Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
April-2024 Volume 53 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
April-2024 Volume 53 Issue 4

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Protein aggregation and biomolecular condensation in hypoxic environments (Review)

  • Authors:
    • Chaoqun Li
    • Bingjie Hao
    • Haiguang Yang
    • Kai Wang
    • Lihong Fan
    • Weihua Xiao
  • View Affiliations / Copyright

    Affiliations: School of Exercise and Health, Shanghai University of Sport, Shanghai 200438, P.R. China, Institute of Energy Metabolism and Health, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai 200072, P.R. China
    Copyright: © Li et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 33
    |
    Published online on: February 12, 2024
       https://doi.org/10.3892/ijmm.2024.5357
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Due to molecular forces, biomacromolecules assemble into liquid condensates or solid aggregates, and their corresponding formation and dissolution processes are controlled. Protein homeostasis is disrupted by increasing age or environmental stress, leading to irreversible protein aggregation. Hypoxic pressure is an important factor in this process, and uncontrolled protein aggregation has been widely observed in hypoxia‑related conditions such as neurodegenerative disease, cardiovascular disease, hypoxic brain injury and cancer. Biomolecular condensates are also high‑order complexes assembled from macromolecules. Although they exist in different phase from protein aggregates, they are in dynamic balance under certain conditions, and their activation or assembly are considered as important regulatory processes in cell survival with hypoxic pressure. Therefore, a better understanding of the relationship between hypoxic stress, protein aggregation and biomolecular condensation will bring marked benefits in the clinical treatment of various diseases. The aim of the present review was to summarize the underlying mechanisms of aggregate assembly and dissolution induced by hypoxic conditions, and address recent breakthroughs in understanding the role of aggregates in hypoxic‑related diseases, given the hypotheses that hypoxia induces macromolecular assemblage changes from a liquid to a solid phase, and that adenosine triphosphate depletion and ATP‑driven inactivation of multiple protein chaperones play important roles among the process. Moreover, it is anticipated that an improved understanding of the adaptation in hypoxic environments could extend the overall survival of patients and provide new strategies for hypoxic‑related diseases.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

View References

1 

Kuznetsova IM, Turoverov KK and Uversky VN: What macromolecular crowding can do to a protein. Int J Mol Sci. 15:23090–23140. 2014.

2 

Gaudelet T, Malod-Dognin N and Pržulj N: Higher-order molecular organization as a source of biological function. Bioinformatics. 34:i944–i953. 2018.

3 

Alberti S and Hyman AA: Biomolecular condensates at the nexus of cellular stress, protein aggregation disease and ageing. Nat Rev Mol Cell Biol. 22:196–213. 2021.

4 

Savastano A, Flores D, Kadavath H, Biernat J, Mandelkow E and Zweckstetter M: Disease-associated tau phosphorylation hinders tubulin assembly within tau condensates. Angew Chem Int Ed Engl. 60:726–730. 2021.

5 

Amzallag E and Hornstein E: Crosstalk between biomolecular condensates and proteostasis. Cells. 11:24152022.

6 

Burtscher J, Mallet RT, Burtscher M and Millet GP: Hypoxia and brain aging: Neurodegeneration or neuroprotection? Ageing Res Rev. 68:1013432021.

7 

Eltzschig HK and Carmeliet P: Hypoxia and inflammation. N Engl J Med. 364:656–665. 2011.

8 

Schito L and Rey S: Cell-autonomous metabolic reprogramming in hypoxia. Trends Cell Biol. 28:128–142. 2018.

9 

Kaufman DM, Wu X, Scott BA, Itani OA, Van Gilst MR, Bruce JE and Crowder CM: Ageing and hypoxia cause protein aggregation in mitochondria. Cell Death Differ. 24:1730–1738. 2017.

10 

Dasmeh P and Wagner A: Yeast Proteins may reversibly aggregate like amphiphilic molecules. J Mol Biol. 434:1673522022.

11 

Wilson DM III, Cookson MR, Van Den Bosch L, Zetterberg H, Holtzman DM and Dewachter I: Hallmarks of neurodegenerative diseases. Cell. 186:693–714. 2023.

12 

Kohler V and Andréasson C: Reversible protein assemblies in the proteostasis network in health and disease. Front Mol Biosci. 10:11555212023.

13 

Spannl S, Tereshchenko M, Mastromarco GJ, Ihn SJ and Lee HO: Biomolecular condensates in neurodegeneration and cancer. Traffic. 20:890–911. 2019.

14 

Sun CL, Van Gilst M and Crowder CM: Hypoxia-induced mitochondrial stress granules. Cell Death Dis. 14:4482023.

15 

Jin M, Fuller GG, Han T, Yao Y, Alessi AF, Freeberg MA, Roach NP, Moresco JJ, Karnovsky A, Baba M, et al: Glycolytic enzymes coalesce in G bodies under hypoxic stress. Cell Rep. 20:895–908. 2017.

16 

Saito K, Kondo E and Matsushita M: MicroRNA 130 family regulates the hypoxia response signal through the P-body protein DDX6. Nucleic Acids Res. 39:6086–6099. 2011.

17 

Lee P, Chandel NS and Simon MC: Cellular adaptation to hypoxia through hypoxia inducible factors and beyond. Nat Rev Mol Cell Biol. 21:268–283. 2020.

18 

Liu C, Gao Y, Barrett J and Hu B: Autophagy and protein aggregation after brain ischemia. J Neurochem. 115:68–78. 2010.

19 

Hu BR, Martone ME, Jones YZ and Liu CL: Protein aggregation after transient cerebral ischemia. J Neurosci. 20:3191–3199. 2000.

20 

Wouters BG and Koritzinsky M: Hypoxia signalling through mTOR and the unfolded protein response in cancer. Nat Rev Cancer. 8:851–864. 2008.

21 

Koumenis C and Wouters BG: 'Translating' tumor hypoxia: Unfolded protein response (UPR)-dependent and UPR-independent pathways. Mol Cancer Res. 4:423–436. 2006.

22 

Gidalevitz T, Prahlad V and Morimoto RI: The stress of protein misfolding: From single cells to multicellular organisms. Cold Spring Harb Perspect Biol. 3:a0097042011.

23 

Rahman A, Saikia B, Gogoi CR and Baruah A: Advances in the understanding of protein misfolding and aggregation through molecular dynamics simulation. Prog Biophys Mol Biol. 175:31–48. 2022.

24 

Chiti F and Dobson CM: Protein misfolding, functional amyloid, and human disease. Annu Rev Biochem. 75:333–366. 2006.

25 

Riek R: The three-dimensional structures of amyloids. Cold Spring Harb Perspect Biol. 9:a0235722017.

26 

Balchin D, Hayer-Hartl M and Hartl FU: In vivo aspects of protein folding and quality control. Science. 353:aac43542016.

27 

Korte N, Nortley R and Attwell D: Cerebral blood flow decrease as an early pathological mechanism in Alzheimer's disease. Acta Neuropathol. 140:793–810. 2020.

28 

Nortley R, Korte N, Izquierdo P, Hirunpattarasilp C, Mishra A, Jaunmuktane Z, Kyrargyri V, Pfeiffer T, Khennouf L, Madry C, et al: Amyloid β oligomers constrict human capillaries in Alzheimer's disease via signaling to pericytes. Science. 365:eaav95182019.

29 

Park SH, Kukushkin Y, Gupta R, Chen T, Konagai A, Hipp MS, Hayer-Hartl M and Hartl FU: PolyQ proteins interfere with nuclear degradation of cytosolic proteins by sequestering the Sis1p chaperone. Cell. 154:134–145. 2013.

30 

Heck JW, Cheung SK and Hampton RY: Cytoplasmic protein quality control degradation mediated by parallel actions of the E3 ubiquitin ligases Ubr1 and San1. Proc Natl Acad Sci USA. 107:1106–1111. 2010.

31 

Ciechanover A and Kwon YT: Degradation of misfolded proteins in neurodegenerative diseases: Therapeutic targets and strategies. Exp Mol Med. 47:e1472015.

