1
|
Miller KD, Nogueira L, Devasia T, Mariotto
AB, Yabroff KR, Jemal A, Kramer J and Siegel RL: Cancer treatment
and survivorship statistics, 2022. CA Cancer J Clin. 72:409–436.
2022. View Article : Google Scholar : PubMed/NCBI
|
2
|
Raghavan S, Winter PS, Navia AW, Williams
HL, DenAdel A, Lowder KE, Galvez-Reyes J, Kalekar RL, Mulugeta N,
Kapner KS, et al: Microenvironment drives cell state, plasticity,
and drug response in pancreatic cancer. Cell. 184:6119–6137.e26.
2021. View Article : Google Scholar : PubMed/NCBI
|
3
|
Lin F, Li X and Wang X, Sun H, Wang Z and
Wang X: Stanniocalcin 1 promotes metastasis, lipid metabolism and
cisplatin chemoresistance via the FOXC2/ITGB6 signaling axis in
ovarian cancer. J Exp Clin Cancer Res. 41:1292022. View Article : Google Scholar : PubMed/NCBI
|
4
|
Mukherjee A, Chiang CY, Daifotis HA,
Nieman KM, Fahrmann JF, Lastra RR, Romero IL, Fiehn O and Lengyel
E: Adipocyte-induced FABP4 expression in ovarian cancer cells
promotes metastasis and mediates carboplatin resistance. Cancer
Res. 80:1748–1761. 2020. View Article : Google Scholar : PubMed/NCBI
|
5
|
Liu X, Zhang P, Xu J, Lv G and Li Y: Lipid
metabolism in tumor microenvironment: Novel therapeutic targets.
Cancer Cell Int. 22:2242022. View Article : Google Scholar : PubMed/NCBI
|
6
|
Vasseur S and Guillaumond F: Lipids in
cancer: A global view of the contribution of lipid pathways to
metastatic formation and treatment resistance. Oncogenesis.
11:462022. View Article : Google Scholar : PubMed/NCBI
|
7
|
Mukherjee A, Bilecz AJ and Lengyel E: The
adipocyte microenvironment and cancer. Cancer Metastasis Rev.
41:575–587. 2022. View Article : Google Scholar : PubMed/NCBI
|
8
|
Vlachostergios PJ: Loss of tumor
suppressive properties of lipid metabolism enzyme CPT2 in ovarian
carcinoma: Comment on 'CPT2 down-regulation promotes tumor growth
and metastasis through inducing ROS/NFκB pathway in ovarian cancer'
by Zhang et al. Transl Oncol. 14:1010672021. View Article : Google Scholar
|
9
|
Siegel RL, Miller KD and Jemal A: Cancer
statistics, 2020. CA Cancer J Clin. 70:7–30. 2020. View Article : Google Scholar : PubMed/NCBI
|
10
|
Gilks CB and Prat J: Ovarian carcinoma
pathology and genetics: Recent advances. Hum Pathol. 40:1213–1223.
2009. View Article : Google Scholar : PubMed/NCBI
|
11
|
Montaigne D, Butruille L and Staels B:
PPAR control of metabolism and cardiovascular functions. Nat Rev
Cardiol. 18:809–823. 2021. View Article : Google Scholar : PubMed/NCBI
|
12
|
Luo X, Xu J, Yu J and Yi P: Shaping immune
responses in the tumor microenvironment of ovarian cancer. Front
Immunol. 12:6923602021. View Article : Google Scholar : PubMed/NCBI
|
13
|
Tian W, Lei N, Zhou J, Chen M, Guo R, Qin
B, Li Y and Chang L: Extracellular vesicles in ovarian cancer
chemoresistance, metastasis, and immune evasion. Cell Death Dis.
