Stem cell‑mediated modulation of pyroptosis contributes to tissue repair in noninfective inflammatory‑related diseases (Review)
- Authors:
- Yi Wei
- Li Li
- Yiping Wang
- Yan Chen
- Zhengyang Li
- Chufei Huang
- Yangchen Wei
- Chiyu Jia
- Zuo Wang
- Junlin Liao
-
Affiliations: Center of Burn & Plastic and Wound Healing Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China, Department of Obstetrics and Gynecology, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China, Institute of Cardiovascular Disease, Key Lab for Arteriosclerology of Hunan, International Joint Laboratory for Arteriosclerotic Disease Research of Hunan, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, P.R. China - Published online on: March 29, 2024 https://doi.org/10.3892/ijmm.2024.5370
- Article Number: 46
This article is mentioned in:
Abstract
Furman D, Campisi J, Verdin E, Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW, Fasano A, Miller GW, et al: Chronic inflammation in the etiology of disease across the life span. Nat Med. 25:1822–1832. 2019. View Article : Google Scholar : PubMed/NCBI | |
Li T, Zheng G, Li B and Tang L: Pyroptosis: A promising therapeutic target for noninfectious diseases. Cell Proliferat. 54:e131372021. View Article : Google Scholar : PubMed/NCBI | |
Yu P, Zhang X, Liu N, Tang L, Peng C and Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Tar. 6:1282021. View Article : Google Scholar : PubMed/NCBI | |
Kovacs SB and Miao EA: Gasdermins: Effectors of pyroptosis. Trends Cell Biol. 27:673–684. 2017. View Article : Google Scholar : PubMed/NCBI | |
Dekoninck S and Blanpain C: Stem cell dynamics, migration and plasticity during wound healing. Nat Cell Biol. 21:18–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mapp PI and Walsh DA: Mechanisms and targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev Rheumatol. 8:390–398. 2012. View Article : Google Scholar : PubMed/NCBI | |
Yue R, Lu S, Luo Y, Zeng J, Liang H, Qin D, Wang X, Wang T, Pu J and Hu H: Mesenchymal stem cell-derived exosomal microRNA-182-5p alleviates myocardial ischemia/reperfusion injury by targeting GSDMD in mice. Cell Death Discov. 8:2022022. View Article : Google Scholar : PubMed/NCBI | |
Hade MD, Suire CN and Suo Z: Mesenchymal stem cell-derived exosomes: Applications in regenerative medicine. Cells-Basel. 10:19592021. View Article : Google Scholar | |
Zhang J, Zhang J, Zhang Y, Liu W, Ni W, Huang X, Yuan J, Zhao B, Xiao H and Xue F: Mesenchymal stem cells-derived exosomes ameliorate intervertebral disc degeneration through inhibiting pyroptosis. J Cell Mol Med. 24:11742–11754. 2020. View Article : Google Scholar : PubMed/NCBI | |
Xu J and Zhang M, Liu F, Shi L, Jiang X, Chen C, Wang J, Diao M, Khan ZU and Zhang M: Mesenchymal stem cells alleviate post-resuscitation cardiac and cerebral injuries by inhibiting cell pyroptosis and ferroptosis in a swine model of cardiac arrest. Front Pharmacol. 12:7938292021. View Article : Google Scholar : PubMed/NCBI | |
Li K, Yan G, Huang H, Zheng M, Ma K, Cui X, Lu D, Zheng L, Zhu B, Cheng J and Zhao J: Anti-inflammatory and immunomodulatory effects of the extracellular vesicles derived from human umbilical cord mesenchymal stem cells on osteoarthritis via M2 macrophages. J Nanobiotechnol. 20:382022. View Article : Google Scholar | |
Wang Y, Chen H, Fan X, Xu C, Li M, Sun H, Song J, Jia F, Wei W, Jiang F, et al: Bone marrow mesenchymal stem cell-derived exosomal miR-193b-5p reduces pyroptosis after ischemic stroke by targeting AIM2. J Stroke Cerebrovasc. 32:1072352023. View Article : Google Scholar : PubMed/NCBI | |