32 

Rampelt H, Kirstein-Miles J, Nillegoda NB, Chi K, Scholz SR, Morimoto RI and Bukau B: Metazoan Hsp70 machines use Hsp110 to power protein disaggregation. EMBO J. 31:4221–4235. 2012.

33 

Nillegoda NB, Kirstein J, Szlachcic A, Berynskyy M, Stank A, Stengel F, Arnsburg K, Gao X, Scior A, Aebersold R, et al: Crucial HSP70 co-chaperone complex unlocks metazoan protein disaggregation. Nature. 524:247–251. 2015.

34 

Gamerdinger M, Hajieva P, Kaya AM, Wolfrum U, Hartl FU and Behl C: Protein quality control during aging involves recruitment of the macroautophagy pathway by BAG3. EMBO J. 28:889–901. 2009.

35 

Quintana-Gallardo L, Martín-Benito J, Marcilla M, Espadas G, Sabidó E and Valpuesta JM: The cochaperone CHIP marks Hsp70- and Hsp90-bound substrates for degradation through a very flexible mechanism. Sci Rep. 9:51022019.

36 

Nguyen VC, Deck CA and Pamenter ME: Naked mole-rats reduce the expression of ATP-dependent but not ATP-independent heat shock proteins in acute hypoxia. J Exp Biol. 222:jeb2112432019.

37 

Mitra R, Wu K, Lee C and Bardwell JCA: ATP-independent chaperones. Annu Rev Biophys. 51:409–429. 2022.

38 

Benjamin IJ, Kröger B and Williams RS: Activation of the heat shock transcription factor by hypoxia in mammalian cells. Proc Natl Acad Sci USA. 87:6263–6267. 1990.

39 

Degrossoli A, Colhone MC, Arrais-Silva WW and Giorgio S: Hypoxia modulates expression of the 70-kD heat shock protein and reduces Leishmania infection in macrophages. J Biomed Sci. 11:847–854. 2004.

40 

Hernández R, Blanco S, Peragón J, Pedrosa JÁ and Peinado MÁ: Hypobaric hypoxia and reoxygenation induce proteomic profile changes in the rat brain cortex. Neuromolecular Med. 15:82–94. 2013.

41 

Laquatra C, Sanchez-Martin C, Dinarello A, Cannino G, Minervini G, Moroni E, Schiavone M, Tosatto S, Argenton F, Colombo G, et al: HIF1α-dependent induction of the mitochondrial chaperone TRAP1 regulates bioenergetic adaptations to hypoxia. Cell Death Dis. 12:4342021.

42 

Zhang J, Li H, Huang Z, He Y, Zhou X, Huang T, Dai P, Duan D, Ma X, Yin Q, et al: Hypoxia attenuates Hsp90 inhibitor 17-DMAG-induced cyclin B1 accumulation in hepatocellular carcinoma cells. Cell Stress Chaperones. 21:339–348. 2016.

43 

Hogg PJ: Disulfide bonds as switches for protein function. Trends Biochem Sci. 28:210–214. 2003.

44 

Braakman I and Hebert DN: Protein folding in the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 5:a0132012013.

45 

Meyer AJ, Riemer J and Rouhier N: Oxidative protein folding: State-of-the-art and current avenues of research in plants. New Phytol. 221:1230–1246. 2019.

46 

Narayan M: Revisiting the formation of a native disulfide bond: Consequences for protein regeneration and beyond. Molecules. 25:53372020.

47 

Koritzinsky M, Levitin F, van den Beucken T, Rumantir RA, Harding NJ, Chu KC, Boutros PC, Braakman I and Wouters BG: Two phases of disulfide bond formation have differing requirements for oxygen. J Cell Biol. 203:615–627. 2013.

48 

Bulleid NJ: Disulfide bond formation in the mammalian endoplasmic reticulum. Cold Spring Harb Perspect Biol. 4:a0132192012.

49 

Braakman I and Bulleid NJ: Protein folding and modification in the mammalian endoplasmic reticulum. Annu Rev Biochem. 80:71–99. 2011.

50 

Saaranen MJ and Ruddock LW: Applications of catalyzed cytoplasmic disulfide bond formation. Biochem Soc Trans. 47:1223–1231. 2019.

51 

Csordás G, Weaver D and Hajnóczky G: Endoplasmic reticulum-mitochondrial contactology: Structure and signaling functions. Trends Cell Biol. 28:523–540. 2018.

52 

Shin Y and Brangwynne CP: Liquid phase condensation in cell physiology and disease. Science. 357:eaaf43822017.

53 

Wang M and Kaufman RJ: Protein misfolding in the endoplasmic reticulum as a conduit to human disease. Nature. 529:326–335. 2016.

54 

Hua C, Ju WN, Jin H, Sun X and Zhao G: Molecular chaperones and hypoxic-ischemic encephalopathy. Neural Regen Res. 12:153–160. 2017.

55 

Gouveia M, Xia K, Colón W, Vieira SI and Ribeiro F: Protein aggregation, cardiovascular diseases, and exercise training: Where do we stand? Ageing Res Rev. 40:1–10. 2017.

56 

Okada K, Minamino T, Tsukamoto Y, Liao Y, Tsukamoto O, Takashima S, Hirata A, Fujita M, Nagamachi Y, Nakatani T, et al: Prolonged endoplasmic reticulum stress in hypertrophic and failing heart after aortic constriction: Possible contribution of endoplasmic reticulum stress to cardiac myocyte apoptosis. Circulation. 110:705–712. 2004.

57 

Tannous P, Zhu H, Nemchenko A, Berry JM, Johnstone JL, Shelton JM, Miller FJ Jr, Rothermel BA and Hill JA: Intracellular protein aggregation is a proximal trigger of cardiomyocyte autophagy. Circulation. 117:3070–3078. 2008.

58 

Pattison JS, Sanbe A, Maloyan A, Osinska H, Klevitsky R and Robbins J: Cardiomyocyte expression of a polyglutamine preamyloid oligomer causes heart failure. Circulation. 117:2743–2751. 2008.

59 

Kim YE, Hipp MS, Bracher A, Hayer-Hartl M and Hartl FU: Molecular chaperone functions in protein folding and proteostasis. Annu Rev Biochem. 82:323–355. 2013.

60 

Liang P, Zhang J and Wang B: Emerging roles of ubiquitination in biomolecular condensates. Cells. 12:23292023.

61 

Kaushik S and Cuervo AM: The coming of age of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 19:365–381. 2018.

62 

Park H, Kang JH and Lee S: Autophagy in neurodegenerative diseases: A hunter for aggregates. Int J Mol Sci. 21:33692020.

63 

Deng Z, Purtell K, Lachance V, Wold MS, Chen S and Yue Z: Autophagy receptors and neurodegenerative diseases. Trends Cell Biol. 27:491–504. 2017.

64 

Menzies FM, Fleming A, Caricasole A, Bento CF, Andrews SP, Ashkenazi A, Füllgrabe J, Jackson A, Jimenez Sanchez M, Karabiyik C, et al: Autophagy and neurodegeneration: Pathogenic mechanisms and therapeutic opportunities. Neuron. 93:1015–1034. 2017.

65 

Frake RA, Ricketts T, Menzies FM and Rubinsztein DC: Autophagy and neurodegeneration. J Clin Invest. 125:65–74. 2015.

66 

Lin L, Yang P, Huang X and Zhang H, Lu Q and Zhang H: The scaffold protein EPG-7 links cargo-receptor complexes with the autophagic assembly machinery. J Cell Biol. 201:113–129. 2013.

67 

Scott SV, Guan J, Hutchins MU, Kim J and Klionsky DJ: Cvt19 is a receptor for the cytoplasm-to-vacuole targeting pathway. Mol Cell. 7:1131–1141. 2001.

68 

Zhang Y, Yan L, Zhou Z, Yang P, Tian E, Zhang K, Zhao Y, Li Z, Song B, Han J, et al: SEPA-1 mediates the specific recognition and degradation of P granule components by autophagy in C. elegans. Cell. 136:308–321. 2009.