13:642022. View Article : Google Scholar : PubMed/NCBI
|
14
|
Li Y, Yu C and Deng W: Roles and
mechanisms of adipokines in drug resistance of tumor cells. Eur J
Pharmacol. 899:1740192021. View Article : Google Scholar : PubMed/NCBI
|
15
|
Dai L, Song K and Di W: Adipocytes: Active
facilitators in epithelial ovarian cancer progression? J Ovarian
Res. 13:1152020. View Article : Google Scholar : PubMed/NCBI
|
16
|
Chehade H, Tedja R, Ramos H, Bawa TS,
Adzibolosu N, Gogoi R, Mor G and Alvero AB: Regulatory role of the
adipose microenvironment on ovarian cancer progression. Cancers
(Basel). 14:22672022. View Article : Google Scholar : PubMed/NCBI
|
17
|
Duan C, Yu M, Xu J, Li BY, Zhao Y and
Kankala RK: Overcoming cancer multi-drug resistance (MDR): Reasons,
mechanisms, nanotherapeutic solutions, and challenges. Biomed
Pharmacother. 162:1146432023. View Article : Google Scholar : PubMed/NCBI
|
18
|
Pote MS and Gacche RN: ATP-binding
cassette efflux transporters and MDR in cancer. Drug Discov Today.
28:1035372023. View Article : Google Scholar : PubMed/NCBI
|
19
|
Dean M, Moitra K and Allikmets R: The
human ATP-binding cassette (ABC) transporter superfamily. Hum
Mutat. 43:1162–1182. 2022. View Article : Google Scholar : PubMed/NCBI
|
20
|
Kukal S, Guin D, Rawat C, Bora S, Mishra
MK, Sharma P, Paul PR, Kanojia N, Grewal GK, Kukreti S, et al:
Multidrug efflux transporter ABCG2: Expression and regulation. Cell
Mol Life Sci. 78:6887–6939. 2021. View Article : Google Scholar : PubMed/NCBI
|
21
|
Li B, Jiang J, Assaraf YG, Xiao H, Chen ZS
and Huang C: Surmounting cancer drug resistance: New insights from
the perspective of N6-methyladenosine RNA modification.
Drug Resist Updat. 53:1007202020. View Article : Google Scholar
|
22
|
Mirza AZ, Althagafi II and Shamshad H:
Role of PPAR receptor in different diseases and their ligands:
Physiological importance and clinical implications. Eur J Med Chem.
166:502–513. 2019. View Article : Google Scholar : PubMed/NCBI
|
23
|
Ma S, Zhou B, Yang Q, Pan Y, Yang W,
Freedland SJ, Ding LW, Freeman MR, Breunig JJ, Bhowmick NA, et al:
A transcriptional regulatory loop of master regulator transcription
factors, PPARG, and fatty acid synthesis promotes esophageal
adenocarcinoma. Cancer Res. 81:1216–1229. 2021. View Article : Google Scholar : PubMed/NCBI
|
24
|
Mannan A, Garg N, Singh TG and Kang HK:
Peroxisome proliferator-activated receptor-gamma (PPAR-γ):
Molecular effects and its importance as a novel therapeutic target
for cerebral ischemic injury. Neurochem Res. 46:2800–2831. 2021.
View Article : Google Scholar : PubMed/NCBI
|
25
|
Szatmari I, Vámosi G, Brazda P, Balint BL,
Benko S, Széles L, Jeney V, Ozvegy-Laczka C, Szántó A, Barta E, et
al: Peroxisome proliferator-activated receptor gamma-regulated
ABCG2 expression confers cytoprotection to human dendritic cells. J
Biol Chem. 281:23812–23823. 2006. View Article : Google Scholar : PubMed/NCBI
|
26
|
Lin Y, Bircsak KM, Gorczyca L, Wen X and
Aleksunes LM: Regulation of the placental BCRP transporter by PPAR
gamma. J Biochem Mol Toxicol. 31: View Article : Google Scholar : 2017.
