|
1
|
Khan S and Chang R: Anatomy of the
vestibular system: A review. NeuroRehabilitation. 32:437–443. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Strupp M, Dlugaiczyk J, Ertl-Wagner BB,
Rujescu D, Westhofen M and Dieterich M: Vestibular Disorders. Dtsch
Arztebl Int. 117:300–310. 2020.PubMed/NCBI
|
|
3
|
Smith PF and Zheng Y: From ear to
uncertainty: Vestibular contributions to cognitive function. Front
Integr Neurosci. 7:642013. View Article : Google Scholar
|
|
4
|
Formeister EJ, Rizk HG, Kohn MA and Sharon
JD: The epidemiology of vestibular migraine: A population-based
survey study. Otol Neurotol. 39:1037–1044. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Mendel B, Bergenius J and Langius-Eklöf A:
Dizziness: A common, troublesome symptom but often treatable. J
Vestib Res. 20:391–398. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Ward BK, Agrawal Y, Hoffman HJ, Carey JP
and Della Santina CC: Prevalence and impact of bilateral vestibular
hypofunction: Results from the 2008 US National Health Interview
Survey. JAMA Otolaryngol Head Neck Surg. 139:803–810. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Agrawal Y, Carey JP, Della Santina CC,
Schubert MC and Minor LB: Disorders of balance and vestibular
function in US adults: data from the National Health and Nutrition
Examination Survey, 2001-2004. Arch Intern Med. 169:938–944. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Chari DA, Madhani A, Sharon JD and Lewis
RF: Evidence for cognitive impairment in patients with vestibular
disorders. J Neurol. 269:5831–5842. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Ayres AJ: Learning disabilities and the
vestibular system. J Learn Disabil. 11:18–29. 1978. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Mast FW, Preuss N, Hartmann M and Grabherr
L: Spatial cognition, body representation and affective processes:
The role of vestibular information beyond ocular reflexes and
control of posture. Front Integr Neurosci. 8:442014. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Grabherr L, Cuffel C, Guyot JP and Mast
FW: Mental transformation abilities in patients with unilateral and
bilateral vestibular loss. Exp Brain Res. 209:205–214. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Micarelli A, Viziano A, Bruno E, Micarelli
E, Augimeri I and Alessandrini M: Gradient impact of cognitive
decline in unilateral vestibular hypofunction after rehabilitation:
Preliminary findings. Eur Arch Otorhinolaryngol. 275:2457–2465.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Smith PF: Recent developments in the
understanding of the interactions between the vestibular system,
memory, the hippocampus, and the striatum. Front Neurol.
13:9863022022. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Bigelow RT and Agrawal Y: Vestibular
involvement in cognition: Visuospatial ability, attention,
executive function, and memory. J Vestib Res. 25:73–89. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Wang J, Chen XX, Liu D, Tian E, Guo ZQ,
Chen JY, Kong WJ and Zhang SL: Association of hearing status and
cognition with fall among the oldest-old Chinese: A nationally
representative cohort study. Ear Hear. 44:1212–1220. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Harvey PD: Domains of cognition and their
assessment. Dialogues Clin Neurosci. 21:227–237. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Pinker S: Visual cognition: An
introduction. Cognition. 18:1–63. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Ferrè ER and Haggard P: Vestibular
cognition: State-of-the-art and future directions. Cogn
Neuropsychol. 37:413–420. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Lisman J, Buzsáki G, Eichenbaum H, Nadel
L, Ranganath C and Redish AD: Viewpoints: How the hippocampus
contributes to memory, navigation and cognition. Nat Neurosci.
20:1434–1447. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Guidetti G, Guidetti R and Manfredi M and
Manfredi M: Vestibular pathology and spatial working memory. Acta
Otorhinolaryngol Ital. 40:72–78. 2020. View Article : Google Scholar :
|
|
21
|
Smith PF: Hearing loss versus vestibular
loss as contributors to cognitive dysfunction. J Neurol. 269:87–99.
2022. View Article : Google Scholar
|
|
22
|
Dowsett J, McAssey M, Dieterich M and
Taylor PC: Cognition and higher vestibular disorders: Developing
tools for assessing vection. J Neurol. 264(Suppl 1): S45–S47. 2017.
View Article : Google Scholar
|
|
23
|
Xie D, Welgampola MS, Miller LA, Young AS,
D'Souza M, Breen N and Rosengren SM: Subjective cognitive
dysfunction in patients with dizziness and vertigo. Audiol
Neurotol. 27:122–132. 2022. View Article : Google Scholar
|
|
24
|
Bigelow RT, Semenov YR, du Lac S, Hoffman
HJ and Agrawal Y: Vestibular vertigo and comorbid cognitive and
psychiatric impairment: The 2008 National Health Interview Survey.
J Neurol Neurosurg Psychiatry. 87:367–372. 2016. View Article : Google Scholar
|
|
25
|
Smith PF and Darlington CL: Personality
changes in patients with vestibular dysfunction. Front Hum
Neurosci. 7:6782013. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Seemungal BM: The cognitive neurology of
the vestibular system. Curr Opin Neurol. 27:125–132. 2014.
