Yonezawa S, Abe M, Kawasaki Y, Natori Y and Sugiyama A: Each liver X receptor (LXR) type has a different purpose in different situations. Biochem Biophys Res Commun. 508:92–96. 2019.

38 

Ducheix S, Lobaccaro JM, Martin PG and Guillou H: Liver X Receptor: An oxysterol sensor and a major player in the control of lipogenesis. Chem Phys Lipids. 164:500–514. 2011.

39 

Bilotta MT, Petillo S, Santoni A and Cippitelli M: Liver X Receptors: Regulators of cholesterol metabolism, inflammation, autoimmunity, and cancer. Front Immunol. 11:5843032020.

40 

Cave MC, Clair HB, Hardesty JE, Falkner KC, Feng W, Clark BJ, Sidey J, Shi H, Aqel BA, McClain CJ and Prough RA: Nuclear receptors and nonalcoholic fatty liver disease. Biochim Biophys Acta. 1859:1083–1099. 2016.

41 

Wang B and Tontonoz P: Liver X receptors in lipid signalling and membrane homeostasis. Nat Rev Endocrinol. 14:452–463. 2018.

42 

Goodwin BJ, Zuercher WJ and Collins JL: Recent advances in liver X receptor biology and chemistry. Curr Top Med Chem. 8:781–791. 2008.

43 

Russo-Savage L and Schulman IG: Liver X receptors and liver physiology. Biochim Biophys Acta Mol Basis Dis. 1867:1661212021.

44 

Hamilton JP, Koganti L, Muchenditsi A, Pendyala VS, Huso D, Hankin J, Murphy RC, Huster D, Merle U, Mangels C, et al: Activation of liver X receptor/retinoid X receptor pathway ameliorates liver disease in Atp7B(-/-) (Wilson disease) mice. Hepatology. 63:1828–1841. 2016.

45 

Schulman IG: Liver X receptors link lipid metabolism and inflammation. FEBS Lett. 591:2978–2991. 2017.

46 

Endo-Umeda K and Makishima M: Liver X receptors regulate cholesterol metabolism and immunity in hepatic nonparenchymal cells. Int J Mol Sci. 20:50452019.

47 

Higuchi N, Kato M, Shundo Y, Tajiri H, Tanaka M, Yamashita N, Kohjima M, Kotoh K, Nakamuta M, Takayanagi R and Enjoji M: Liver X receptor in cooperation with SREBP-1c is a major lipid synthesis regulator in nonalcoholic fatty liver disease. Hepatol Res. 38:1122–1129. 2008.

48 

Chen G, Liang G, Ou J, Goldstein JL and Brown MS: Central role for liver X receptor in insulin-mediated activation of Srebp-1c transcription and stimulation of fatty acid synthesis in liver. Proc Natl Acad Sci USA. 101:11245–11250. 2004.

49 

Lu Y, Shao M, Xiang H, Wang J, Ji G and Wu T: Qinggan huoxue recipe alleviates alcoholic liver injury by suppressing endoplasmic reticulum stress through LXR-LPCAT3. Front Pharmacol. 13:8241852022.

50 

Okazaki H, Goldstein JL, Brown MS and Liang G: LXR-SREBP-1c-phospholipid transfer protein axis controls very low density lipoprotein (VLDL) particle size. J Biol Chem. 285:6801–6810. 2010.

51 

Vance DE: Role of phosphatidylcholine biosynthesis in the regulation of lipoprotein homeostasis. Curr Opin Lipidol. 19:229–234. 2008.

52 

Rong X, Wang B, Dunham MM, Hedde PN, Wong JS, Gratton E, Young SG, Ford DA and Tontonoz P: Lpcat3-dependent production of arachidonoyl phospholipids is a key determinant of triglyceride secretion. Elife. 4:e065572015.

53 

Hashidate-Yoshida T, Harayama T, Hishikawa D, Morimoto R, Hamano F, Tokuoka SM, Eto M, Tamura-Nakano M, Yanobu-Takanashi R, Mukumoto Y, et al: Fatty acid remodeling by LPCAT3 enriches arachidonate in phospholipid membranes and regulates triglyceride transport. Elife. 4:e063282015.