|
27
|
Kim CE, Park HY, Won HJ, Kim M, Kwon B,
Lee SJ, Kim DH, Shin JG and Seo SK: Repression of PPARγ reduces the
ABCG2-mediated efflux activity of M2 macrophages. Int J Biochem
Cell Biol. 130:1058952021. View Article : Google Scholar
|
28
|
Yu Z, Cai Y, Deng M, Li D, Wang X, Zheng
H, Xu Y, Li W and Zhang W: Fat extract promotes angiogenesis in a
murine model of limb ischemia: A novel cell-free therapeutic
strategy. Stem Cell Res Ther. 9:2942018. View Article : Google Scholar : PubMed/NCBI
|
29
|
Yu C, Niu X, Du Y, Chen Y, Liu X, Xu L,
Iwakura Y, Ma X, Li Y, Yao Z and Deng W: IL-17A promotes fatty acid
uptake through the IL-17A/IL-17RA/p-STAT3/FABP4 axis to fuel
ovarian cancer growth in an adipocyte-rich microenvironment. Cancer
Immunol Immunother. 69:115–126. 2020. View Article : Google Scholar
|
30
|
Xu S, Yu C, Ma X, Li Y, Shen Y, Chen Y,
Huang S, Zhang T, Deng W and Wang Y: IL-6 promotes nuclear
translocation of HIF-1α to aggravate chemoresistance of ovarian
cancer cells. Eur J Pharmacol. 894:1738172021. View Article : Google Scholar
|
31
|
Shen M, Xu Z, Xu W, Jiang K, Zhang F, Ding
Q, Xu Z and Chen Y: Inhibition of ATM reverses EMT and decreases
metastatic potential of cisplatin-resistant lung cancer cells
through JAK/STAT3/PD-L1 pathway. J Exp Clin Cancer Res. 38:1492019.
View Article : Google Scholar : PubMed/NCBI
|
32
|
Li D, Wang Y, Dong C, Chen T, Dong A, Ren
J, Li W, Shu G, Yang J, Shen W, et al: CST1 inhibits ferroptosis
and promotes gastric cancer metastasis by regulating GPX4 protein
stability via OTUB1. Oncogene. 42:83–98. 2023. View Article : Google Scholar :
|
33
|
Christofides A, Konstantinidou E, Jani C
and Boussiotis VA: The role of peroxisome proliferator-activated
receptors (PPAR) in immune responses. Metabolism. 114:1543382021.
View Article : Google Scholar
|
34
|
Hamilton TC, Young RC, McKoy WM,
Grotzinger KR, Green JA, Chu EW, Whang-Peng J, Rogan AM, Green WR
and Ozols RF: Characterization of a human ovarian carcinoma cell
line (NIH:OVCAR-3) with androgen and estrogen receptors. Cancer
Res. 43:5379–5389. 1983.PubMed/NCBI
|
35
|
Mitra AK, Davis DA, Tomar S, Roy L, Gurler
H, Xie J, Lantvit DD, Cardenas H, Fang F, Liu Y, et al: In vivo
tumor growth of high-grade serous ovarian cancer cell lines.
Gynecol Oncol. 138:372–377. 2015. View Article : Google Scholar : PubMed/NCBI
|
36
|
Zhao G, Tan Y, Cardenas H, Vayngart D,
Wang Y, Huang H, Keathley R, Wei JJ, Ferreira CR, Orsulic S, et al:
Ovarian cancer cell fate regulation by the dynamics between
saturated and unsaturated fatty acids. Proc Natl Acad Sci USA.
119:e22034801192022. View Article : Google Scholar : PubMed/NCBI
|
37
|
Šrámek J, Němcová-Fürstová V and Kovář J:
Molecular mechanisms of apoptosis induction and its regulation by
fatty acids in pancreatic β-cells. Int J Mol Sci. 22:42852021.