View Article : Google Scholar
|
|
27
|
Berthoz A: Parietal and hippocampal
contribution to topokinetic and topographic memory. Philos Trans R
Soc Lond B Biol Sci. 352:1437–1448. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Loomis JM, Klatzky RL and Golledge RG:
Navigating without vision: Basic and applied research. Optom Vis
Sci. 78:282–289. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Chen G, King JA, Burgess N and O'Keefe J:
How vision and movement combine in the hippocampal place code. Proc
Natl Acad Sci USA. 110:378–383. 2013. View Article : Google Scholar :
|
|
30
|
Baek JH, Zheng Y, Darlington CL and Smith
PF: Evidence that spatial memory deficits following bilateral
vestibular deafferentation in rats are probably permanent.
Neurobiol Learn Mem. 94:402–413. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Matsuzaki R, Kyuhou S, Matsuura-Nakao K
and Gemba H: Thalamo-cortical projections to the posterior parietal
cortex in the monkey. Neurosci Lett. 355:113–116. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Reep RL and Corwin JV: Posterior parietal
cortex as part of a neural network for directed attention in rats.
Neurobiol Learn Mem. 91:104–113. 2009. View Article : Google Scholar
|
|
33
|
Peyrache A, Duszkiewicz AJ, Viejo G and
Angeles-Duran S: Thalamocortical processing of the head-direction
sense. Prog Neurobiol. 183:1016932019. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Winter SS, Clark BJ and Taube JS: Spatial
navigation. Disruption of the head direction cell network impairs
the parahippocampal grid cell signal. Science. 347:870–874. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Brandt T, Strupp M and Dieterich M:
Towards a concept of disorders of 'higher vestibular function'.
Front Integr Neurosci. 8:472014. View Article : Google Scholar
|
|
36
|
Meng H, May PJ, Dickman JD and Angelaki
DE: Vestibular signals in primate thalamus: Properties and origins.
J Neurosci. 27:13590–13602. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Brandt T and Dieterich M: Thalamocortical
network: A core structure for integrative multimodal vestibular
functions. Curr Opin Neurol. 32:154–164. 2019. View Article : Google Scholar
|
|
38
|
Hao X, Huang Y, Li X, Song Y, Kong X, Wang
X, Yang Z, Zhen Z and Liu J: Structural and functional neural
correlates of spatial navigation: A combined voxel-based
morphometry and functional connectivity study. Brain Behav.
6:e005722016. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Long X and Zhang SJ: A novel somatosensory
spatial navigation system outside the hippocampal formation. Cell
Res. 31:649–663. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Muir GM, Brown JE, Carey JP, Hirvonen TP,
Della Santina CC, Minor LB and Taube JS: Disruption of the head
direction cell signal after occlusion of the semicircular canals in
the freely moving chinchilla. J Neurosci. 29:14521–14533. 2009.
View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Valerio S and Taube JS: Head direction
cell activity is absent in mice without the horizontal semicircular
canals. J Neurosci. 36:741–754. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
de Waele C, Baudonnière PM, Lepecq JC,
Tran Ba Huy P and Vidal PP: Vestibular projections in the human
cortex. Exp Brain Res. 141:541–551. 2001. View Article : Google Scholar
|
|
43
|
Shinder ME and Taube JS: Differentiating
ascending vestibular pathways to the cortex involved in spatial
cognition. J Vestib Res. 20:3–23. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Indovina I, Bosco G, Riccelli R, Maffei V,
Lacquaniti F, Passamonti L and Toschi N: Structural connectome and
connectivity lateralization of the multimodal vestibular cortical
network. NeuroImage. 222:1172472020. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Smith JL, Trofimova A, Ahluwalia V, Casado
Garrido JJ, Hurtado J, Frank R, Hodge A, Gore RK and Allen JW: The
'vestibular neuromatrix': A proposed, expanded vestibular network
from graph theory in post-concussive vestibular dysfunction. Hum
Brain Mapp. 43:1501–1518. 2022. View Article : Google Scholar
|
|
46
|
Eckert MA, Menon V, Walczak A, Ahlstrom J,
Denslow S, Horwitz A and Dubno JR: At the heart of the ventral
attention system: The right anterior insula. Hum Brain Mapp.
30:2530–2541. 2009. View Article : Google Scholar :
|
|
47
|
Rudebeck PH, Putnam PT, Daniels TE, Yang
T, Mitz AR, Rhodes SE and Murray EA: A role for primate subgenual
cingulate cortex in sustaining autonomic arousal. Proc Natl Acad
Sci USA. 111:5391–5396. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Touroutoglou A, Hollenbeck M, Dickerson BC
and Feldman Barrett L: Dissociable large-scale networks anchored in
the right anterior insula subserve affective experience and
attention. NeuroImage. 60:1947–1958. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Ben-Shabat E, Matyas TA, Pell GS,
Brodtmann A and Carey LM: The right supramarginal gyrus is
important for proprioception in healthy and stroke-affected
participants: A Functional MRI Study. Front Neurol. 6:2482015.