54 

Li Z, Jiang H, Ding T, Lou C, Bui HH, Kuo MS and Jiang XC: Deficiency in lysophosphatidylcholine acyltransferase 3 reduces plasma levels of lipids by reducing lipid absorption in mice. Gastroenterology. 149:1519–1529. 2015.

55 

Rong X, Wang B, Palladino EN, de Aguiar Vallim TQ, Ford DA and Tontonoz P: ER phospholipid composition modulates lipogenesis during feeding and in obesity. J Clin Invest. 127:3640–3651. 2017.

56 

Anderson CD, Upadhya G, Conzen KD, Jia J, Brunt EM, Tiriveedhi V, Xie Y, Ramachandran S, Mohanakumar T, Davidson NO and Chapman WC: Endoplasmic reticulum stress is a mediator of posttransplant injury in severely steatotic liver allografts. Liver Transpl. 17:189–200. 2011.

57 

Hishikawa D, Shindou H, Kobayashi S, Nakanishi H, Taguchi R and Shimizu T: Discovery of a lysophospholipid acyltransferase family essential for membrane asymmetry and diversity. Proc Natl Acad Sci USA. 105:2830–2835. 2008.

58 

Valentine WJ, Yanagida K, Kawana H, Kono N, Noda NN, Aoki J and Shindou H: Update and nomenclature proposal for mammalian lysophospholipid acyltransferases, which create membrane phospholipid diversity. J Biol Chem. 298:1014702022.

59 

Shindou H, Hishikawa D, Harayama T, Eto M and Shimizu T: Generation of membrane diversity by lysophospholipid acyltransferases. J Biochem. 154:21–28. 2013.

60 

Matsuda S, Inoue T, Lee HC, Kono N, Tanaka F, Gengyo-Ando K, Mitani S and Arai H: Member of the membrane-bound O-acyltransferase (MBOAT) family encodes a lysophospholipid acyltransferase with broad substrate specificity. Genes Cells. 13:879–888. 2008.

61 

Gross B, Pawlak M, Lefebvre P and Staels B: PPARs in obesity-induced T2DM, dyslipidaemia and NAFLD. Nat Rev Endocrinol. 13:36–49. 2017.

62 

Cole LK, Vance JE and Vance DE: Phosphatidylcholine biosynthesis and lipoprotein metabolism. Biochim Biophys Acta. 1821:754–761. 2012.

63 

Harayama T and Riezman H: Understanding the diversity of membrane lipid composition. Nat Rev Mol Cell Biol. 19:281–296. 2018.

64 

Li Z, Ding T, Pan X, Li Y, Li R, Sanders PE, Kuo MS, Hussain MM, Cao G and Jiang XC: Lysophosphatidylcholine acyltransferase 3 knockdown-mediated liver lysophosphatidylcholine accumulation promotes very low density lipoprotein production by enhancing microsomal triglyceride transfer protein expression. J Biol Chem. 287:20122–20131. 2012.

65 

Cash JG and Hui DY: Liver-specific overexpression of LPCAT3 reduces postprandial hyperglycemia and improves lipoprotein metabolic profile in mice. Nutr Diabetes. 6:e2062016.

66 

Jacobs RL, Lingrell S, Zhao Y, Francis GA and Vance DE: Hepatic CTP:phosphocholine cytidylyltransferase-alpha is a critical predictor of plasma high density lipoprotein and very low density lipoprotein. J Biol Chem. 283:2147–2155. 2008.

67 

Balla T, Sengupta N and Kim YJ: Lipid synthesis and transport are coupled to regulate membrane lipid dynamics in the endoplasmic reticulum. Biochim Biophys Acta Mol Cell Biol Lipids. 1865:1584612020.

68 

Lev S: Nonvesicular lipid transfer from the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 4:a0133002012.

69 

Walker AK, Jacobs RL, Watts JL, Rottiers V, Jiang K, Finnegan DM, Shioda T, Hansen M, Yang F, Niebergall LJ, et al: A conserved SREBP-1/phosphatidylcholine feedback circuit regulates lipogenesis in metazoans. Cell. 147:840–852. 2011.