Xu YF, Wu YX, Wang HM, Gao CH, Xu YY and Yan Y: Bone marrow-derived mesenchymal stem cell-conditioned medium ameliorates diabetic foot ulcers in rats. Clinics (Sao Paulo). 78:1001812023. View Article : Google Scholar : PubMed/NCBI | |
Zhao Y, Chen Y, Wang Z, Xu C, Qiao S, Liu T, Qi K, Tong D and Li C: Bone marrow mesenchymal stem cell exosome attenuates Inflammasome-Related pyroptosis via delivering circ_003564 to improve the recovery of spinal cord injury. Mol Neurobiol. 59:6771–6789. 2022. View Article : Google Scholar : PubMed/NCBI | |
Xu H and Xu B: BMSC-Derived exosomes ameliorate osteoarthritis by inhibiting pyroptosis of cartilage via delivering miR-326 targeting HDAC3 and STAT1//NF-kappaB p65 to chondrocytes. Mediat Inflamm. 2021:99728052021. View Article : Google Scholar : PubMed/NCBI | |
Liang C, Liu Y, Xu H, Huang J, Shen Y, Chen F and Luo M: Exosomes of human umbilical cord MSCs protect against Hypoxia/Reoxygenation-Induced pyroptosis of cardiomyocytes via the miRNA-100-5p/FOXO3/NLRP3 pathway. Front Bioeng Biotech. 8:6158502020. View Article : Google Scholar : PubMed/NCBI | |
Broz P, Ruby T, Belhocine K, Bouley DM, Kayagaki N, Dixit VM and Monack DM: Caspase-11 increases susceptibility to Salmonella infection in the absence of caspase-1. Nature. 490:288–291. 2012. View Article : Google Scholar : PubMed/NCBI | |
Strowig T, Henao-Mejia J, Elinav E and Flavell R: Inflammasomes in health and disease. Nature. 481:278–286. 2012. View Article : Google Scholar : PubMed/NCBI | |
He Y, Hara H and Nunez G: Mechanism and regulation of NLRP3 inflammasome activation. Trends Biochem Sci. 41:1012–1021. 2016. View Article : Google Scholar : PubMed/NCBI | |
Cookson BT and Brennan MA: Pro-inflammatory programmed cell death. Trends Microbiol. 9:113–114. 2001. View Article : Google Scholar : PubMed/NCBI | |
Chen X, He WT, Hu L, Li J, Fang Y, Wang X, Xu X, Wang Z, Huang K and Han J: Pyroptosis is driven by non-selective gasdermin-D pore and its morphology is different from MLKL channel-mediated necroptosis. Cell Res. 26:1007–1020. 2016. View Article : Google Scholar : PubMed/NCBI | |
Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI | |
Boise LH and Collins CM: Salmonella-induced cell death: Apoptosis, necrosis or programmed cell death? Trends Microbiol. 9:64–67. 2001. View Article : Google Scholar : PubMed/NCBI | |
Li J and Yuan J: Caspases in apoptosis and beyond. Oncogene. 27:6194–6206. 2008. View Article : Google Scholar : PubMed/NCBI | |
Shi J, Zhao Y, Wang K, Shi X, Wang Y, Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by inflammatory caspases determines pyroptotic cell death. Nature. 526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI | |
Matikainen S, Nyman TA and Cypryk W: Function and regulation of noncanonical Caspase-4/5/11 inflammasome. J Immunol. 204:3063–3069. 2020. View Article : Google Scholar : PubMed/NCBI | |
O'Neill TW and Felson DT: Mechanisms of osteoarthritis (OA) pain. Curr Osteoporos Rep. 16:611–616. 2018. View Article : Google Scholar : PubMed/NCBI | |
Yu H, Yao S, Zhou C, Fu F, Luo H, Du W, Jin H, Tong P, Chen D, Wu C and Ruan H: Morroniside attenuates apoptosis and pyroptosis of chondrocytes and ameliorates osteoarthritic development by inhibiting NF-kappaB signaling. J Ethnopharmacol. 266:1134472021. View Article : Google Scholar : PubMed/NCBI | |
Wu X, Ren G, Zhou R, Ge J and Chen FH: The role of Ca2+ in acid-sensing ion channel 1a-mediated chondrocyte pyroptosis in rat adjuvant arthritis. Lab Invest. 99:499–513. 2019. View Article : Google Scholar : PubMed/NCBI | |
Zhao LR, Xing RL, Wang PM, Zhang NS, Yin SJ, Li XC and Zhang L: NLRP1 and NLRP3 inflammasomes mediate LPS/ATP-induced pyroptosis in knee osteoarthritis. Mol Med Rep. 17:5463–5469. 2018.PubMed/NCBI | |