View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Kheradmand A, Lasker A and Zee DS:
Transcranial magnetic stimulation (TMS) of the supramarginal gyrus:
A window to perception of upright. Cereb Cortex. 25:765–771. 2015.
View Article : Google Scholar :
|
|
51
|
Oane I, Barborica A, Chetan F, Donos C,
Maliia MD, Arbune AA, Daneasa A, Pistol C, Nica AE, Bajenaru OA and
Mindruta I: Cingulate cortex function and multi-modal connectivity
mapped using intracranial stimulation. Neuroimage. 220:1170592020.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Potok W, Maskiewicz A, Króliczak G and
Marangon M: The temporal involvement of the left supramarginal
gyrus in planning functional grasps: A neuronavigated TMS study.
Cortex. 111:16–34. 2019. View Article : Google Scholar
|
|
53
|
Britton Z and Arshad Q: Vestibular and
multi-sensory influences upon self-motion perception and the
consequences for human behavior. Front Neurol. 10:632019.
View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Baiano M, David A, Versace A, Churchill R,
Balestrieri M and Brambilla P: Anterior cingulate volumes in
schizophrenia: A systematic review and a meta-analysis of MRI
studies. Schizophr Res. 93:1–12. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Bush G, Luu P and Posner MI: Cognitive and
emotional influences in anterior cingulate cortex. Trends Cogn Sci.
4:215–222. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Hajek T, Kozeny J, Kopecek M, Alda M and
Höschl C: Reduced subgenual cingulate volumes in mood disorders: A
meta-analysis. J Psychiatry Neurosci. 33:91–99. 2008.PubMed/NCBI
|
|
57
|
Hatton SN, Lagopoulos J, Hermens DF,
Naismith SL, Bennett MR and Hickie IB: Correlating anterior insula
gray matter volume changes in young people with clinical and
neurocognitive outcomes: An MRI study. BMC Psychiatry. 12:452012.
View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Silani G, Lamm C, Ruff CC and Singer T:
Right supramarginal gyrus is crucial to overcome emotional
egocentricity bias in social judgments. J Neurosci. 33:15466–15476.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Nakul E, Bartolomei F and Lopez C:
Vestibular-Evoked cerebral potentials. Front Neurol. 12:6741002021.
View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Lopez C: The vestibular system: Balancing
more than just the body. Curr Opin Neurol. 29:74–83. 2016.
View Article : Google Scholar
|
|
61
|
Brandt T, Schautzer F, Hamilton DA,
Brüning R, Markowitsch HJ, Kalla R, Darlington C, Smith P and
Strupp M: Vestibular loss causes hippocampal atrophy and impaired
spatial memory in humans. Brain. 128(Pt 11): 2732–2741. 2005.
View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Goodroe SC, Starnes J and Brown TI: The
complex nature of hippocampal-striatal interactions in spatial
navigation. Front Hum Neurosci. 12:2502018. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Solstad T, Boccara CN, Kropff E, Moser MB
and Moser EI: Representation of geometric borders in the entorhinal
cortex. Science. 322:1865–1868. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Fyhn M, Molden S, Witter MP, Moser EI and
Moser MB: Spatial representation in the entorhinal cortex. Science.
305:1258–1264. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Yang Y and Wang JZ: From structure to
behavior in basolateral amygdala-hippocampus circuits. Front Neural
Circuits. 11:862017. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Rolls ET: Limbic systems for emotion and
for memory, but no single limbic system. Cortex. 62:119–157. 2015.
View Article : Google Scholar
|
|
67
|
Phelps EA: Human emotion and memory:
Interactions of the amygdala and hippocampal complex. Curr Opin
Neurobiol. 14:198–202. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Rajagopalan A, Jinu KV, Sailesh KS, Mishra
S, Reddy UK and Mukkadan JK: Understanding the links between
vestibular and limbic systems regulating emotions. J Nat Sci Biol
Med. 8:11–15. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Smith L, Wilkinson D, Bodani M, Bicknell R
and Surenthiran SS: Short-term memory impairment in vestibular
patients can arise independently of psychiatric impairment,
fatigue, and sleeplessness. J Neuropsychol. 13:417–431. 2019.
View Article : Google Scholar
|
|
70
|
Kremmyda O, Hüfner K, Flanagin VL,
Hamilton DA, Linn J, Strupp M, Jahn K and Brandt T: Beyond
Dizziness: Virtual navigation, spatial anxiety and hippocampal
volume in bilateral vestibulopathy. Front Hum Neurosci. 10:1392016.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Schöne CG, Rebsamen M, Wyssen G, Rummel C,
Wagner F, Vibert D and Mast FW: Hippocampal volume in patients with
bilateral and unilateral peripheral vestibular dysfunction.
Neuroimage Clin. 36:1032122022. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Tighilet B, Manrique C and Lacour M:
Stress axis plasticity during vestibular compensation in the adult
cat. Neuroscience. 160:716–730. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Gliddon CM, Darlington CL and Smith PF:
Activation of the hypothalamic-pituitary-adrenal axis following
vestibular deafferentation in pigmented guinea pig. Brain Res.