69 

Ma X, Lu C, Chen Y, Li S, Ma N, Tao X, Li Y, Wang J, Zhou M, Yan YB, et al: CCT2 is an aggrephagy receptor for clearance of solid protein aggregates. Cell. 185:1325–1345.e22. 2022.

70 

Cheng S, Huang Z, Jash S, Wu K, Saito S, Nakashima A and Sharma S: Hypoxia-reoxygenation impairs autophagy-lysosomal machinery in primary human trophoblasts mimicking placental pathology of early-onset preeclampsia. Int J Mol Sci. 23:56442022.

71 

de Theije CC, Schols AMWJ, Lamers WH, Neumann D, Köhler SE and Langen RCJ: Hypoxia impairs adaptation of skeletal muscle protein turnover- and AMPK signaling during fasting-induced muscle atrophy. PLoS One. 13:e02036302018.

72 

Dao TP and Castañeda CA: Ubiquitin-modulated phase separation of shuttle proteins: Does condensate formation promote protein degradation? Bioessays. 42:e20000362020.

73 

Cabe M, Rademacher DJ, Karlsson AB, Cherukuri S and Bakowska JC: PB1 and UBA domains of p62 are essential for aggresome-like induced structure formation. Biochem Biophys Res Commun. 503:2306–2311. 2018.

74 

Walter P and Ron D: The unfolded protein response: From stress pathway to homeostatic regulation. Science. 334:1081–1086. 2011.

75 

Kim R, Emi M, Tanabe K and Murakami S: Role of the unfolded protein response in cell death. Apoptosis. 11:5–13. 2006.

76 

Karagöz GE, Acosta-Alvear D and Walter P: The unfolded protein response: detecting and responding to fluctuations in the protein-folding capacity of the endoplasmic reticulum. Cold Spring Harb Perspect Biol. 11:a0338862019.

77 

Hetz C and Papa FR: The unfolded protein response and cell fate control. Mol Cell. 69:169–181. 2018.

78 

You K, Wang L, Chou CH, Liu K, Nakata T, Jaiswal A, Yao J, Lefkovith A, Omar A, Perrigoue JG, et al: QRICH1 dictates the outcome of ER stress through transcriptional control of proteostasis. Science. 371:eabb68962021.

79 

Kopp MC, Larburu N, Durairaj V, Adams CJ and Ali MMU: UPR proteins IRE1 and PERK switch BiP from chaperone to ER stress sensor. Nat Struct Mol Biol. 26:1053–1062. 2019.

80 

Hetz C: The unfolded protein response: Controlling cell fate decisions under ER stress and beyond. Nat Rev Mol Cell Biol. 13:89–102. 2012.

81 

Bertolotti A, Zhang Y, Hendershot LM, Harding HP and Ron D: Dynamic interaction of BiP and ER stress transducers in the unfolded-protein response. Nat Cell Biol. 2:326–332. 2000.

82 

Ye J, Rawson RB, Komuro R, Chen X, Davé UP, Prywes R, Brown MS and Goldstein JL: ER stress induces cleavage of membrane-bound ATF6 by the same proteases that process SREBPs. Mol Cell. 6:1355–1364. 2000.

83 

Haze K, Yoshida H, Yanagi H, Yura T and Mori K: Mammalian transcription factor ATF6 is synthesized as a transmembrane protein and activated by proteolysis in response to endoplasmic reticulum stress. Mol Biol Cell. 10:3787–3799. 1999.

84 

Schröder M and Kaufman RJ: The mammalian unfolded protein response. Annu Rev Biochem. 74:739–789. 2005.

85 

Münch C: The different axes of the mammalian mitochondrial unfolded protein response. BMC Biol. 16:812018.

86 

Binet F and Sapieha P: ER stress and angiogenesis. Cell Metab. 22:560–575. 2015.

87 

Sun LL, Chen CM, Zhang J, Wang J, Yang CZ and Lin LZ: Glucose-regulated protein 78 signaling regulates hypoxia-induced epithelial-mesenchymal transition in A549 cells. Front Oncol. 9:1372019.

88 

Raiter A, Weiss C, Bechor Z, Ben-Dor I, Battler A, Kaplan B and Hardy B: Activation of GRP78 on endothelial cell membranes by an ADAM15-derived peptide induces angiogenesis. J Vasc Res. 47:399–411. 2010.

89 

Wang Y, Alam GN, Ning Y, Visioli F, Dong Z, Nör JE and Polverini PJ: The unfolded protein response induces the angiogenic switch in human tumor cells through the PERK/ATF4 pathway. Cancer Res. 72:5396–5406. 2012.

90 

Scheuner D, Song B, McEwen E, Liu C, Laybutt R, Gillespie P, Saunders T, Bonner-Weir S and Kaufman RJ: Translational control is required for the unfolded protein response and in vivo glucose homeostasis. Mol Cell. 7:1165–1176. 2001.

91 

Liu L, Cash TP, Jones RG, Keith B, Thompson CB and Simon MC: Hypoxia-induced energy stress regulates mRNA translation and cell growth. Mol Cell. 21:521–531. 2006.

92 

Koumenis C, Naczki C, Koritzinsky M, Rastani S, Diehl A, Sonenberg N, Koromilas A and Wouters BG: Regulation of protein synthesis by hypoxia via activation of the endoplasmic reticulum kinase PERK and phosphorylation of the translation initiation factor eIF2alpha. Mol Cell Biol. 22:7405–7416. 2002.

93 

Dewhirst MW, Cao Y and Moeller B: Cycling hypoxia and free radicals regulate angiogenesis and radiotherapy response. Nat Rev Cancer. 8:425–437. 2008.

94 

Almendros I, Martínez-García MÁ, Campos-Rodríguez F, Riveiro-Falkenbach E, Rodríguez-Peralto JL, Nagore E, Martorell-Calatayud A, Hernández Blasco L, Bañuls Roca J, Chiner Vives E, et al: Intermittent hypoxia is associated with high hypoxia inducible factor-1α but not high vascular endothelial growth factor cell expression in tumors of cutaneous melanoma patients. Front Neurol. 9:2722018.

95 

Yoon DW, So D, Min S, Kim J, Lee M, Khalmuratova R, Cho CH, Park JW and Shin HW: Accelerated tumor growth under intermittent hypoxia is associated with hypoxia-inducible factor-1-dependent adaptive responses to hypoxia. Oncotarget. 8:61592–61603. 2017.

96 

Singleton DC and Harris AL: Targeting the ATF4 pathway in cancer therapy. Expert Opin Ther Targets. 16:1189–1202. 2012.

97 

Rouschop KM, van den Beucken T, Dubois L, Niessen H, Bussink J, Savelkouls K, Keulers T, Mujcic H, Landuyt W, Voncken JW, et al: The unfolded protein response protects human tumor cells during hypoxia through regulation of the autophagy genes MAP1LC3B and ATG5. J Clin Invest. 120:127–141. 2010.

98 

Ye J, Kumanova M, Hart LS, Sloane K, Zhang H, De Panis DN, Bobrovnikova-Marjon E, Diehl JA, Ron D and Koumenis C: The GCN2-ATF4 pathway is critical for tumour cell survival and proliferation in response to nutrient deprivation. EMBO J. 29:2082–2096. 2010.

99 

Mujcic H, Nagelkerke A, Rouschop KM, Chung S, Chaudary N, Span PN, Clarke B, Milosevic M, Sykes J, Hill RP, et al: Hypoxic activation of the PERK/eIF2α arm of the unfolded protein response promotes metastasis through induction of LAMP3. Clin Cancer Res. 19:6126–6137. 2013.

100 

Mudassar F, Shen H, O'Neill G and Hau E: Targeting tumor hypoxia and mitochondrial metabolism with anti-parasitic drugs to improve radiation response in high-grade gliomas. J Exp Clin Cancer Res. 39:2082020.

101 

Wheaton WW and Chandel NS: Hypoxia. 2. Hypoxia regulates cellular metabolism. Am J Physiol Cell Physiol. 300:C385–C393. 2011.