70 

Eto M, Shindou H, Koeberle A, Harayama T, Yanagida K and Shimizu T: Lysophosphatidylcholine acyltransferase 3 is the key enzyme for incorporating arachidonic acid into glycerophospholipids during adipocyte differentiation. Int J Mol Sci. 13:16267–16280. 2012.

71 

Feng C, Lou B, Dong J, Li Z, Chen Y, Li Y, Zhang X, Jiang XC and Ding T: Lysophosphatidylcholine acyltransferase 3 deficiency impairs 3T3L1 cell adipogenesis through activating Wnt/β-catenin pathway. Biochim Biophys Acta Mol Cell Biol Lipids. 1863:834–843. 2018.

72 

Wang B, Rong X, Duerr MA, Hermanson DJ, Hedde PN, Wong JS, Vallim TQ, Cravatt BF, Gratton E, Ford DA and Tontonoz P: Intestinal phospholipid remodeling is required for dietary-lipid uptake and survival on a high-fat diet. Cell Metab. 23:492–504. 2016.

73 

Repa JJ, Liang G, Ou J, Bashmakov Y, Lobaccaro JM, Shimomura I, Shan B, Brown MS, Goldstein JL and Mangelsdorf DJ: Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, LXRalpha and LXRbeta. Genes Dev. 14:2819–2830. 2000.

74 

Shim J, Moulson CL, Newberry EP, Lin MH, Xie Y, Kennedy SM, Miner JH and Davidson NO: Fatty acid transport protein 4 is dispensable for intestinal lipid absorption in mice. J Lipid Res. 50:491–500. 2009.

75 

Kabir I, Li Z, Bui HH, Kuo MS, Gao G and Jiang XC: Small intestine but not liver lysophosphatidylcholine acyltransferase 3 (Lpcat3) deficiency has a dominant effect on plasma lipid metabolism. J Biol Chem. 291:7651–7660. 2016.

76 

Altmann SW, Davis HR Jr, Zhu LJ, Yao X, Hoos LM, Tetzloff G, Iyer SP, Maguire M, Golovko A, Zeng M, et al: Niemann-Pick C1 Like 1 protein is critical for intestinal cholesterol absorption. Science. 303:1201–1204. 2004.

77 

Kalhan SC, Guo L, Edmison J, Dasarathy S, McCullough AJ, Hanson RW and Milburn M: Plasma metabolomic profile in nonalcoholic fatty liver disease. Metabolism. 60:404–413. 2011.

78 

Brunham LR, Kruit JK, Iqbal J, Fievet C, Timmins JM, Pape TD, Coburn BA, Bissada N, Staels B, Groen AK, et al: Intestinal ABCA1 directly contributes to HDL biogenesis in vivo. J Clin Invest. 116:1052–1062. 2006.

79 

Feldstein AE, Canbay A, Angulo P, Taniai M, Burgart LJ, Lindor KD and Gores GJ: Hepatocyte apoptosis and fas expression are prominent features of human nonalcoholic steatohepatitis. Gastroenterology. 125:437–443. 2003.

80 

Akazawa Y and Nakao K: Lipotoxicity pathways intersect in hepatocytes: Endoplasmic reticulum stress, c-Jun N-terminal kinase-1, and death receptors. Hepatol Res. 46:977–984. 2016.

81 

Malhi H, Bronk SF, Werneburg NW and Gores GJ: Free fatty acids induce JNK-dependent hepatocyte lipoapoptosis. J Biol Chem. 281:12093–12101. 2006.

82 

Gu X, Li K, Laybutt DR, He ML, Zhao HL, Chan JC and Xu G: Bip overexpression, but not CHOP inhibition, attenuates fatty-acid-induced endoplasmic reticulum stress and apoptosis in HepG2 liver cells. Life Sci. 87:724–732. 2010.

83 

Guo W, Wong S, Xie W, Lei T and Luo Z: Palmitate modulates intracellular signaling, induces endoplasmic reticulum stress, and causes apoptosis in mouse 3T3-L1 and rat primary preadipocytes. Am J Physiol Endocrinol Metab. 293:E576–E586. 2007.

84 

Kakisaka K, Cazanave SC, Fingas CD, Guicciardi ME, Bronk SF, Werneburg NW, Mott JL and Gores GJ: Mechanisms of lysophosphatidylcholine-induced hepatocyte lipoapoptosis. Am J Physiol Gastrointest Liver Physiol. 302:G77–G84. 2012.