964:306–310. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Markia B, Kovács ZI and Palkovits M:
Projections from the vestibular nuclei to the hypothalamic
paraventricular nucleus: Morphological evidence for the existence
of a vestibular stress pathway in the rat brain. Brain Struct
Funct. 213:239–245. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Gustave Dit Duflo S, Gestreau C, Tighilet
B and Lacour M: Fos expression in the cat brainstem after
unilateral vestibular neurectomy. Brain Res. 824:1–17. 1999.
View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Cameron SA and Dutia MB: Lesion-induced
plasticity in rat vestibular nucleus neurones dependent on
glucocorticoid receptor activation. J Physiol. 518(Pt 1): 151–158.
1999. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kim EJ, Pellman B and Kim JJ: Stress
effects on the hippocampus: A critical review. Learn Mem.
22:411–416. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Kim EJ and Kim JJ: Neurocognitive effects
of stress: A metaparadigm perspective. Mol Psychiatry.
28:2750–2763. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sapolsky RM, Krey LC and McEwen BS: The
neuroendocrinology of stress and aging: The glucocorticoid cascade
hypothesis. Endocr Rev. 7:284–301. 1986. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Conboy L, Varea E, Castro JE,
Sakouhi-Ouertatani H, Calandra T, Lashuel HA and Sandi C:
Macrophage migration inhibitory factor is critically involved in
basal and fluoxetine-stimulated adult hippocampal cell
proliferation and in anxiety, depression, and memory-related
behaviors. Mol Psychiatry. 16:533–547. 2011. View Article : Google Scholar
|
|
81
|
Greguske EA, Maroto AF, Borrajo M, Palou
A, Gut M, Esteve-Codina A, Barrallo-Gimeno A and Llorens J:
Decreased expression of synaptic genes in the vestibular ganglion
of rodents following subchronic ototoxic stress. Neurobiol Dis.
182:1061342023. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Koshimizu H, Matsuoka H, Nakajima Y, Kawai
A, Ono J, Ohta KI, Miki T, Sunagawa M, Adachi N and Suzuki S:
Brain-derived neurotrophic factor predominantly regulates the
expression of synapse-related genes in the striatum: Insights from
in vitro transcriptomics. Neuropsychopharmacol Rep. 41:485–495.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Leal G, Comprido D and Duarte CB:
BDNF-induced local protein synthesis and synaptic plasticity.
Neuropharmacology. 76(Pt C): 639–656. 2014. View Article : Google Scholar
|
|
84
|
Lu B, Nagappan G and Lu Y: BDNF and
synaptic plasticity, cognitive function, and dysfunction. Handb Exp
Pharmacol. 220:223–250. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Serra MP, Sanna F, Boi M, Poddighe L,
Secci L, Trucas M, Fernández-Teruel A, Corda MG, Giorgi O and
Quartu M: Acute stress induces different changes on the expression
of BDNF and trkB in the mesocorticolimbic system of two lines of
rats differing in their response to stressors. Int J Mol Sci.
23:149952022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Brivio P, Sbrini G, Riva MA and Calabrese
F: acute stress induces cognitive improvement in the novel object
recognition task by transiently modulating Bdnf in the prefrontal
cortex of male rats. Cell Mol Neurobiol. 40:1037–1047. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Linz R, Puhlmann LMC, Apostolakou F,
Mantzou E, Papassotiriou I, Chrousos GP, Engert V and Singer T:
Acute psychosocial stress increases serum BDNF levels: An
antagonistic relation to cortisol but no group differences after
mental training. Neuropsychopharmacology. 44:1797–1804. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Smith PF and Curthoys IS: Mechanisms of
recovery following unilateral labyrinthectomy: A review. Brain Res
Brain Res Rev. 14:155–180. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Petrosini L: Task-dependent rate of
recovery from hemilabyrinthectomy: An analysis of swimming and
locomotor performances. Physiol Behav. 33:799–804. 1984. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
De Waele C, Graf W, Josset P and Vidal PP:
A radiological analysis of the postural syndromes following
hemilabyrinthectomy and selective canal and otolith lesions in the
guinea pig. Exp Brain Res. 77:166–182. 1989. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Zheng Y, Darlington CL and Smith PF:
Impairment and recovery on a food foraging task following
unilateral vestibular deafferentation in rats. Hippocampus.
16:368–378. 2006. View Article : Google Scholar
|
|
92
|
Nguyen TT, Nam GS, Kang JJ, Han GC, Kim
JS, Dieterich M and Oh SY: Galvanic vestibular stimulation improves
spatial cognition after unilateral labyrinthectomy in mice. Front
Neurol. 12:7167952021. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Chapuis N, Krimm M, de Waele C, Vibert N
and Berthoz A: Effect of post-training unilateral labyrinthectomy
in a spatial orientation task by guinea pigs. Behav Brain Res.