Zhang L, Zhang L, Huang Z, Xing R, Li X, Yin S, Mao J, Zhang N, Mei W, Ding L and Wang P: Increased HIF-α in knee osteoarthritis aggravate synovial fibrosis via Fibroblast-Like synoviocyte pyroptosis. Oxid Med Cell Longev. 2019:63265172019.PubMed/NCBI | |
Xu L, Zhang F, Cheng G, Yuan X, Wu Y, Wu H, Wang Q, Chen J, Kuai J, Chang Y, et al: Attenuation of experimental osteoarthritis with human adipose-derived mesenchymal stem cell therapy: Inhibition of the pyroptosis in chondrocytes. Inflamm Res. 72:89–105. 2023. View Article : Google Scholar : PubMed/NCBI | |
Liu W, Liu A, Li X, Sun Z, Sun Z, Liu Y, Wang G, Huang D, Xiong H, Yu S, et al: Dual-engineered cartilage-targeting extracellular vesicles derived from mesenchymal stem cells enhance osteoarthritis treatment via miR-223/NLRP3/pyroptosis axis: Toward a precision therapy. Bioact Mater. 30:169–183. 2023.PubMed/NCBI | |
Sergio MR, Godinho C, Guerra L, Agapito A, Fonseca F and Costa C: TSH anti-receptor antibodies in Graves' disease. Acta Medica Port. 9:229–231, (In Portuguese). PubMed/NCBI | |
Buckley CT, Hoyland JA, Fujii K, Pandit A, Iatridis JC and Grad S: Critical aspects and challenges for intervertebral disc repair and regeneration-Harnessing advances in tissue engineering. Jor Spine. 1:e10292018. View Article : Google Scholar : PubMed/NCBI | |
Zhao CQ, Wang LM, Jiang LS and Dai LY: The cell biology of intervertebral disc aging and degeneration. Ageing Res Rev. 6:247–261. 2007. View Article : Google Scholar : PubMed/NCBI | |
Basso M, Cavagnaro L, Zanirato A, Divano S, Formica C, Formica M and Felli L: What is the clinical evidence on regenerative medicine in intervertebral disc degeneration? Musculoskelet Surg. 101:93–104. 2017. View Article : Google Scholar : PubMed/NCBI | |
Binch A, Fitzgerald JC, Growney EA and Barry F: Cell-based strategies for IVD repair: Clinical progress and translational obstacles. Nat Rev Rheumatol. 17:158–175. 2021. View Article : Google Scholar : PubMed/NCBI | |
Francisco V, Pino J, Gonzalez-Gay MA, Lago F, Karppinen J, Tervonen O, Mobasheri A and Gualillo O: A new immunometabolic perspective of intervertebral disc degeneration. Nat Rev Rheumatol. 18:47–60. 2022. View Article : Google Scholar : PubMed/NCBI | |
Ge Y, Chen Y, Guo C, Luo H, Fu F, Ji W, Wu C and Ruan H: Pyroptosis and intervertebral disc degeneration: Mechanistic insights and therapeutic implications. J Inflamm Res. 15:5857–5871. 2022. View Article : Google Scholar : PubMed/NCBI | |
Luo J, Yang Y, Wang X, Chang X and Fu S: Role of pyroptosis in intervertebral disc degeneration and its therapeutic implications. Biomolecules. 12:18042022. View Article : Google Scholar : PubMed/NCBI | |
Zhang X, Cai Z, Wu M, Huangfu X, Li J and Liu X: Adipose stem Cell-Derived exosomes recover impaired matrix metabolism of torn human rotator cuff tendons by maintaining tissue homeostasis. Am J Sport Med. 49:899–908. 2021. View Article : Google Scholar | |
Shi Y and Wang Y, Li Q, Liu K, Hou J, Shao C and Wang Y: Immunoregulatory mechanisms of mesenchymal stem and stromal cells in inflammatory diseases. Nat Rev Nephrol. 14:493–507. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xing H, Zhang Z, Mao Q, Wang C, Zhou Y, Zhou X, Ying L, Xu H, Hu S and Zhang N: Injectable exosome-functionalized extracellular matrix hydrogel for metabolism balance and pyroptosis regulation in intervertebral disc degeneration. J Nanobiotechnol. 19:2642021. View Article : Google Scholar | |
Zhu B, Chen HX, Li S, Tan JH, Xie Y, Zou MX, Wang C, Xue JB, Li XL, Cao Y and Yan YG: Comprehensive analysis of N6-methyladenosine (m6A) modification during the degeneration of lumbar intervertebral disc in mice. J Orthop Transl. 31:126–138. 2021. | |
Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X, Zhang X, Cao Y, Ma D, Zhu X, et al: m6A-dependent glycolysis enhances colorectal cancer progression. Mol Cancer. 19:722020. View Article : Google Scholar : PubMed/NCBI | |
Yuan X, Li T, Shi L, Miao J, Guo Y and Chen Y: Human umbilical cord mesenchymal stem cells deliver exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell pyroptosis through METTL14/NLRP3. Mol Med. 27:912021. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Li W, Xian T, Tu M, Wu H and Zhang J: Human embryonic stem-cell-derived exosomes repress NLRP3 inflammasome to alleviate pyroptosis in nucleus pulposus cells by transmitting miR-302c. Int J Mol Sci. 24:76642023. View Article : Google Scholar : PubMed/NCBI | |
Hunziker EB: Articular cartilage repair: Basic science and clinical progress. A review of the current status and prospects. Osteoarthr Cartilage. 10:432–463. 2002. View Article : Google Scholar | |
Lin F, Zhang W, Xue D, Zhu T, Li J, Chen E, Yao X and Pan Z: Signaling pathways involved in the effects of HMGB1 on mesenchymal stem cell migration and osteoblastic differentiation. Int J Mol Med. 37:789–797. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bertheloot D and Latz E: HMGB1, IL-1α, IL-33 and S100 proteins: Dual-function alarmins. Cell Mol Immunol. 14:43–64. 2017. View Article : Google Scholar : PubMed/NCBI | |
Koh TJ and DiPietro LA: Inflammation and wound healing: The role of the macrophage. Expert Rev Mol Med. 13:e232011. View Article : Google Scholar : PubMed/NCBI | |
Han SA, Lee S, Seong SC and Lee MC: Effects of CD14 macrophages and proinflammatory cytokines on chondrogenesis in osteoarthritic synovium-derived stem cells. Tissue Eng Pt A. 20:2680–2691. 2014. View Article : Google Scholar : PubMed/NCBI | |
Wehling N, Palmer GD, Pilapil C, Liu F, Wells JW, Muller PE, Evans CH and Porter RM: Interleukin-1beta and tumor necrosis factor alpha inhibit chondrogenesis by human mesenchymal stem cells through NF-kappaB-dependent pathways. Arthritis Rheum. 60:801–812. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yang Z, Li H, Yuan Z, Fu L, Jiang S, Gao C, Wang F, Zha K, Tian G, Sun Z, et al: Endogenous cell recruitment strategy for articular cartilage regeneration. Acta Biomater. 114:31–52. 2020. View Article : Google Scholar : PubMed/NCBI | |
Liao Z, Fu L, Li P, Wu J, Yuan X, Ning C, Ding Z, Sui X, Liu S and Guo Q: Incorporation of magnesium ions into an Aptamer-Functionalized ECM bioactive scaffold for articular cartilage regeneration. Acs Appl Mater Inter. 15:22944–22958. 2023. View Article : Google Scholar : PubMed/NCBI | |
Park KS, Kim BJ, Lih E, Park W, Lee SH, Joung YK and Han DK: Versatile effects of magnesium hydroxide nanoparticles in PLGA scaffold-mediated chondrogenesis. Acta Biomater. 73:204–216. 2018. View Article : Google Scholar : PubMed/NCBI | |
Barakat AH, Elwell VA and Lam KS: Stem cell therapy in discogenic back pain. J Spine Surg. 5:561–583. 2019. View Article : Google Scholar : PubMed/NCBI | |
Sakai D and Andersson GB: Stem cell therapy for intervertebral disc regeneration: Obstacles and solutions. Nat Rev Rheumatol. 11:243–256. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yu C, Li D, Wang C, Xia K, Wang J, Zhou X, Ying L, Shu J, Huang X, Xu H, et al: Injectable kartogenin and apocynin loaded micelle enhances the alleviation of intervertebral disc degeneration by adipose-derived stem cell. Bioact Mater. 6:3568–3579. 2021.PubMed/NCBI | |
Zhou X, Wang J, Fang W, Tao Y, Zhao T, Xia K, Liang C, Hua J, Li F and Chen Q: Genipin cross-linked type II collagen/chondroitin sulfate composite hydrogel-like cell delivery system induces differentiation of adipose-derived stem cells and regenerates degenerated nucleus pulposus. Acta Biomater. 71:496–509. 2018. View Article : Google Scholar : PubMed/NCBI | |