View Article : Google Scholar
|
38
|
Krümmel B, von Hanstein AS, Plötz T,
Lenzen S and Mehmeti I: Differential effects of saturated and
unsaturated free fatty acids on ferroptosis in rat β-cells. J Nutr
Biochem. 106:1090132022. View Article : Google Scholar
|
39
|
Hoy AJ, Nagarajan SR and Butler LM: Tumour
fatty acid metabolism in the context of therapy resistance and
obesity. Nat Rev Cancer. 21:753–766. 2021. View Article : Google Scholar : PubMed/NCBI
|
40
|
Aggarwal S, Verma SS, Aggarwal S and Gupta
SC: Drug repurposing for breast cancer therapy: Old weapon for new
battle. Semin Cancer Biol. 68:8–20. 2021. View Article : Google Scholar
|
41
|
Chen HJ, Chung YL, Li CY, Chang YT, Wang
CCN, Lee HY, Lin HY and Hung CC: Taxifolin Resensitizes multidrug
resistance cancer cells via uncompetitive inhibition of
P-glycoprotein function. Molecules. 23:30552018. View Article : Google Scholar : PubMed/NCBI
|
42
|
Engle K and Kumar G: Cancer
multidrug-resistance reversal by ABCB1 inhibition: A recent update.
Eur J Med Chem. 239:1145422022. View Article : Google Scholar : PubMed/NCBI
|
43
|
Modi A, Roy D, Sharma S, Vishnoi JR,
Pareek P, Elhence P, Sharma P and Purohit P: ABC transporters in
breast cancer: Their roles in multidrug resistance and beyond. J
Drug Target. 30:927–947. 2022. View Article : Google Scholar : PubMed/NCBI
|
44
|
Wang J, Yang DH, Yang Y, Wang JQ, Cai CY,
Lei ZN, Teng QX, Wu ZX, Zhao L and Chen ZS: Overexpression of ABCB1
transporter confers resistance to mTOR inhibitor WYE-354 in cancer
cells. Int J Mol Sci. 21:13872020. View Article : Google Scholar : PubMed/NCBI
|
45
|
Bukowski K, Kciuk M and Kontek R:
Mechanisms of multidrug resistance in cancer chemotherapy. Int J
Mol Sci. 21:32332020. View Article : Google Scholar : PubMed/NCBI
|
46
|
He ZX, Zhao TQ, Gong YP, Zhang X, Ma LY
and Liu HM: Pyrimidine: A promising scaffold for optimization to
develop the inhibitors of ABC transporters. Eur J Med Chem.
200:1124582020. View Article : Google Scholar : PubMed/NCBI
|
47
|
Miyata H, Takada T, Toyoda Y, Matsuo H,
Ichida K and Suzuki H: Identification of febuxostat as a new strong
ABCG2 inhibitor: Potential applications and risks in clinical
situations. Front Pharmacol. 7:5182016. View Article : Google Scholar
|
48
|
Deng F, Sjostedt N, Santo M, Neuvonen M,
Niemi M and Kidron H: Novel inhibitors of breast cancer resistance
protein (BCRP, ABCG2) among marketed drugs. Eur J Pharm Sci.
181:1063622023. View Article : Google Scholar
|
49
|
Cao Y: Adipocyte and lipid metabolism in
cancer drug resistance. J Clin Invest. 129:3006–3017. 2019.
View Article : Google Scholar : PubMed/NCBI
|
50
|
Zhou X, Zhang J, Lv W, Zhao C, Xia Y, Wu Y
and Zhang Q: The pleiotropic roles of adipocyte secretome in
remodeling breast cancer. J Exp Clin Cancer Res. 41:2032022.