51:115–126. 1992. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Hüfner K, Hamilton DA, Kalla R, Stephan T,
Glasauer S, Ma J, Brüning R, Markowitsch HJ, Labudda K, Schichor C,
et al: Spatial memory and hippocampal volume in humans with
unilateral vestibular deafferentation. Hippocampus. 17:471–485.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Péruch P, Borel L, Gaunet F, Thinus-Blanc
G, Magnan J and Lacour M: Spatial performance of unilateral
vestibular defective patients in nonvisual versus visual
navigation. J Vestib Res. 9:37–47. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Oh SY, Nguyen TT, Kang JJ, Kirsch V,
Boegle R, Kim JS and Dieterich M: Visuospatial cognition in acute
unilateral peripheral vestibulopathy. Front Neurol. 14:12304952023.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Bense S, Bartenstein P, Lochmann M,
Schlindwein P, Brandt T and Dieterich M: Metabolic changes in
vestibular and visual cortices in acute vestibular neuritis. Ann
Neurol. 56:624–630. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Guidetti G, Monzani D, Trebbi M and
Rovatti V: Peripheral vestibular damage causes impaired navigation
tasks on memorized routes in humans. Ann Otolaryngol Chir
Cervicofac. 124:197–201. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Péruch P, Borel L, Magnan J and Lacour M:
Direction and distance deficits in path integration after
unilateral vestibular loss depend on task complexity. Brain Res
Cogn Brain Res. 25:862–872. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Lacroix E, Deggouj N, Edwards MG, Van
Cutsem J, Van Puyvelde M and Pattyn N: The cognitive-vestibular
compensation hypothesis: How cognitive impairments might be the
cost of coping with compensation. Front Hum Neurosci.
15:7329742021. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Staab JP, Eckhardt-Henn A, Horii A, Jacob
R, Strupp M, Brandt T and Bronstein A: Diagnostic criteria for
persistent postural-perceptual dizziness (PPPD): Consensus document
of the committee for the Classification of Vestibular Disorders of
the Bárány Society. J Vestib Res. 27:191–208. 2017. View Article : Google Scholar
|
|
102
|
Dieterich M and Staab JP: Functional
dizziness: From phobic postural vertigo and chronic subjective
dizziness to persistent postural-perceptual dizziness. Curr Opin
Neurol. 30:107–113. 2017. View Article : Google Scholar
|
|
103
|
Powell G, Derry-Sumner H, Rajenderkumar D,
Rushton SK and Sumner P: Persistent postural perceptual dizziness
is on a spectrum in the general population. Neurology.
94:e1929–e1938. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Staab JP and Ruckenstein MJ: Expanding the
differential diagnosis of chronic dizziness. Arch Otolaryngol Head
Neck Surg. 133:170–176. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Adamec I, Juren Meaški S, Krbot Skorić M,
Jažić K, Crnošija L, Milivojević I and Habek M: Persistent
postural-perceptual dizziness: Clinical and neurophysiological
study. J Clin Neurosci. 72:26–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Allen JW, Trofimova A, Ahluwalia V, Smith
JL, Abidi SA, Peters MAK, Rajananda S, Hurtado JE and Gore RK:
Altered processing of complex visual stimuli in patients with
postconcussive visual motion sensitivity. AJNR Am J Neuroradiol.
42:930–937. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Riccelli R, Passamonti L, Toschi N, Nigro
S, Chiarella G, Petrolo C, Lacquaniti F, Staab JP and Indovina I:
Altered insular and occipital responses to simulated vertical
self-motion in patients with persistent postural-perceptual
dizziness. Front Neurol. 8:5292017. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Jáuregui Renaud K: Vestibular function and
depersonalization/derealization symptoms. Multisens Res.
28:637–651. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Sang FY, Jáuregui-Renaud K, Green DA,
Bronstein AM and Gresty MA: Depersonalisation/derealisation
symptoms in vestibular disease. J Neurol Neurosurg Psychiatry.
77:760–766. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Aranda-Moreno C and Jáuregui-Renaud K:
Derealization during utricular stimulation. J Vestib Res.
26:425–431. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Breinbauer HA, Contreras MD, Lira JP,
Guevara C, Castillo L, Ruëdlinger K, Muñoz D and Delano PH: Spatial
navigation is distinctively impaired in persistent postural
perceptual dizziness. Front Neurol. 10:13612020. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Indovina I, Conti A, Lacquaniti F, Staab
JP, Passamonti L and Toschi N: Lower functional connectivity in
vestibular-limbic networks in individuals with subclinical
agoraphobia. Front Neurol. 10:8742019. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Li K, Si L, Cui B, Ling X, Shen B and Yang
X: Altered intra- and inter-network functional connectivity in
patients with persistent postural-perceptual dizziness. Neuroimage
Clin. 26:1022162020. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lee JO, Lee ES, Kim JS, Lee YB, Jeong Y,
Choi BS, Kim JH and Staab JP: Altered brain function in persistent
postural perceptual dizziness: A study on resting state functional
connectivity. Hum Brain Mapp. 39:3340–3353. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Indovina I, Riccelli R, Chiarella G,
Petrolo C, Augimeri A, Giofrè L, Lacquaniti F, Staab JP and
Passamonti L: Role of the insula and vestibular system in patients
with chronic subjective dizziness: An fMRI study using sound-evoked
vestibular stimulation. Front Behav Neurosci. 9:3342015. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Shinder ME and Newlands SD: Sensory
convergence in the parieto-insular vestibular cortex. J
Neurophysiol. 111:2445–2464. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Maffei V, Indovina I, Macaluso E, Ivanenko
YP, A Orban G and Lacquaniti F: Visual gravity cues in the
interpretation of biological movements: Neural correlates in
humans. Neuroimage. 104:221–230. 2015. View Article : Google Scholar
|
|
118
|
Maffei V, Macaluso E, Indovina I, Orban G
and Lacquaniti F: Processing of targets in smooth or apparent
motion along the vertical in the human brain: An fMRI study. J
Neurophysiol. 103:360–370. 2010. View Article : Google Scholar
|
|
119
|
Indovina I, Maffei V, Pauwels K, Macaluso
E, Orban GA and Lacquaniti F: Simulated self-motion in a visual
gravity field: Sensitivity to vertical and horizontal heading in
the human brain. Neuroimage. 71:114–124. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Elton A and Gao W: Divergent
task-dependent functional connectivity of executive control and
salience networks. Cortex. 51:56–66. 2014. View Article : Google Scholar
|
|
121
|
Strupp M, Kim JS, Murofushi T, Straumann
D, Jen JC, Rosengren SM, Della Santina CC and Kingma H: Bilateral
vestibulopathy: Diagnostic criteria Consensus document of the
Classification Committee of the Bárány Society. J Vestib Res.