102 

Garcia-Bermudez J, Baudrier L, La K, Zhu XG, Fidelin J, Sviderskiy VO, Papagiannakopoulos T, Molina H, Snuderl M, Lewis CA, et al: Aspartate is a limiting metabolite for cancer cell proliferation under hypoxia and in tumours. Nat Cell Biol. 20:775–781. 2018.

103 

Thomas LW, Staples O, Turmaine M and Ashcroft M: CHCHD4 regulates intracellular oxygenation and perinuclear distribution of mitochondria. Front Oncol. 7:712017.

104 

Al-Mehdi AB, Pastukh VM, Swiger BM, Reed DJ, Patel MR, Bardwell GC, Pastukh VV, Alexeyev MF and Gillespie MN: Perinuclear mitochondrial clustering creates an oxidant-rich nuclear domain required for hypoxia-induced transcription. Sci Signal. 5:ra472012.

105 

Kim H, Scimia MC, Wilkinson D, Trelles RD, Wood MR, Bowtell D, Dillin A, Mercola M and Ronai ZA: Fine-tuning of Drp1/Fis1 availability by AKAP121/Siah2 regulates mitochondrial adaptation to hypoxia. Mol Cell. 44:532–544. 2011.

106 

Melber A and Haynes CM: UPRmt regulation and output: A stress response mediated by mitochondrial-nuclear communication. Cell Res. 28:281–295. 2018.

107 

Peter B, Waddington CL, Oláhová M, Sommerville EW, Hopton S, Pyle A, Champion M, Ohlson M, Siibak T, Chrzanow ska-Lightowlers ZMA, et al: Defective mitochondrial protease LonP1 can cause classical mitochondrial disease. Hum Mol Genet. 27:1743–1753. 2018.

108 

Yan J, Sun CL, Shin S, Van Gilst M and Crowder CM: Effect of the mitochondrial unfolded protein response on hypoxic death and mitochondrial protein aggregation. Cell Death Dis. 12:7112021.

109 

Yoneda T, Benedetti C, Urano F, Clark SG, Harding HP and Ron D: Compartment-specific perturbation of protein handling activates genes encoding mitochondrial chaperones. J Cell Sci. 117:4055–4066. 2004.

110 

Durieux J, Wolff S and Dillin A: The cell-non-autonomous nature of electron transport chain-mediated longevity. Cell. 144:79–91. 2011.

111 

Nargund AM, Pellegrino MW, Fiorese CJ, Baker BM and Haynes CM: Mitochondrial import efficiency of ATFS-1 regulates mitochondrial UPR activation. Science. 337:587–590. 2012.

112 

Nargund AM, Fiorese CJ, Pellegrino MW, Deng P and Haynes CM: Mitochondrial and nuclear accumulation of the transcription factor ATFS-1 promotes OXPHOS recovery during the UPR(mt). Mol Cell. 58:123–133. 2015.

113 

Fiorese CJ, Schulz AM, Lin YF, Rosin N, Pellegrino MW and Haynes CM: The transcription factor ATF5 mediates a mammalian mitochondrial UPR. Curr Biol. 26:2037–2043. 2016.

114 

Quirós PM, Prado MA, Zamboni N, D'Amico D, Williams RW, Finley D, Gygi SP and Auwerx J: Multi-omics analysis identifies ATF4 as a key regulator of the mitochondrial stress response in mammals. J Cell Biol. 216:2027–2045. 2017.

115 

Michel S, Canonne M, Arnould T and Renard P: Inhibition of mitochondrial genome expression triggers the activation of CHOP-10 by a cell signaling dependent on the integrated stress response but not the mitochondrial unfolded protein response. Mitochondrion. 21:58–68. 2015.

116 

Inigo JR and Chandra D: The mitochondrial unfolded protein response (UPRmt): Shielding against toxicity to mitochondria in cancer. J Hematol Oncol. 15:982022.

117 

Sutandy FXR, Gößner I, Tascher G and Münch C: A cytosolic surveillance mechanism activates the mitochondrial UPR. Nature. 618:849–854. 2023.

118 

Anderson NS and Haynes CM: Folding the mitochondrial UPR into the integrated stress response. Trends Cell Biol. 30:428–439. 2020.

119 

Guo X, Aviles G, Liu Y, Tian R, Unger BA, Lin YT, Wiita AP, Xu K, Correia MA and Kampmann M: Mitochondrial stress is relayed to the cytosol by an OMA1-DELE1-HRI pathway. Nature. 579:427–432. 2020.

120 

Alberti S, Gladfelter A and Mittag T: Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell. 176:419–434. 2019.

121 

Banani SF, Lee HO, Hyman AA and Rosen MK: Biomolecular condensates: Organizers of cellular biochemistry. Nat Rev Mol Cell Biol. 18:285–298. 2017.

122 

Zhang H, Ji X, Li P, Liu C, Lou J, Wang Z, Wen W, Xiao Y, Zhang M and Zhu X: Liquid-liquid phase separation in biology: Mechanisms, physiological functions and human diseases. Sci China Life Sci. 63:953–985. 2020.

123 

Hirose T, Ninomiya K, Nakagawa S and Yamazaki T: A guide to membraneless organelles and their various roles in gene regulation. Nat Rev Mol Cell Biol. 24:288–304. 2023.

124 

Brangwynne CP, Eckmann CR, Courson DS, Rybarska A, Hoege C, Gharakhani J, Jülicher F and Hyman AA: Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science. 324:1729–1732. 2009.

125 

Kim J, Lee H, Lee HG and Seo PJ: Get closer and make hotspots: Liquid-liquid phase separation in plants. EMBO Rep. 22:e516562021.

126 

Alberti S, Saha S, Woodruff JB, Franzmann TM, Wang J and Hyman AA: A user's guide for phase separation assays with purified proteins. J Mol Biol. 430:4806–4820. 2018.

127 

Shrinivas K and Brenner MP: Phase separation in fluids with many interacting components. Proc Natl Acad Sci USA. 118:e21085511182021.

128 

Galves M, Rathi R, Prag G and Ashkenazi A: Ubiquitin signaling and degradation of aggregate-prone proteins. Trends Biochem Sci. 44:872–884. 2019.

129 

Snead WT and Gladfelter AS: The control centers of biomolecular phase separation: How membrane surfaces, PTMs, and active processes regulate condensation. Mol Cell. 76:295–305. 2019.

130 

Sanchez-Burgos I, Espinosa JR, Joseph JA and Collepardo-Guevara R: Valency and binding affinity variations can regulate the multilayered organization of protein condensates with many components. Biomolecules. 11:2782021.

131 

Jain S, Wheeler JR, Walters RW, Agrawal A, Barsic A and Parker R: ATPase-modulated stress granules contain a diverse proteome and substructure. Cell. 164:487–498. 2016.

132 

Hipp MS, Kasturi P and Hartl FU: The proteostasis network and its decline in ageing. Nat Rev Mol Cell Biol. 20:421–435. 2019.

133 

Case LB, Zhang X, Ditlev JA and Rosen MK: Stoichiometry controls activity of phase-separated clusters of actin signaling proteins. Science. 363:1093–1097. 2019.

134 

Franzmann TM, Jahnel M, Pozniakovsky A, Mahamid J, Holehouse AS, Nüske E, Richter D, Baumeister W, Grill SW, Pappu RV, et al: Phase separation of a yeast prion protein promotes cellular fitness. Science. 359:eaao56542018.

135 

Klosin A, Oltsch F, Harmon T, Honigmann A, Jülicher F, Hyman AA and Zechner C: Phase separation provides a mechanism to reduce noise in cells. Science. 367:464–468. 2020.

136 

Riback JA, Katanski CD, Kear-Scott JL, Pilipenko EV, Rojek AE, Sosnick TR and Drummond DA: Stress-triggered phase separation is an adaptive, evolutionarily tuned response. Cell. 168:1028–1040.e19. 2017.

137 

Shin Y, Chang YC, Lee DSW, Berry J, Sanders DW, Ronceray P, Wingreen NS, Haataja M and Brangwynne CP: Liquid nuclear condensates mechanically sense and restructure the genome. Cell. 175:1481–1491.e13. 2018.