View Article : Google Scholar : PubMed/NCBI
|
51
|
Dumas JF and Brisson L: Interaction
between adipose tissue and cancer cells: Role for cancer
progression. Cancer Metastasis Rev. 40:31–46. 2021. View Article : Google Scholar
|
52
|
Brown KA and Scherer PE: Update on adipose
tissue and cancer. Endocr Rev. 44:961–974. 2023. View Article : Google Scholar : PubMed/NCBI
|
53
|
Tewari S, Vargas R and Reizes O: The
impact of obesity and adipokines on breast and gynecologic
malignancies. Ann N Y Acad Sci. 1518:131–150. 2022. View Article : Google Scholar : PubMed/NCBI
|
54
|
Clemente-Suárez VJ, Redondo-Flórez L,
Beltrán-Velasco AI, Martín-Rodríguez A, Martínez-Guardado I,
Navarro-Jiménez E, Laborde-Cárdenas CC and Tornero-Aguilera JF: The
role of adipokines in health and disease. Biomedicines.
11:12902023. View Article : Google Scholar : PubMed/NCBI
|
55
|
Rybinska I, Mangano N, Tagliabue E and
Triulzi T: Cancer-associated adipocytes in breast cancer: Causes
and consequences. Int J Mol Sci. 22:37752021. View Article : Google Scholar : PubMed/NCBI
|
56
|
Wróblewski M, Szewczyk-Golec K,
Hołyńska-Iwan I, Wróblewska J and Woźniak A: Characteristics of
selected adipokines in ascites and blood of ovarian cancer
patients. Cancers (Basel). 13:47022021. View Article : Google Scholar : PubMed/NCBI
|
57
|
Rajesh Y and Sarkar D: Association of
adipose tissue and adipokines with development of obesity-induced
liver cancer. Int J Mol Sci. 22:21632021. View Article : Google Scholar : PubMed/NCBI
|
58
|
Conze D, Weiss L, Regen PS, Bhushan A,
Weaver D, Johnson P and Rincon M: Autocrine production of
interleukin 6 causes multidrug resistance in breast cancer cells.
Cancer Res. 61:8851–8858. 2001.PubMed/NCBI
|
59
|
Lipsey CC, Harbuzariu A, Robey RW, Huff
LM, Gottesman MM and Gonzalez-Perez RR: Leptin signaling affects
survival and chemoresistance of estrogen receptor negative breast
cancer. Int J Mol Sci. 21:37942020. View Article : Google Scholar : PubMed/NCBI
|
60
|
Weng C, Dong H, Bai R, Sheng J, Chen G,
Ding K, Lin W, Chen J and Xu Z: Angiogenin promotes angiogenesis
via the endonucleolytic decay of miR-141 in colorectal cancer. Mol
Ther Nucleic Acids. 27:1010–1022. 2022. View Article : Google Scholar : PubMed/NCBI
|
61
|
Lehuédé C, Li X, Dauvillier S, Vaysse C,
Franchet C, Clement E, Esteve D, Longué M, Chaltiel L, Le Gonidec
S, et al: Adipocytes promote breast cancer resistance to
chemotherapy, a process amplified by obesity: Role of the major
vault protein (MVP). Breast Cancer Res. 21:72019. View Article : Google Scholar
|
62
|
Sarkanen JR, Kaila V, Mannerström B, Räty
S, Kuokkanen H, Miettinen S and Ylikomi T: Human adipose tissue
extract induces angiogenesis and adipogenesis in vitro. Tissue Eng
Part A. 18:17–25. 2012. View Article : Google Scholar
|
63
|
Amor S, Iglesias-de la Cruz MC, Ferrero E,
Garcia-Villar O, Barrios V, Fernandez N, Monge L, García-Villalón
AL and Granado M: Peritumoral adipose tissue as a source of
inflammatory and angiogenic factors in colorectal cancer. Int J
Colorectal Dis. 31:365–375. 2016. View Article : Google Scholar
|
64
|
Bejarano L, Jordāo MJC and Joyce JA:
Therapeutic targeting of the tumor microenvironment. Cancer Discov.
11:933–959. 2021. View Article : Google Scholar : PubMed/NCBI
|
65
|
Huang M, Lin Y, Wang C, Deng L, Chen M,
Assaraf YG, Chen ZS, Ye W and Zhang D: New insights into
antiangiogenic therapy resistance in cancer: Mechanisms and
therapeutic aspects. Drug Resist Updat. 64:1008492022. View Article : Google Scholar : PubMed/NCBI
|
66
|
Qi S, Deng S, Lian Z and Yu K: Novel Drugs
with high efficacy against tumor angiogenesis. Int J Mol Sci.