85 

Cohen JC, Horton JD and Hobbs HH: Human fatty liver disease: Old questions and new insights. Science. 332:1519–1523. 2011.

86 

Fu S, Yang L, Li P, Hofmann O, Dicker L, Hide W, Lin X, Watkins SM, Ivanov AR and Hotamisligil GS: Aberrant lipid metabolism disrupts calcium homeostasis causing liver endoplasmic reticulum stress in obesity. Nature. 473:528–531. 2011.

87 

Wu X, Zhang Y, Qiu J, Xu Y, Zhang J, Huang J, Bai J, Huang Z, Qiu X and Xu W: Lipidomics analysis indicates disturbed hepatocellular lipid metabolism in reynoutria multiflora-induced idiosyncratic liver injury. Front Pharmacol. 11:5691442020.

88 

Puri P, Baillie RA, Wiest MM, Mirshahi F, Choudhury J, Cheung O, Sargeant C, Contos MJ and Sanyal AJ: A lipidomic analysis of nonalcoholic fatty liver disease. Hepatology. 46:1081–1090. 2007.

89 

Han MS, Park SY, Shinzawa K, Kim S, Chung KW, Lee JH, Kwon CH, Lee KW, Lee JH, Park CK, et al: Lysophosphatidylcholine as a death effector in the lipoapoptosis of hepatocytes. J Lipid Res. 49:84–97. 2008.

90 

Han MS, Lim YM, Quan W, Kim JR, Chung KW, Kang M, Kim S, Park SY, Han JS, Park SY, et al: Lysophosphatidylcholine as an effector of fatty acid-induced insulin resistance. J Lipid Res. 52:1234–1246. 2011.

91 

Masoodi M, Gastaldelli A, Hyötyläinen T, Arretxe E, Alonso C, Gaggini M, Brosnan J, Anstee QM, Millet O, Ortiz P, et al: Metabolomics and lipidomics in NAFLD: biomarkers and non-invasive diagnostic tests. Nat Rev Gastroenterol Hepatol. 18:835–856. 2021.

92 

Sun X, Seidman JS, Zhao P, Troutman TD, Spann NJ, Que X, Zhou F, Liao Z, Pasillas M, Yang X, et al: Neutralization of oxidized phospholipids ameliorates non-alcoholic steatohepatitis. Cell Metab. 31:189–206.e8. 2020.

93 

Wattacheril J, Seeley EH, Angel P, Chen H, Bowen BP, Lanciault C, Caprioli RM, Abumrad N and Flynn CR: Differential intrahepatic phospholipid zonation in simple steatosis and nonalcoholic steatohepatitis. PLoS One. 8:e571652013.

94 

Hall Z, Bond NJ, Ashmore T, Sanders F, Ament Z, Wang X, Murray AJ, Bellafante E, Virtue S, Vidal-Puig A, et al: Lipid zonation and phospholipid remodeling in nonalcoholic fatty liver disease. Hepatology. 65:1165–1180. 2017.

95 

Leamy AK, Egnatchik RA, Shiota M, Ivanova PT, Myers DS, Brown HA and Young JD: Enhanced synthesis of saturated phospholipids is associated with ER stress and lipotoxicity in palmitate treated hepatic cells. J Lipid Res. 55:1478–1488. 2014.

96 

Sanyal AJ, Campbell-Sargent C, Mirshahi F, Rizzo WB, Contos MJ, Sterling RK, Luketic VA, Shiffman ML and Clore JN: Nonalcoholic steatohepatitis: association of insulin resistance and mitochondrial abnormalities. Gastroenterology. 120:1183–1192. 2001.

97 

Hirsova P, Ibrabim SH, Gores GJ and Malhi H: Lipotoxic lethal and sublethal stress signaling in hepatocytes: Relevance to NASH pathogenesis. J Lipid Res. 57:1758–1770. 2016.

98 

Wei Y, Wang D, Topczewski F and Pagliassotti MJ: Saturated fatty acids induce endoplasmic reticulum stress and apoptosis independently of ceramide in liver cells. Am J Physiol Endocrinol Metab. 291:E275–E281. 2006.