138 

Spector DL: SnapShot: Cellular bodies. Cell. 127:10712006.

139 

Protter DSW and Parker R: Principles and properties of stress granules. Trends Cell Biol. 26:668–679. 2016.

140 

Damgaard CK and Lykke-Andersen J: Translational coregulation of 5'TOP mRNAs by TIA-1 and TIAR. Genes Dev. 25:2057–2068. 2011.

141 

Gwon Y, Maxwell BA, Kolaitis RM, Zhang P, Kim HJ and Taylor JP: Ubiquitination of G3BP1 mediates stress granule disassembly in a context-specific manner. Science. 372:eabf65482021.

142 

Yang P, Mathieu C, Kolaitis RM, Zhang P, Messing J, Yurtsever U, Yang Z, Wu J, Li Y, Pan Q, et al: G3BP1 is a tunable switch that triggers phase separation to assemble stress granules. Cell. 181:325–345.e28. 2020.

143 

Bartoszewska S and Collawn JF: Unfolded protein response (UPR) integrated signaling networks determine cell fate during hypoxia. Cell Mol Biol Lett. 25:182020.

144 

Donnelly N, Gorman AM, Gupta S and Samali A: The eIF2α kinases: Their structures and functions. Cell Mol Life Sci. 70:3493–3511. 2013.

145 

Wek RC, Jiang HY and Anthony TG: Coping with stress: eIF2 kinases and translational control. Biochem Soc Trans. 34:7–11. 2006.

146 

Beilsten-Edmands V, Gordiyenko Y, Kung JC, Mohammed S, Schmidt C and Robinson CV: eIF2 interactions with initiator tRNA and eIF2B are regulated by post-translational modifications and conformational dynamics. Cell Discov. 1:150202015.

147 

Kedersha N and Anderson P: Stress granules: Sites of mRNA triage that regulate mRNA stability and translatability. Biochem Soc Trans. 30:963–969. 2002.

148 

Kedersha N, Chen S, Gilks N, Li W, Miller IJ, Stahl J and Anderson P: Evidence that ternary complex (eIF2-GTP-tRNA(i) (Met))-deficient preinitiation complexes are core constituents of mammalian stress granules. Mol Biol Cell. 13:195–210. 2002.

149 

Anderson P and Kedersha N: Stressful initiations. J Cell Sci. 115:3227–3234. 2002.

150 

Anderson P and Kedersha N: Stress granules: The tao of RNA triage. Trends Biochem Sci. 33:141–150. 2008.

151 

Darnell AM, Subramaniam AR and O'Shea EK: Translational control through differential ribosome pausing during amino acid limitation in mammalian cells. Mol Cell. 71:229–243.e11. 2018.

152 

Eleftheriadis T, Pissas G, Antoniadi G, Liakopoulos V, Tsogka K, Sounidaki M and Stefanidis I: Differential effects of the two amino acid sensing systems, the GCN2 kinase and the mTOR complex 1, on primary human alloreactive CD4+ T-cells. Int J Mol Med. 37:1412–1420. 2016.

153 

Longchamp A, Mirabella T, Arduini A, MacArthur MR, Das A, Treviño-Villarreal JH, Hine C, Ben-Sahra I, Knudsen NH, Brace LE, et al: Amino acid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production. Cell. 173:117–129.e14. 2018.

154 

Liu Y, László C, Liu Y, Liu W, Chen X, Evans SC and Wu S: Regulation of G(1) arrest and apoptosis in hypoxia by PERK and GCN2-mediated eIF2alpha phosphorylation. Neoplasia. 12:61–68. 2010.

155 

Miar A, Arnaiz E, Bridges E, Beedie S, Cribbs AP, Downes DJ, Beagrie RA, Rehwinkel J and Harris AL: Hypoxia induces transcriptional and translational downregulation of the type I IFN pathway in multiple cancer cell types. Cancer Res. 80:5245–5256. 2020.

156 

Eiermann N, Haneke K, Sun Z, Stoecklin G and Ruggieri A: Dance with the Devil: Stress granules and signaling in antiviral responses. Viruses. 12:9842020.

157 

Takahashi M, Higuchi M, Matsuki H, Yoshita M, Ohsawa T, Oie M and Fujii M: Stress granules inhibit apoptosis by reducing reactive oxygen species production. Mol Cell Biol. 33:815–829. 2013.

158 

Lee AK, Klein J, Fon Tacer K, Lord T, Oatley MJ, Oatley JM, Porter SN, Pruett-Miller SM, Tikhonova EB, Karamyshev AL, et al: Translational repression of G3BP in cancer and germ cells suppresses stress granules and enhances stress tolerance. Mol Cell. 79:645–659.e9. 2020.

159 

Timalsina S, Arimoto-Matsuzaki K, Kitamura M, Xu X, Wenzhe Q, Ishigami-Yuasa M, Kagechika H and Hata Y: Chemical compounds that suppress hypoxia-induced stress granule formation enhance cancer drug sensitivity of human cervical cancer HeLa cells. J Biochem. 164:381–391. 2018.

160 

Attwood KM, Robichaud A, Westhaver LP, Castle EL, Brandman DM, Balgi AD, Roberge M, Colp P, Croul S, Kim I, et al: Raloxifene prevents stress granule dissolution, impairs translational control and promotes cell death during hypoxia in glioblastoma cells. Cell Death Dis. 11:9892020.

161 

Liu Y, Liu Y, He Y, Zhang N, Zhang S, Li Y, Wang X, Liang Y, Chen X, Zhao W, et al: Hypoxia-induced FUS-circTBC1D14 stress granules promote autophagy in TNBC. Adv Sci (Weinh). 10:e22049882023.

162 

Li WY, Yang F, Li X, Wang LW and Wang Y: Stress granules inhibit endoplasmic reticulum stress-mediated apoptosis during hypoxia-induced injury in acute liver failure. World J Gastroenterol. 29:1315–1329. 2023.

163 

Hu L, Mao S, Lin L, Bai G, Liu B and Mao J: Stress granules in the spinal muscular atrophy and amyotrophic lateral sclerosis: The correlation and promising therapy. Neurobiol Dis. 170:1057492022.

164 

Youn JY, Dyakov BJA, Zhang J, Knight JDR, Vernon RM, Forman-Kay JD and Gingras AC: Properties of stress granule and P-body proteomes. Mol Cell. 76:286–294. 2019.

165 

Kedersha N, Stoecklin G, Ayodele M, Yacono P, Lykke-Andersen J, Fritzler MJ, Scheuner D, Kaufman RJ, Golan DE and Anderson P: Stress granules and processing bodies are dynamically linked sites of mRNP remodeling. J Cell Biol. 169:871–884. 2005.

166 

Moon SL, Morisaki T, Khong A, Lyon K, Parker R and Stasevich TJ: Multicolour single-molecule tracking of mRNA interactions with RNP granules. Nat Cell Biol. 21:162–168. 2019.

167 

Luo Y, Na Z and Slavoff SA: P-bodies: Composition, properties, and functions. Biochemistry. 57:2424–2431. 2018.

168 

Lee JI and Namkoong S: Stress granules dynamics: Benefits in cancer. BMB Rep. 55:577–586. 2022.

169 

Jud MC, Czerwinski MJ, Wood MP, Young RA, Gallo CM, Bickel JS, Petty EL, Mason JM, Little BA, Padilla PA and Schisa JA: Large P body-like RNPs form in C. elegans oocytes in response to arrested ovulation, heat shock, osmotic stress, and anoxia and are regulated by the major sperm protein pathway. Dev Biol. 318:38–51. 2008.

170 

Bett JS, Ibrahim AF, Garg AK, Kelly V, Pedrioli P, Rocha S and Hay RT: The P-body component USP52/PAN2 is a novel regulator of HIF1A mRNA stability. Biochem J. 451:185–194. 2013.

171 

Carbonaro M, O'Brate A and Giannakakou P: Microtubule disruption targets HIF-1alpha mRNA to cytoplasmic P-bodies for translational repression. J Cell Biol. 192:83–99. 2011.