23:69342022. View Article : Google Scholar : PubMed/NCBI
|
67
|
Iwamoto H, Abe M, Yang Y, Cui D, Seki T,
Nakamura M, Hosaka K, Lim S, Wu J, He X, et al: Cancer lipid
metabolism confers antiangiogenic drug resistance. Cell Metab.
28:104–117.e5. 2018. View Article : Google Scholar : PubMed/NCBI
|
68
|
Mentoor I, Engelbrecht AM, van Jaarsveld
PJ and Nell T: Chemoresistance: Intricate interplay between breast
tumor cells and adipocytes in the tumor microenvironment. Front
Endocrinol (Lausanne). 9:7582018. View Article : Google Scholar
|
69
|
Bougaret L, Delort L, Billard H, Le Huede
C, Boby C, De la Foye A, Rossary A, Mojallal A, Damour O, Auxenfans
C, et al: Adipocyte/breast cancer cell crosstalk in obesity
interferes with the anti-proliferative efficacy of tamoxifen. PLoS
One. 13:e01915712018. View Article : Google Scholar : PubMed/NCBI
|
70
|
Yang J, Zaman MM, Vlasakov I, Roy R, Huang
L, Martin CR, Freedman SD, Serhan CN and Moses MA: Adipocytes
promote ovarian cancer chemoresistance. Sci Rep. 9:133162019.
View Article : Google Scholar : PubMed/NCBI
|
71
|
Kasonga A, Kruger MC and Coetzee M:
Activation of PPARs modulates signalling pathways and expression of
regulatory genes in osteoclasts derived from human CD14+ monocytes.
Int J Mol Sci. 20:17982019. View Article : Google Scholar : PubMed/NCBI
|
72
|
Li G, Li X, Mahmud I, Ysaguirre J, Fekry
B, Wang S, Wei B, Eckel-Mahan KL, Lorenzi PL, Lehner R and Sun K:
Interfering with lipid metabolism through targeting CES1 sensitizes
hepatocellular carcinoma for chemotherapy. JCI Insight.
8:e1636242023. View Article : Google Scholar :
|
73
|
Schlotterbeck J, Cebo M, Kolb A and
Lämmerhofer M: Quantitative analysis of chemoresistance-inducing
fatty acid in food supplements using UHPLC-ESI-MS/MS. Anal Bioanal
Chem. 411:479–491. 2019. View Article : Google Scholar
|
74
|
Zou Y, Watters A, Cheng N, Perry CE, Xu K,
Alicea GM, Parris JLD, Baraban E, Ray P, Nayak A, et al:
Polyunsaturated fatty acids from astrocytes activate PPARγ
signaling in cancer cells to promote brain metastasis. Cancer
Discov. 9:1720–1735. 2019. View Article : Google Scholar : PubMed/NCBI
|
75
|
Liotti A, Cosimato V, Mirra P, Cali G,
Conza D, Secondo A, Luongo G, Terracciano D, Formisano P, Beguinot
F, et al: Oleic acid promotes prostate cancer malignant phenotype
via the G protein-coupled receptor FFA1/GPR40. J Cell Physiol.
233:7367–7378. 2018. View Article : Google Scholar : PubMed/NCBI
|
76
|
Zhang M, Di Martino JS, Bowman RL,
Campbell NR, Baksh SC, Simon-Vermot T, Kim IS, Haldeman P, Mondal
C, Yong-Gonzales V, et al: Adipocyte-derived lipids mediate
melanoma progression via FATP proteins. Cancer Discov. 8:1006–1025.