Xia KS, Li DD, Wang CG, Ying LW, Wang JK, Yang B, Shu JW, Huang XP, Zhang YA, Yu C, et al: An esterase-responsive ibuprofen nano-micelle pre-modified embryo derived nucleus pulposus progenitor cells promote the regeneration of intervertebral disc degeneration. Bioact Mater. 21:69–85. 2023.PubMed/NCBI | |
Yang J, Hu S, Bian Y, Yao J, Wang D, Liu X, Guo Z, Zhang S and Peng L: Targeting cell death: Pyroptosis, ferroptosis, apoptosis and necroptosis in osteoarthritis. Front Cell Dev Biol. 9:7899482021. View Article : Google Scholar : PubMed/NCBI | |
Tibaut M, Mekis D and Petrovic D: Pathophysiology of myocardial infarction and acute management strategies. Cardiovasc Hematol Agents Med Chem. 14:150–159. 2017. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Yu Y, Luo X, Wang J, Lan X, Liu P, Feng Y and Jian W: Myocardial Ischemia-reperfusion injury: Therapeutics from a mitochondria-centric perspective. Cardiology. 146:781–792. 2021. View Article : Google Scholar : PubMed/NCBI | |
Toldo S, Mauro AG, Cutter Z and Abbate A: Inflammasome, pyroptosis, and cytokines in myocardial ischemia-reperfusion injury. Am J Physiol-Heart C. 315:H1553–H1568. 2018. View Article : Google Scholar : PubMed/NCBI | |
Qiu Z, Lei S, Zhao B, Wu Y, Su W, Liu M, Meng Q, Zhou B, Leng Y and Xia ZY: NLRP3 inflammasome activation-mediated pyroptosis aggravates myocardial ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev. 2017:97432802017. View Article : Google Scholar : PubMed/NCBI | |
Kalluri R and LeBleu VS: The biology, function, and biomedical applications of exosomes. Science. 367:eaau69772020. View Article : Google Scholar : PubMed/NCBI | |
Tang J, Jin L, Liu Y, Li L, Ma Y, Lu L, Ma J, Ding P, Yang X, Liu J and Yang J: Exosomes derived from mesenchymal stem cells protect the myocardium against ischemia/reperfusion injury through inhibiting pyroptosis. Drug Des Devel Ther. 14:3765–7375. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mao Q, Liang XL, Zhang CL, Pang YH and Lu YX: LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes ameliorates pyroptosis of cardiomyocytes and myocardial infarction through miR-138-5p/Sirt1 axis. Stem Cell Res Ther. 10:3932019. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Liu T, Yao C, Liu X, Du Q and Pan L: LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem cell-derived extracellular vesicles suppresses myocardial pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated Arl2 inhibition. Lab Invest. 101:1427–1438. 2021. View Article : Google Scholar : PubMed/NCBI | |
Yan B, Zhang Y, Liang C, Liu B, Ding F, Wang Y, Zhu B, Zhao R, Yu XY and Li Y: Stem cell-derived exosomes prevent pyroptosis and repair ischemic muscle injury through a novel exosome/circHIPK3/ FOXO3a pathway. Theranostics. 10:6728–6742. 2020. View Article : Google Scholar : PubMed/NCBI | |
Feigin VL, Norrving B, George MG, Foltz JL, Roth GA and Mensah GA: Prevention of stroke: A strategic global imperative. Nat Rev Neurol. 12:501–512. 2016. View Article : Google Scholar : PubMed/NCBI | |
Jayaraj RL, Azimullah S, Beiram R, Jalal FY and Rosenberg GA: Neuroinflammation: Friend and foe for ischemic stroke. J Neuroinflamm. 16:1422019. View Article : Google Scholar | |
Madore C, Yin Z, Leibowitz J and Butovsky O: Microglia, lifestyle stress, and neurodegeneration. Immunity. 52:222–240. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li W, Shen N, Kong L, Huang H, Wang X, Zhang Y, Wang G, Xu P and Hu W: STING mediates microglial pyroptosis via interaction with NLRP3 in cerebral ischaemic stroke. Stroke Vasc Neurol. svn-2023-002320. 2023.doi: 10.1136/svn-2023-002320. View Article : Google Scholar | |