172 

Gutierrez G: Cellular energy metabolism during hypoxia. Crit Care Med. 19:619–626. 1991.

173 

Hollinshead KE and Tennant DA: Mitochondrial metabolic remodeling in response to genetic and environmental perturbations. Wiley Interdiscip Rev Syst Biol Med. 8:272–285. 2016.

174 

Newsholme EA and Start C: Regulation in metabolism. John Wiley and Sons; New York and London: pp. 3491973

175 

TeSlaa T, Bartman CR, Jankowski CSR, Zhang Z, Xu X, Xing X, Wang L, Lu W, Hui S and Rabinowitz JD: The source of glycolytic intermediates in mammalian tissues. Cell Metab. 33:367–378.e5. 2021.

176 

Miura N, Shinohara M, Tatsukami Y, Sato Y, Morisaka H, Kuroda K and Ueda M: Spatial reorganization of Saccharomyces cerevisiae enolase to alter carbon metabolism under hypoxia. Eukaryot Cell. 12:1106–1119. 2013.

177 

Jang S, Nelson JC, Bend EG, Rodríguez-Laureano L, Tueros FG, Cartagenova L, Underwood K, Jorgensen EM and Colón-Ramos DA: Glycolytic enzymes localize to synapses under energy stress to support synaptic function. Neuron. 90:278–291. 2016.

178 

Webb BA, Dosey AM, Wittmann T, Kollman JM and Barber DL: The glycolytic enzyme phosphofructokinase-1 assembles into filaments. J Cell Biol. 216:2305–2313. 2017.

179 

Narayanaswamy R, Levy M, Tsechansky M, Stovall GM, O'Connell JD, Mirrielees J, Ellington AD and Marcotte EM: Widespread reorganization of metabolic enzymes into reversible assemblies upon nutrient starvation. Proc Natl Acad Sci USA. 106:10147–10152. 2009.

180 

Saad S, Cereghetti G, Feng Y, Picotti P, Peter M and Dechant R: Reversible protein aggregation is a protective mechanism to ensure cell cycle restart after stress. Nat Cell Biol. 19:1202–1213. 2017.

181 

Kohnhorst CL, Kyoung M, Jeon M, Schmitt DL, Kennedy EL, Ramirez J, Bracey SM, Luu BT, Russell SJ and An S: Identification of a multienzyme complex for glucose metabolism in living cells. J Biol Chem. 292:9191–9203. 2017.

182 

Fuller GG, Han T, Freeberg MA, Moresco JJ, Ghanbari Niaki A, Roach NP, Yates JR III, Myong S and Kim JK: RNA promotes phase separation of glycolysis enzymes into yeast G bodies in hypoxia. Elife. 9:e484802020.

183 

Yoshimura Y, Hirayama R, Miura N, Utsumi R, Kuroda K, Ueda M and Kataoka M: Small-scale hypoxic cultures for monitoring the spatial reorganization of glycolytic enzymes in Saccharomyces cerevisiae. Cell Biol Int. 45:1776–1783. 2021.

184 

Fuller GG and Kim JK: Compartmentalization and metabolic regulation of glycolysis. J Cell Sci. 134:jcs2584692021.

185 

Lu H, Gao Z, Zhao Z, Weng J and Ye J: Transient hypoxia reprograms differentiating adipocytes for enhanced insulin sensitivity and triglyceride accumulation. Int J Obes (Lond). 40:121–128. 2016.

186 

Gordon GB, Barcza MA and Bush ME: Lipid accumulation of hypoxic tissue culture cells. Am J Pathol. 88:663–678. 1977.

187 

Gross DA and Silver DL: Cytosolic lipid droplets: from mechanisms of fat storage to disease. Crit Rev Biochem Mol Biol. 49:304–326. 2014.

188 

Lass A, Zimmermann R, Oberer M and Zechner R: Lipolysis-a highly regulated multi-enzyme complex mediates the catabolism of cellular fat stores. Prog Lipid Res. 50:14–27. 2011.

189 

Farese RV Jr and Walther TC: Lipid droplets finally get a little R-E-S-P-E-C-T. Cell. 139:855–860. 2009.

190 

Thiam AR and Ikonen E: Lipid droplet nucleation. Trends Cell Biol. 31:108–118. 2021.

191 

Walther TC, Chung J and Farese RV Jr: Lipid droplet biogenesis. Annu Rev Cell Dev Biol. 33:491–510. 2017.

192 

Olzmann JA and Carvalho P: Dynamics and functions of lipid droplets. Nat Rev Mol Cell Biol. 20:137–155. 2019.

193 

Santinho A, Salo VT, Chorlay A, Li S, Zhou X, Omrane M, Ikonen E and Thiam AR: Membrane curvature catalyzes lipid droplet assembly. Curr Biol. 30:2481–2494.e6. 2020.

194 

Zoni V, Khaddaj R, Campomanes P, Thiam AR, Schneiter R and Vanni S: Lipid droplet biogenesis is driven by liquid-liquid phase separation. bioRxiv. 7774662020.

195 

Walther TC and Farese RV Jr: Lipid droplets and cellular lipid metabolism. Annu Rev Biochem. 81:687–714. 2012.

196 

Ward PS and Thompson CB: Signaling in control of cell growth and metabolism. Cold Spring Harb Perspect Biol. 4:a0067832012.

197 

Baenke F, Peck B, Miess H and Schulze A: Hooked on fat: The role of lipid synthesis in cancer metabolism and tumour development. Dis Model Mech. 6:1353–1363. 2013.

198 

Koizume S and Miyagi Y: Lipid droplets: A key cellular organelle associated with cancer cell survival under normoxia and hypoxia. Int J Mol Sci. 17:14302016.

199 

Qiu B, Ackerman D, Sanchez DJ, Li B, Ochocki JD, Grazioli A, Bobrovnikova-Marjon E, Diehl JA, Keith B and Simon MC: HIF2α-dependent lipid storage promotes endoplasmic reticulum homeostasis in clear-cell renal cell carcinoma. Cancer Discov. 5:652–667. 2015.

200 

Bailey AP, Koster G, Guillermier C, Hirst EM, MacRae JI, Lechene CP, Postle AD and Gould AP: Antioxidant role for lipid droplets in a stem cell niche of Drosophila. Cell. 163:340–353. 2015.

201 

Rysman E, Brusselmans K, Scheys K, Timmermans L, Derua R, Munck S, Van Veldhoven PP, Waltregny D, Daniëls VW, Machiels J, et al: De novo lipogenesis protects cancer cells from free radicals and chemotherapeutics by promoting membrane lipid saturation. Cancer Res. 70:8117–8126. 2010.

202 

de la Rosa Rodriguez MA and Kersten S: Regulation of lipid droplet homeostasis by hypoxia inducible lipid droplet associated HILPDA. Biochim Biophys Acta Mol Cell Biol Lipids. 1865:1587382020.

203 

de la Rosa Rodriguez MA, Deng L, Gemmink A, van Weeghel M, Aoun ML, Warnecke C, Singh R, Borst JW and Kersten S: Hypoxia-inducible lipid droplet-associated induces DGAT1 and promotes lipid storage in hepatocytes. Mol Metab. 47:1011682021.

204 

Semenza GL: Hypoxia-inducible factors in physiology and medicine. Cell. 148:399–408. 2012.

205 

Watts ER and Walmsley SR: Inflammation and hypoxia: HIF and PHD isoform selectivity. Trends Mol Med. 25:33–46. 2019.

206 

Willson JA, Arienti S, Sadiku P, Reyes L, Coelho P, Morrison T, Rinaldi G, Dockrell DH, Whyte MKB and Walmsley SR: Neutrophil HIF-1α stabilization is augmented by mitochondrial ROS produced via the glycerol 3-phosphate shuttle. Blood. 139:281–286. 2022.

207 

Chandel NS, McClintock DS, Feliciano CE, Wood TM, Melendez JA, Rodriguez AM and Schumacker PT: Reactive oxygen species generated at mitochondrial complex III stabilize hypoxia-inducible factor-1alpha during hypoxia: A mechanism of O2 sensing. J Biol Chem. 275:25130–25138. 2000.