27:177–189. 2017. View Article : Google Scholar
|
|
122
|
Previc FH: Vestibular loss as a
contributor to Alzheimer's disease. Med Hypotheses. 80:360–367.
2013. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Harun A, Oh ES, Bigelow RT, Studenski S
and Agrawal Y: Vestibular impairment in dementia. Otol Neurotol.
37:1137–1142. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Gommeren H, Bosmans J, Moyaert J, Mertens
G, Cras P, Engelborghs S, Van Ombergen A, Gilles A, Fransen E, van
de Berg R, et al: Accelerated cognitive decline associated with
hearing loss and bilateral vestibulopathy: Insights from a
prospective cross-sectional study using the repeatable battery for
the assessment of neuropsychological status adjusted for the
hearing impaired in the DFNA9 population. Ear Hear. 44:697–709.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Popp P, Wulff M, Finke K, Rühl M, Brandt T
and Dieterich M: Cognitive deficits in patients with a chronic
vestibular failure. J Neurol. 264:554–563. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Caixeta GC, Doná F and Gazzola JM:
Cognitive processing and body balance in elderly subjects with
vestibular dysfunction. Braz J Otorhinolaryngol. 78:87–95. 2012.In
English, Portuguese. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Dobbels B, Mertens G, Gilles A, Moyaert J,
van de Berg R, Fransen E, Van de Heyning P and Van Rompaey V: The
virtual morris water task in 64 patients with bilateral
vestibulopathy and the impact of hearing status. Front Neurol.
11:7102020. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Jandl NM, Sprenger A, Wojak JF, Göttlich
M, Münte TF, Krämer UM and Helmchen C: Dissociable cerebellar
activity during spatial navigation and visual memory in bilateral
vestibular failure. Neuroscience. 305:257–267. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Wallwork SB, Butler DS and Moseley GL:
Dizzy people perform no worse at a motor imagery task requiring
whole body mental rotation; a case-control comparison. Front Hum
Neurosci. 7:2582013. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Dobbels B, Mertens G, Gilles A, Claes A,
Moyaert J, van de Berg R, Van de Heyning P, Vanderveken O and Van
Rompaey V: Cognitive function in acquired bilateral vestibulopathy:
A cross-sectional study on cognition, hearing, and vestibular loss.
Front Neurosci. 13:3402019. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Ahmad M, Bola L, Boutabla A, King S, Lewis
RF and Chari DA: Visuospatial cognitive dysfunction in patients
with vestibular loss. Otol Neurotol. 43:e1140–e1147. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Gammeri R, Léonard J, Toupet M, Hautefort
C, van Nechel C, Besnard S, Machado ML, Nakul E, Montava M,
Lavieille JP and Lopez C: Navigation strategies in patients with
vestibular loss tested in a virtual reality T-maze. J Neurol.
269:4333–4348. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Saj A, Bachelard-Serra M, Lavieille JP,
Honoré J and Borel L: Signs of spatial neglect in unilateral
peripheral vestibulopathy. Eur J Neurol. 28:1779–1783. 2021.
View Article : Google Scholar
|
|
134
|
Ayar DA, Kumral E and Celebisoy N:
Cognitive functions in acute unilateral vestibular loss. J Neurol.
267(Suppl 1): S153–S159. 2020. View Article : Google Scholar
|
|
135
|
Schöberl F, Pradhan C, Grosch M, Brendel
M, Jostes F, Obermaier K, Sowa C, Jahn K, Bartenstein P, Brandt T,
et al: Bilateral vestibulopathy causes selective deficits in
recombining novel routes in real space. Sci Rep. 11:26952021.
View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Chen JY, Guo ZQ, Wang J, Liu D, Tian E,
Guo JQ, Kong WJ and Zhang SL: Vestibular migraine or Meniere's
disease: A diagnostic dilemma. J Neurol. 270:1955–1968. 2023.