Huang Y, Tan F, Zhuo Y, Liu J, He J, Duan D, Lu M and Hu Z: Hypoxia-preconditioned olfactory mucosa mesenchymal stem cells abolish cerebral ischemia/reperfusion-induced pyroptosis and apoptotic death of microglial cells by activating HIF-1alpha. Aging (Albany Ny). 12:10931–10950. 2020. View Article : Google Scholar : PubMed/NCBI | |
Hu Z, Yuan Y, Zhang X, Lu Y, Dong N, Jiang X, Xu J and Zheng D: Human umbilical cord mesenchymal stem Cell-Derived exosomes attenuate Oxygen-Glucose Deprivation/Reperfusion-Induced microglial pyroptosis by promoting FOXO3a-dependent mitophagy. Oxid Med Cell Longev. 2021:62197152021. View Article : Google Scholar : PubMed/NCBI | |
Liu X, Zhang M, Liu H, Zhu R, He H, Zhou Y, Zhang Y, Li C, Liang D, Zeng Q and Huang G: Bone marrow mesenchymal stem cell-derived exosomes attenuate cerebral ischemia-reperfusion injury-induced neuroinflammation and pyroptosis by modulating microglia M1/M2 phenotypes. Exp Neurol. 341:1137002021. View Article : Google Scholar : PubMed/NCBI | |
Huang Y, Wang S, Huang F, Zhang Q, Qin B, Liao L, Wang M, Wan H, Yan W, Chen D, et al: c-FLIP regulates pyroptosis in retinal neurons following oxygen-glucose deprivation/recovery via a GSDMD-mediated pathway. Ann Anat. 235:1516722021. View Article : Google Scholar : PubMed/NCBI | |
Zhou Z, Shang L, Zhang Q, Hu X, Huang JF and Xiong K: DTX3L induced NLRP3 ubiquitination inhibit R28 cell pyroptosis in OGD/R injury. Bba-Mol Cell Res. 1870:1194332023.PubMed/NCBI | |
Dreixler JC, Poston JN, Balyasnikova I, Shaikh AR, Tupper KY, Conway S, Boddapati V, Marcet MM, Lesniak MS and Roth S: Delayed administration of bone marrow mesenchymal stem cell conditioned medium significantly improves outcome after retinal ischemia in rats. Invest Ophth Vis Sci. 55:3785–3796. 2014. View Article : Google Scholar : PubMed/NCBI | |
Mathew B, Poston JN, Dreixler JC, Torres L, Lopez J, Zelkha R, Balyasnikova I, Lesniak MS and Roth S: Bone-marrow mesenchymal stem-cell administration significantly improves outcome after retinal ischemia in rats. Graef Arch Clin Exp. 255:1581–1592. 2017. View Article : Google Scholar : PubMed/NCBI | |
Mathew B, Ravindran S, Liu X, Torres L, Chennakesavalu M, Huang CC, Feng L, Zelka R, Lopez J, Sharma M and Roth S: Mesenchymal stem cell-derived extracellular vesicles and retinal ischemia-reperfusion. Biomaterials. 197:146–1460. 2019. View Article : Google Scholar : PubMed/NCBI | |
Neumar RW, Nolan JP, Adrie C, Aibiki M, Berg RA, Bottiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC, et al: Post-cardiac arrest syndrome: Epidemiology, pathophysiology, treatment, and prognostication. A consensus statement from the International Liaison Committee on Resuscitation (American Heart Association, Australian and New Zealand Council on Resuscitation, European Resuscitation Council, Heart and Stroke Foundation of Canada, InterAmerican Heart Foundation, Resuscitation Council of Asia, and the Resuscitation Council of Southern Africa); the American Heart Association Emergency Cardiovascular Care Committee; the Council on Cardiovascular Surgery and Anesthesia; the Council on Cardiopulmonary, Perioperative, and Critical Care; the Council on Clinical Cardiology; and the Stroke Council. Circulation. 118:2452–2483. 2008. View Article : Google Scholar : PubMed/NCBI | |
Yu Y, Wang D, Li H, Fan J, Liu Y, Zhao X, Wu J and Jing X: Mesenchymal stem cells derived from induced pluripotent stem cells play a key role in immunomodulation during cardiopulmonary resuscitation. Brain Res. 1720:1462932019. View Article : Google Scholar : PubMed/NCBI | |