208 

Hopfer U, Hopfer H, Jablonski K, Stahl RA and Wolf G: The novel WD-repeat protein Morg1 acts as a molecular scaffold for hypoxia-inducible factor prolyl hydroxylase 3 (PHD3). J Biol Chem. 281:8645–8655. 2006.

209 

Wong BW, Kuchnio A, Bruning U and Carmeliet P: Emerging novel functions of the oxygen-sensing prolyl hydroxylase domain enzymes. Trends Biochem Sci. 38:3–11. 2013.

210 

Rantanen K, Pursiheimo J, Högel H, Himanen V, Metzen E and Jaakkola PM: Prolyl hydroxylase PHD3 activates oxygen-dependent protein aggregation. Mol Biol Cell. 19:2231–2240. 2008.

211 

Theodoridis PR, Bokros M, Marijan D, Balukoff NC, Wang D, Kirk CC, Budine TD, Goldsmith HD, Wang M, Audas TE and Lee S: Local translation in nuclear condensate amyloid bodies. Proc Natl Acad Sci USA. 118:e20144571182021.

212 

Wang M, Tao X, Jacob MD, Bennett CA, Ho JJD, Gonzalgo ML, Audas TE and Lee S: Stress-induced low complexity RNA activates physiological amyloidogenesis. Cell Rep. 24:1713–1721.e4. 2018.

213 

Standart N and Weil D: P-bodies: Cytosolic droplets for coordinated mRNA storage. Trends Genet. 34:612–626. 2018.

214 

Majerciak V, Zhou T, Kruhlak MJ and Zheng ZM: RNA helicase DDX6 and scaffold protein GW182 in P-bodies promote biogenesis of stress granules. Nucleic Acids Res. 51:9337–9355. 2023.

215 

Hallacli E, Kayatekin C, Nazeen S, Wang XH, Sheinkopf Z, Sathyakumar S, Sarkar S, Jiang X, Dong X, Di Maio R, et al: The Parkinson's disease protein alpha-synuclein is a modulator of processing bodies and mRNA stability. Cell. 185:2035–2056.e33. 2022.

216 

Loll-Krippleber R and Brown GW: P-body proteins regulate transcriptional rewiring to promote DNA replication stress resistance. Nat Commun. 8:5582017.

217 

Lavalée M, Curdy N, Laurent C, Fournié JJ and Franchini DM: Cancer cell adaptability: Turning ribonucleoprotein granules into targets. Trends Cancer. 7:902–915. 2021.

218 

Tsai WC and Lloyd RE: Cytoplasmic RNA granules and viral infection. Annu Rev Virol. 1:147–170. 2014.

219 

Bargiela D, Burr SP and Chinnery PF: Mitochondria and hypoxia: Metabolic crosstalk in cell-fate decisions. Trends Endocrinol Metab. 29:249–259. 2018.

220 

Taylor CT and Moncada S: Nitric oxide, cytochrome C oxidase, and the cellular response to hypoxia. Arterioscler Thromb Vasc Biol. 30:643–647. 2010.

221 

Sathyanarayanan U, Musa M, Bou Dib P, Raimundo N, Milosevic I and Krisko A: ATP hydrolysis by yeast Hsp104 determines protein aggregate dissolution and size in vivo. Nat Commun. 11:52262020.

222 

Torrente MP and Shorter J: The metazoan protein disaggregase and amyloid depolymerase system: Hsp110, Hsp70, Hsp40, and small heat shock proteins. Prion. 7:457–463. 2013.

223 

Jakobson CM and Jarosz DF: Metabolites control stress granule disassembly. Nat Cell Biol. 23:1053–1055. 2021.

224 

Grignaschi E, Cereghetti G, Grigolato F, Kopp MRG, Caimi S, Faltova L, Saad S, Peter M and Arosio P: A hydrophobic low-complexity region regulates aggregation of the yeast pyruvate kinase Cdc19 into amyloid-like aggregates in vitro. J Biol Chem. 293:11424–11432. 2018.

225 

Cereghetti G, Wilson-Zbinden C, Kissling VM, Diether M, Arm A, Yoo H, Piazza I, Saad S, Picotti P, Drummond DA, et al: Reversible amyloids of pyruvate kinase couple cell metabolism and stress granule disassembly. Nat Cell Biol. 23:1085–1094. 2021.

226 

Haslbeck M, Miess A, Stromer T, Walter S and Buchner J: Disassembling protein aggregates in the yeast cytosol. The cooperation of Hsp26 with Ssa1 and Hsp104. J Biol Chem. 280:23861–23868. 2005.

227 

Glover JR and Lindquist S: Hsp104, Hsp70, and Hsp40: A novel chaperone system that rescues previously aggregated proteins. Cell. 94:73–82. 1998.

228 

Cherkasov V, Hofmann S, Druffel-Augustin S, Mogk A, Tyedmers J, Stoecklin G and Bukau B: Coordination of translational control and protein homeostasis during severe heat stress. Curr Biol. 23:2452–2462. 2013.

229 

Kobayashi S and Welsh FA: Regional alterations of ATP and heat-shock protein-72 mRNA following hypoxia-ischemia in neonatal rat brain. J Cereb Blood Flow Metab. 15:1047–1056. 1995.

230 

Oh DJ, Yu SH and Kang ET: Heat shock protein expression in adenosine triphosphate depleted renal epithelial cells. Korean J Intern Med. 19:149–154. 2004.

231 

Gupta S and Knowlton AA: Cytosolic heat shock protein 60, hypoxia, and apoptosis. Circulation. 106:2727–2733. 2002.

232 

Eastoe J, Hatzopoulos MH and Dowding PJ: Action of hydrotropes and alkyl-hydrotropes. Soft Matter. 7:5917–5925. 2011.

233 

Subbarao CV, Chakravarthy IPK, Sai Bharadwaj AVSL and Prasad KMM: Functions of hydrotropes in solutions. Chem Eng Technol. 35:225–237. 2012.

234 

Patel A, Malinovska L, Saha S, Wang J, Alberti S, Krishnan Y and Hyman AA: ATP as a biological hydrotrope. Science. 356:753–756. 2017.

235 

Patel A, Lee HO, Jawerth L, Maharana S, Jahnel M, Hein MY, Stoynov S, Mahamid J, Saha S, Franzmann TM, et al: A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell. 162:1066–1077. 2015.

236 

Wegmann S, Eftekharzadeh B, Tepper K, Zoltowska KM, Bennett RE, Dujardin S, Laskowski PR, MacKenzie D, Kamath T, Commins C, et al: Tau protein liquid-liquid phase separation can initiate tau aggregation. EMBO J. 37:e980492018.

237 

Ray S, Singh N, Kumar R, Patel K, Pandey S, Datta D, Mahato J, Panigrahi R, Navalkar A, Mehra S, et al: α-Synuclein aggregation nucleates through liquid-liquid phase separation. Nat Chem. 12:705–716. 2020.

238 

Hughes MP, Sawaya MR, Boyer DR, Goldschmidt L, Rodriguez JA, Cascio D, Chong L, Gonen T and Eisenberg DS: Atomic structures of low-complexity protein segments reveal kinked β sheets that assemble networks. Science. 359:698–701. 2018.

239 

Luo F, Gui X, Zhou H, Gu J, Li Y, Liu X, Zhao M, Li D, Li X and Liu C: Atomic structures of FUS LC domain segments reveal bases for reversible amyloid fibril formation. Nat Struct Mol Biol. 25:341–346. 2018.

240 

Alberti S and Hyman AA: Are aberrant phase transitions a driver of cellular aging? Bioessays. 38:959–968. 2016.

241 

Harmon TS, Holehouse AS, Rosen MK and Pappu RV: Intrinsically disordered linkers determine the interplay between phase separation and gelation in multivalent proteins. Elife. 6:e302942017.