View Article : Google Scholar :
|
|
137
|
Neuhauser HK, Radtke A, von Brevern M,
Feldmann M, Lezius F, Ziese T and Lempert T: Migrainous vertigo:
Prevalence and impact on quality of life. Neurology. 67:1028–1033.
2006. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Neuhauser H, Leopold M, von Brevern M,
Arnold G and Lempert T: The interrelations of migraine, vertigo,
and migrainous vertigo. Neurology. 56:436–441. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Lempert T, Olesen J, Furman J, Waterston
J, Seemungal B, Carey J, Bisdorff A, Versino M, Evers S and
Newman-Toker D: Vestibular migraine: Diagnostic criteria. J Vestib
Res. 22:167–172. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Wang N, Huang HL, Zhou H and Yu CY:
Cognitive impairment and quality of life in patients with
migraine-associated vertigo. Eur Rev Med Pharmacol Sci.
20:4913–4917. 2016.PubMed/NCBI
|
|
141
|
Beh SC, Masrour S, Smith SV and Friedman
DI: The spectrum of vestibular migraine: Clinical features,
triggers, and examination findings. Headache. 59:727–740. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Preysner TA, Gardi AZ, Ahmad S and Sharon
JD: Vestibular migraine: Cognitive dysfunction, mobility, falls.
Otol Neurotol. 43:1216–1221. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
143
|
Balci B, Şenyuva N and Akdal G: Definition
of balance and cognition related to disability levels in vestibular
migraine patients. Noro Psikiyatr Ars. 55:9–14. 2018.PubMed/NCBI
|
|
144
|
Smith PF, Zheng Y, Horii A and Darlington
CL: Does vestibular damage cause cognitive dysfunction in humans? J
Vestib Res. 15:1–9. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Smith PF: The vestibular system and
cognition. Curr Opin Neurol. 30:84–89. 2017. View Article : Google Scholar
|
|
146
|
Donaldson LB, Yan F, Liu YF, Nguyen SA and
Rizk HG: Does cognitive dysfunction correlate with dizziness
severity in patients with vestibular migraine? Am J Otolaryngol.
42:1031242021. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Smith PF, Darlington CL and Zheng Y: Move
it or lose it-is stimulation of the vestibular system necessary for
normal spatial memory? Hippocampus. 20:36–43. 2010. View Article : Google Scholar
|
|
148
|
Besnard S, Machado ML, Vignaux G,
Boulouard M, Coquerel A, Bouet V, Freret T, Denise P and
Lelong-Boulouard V: Influence of vestibular input on spatial and
nonspatial memory and on hippocampal NMDA receptors. Hippocampus.
22:814–826. 2012. View Article : Google Scholar
|
|
149
|
Smith PF: Dyscalculia and vestibular
function. Med Hypotheses. 79:493–496. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Furman JM, Marcus DA and Balaban CD:
Vestibular migraine: Clinical aspects and pathophysiology. Lancet
Neurol. 12:706–715. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Zhang L, Chen QH, Lin JH, Zhou C and Pan
YH: Research on the relationship between vestibular migraine
with/without cognitive impairment and brainstem auditory evoked
potential. Front Neurol. 11:1592020. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Gürkov R, Pyykö I, Zou J and Kentala E:
What is Menière's disease? A contemporary re-evaluation of
endolymphatic hydrops. J Neurol. 263(Suppl 1): S71–S81. 2016.
View Article : Google Scholar
|
|
153
|
Lopez-Escamez JA, Carey J, Chung WH,
Goebel JA, Magnusson M, Mandalà M, Newman-Toker DE, Strupp M,
Suzuki M, Trabalzini F, et al: Diagnostic criteria for Menière's
disease. J Vestib Res. 25:1–7. 2015. View Article : Google Scholar
|
|
154
|
Sajjadi H and Paparella MM: Meniere's
disease. Lancet. 372:406–414. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Eraslan Boz H, Kırkım G, Koçoğlu K, Çakır
Çetin A, Akkoyun M, Güneri EA and Akdal G: Cognitive function in
Meniere's disease. Psychol Health Med. 28:1076–1086. 2023.
View Article : Google Scholar
|
|
156
|
Serensen LK, Theilgaard A, Thomsen J and
Zilstorff K: Meniere's disease A neuropsychological study. Acta
Otolaryngol. 83:266–271. 1977. View Article : Google Scholar
|
|
157
|
Zilstorff K, Thomsen J, Laursen P,
Hoffmann G, Kjoerby O, Paludan B and Theilgaard A: Meniere's
disease: A neuropsychological study II. Adv Otorhinolaryngol.
25:100–105. 1979.PubMed/NCBI
|
|
158
|
Jian H, Wang S, Li X, Zhao H, Liu S, Lyu
Y, Fan Z, Wang H and Zhang D: Effect of late-stage meniere's
disease and vestibular functional impairment on hippocampal
atrophy. Laryngoscope. 134:410–418. 2024. View Article : Google Scholar
|
|
159
|
Liu YF, Locklear TD, Sharon JD, Lacroix E,
Nguyen SA and Rizk HG: Quantification of cognitive dysfunction in
dizzy patients using the neuropsychological vertigo inventory. Otol
Neurotol. 40:e723–e731. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
160
|
Rizk HG, Sharon JD, Lee JA, Thomas C,
Nguyen SA and Meyer TA: Cross-sectional analysis of cognitive
dysfunction in patients with vestibular disorders. Ear Hear.