Weyker PD, Webb CA, Kiamanesh D and Flynn BC: Lung ischemia reperfusion injury: A bench-to-bedside review. Semin Cardiothorac Vasc Anesth. 17:28–43. 2013. View Article : Google Scholar : PubMed/NCBI | |
Fei L, Jingyuan X, Fangte L, Huijun D, Liu Y, Ren J, Jinyuan L and Linghui P: Preconditioning with rHMGB1 ameliorates lung ischemia-reperfusion injury by inhibiting alveolar macrophage pyroptosis via the Keap1/Nrf2/HO-1 signaling pathway. J Transl Med. 18:3012020. View Article : Google Scholar : PubMed/NCBI | |
Shologu N, Scully M, Laffey JG and O'Toole D: Human mesenchymal stem cell secretome from bone marrow or Adipose-Derived tissue sources for treatment of hypoxia-induced pulmonary epithelial injury. Int J Mol Sci. 19:29962018. View Article : Google Scholar : PubMed/NCBI | |
Sun ZL, You T, Zhang BH, Liu Y and Liu J: Bone marrow mesenchymal stem cell-derived exosomes miR-202-5p inhibited pyroptosis to alleviate lung ischemic-reperfusion injury by targeting CMPK2. Kaohsiung J Med Sci. 39:688–698. 2023. View Article : Google Scholar : PubMed/NCBI | |
Luo Y, Zheng D, Mou T, Pu J, Huang Z, Chen W, Zhang Y and Wu Z: CMPK2 accelerates liver ischemia/reperfusion injury via the NLRP3 signaling pathway. Exp Ther Med. 22:13582021. View Article : Google Scholar : PubMed/NCBI | |
Hirao H, Nakamura K and Kupiec-Weglinski JW: Liver ischaemia-reperfusion injury: A new understanding of the role of innate immunity. Nat Rev Gastro Hepat. 19:239–256. 2022. View Article : Google Scholar | |
Piao C, Sang J, Kou Z, Wang Y, Liu T, Lu X, Jiao Z and Wang H: Effects of exosomes derived from adipose-derived mesenchymal stem cells on pyroptosis and regeneration of injured liver. Int J Mol Sci. 23:120652022. View Article : Google Scholar : PubMed/NCBI | |
Shi H, Gao Y, Dong Z, Yang J, Gao R, Li X, Zhang S, Ma L, Sun X, Wang Z, et al: GSDMD-Mediated cardiomyocyte pyroptosis promotes Myocardial I/R injury. Circ Res. 129:383–396. 2021. View Article : Google Scholar : PubMed/NCBI | |
Tavakoli DZ, Singla R, Johnson T, Kukreja R and Singla DK: Exosomes derived from embryonic stem cells inhibit doxorubicin and inflammation-induced pyroptosis in muscle cells. Can J Physiol Pharm. 96:304–307. 2018. View Article : Google Scholar : PubMed/NCBI | |
Tavakoli DZ and Singla DK: Embryonic stem cell-derived exosomes inhibit doxorubicin-induced TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ Physiol. 317:H460–H471. 2019. View Article : Google Scholar : PubMed/NCBI | |
Singla DK, Johnson TA and Tavakoli DZ: Exosome treatment enhances anti-inflammatory M2 macrophages and reduces inflammation-induced pyroptosis in doxorubicin-induced cardiomyopathy. Cells-Basel. 8:12242019. View Article : Google Scholar | |
Dessouki F, Kukreja RC and Singla DK: Stem Cell-Derived Exosomes ameliorate Doxorubicin-Induced muscle toxicity through counteracting pyroptosis. Pharmaceuticals (Basel). 13:4502020. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Sun M, Liu W, Li Y and Li M: Stem cell-based therapies for liver diseases: An overview and update. Tissue Eng Regen Med. 16:107–118. 2019. View Article : Google Scholar : PubMed/NCBI | |
Wang J, Ren H, Yuan X, Ma H, Shi X and Ding Y: Interleukin-10 secreted by mesenchymal stem cells attenuates acute liver failure through inhibiting pyroptosis. Hepatol Res. 48:E194–E202. 2018. View Article : Google Scholar : PubMed/NCBI | |
Chen TS, Lai YA, Lai YJ and Chien CT: Adipose stem cells preincubated with theanine exert liver regeneration through increase of stem cell paracrine VEGF and suppression of ROS, pyroptosis as well as autophagy markers in liver damage induced by N-nitrosodiethylamine. Life Sci. 308:1209692022. View Article : Google Scholar : PubMed/NCBI | |