242 

Nakauchi Y, Nishinami S and Shiraki K: Glass-like protein condensate for the long-term storage of proteins. Int J Biol Macromol. 182:162–167. 2021.

243 

Sadati M, Nourhani A, Fredberg JJ and Taheri Qazvini N: Glass-like dynamics in the cell and in cellular collectives. Wiley Interdiscip Rev Syst Biol Med. 6:137–149. 2014.

244 

Parry BR, Surovtsev IV, Cabeen MT, O'Hern CS, Dufresne ER and Jacobs-Wagner C: The bacterial cytoplasm has glass-like properties and is fluidized by metabolic activity. Cell. 156:183–194. 2014.

245 

Iadanza MG, Jackson MP, Hewitt EW, Ranson NA and Radford SE: A new era for understanding amyloid structures and disease. Nat Rev Mol Cell Biol. 19:755–773. 2018.

246 

Choi JM, Holehouse AS and Pappu RV: Physical principles underlying the complex biology of intracellular phase transitions. Annu Rev Biophys. 49:107–133. 2020.

247 

Roberts S, Dzuricky M and Chilkoti A: Elastin-like polypeptides as models of intrinsically disordered proteins. FEBS Lett. 589:2477–2486. 2015.

248 

Garaizar A, Espinosa JR, Joseph JA, Krainer G, Shen Y, Knowles TPJ and Collepardo-Guevara R: Aging can transform single-component protein condensates into multiphase architectures. Proc Natl Acad Sci USA. 119:e21198001192022.

249 

Falahati H and Wieschaus E: Independent active and thermodynamic processes govern the nucleolus assembly in vivo. Proc Natl Acad Sci USA. 114:1335–1340. 2017.

250 

Eisele YS, Monteiro C, Fearns C, Encalada SE, Wiseman RL, Powers ET and Kelly JW: Targeting protein aggregation for the treatment of degenerative diseases. Nat Rev Drug Discov. 14:759–780. 2015.

251 

Wilson MR and Zoubeidi A: Clusterin as a therapeutic target. Expert Opin Ther Targets. 21:201–213. 2017.

252 

Sevigny J, Chiao P, Bussière T, Weinreb PH, Williams L, Maier M, Dunstan R, Salloway S, Chen T, Ling Y, et al: The antibody aducanumab reduces Aβ plaques in Alzheimer's disease. Nature. 537:50–56. 2016.

253 

Lozupone M, Berardino G, Mollica A, Sardone R, Dibello V, Zupo R, Lampignano L, Castellana F, Bortone I, Stallone R, et al: ALZT-OP1: An experimental combination regimen for the treatment of Alzheimer's disease. Expert Opin Investig Drugs. 31:759–771. 2022.

254 

Neumann U, Ufer M, Jacobson LH, Rouzade-Dominguez ML, Huledal G, Kolly C, Lüönd RM, Machauer R, Veenstra SJ, Hurth K, et al: The BACE-1 inhibitor CNP520 for prevention trials in Alzheimer's disease. EMBO Mol Med. 10:e93162018.

255 

Timmers M, Streffer JR, Russu A, Tominaga Y, Shimizu H, Shiraishi A, Tatikola K, Smekens P, Börjesson-Hanson A, Andreasen N, et al: Pharmacodynamics of atabecestat (JNJ-54861911), an oral BACE1 inhibitor in patients with early Alzheimer's disease: Randomized, double-blind, placebo-controlled study. Alzheimers Res Ther. 10:852018.

256 

Wongprayoon P and Govitrapong P: Melatonin receptor as a drug target for neuroprotection. Curr Mol Pharmacol. 14:150–164. 2021.

257 

Yu L, Chen Y, Wang W, Xiao Z and Hong Y: Multi-vitamin B supplementation reverses hypoxia-induced tau hyperphosphorylation and improves memory function in adult mice. J Alzheimers Dis. 54:297–306. 2016.

258 

Li S, Hafeez A, Noorulla F, Geng X, Shao G, Ren C, Lu G, Zhao H, Ding Y and Ji X: Preconditioning in neuroprotection: From hypoxia to ischemia. Prog Neurobiol. 157:79–91. 2017.

259 

Zheng T, Liu H, Hong Y, Cao Y, Xia Q, Qin C, Li M, Reiter RJ, Bai Y and Fan L: Promotion of liquid-to-solid phase transition of cGAS by Baicalein suppresses lung tumorigenesis. Signal Transduct Target Ther. 8:1332023.

260 

Zhao F, Liu A, Gong X, Chen H, Wei J, Chen B, Chen S, Yang R, Fan Y and Mao R: Hypoxia-induced RNASEH2A limits activation of cGAS-STING signaling in HCC and predicts poor prognosis. Tumori. 108:63–76. 2022.

261 

Baugh EH, Ke H, Levine AJ, Bonneau RA and Chan CS: Why are there hotspot mutations in the TP53 gene in human cancers? Cell Death Differ. 25:154–160. 2018.

262 

Ferretti GDS, Quarti J, Dos Santos G, Rangel LP and Silva JL: Anticancer therapeutic strategies targeting p53 aggregation. Int J Mol Sci. 23:110232022.

263 

Wojtunik-Kulesza K, Rudkowska M and Orzeł-Sajdłowska A: Aducanumab-hope or disappointment for Alzheimer's disease. Int J Mol Sci. 24:43672023.

264 

Salloway S, Chalkias S, Barkhof F, Burkett P, Barakos J, Purcell D, Suhy J, Forrestal F, Tian Y, Umans K, et al: Amyloid-related imaging abnormalities in 2 phase 3 studies evaluating aducanumab in patients with early alzheimer disease. JAMA Neurol. 79:13–21. 2022.

265 

Rabinovici GD, Gatsonis C, Apgar C, Chaudhary K, Gareen I, Hanna L, Hendrix J, Hillner BE, Olson C, Lesman-Segev OH, et al: Association of amyloid positron emission tomography with subsequent change in clinical management among medicare beneficiaries with mild cognitive impairment or dementia. JAMA. 321:1286–1294. 2019.

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Li C, Hao B, Yang H, Wang K, Fan L and Xiao W: Protein aggregation and biomolecular condensation in hypoxic environments (Review). Int J Mol Med 53: 33, 2024.
APA
Li, C., Hao, B., Yang, H., Wang, K., Fan, L., & Xiao, W. (2024). Protein aggregation and biomolecular condensation in hypoxic environments (Review). International Journal of Molecular Medicine, 53, 33. https://doi.org/10.3892/ijmm.2024.5357
MLA
Li, C., Hao, B., Yang, H., Wang, K., Fan, L., Xiao, W."Protein aggregation and biomolecular condensation in hypoxic environments (Review)". International Journal of Molecular Medicine 53.4 (2024): 33.
Chicago
Li, C., Hao, B., Yang, H., Wang, K., Fan, L., Xiao, W."Protein aggregation and biomolecular condensation in hypoxic environments (Review)". International Journal of Molecular Medicine 53, no. 4 (2024): 33. https://doi.org/10.3892/ijmm.2024.5357
Copy and paste a formatted citation
x
Spandidos Publications style
Li C, Hao B, Yang H, Wang K, Fan L and Xiao W: Protein aggregation and biomolecular condensation in hypoxic environments (Review). Int J Mol Med 53: 33, 2024.
APA
Li, C., Hao, B., Yang, H., Wang, K., Fan, L., & Xiao, W. (2024). Protein aggregation and biomolecular condensation in hypoxic environments (Review). International Journal of Molecular Medicine, 53, 33. https://doi.org/10.3892/ijmm.2024.5357
MLA
Li, C., Hao, B., Yang, H., Wang, K., Fan, L., Xiao, W."Protein aggregation and biomolecular condensation in hypoxic environments (Review)". International Journal of Molecular Medicine 53.4 (2024): 33.
Chicago
Li, C., Hao, B., Yang, H., Wang, K., Fan, L., Xiao, W."Protein aggregation and biomolecular condensation in hypoxic environments (Review)". International Journal of Molecular Medicine 53, no. 4 (2024): 33. https://doi.org/10.3892/ijmm.2024.5357
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team