41:1020–1027. 2020. View Article : Google Scholar
|
|
161
|
Dornhoffer JR, Liu YF, Zhao EE and Rizk
HG: Does cognitive dysfunction correlate with dizziness severity in
meniére's disease patients. Otol Neurotol. 42:e323–e331. 2021.
View Article : Google Scholar
|
|
162
|
Demirhan MA and Celebisoy N: Cognitive
functions in episodic vestibular disorders: Meniere's disease and
vestibular migraine. J Vestib Res. 33:63–70. 2023. View Article : Google Scholar
|
|
163
|
Neuhauser HK, von Brevern M, Radtke A,
Lezius F, Feldmann M, Ziese T and Lempert T: Epidemiology of
vestibular vertigo: A neurotologic survey of the general
population. Neurology. 65:898–904. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Kim HJ, Lee JO, Choi JY and Kim JS:
Etiologic distribution of dizziness and vertigo in a referral-based
dizziness clinic in South Korea. J Neurol. 267:2252–2259. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
165
|
von Brevern M, Radtke A, Lezius F,
Feldmann M, Ziese T, Lempert T and Neuhauser H: Epidemiology of
benign paroxysmal positional vertigo: A population based study. J
Neurol Neurosurg Psychiatry. 78:710–715. 2007. View Article : Google Scholar
|
|
166
|
Lo MH, Lin CL, Chuang E, Chuang TY and Kao
CH: Association of dementia in patients with benign paroxysmal
positional vertigo. Acta Neurol Scand. 135:197–203. 2017.
View Article : Google Scholar
|
|
167
|
Carlson ML and Link MJ: Vestibular
Schwannomas. N Engl J Med. 384:1335–1348. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
168
|
Marinelli JP, Lohse CM and Carlson ML:
Incidence of vestibular schwannoma over the past half-century: A
population-based study of olmsted county, minnesota. Otolaryngol
Head Neck Surg. 159:717–723. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
169
|
Fan Z, Fan Z, Li Z, Zhang H, Hu L, Qiu T
and Zhu W: Cognitive performance in patients with sporadic
vestibular schwannoma. Neurosurgery. 93:224–232. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
170
|
Minovi A, Mangold R, Kollert M, Hofmann E,
Draf W and Bockmühl U: Functional results, cognitive and effective
quality of life disturbances after trans-temporal resection of
acoustic neuroma. Laryngorhinootologie. 84:915–920. 2005.In German.
View Article : Google Scholar : PubMed/NCBI
|
|
171
|
Goebel S and Mehdorn HM: A missing piece?
Neuropsychiatric functioning in untreated patients with tumors
within the cerebellopontine angle. J Neurooncol. 140:145–153. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
172
|
Deng X, Liu L, Li J, Yao H, He S, Guo Z,
Sun J, Liu W and Hui X: Brain structural network to investigate the
mechanism of cognitive impairment in patients with acoustic
neuroma. Front Aging Neurosci. 14:9701592022. View Article : Google Scholar : PubMed/NCBI
|
|
173
|
Deng X, Liu L, Zhen Z, Chen Q, Liu L and
Hui X: Cognitive decline in acoustic neuroma patients: An
investigation based on resting-state functional magnetic resonance
imaging and voxel-based morphometry. Front Psychiatry.
13:9688592022. View Article : Google Scholar : PubMed/NCBI
|
|
174
|
Wang X, Xu P, Li P, Wang Z, Zhao F, Gao Z,
Xu L, Luo YJ, Fan J and Liu P: Alterations in gray matter volume
due to unilateral hearing loss. Sci Rep. 6:258112016. View Article : Google Scholar : PubMed/NCBI
|
|
175
|
Zhang Y, Mao Z, Feng S, Liu X, Zhang J and
Yu X: Monaural-driven functional changes within and beyond the
auditory cortical network: Evidence from long-term unilateral
hearing impairment. Neuroscience. 371:296–308. 2018. View Article : Google Scholar
|
|
176
|
Wang X, Fan Y, Zhao F, Wang Z, Ge J, Zhang
K, Gao Z, Gao JH, Yang Y, Fan J, et al: Altered regional and
circuit resting-state activity associated with unilateral hearing
loss. PLoS One. 9:e961262014. View Article : Google Scholar : PubMed/NCBI
|
|
177
|
Zhang Y, Mao Z, Feng S, Wang W, Zhang J
and Yu X: Convergent and divergent functional connectivity patterns
in patients with long-term left-sided and right-sided deafness.
Neurosci Lett. 665:74–79. 2018. View Article : Google Scholar
|
|
178
|
Hitier M, Besnard S and Smith PF:
Vestibular pathways involved in cognition. Front Integr Neurosci.
8:592014. View Article : Google Scholar : PubMed/NCBI
|