99 

Leamy AK, Egnatchik RA and Young JD: Molecular mechanisms and the role of saturated fatty acids in the progression of non-alcoholic fatty liver disease. Prog Lipid Res. 52:165–174. 2013.

100 

Wang D, Wei Y and Pagliassotti MJ: Saturated fatty acids promote endoplasmic reticulum stress and liver injury in rats with hepatic steatosis. Endocrinology. 147:943–951. 2006.

101 

Diakogiannaki E, Welters HJ and Morgan NG: Differential regulation of the endoplasmic reticulum stress response in pancreatic beta-cells exposed to long-chain saturated and monounsaturated fatty acids. J Endocrinol. 197:553–563. 2008.

102 

Borradaile NM, Han X, Harp JD, Gale SE, Ory DS and Schaffer JE: Disruption of endoplasmic reticulum structure and integrity in lipotoxic cell death. J Lipid Res. 47:2726–2737. 2006.

103 

Cao SS and Kaufman RJ: Targeting endoplasmic reticulum stress in metabolic disease. Expert Opin Ther Targets. 17:437–448. 2013.

104 

Senft D and Ronai ZA: UPR, autophagy, and mitochondria crosstalk underlies the ER stress response. Trends Biochem Sci. 40:141–148. 2015.

105 

Hetz C: The unfolded protein response: controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 13:89–102. 2012.

106 

Hetz C, Zhang K and Kaufman RJ: Mechanisms, regulation and functions of the unfolded protein response. Nat Rev Mol Cell Biol. 21:421–438. 2020.

107 

Walter P and Ron D: The unfolded protein response: From stress pathway to homeostatic regulation. Science. 334:1081–1086. 2011.

108 

Wang H, Karnati S and Madhusudhan T: Regulation of the homeostatic unfolded protein response in diabetic nephropathy. Pharmaceuticals (Basel). 15:4012022.

109 

Lebeaupin C, Vallée D, Hazari Y, Hetz C, Chevet E and Bailly-Maitre B: Endoplasmic reticulum stress signalling and the pathogenesis of non-alcoholic fatty liver disease. J Hepatol. 69:927–947. 2018.

110 

Hardy S, El-Assaad W, Przybytkowski E, Joly E, Prentki M and Langelier Y: Saturated fatty acid-induced apoptosis in MDA-MB-231 breast cancer cells. A role for cardiolipin. J Biol Chem. 278:31861–31870. 2003.

111 

Okere IC, Chandler MP, McElfresh TA, Rennison JH, Sharov V, Sabbah HN, Tserng KY, Hoit BD, Ernsberger P, Young ME and Stanley WC: Differential effects of saturated and unsaturated fatty acid diets on cardiomyocyte apoptosis, adipose distribution, and serum leptin. Am J Physiol Heart Circ Physiol. 291:H38–H44. 2006.

112 

Wang J, Hu R, Yin C and Xiao Y: Tanshinone IIA reduces palmitate-induced apoptosis via inhibition of endoplasmic reticulum stress in HepG2 liver cells. Fundam Clin Pharmacol. 34:249–262. 2020.

113 

Malhi H and Gores GJ: Molecular mechanisms of lipotoxicity in nonalcoholic fatty liver disease. Semin Liver Dis. 28:360–369. 2008.

114 

Listenberger LL, Han X, Lewis SE, Cases S, Farese RV Jr, Ory DS and Schaffer JE: Triglyceride accumulation protects against fatty acid-induced lipotoxicity. Proc Natl Acad Sci USA. 100:3077–3082. 2003.

115 

Ariyama H, Kono N, Matsuda S, Inoue T and Arai H: Decrease in membrane phospholipid unsaturation induces unfolded protein response. J Biol Chem. 285:22027–22035. 2010.

116 

Holzer RG, Park EJ, Li N, Tran H, Chen M, Choi C, Solinas G and Karin M: Saturated fatty acids induce c-Src clustering within membrane subdomains, leading to JNK activation. Cell. 147:173–184. 2011.

117 

Ishibashi M, Varin A, Filomenko R, Lopez T, Athias A, Gambert P, Blache D, Thomas C, Gautier T, Lagrost L and Masson D: Liver x receptor regulates arachidonic acid distribution and eicosanoid release in human macrophages: a key role for lysophosphatidylcholine acyltransferase 3. Arterioscler Thromb Vasc Biol. 33:1171–1179. 2013.