2018. View Article : Google Scholar : PubMed/NCBI
|
77
|
Zhang Y, Wang D, Lv B, Hou X, Liu Q, Liao
C, Xu R, Zhang Y, Xu F and Zhang P: Oleic acid and insulin as key
characteristics of T2D promote colorectal cancer deterioration in
xenograft mice revealed by functional metabolomics. Front Oncol.
11:6850592021. View Article : Google Scholar : PubMed/NCBI
|
78
|
Li X, Ycaza J and Blumberg B: The
environmental obesogen tributyltin chloride acts via peroxisome
proliferator activated receptor gamma to induce adipogenesis in
murine 3T3-L1 preadipocytes. J Steroid Biochem Mol Biol. 127:9–15.
2011. View Article : Google Scholar : PubMed/NCBI
|
79
|
Hernandez-Quiles M, Broekema MF and
Kalkhoven E: PPARgamma in metabolism, immunity, and cancer: Unified
and diverse mechanisms of action. Front Endocrinol (Lausanne).
12:6241122021. View Article : Google Scholar : PubMed/NCBI
|
80
|
Mal S, Dwivedi AR and Kumar V, Kumar N,
Kumar B and Kumar V: Role of peroxisome proliferator-activated
receptor gamma (PPARγ) in different disease states: Recent updates.
Curr Med Chem. 28:3193–3215. 2021. View Article : Google Scholar
|
81
|
Zhang GY, Ahmed N, Riley C, Oliva K,
Barker G, Quinn MA and Rice GE: Enhanced expression of peroxisome
proliferator-activated receptor gamma in epithelial ovarian
carcinoma. Br J Cancer. 92:113–119. 2005. View Article : Google Scholar
|
82
|
Al-Alem L, Southard RC, Kilgore MW and
Curry TE: Specific thiazolidinediones inhibit ovarian cancer cell
line proliferation and cause cell cycle arrest in a PPARγ
independent manner. PLoS One. 6:e161792011. View Article : Google Scholar
|
83
|
Shin SJ, Kim JY, Kwon SY, Mun KC, Cho CH
and Ha E: Ciglitazone enhances ovarian cancer cell death via
inhibition of glucose transporter-1. Eur J Pharmacol. 743:17–23.
2014. View Article : Google Scholar : PubMed/NCBI
|
84
|
Zhang Y, Ba Y, Liu C, Sun G, Ding L, Gao
S, Hao J, Yu Z, Zhang J, Zen K, et al: PGC-1alpha induces apoptosis
in human epithelial ovarian cancer cells through a
PPARgamma-dependent pathway. Cell Res. 17:363–373. 2007. View Article : Google Scholar : PubMed/NCBI
|
85
|
Kim S, Lee JJ and Heo DS: PPARγ ligands
induce growth inhibition and apoptosis through p63 and p73 in human
ovarian cancer cells. Biochem Biophys Res Commun. 406:389–395.
2011. View Article : Google Scholar : PubMed/NCBI
|
86
|
Yokoyama Y, Xin B, Shigeto T and Mizunuma
H: Combination of ciglitazone, a peroxisome proliferator-activated
receptor gamma ligand, and cisplatin enhances the inhibition of
growth of human ovarian cancers. J Cancer Res Clin Oncol.
137:1219–1228. 2011. View Article : Google Scholar : PubMed/NCBI
|
87
|
Cheng S, Qian K, Wang Y, Wang G, Liu X,
Xiao Y and Wang X: PPARγ inhibition regulates the cell cycle,
proliferation and motility of bladder cancer cells. J Cell Mol Med.
23:3724–3736. 2019. View Article : Google Scholar : PubMed/NCBI
|
88
|
Wu B, Sun X, Gupta HB, Yuan B, Li J, Ge F,
Chiang HC, Zhang X, Zhang C, Zhang D, et al: Adipose PD-L1
modulates PD-1/PD-L1 checkpoint blockade immunotherapy efficacy in
breast cancer. Oncoimmunology. 7:e15001072018. View Article : Google Scholar : PubMed/NCBI
|