118 

Kawamura S, Matsushita Y, Kurosaki S, Tange M, Fujiwara N, Hayata Y, Hayakawa Y, Suzuki N, Hata M, Tsuboi M, et al: Inhibiting SCAP/SREBP exacerbates liver injury and carcinogenesis in murine nonalcoholic steatohepatitis. J Clin Invest. 132:e1518952022.

119 

Jiang H, Li Z, Huan C and Jiang XC: Macrophage lysophosphatidylcholine acyltransferase 3 deficiency-mediated inflammation is not sufficient to induce atherosclerosis in a mouse model. Front Cardiovasc Med. 5:1922019.

120 

Tintle NL, Pottala JV, Lacey S, Ramachandran V, Westra J, Rogers A, Clark J, Olthoff B, Larson M, Harris W and Shearer GC: A genome-wide association study of saturated, mono- and polyunsaturated red blood cell fatty acids in the Framingham Heart Offspring Study. Prostaglandins Leukot Essent Fatty Acids. 94:65–72. 2015.

121 

Hishikawa D, Hashidate T, Shimizu T and Shindou H: Diversity and function of membrane glycerophospholipids generated by the remodeling pathway in mammalian cells. J Lipid Res. 55:799–807. 2014.

122 

Xiang H, Shao M, Lu Y, Wang J, Wu T and Ji G: Kaempferol alleviates steatosis and inflammation during early non-alcoholic steatohepatitis associated with liver X Receptor α-Lysophosphatidylcholine acyltransferase 3 signaling pathway. Front Pharmacol. 12:6907362021.

123 

Kakisaka K, Suzuki Y, Fujiwara Y, Suzuki A, Kanazawa J and Takikawa Y: Caspase-independent hepatocyte death: A result of the decrease of lysophosphatidylcholine acyltransferase 3 in non-alcoholic steatohepatitis. J Gastroenterol Hepatol. 34:1256–1262. 2019.

124 

Wang B, Rong X, Palladino END, Wang J, Fogelman AM, Martín MG, Alrefai WA, Ford DA and Tontonoz P: Phospholipid Remodeling and Cholesterol Availability Regulate Intestinal Stemness and Tumorigenesis. Cell Stem Cell. 22:206–220.e4. 2018.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang J, Li J, Fu Y, Zhu Y, Lin L and Li Y: Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review). Int J Mol Med 53: 32, 2024.
APA
Wang, J., Li, J., Fu, Y., Zhu, Y., Lin, L., & Li, Y. (2024). Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review). International Journal of Molecular Medicine, 53, 32. https://doi.org/10.3892/ijmm.2024.5356
MLA
Wang, J., Li, J., Fu, Y., Zhu, Y., Lin, L., Li, Y."Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review)". International Journal of Molecular Medicine 53.4 (2024): 32.
Chicago
Wang, J., Li, J., Fu, Y., Zhu, Y., Lin, L., Li, Y."Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review)". International Journal of Molecular Medicine 53, no. 4 (2024): 32. https://doi.org/10.3892/ijmm.2024.5356
Copy and paste a formatted citation
x
Spandidos Publications style
Wang J, Li J, Fu Y, Zhu Y, Lin L and Li Y: Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review). Int J Mol Med 53: 32, 2024.
APA
Wang, J., Li, J., Fu, Y., Zhu, Y., Lin, L., & Li, Y. (2024). Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review). International Journal of Molecular Medicine, 53, 32. https://doi.org/10.3892/ijmm.2024.5356
MLA
Wang, J., Li, J., Fu, Y., Zhu, Y., Lin, L., Li, Y."Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review)". International Journal of Molecular Medicine 53.4 (2024): 32.
Chicago
Wang, J., Li, J., Fu, Y., Zhu, Y., Lin, L., Li, Y."Research progress, challenges and perspectives of phospholipids metabolism in the LXR‑LPCAT3 signaling pathway and its relation to NAFLD (Review)". International Journal of Molecular Medicine 53, no. 4 (2024): 32. https://doi.org/10.3892/ijmm.2024.5356
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team