Forbes JM and Cooper ME: Mechanisms of diabetic complications. Physiol Rev. 93:137–188. 2013. View Article : Google Scholar : PubMed/NCBI | |
Kunkemoeller B, Bancroft T, Xing H, Morris AH, Luciano AK, Wu J, Fernandez-Hernando C and Kyriakides TR: Elevated thrombospondin 2 contributes to delayed wound healing in diabetes. Diabetes. 68:2016–223. 2019. View Article : Google Scholar : PubMed/NCBI | |
Mu X, Wu X, He W, Liu Y, Wu F and Nie X: Pyroptosis and inflammasomes in diabetic wound healing. Front Endocrinol. 13:9507982022. View Article : Google Scholar : PubMed/NCBI | |
Yang H, Zhang Y, Du Z, Wu T and Yang C: Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited NLRP3 pyroptosis to promote diabetic mouse skin wound healing. Aging (Albany Ny). 15:791–809. 2023. View Article : Google Scholar : PubMed/NCBI | |
Yadav SK, Kambis TN, Kar S, Park SY and Mishra PK: MMP9 mediates acute hyperglycemia-induced human cardiac stem cell death by upregulating apoptosis and pyroptosis in vitro. Cell Death Dis. 11:1862020. View Article : Google Scholar : PubMed/NCBI | |
Luo C, Peng Y, Zhou X, Fan J, Chen W, Zhang H and Wei A: NLRP3 downregulation enhances engraftment and functionality of adipose-derived stem cells to alleviate erectile dysfunction in diabetic rats. Front Endocrinol. 13:9132962022. View Article : Google Scholar : PubMed/NCBI | |
Alicic RZ, Rooney MT and Tuttle KR: Diabetic kidney disease: Challenges, progress, and possibilities. Clin J Am Soc Nephro. 12:2032–2045. 2017. View Article : Google Scholar : PubMed/NCBI | |
Lv J, Hao YN, Wang XP, Lu WH, Xie LY and Niu D: Bone marrow mesenchymal stem cell-derived exosomal miR-30e-5p ameliorates high-glucose induced renal proximal tubular cell pyroptosis by inhibiting ELAVL1. Renal Failure. 45:21770822023. View Article : Google Scholar : PubMed/NCBI | |
Zhang YZ and Li YY: Inflammatory bowel disease: Pathogenesis. World J Gastroentero. 20:91–99. 2014. View Article : Google Scholar | |
Zhen Y and Zhang H: NLRP3 Inflammasome and inflammatory bowel disease. Front Immunol. 10:2762019. View Article : Google Scholar : PubMed/NCBI | |
Zhang S, Liang Y, Yao J, Li DF and Wang LS: Role of pyroptosis in inflammatory bowel disease (IBD): From gasdermins to DAMPs. Front Pharmacol. 13:8335882022. View Article : Google Scholar : PubMed/NCBI | |
Cai X, Zhang ZY, Yuan JT, Ocansey D, Tu Q, Zhang X, Qian H, Xu WR, Qiu W and Mao F: hucMSC-derived exosomes attenuate colitis by regulating macrophage pyroptosis via the miR-378a-5p/NLRP3 axis. Stem Cell Res Ther. 12:4162021. View Article : Google Scholar : PubMed/NCBI | |
Xu Y, Tang X, Fang A, Yan J, Kofi WOD, Zhang X and Mao F: HucMSC-Ex carrying miR-203a-3p.2 ameliorates colitis through the suppression of caspase11/4-induced macrophage pyroptosis. Int Immunopharmacol. 110:1089252022. View Article : Google Scholar : PubMed/NCBI | |
Jiao Y, Zhang T, Zhang C, Ji H, Tong X, Xia R, Wang W, Ma Z and Shi X: Exosomal miR-30d-5p of neutrophils induces M1 macrophage polarization and primes macrophage pyroptosis in sepsis-related acute lung injury. Crit Care. 25:3562021. View Article : Google Scholar : PubMed/NCBI | |
Feng Y, Li M, Yangzhong X, Zhang X, Zu A, Hou Y, Li L and Sun S: Pyroptosis in inflammation-related respiratory disease. J Physiol Biochem. 78:721–737. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang M, Xu G, Zhou X, Luo M, Ma N, Wang X, Wang Z, Tang H, Wang X, Li Y, et al: Mesenchymal stem cells ameliorate H9N2-induced acute lung injury by inhibiting caspase-3-GSDME-mediated pyroptosis of lung alveolar epithelial cells. Eur J Pharmacol. 960:1761482023. View Article : Google Scholar : PubMed/NCBI | |
Liu P, Yang S, Shao X, Li C, Wang Z, Dai H and Wang C: Mesenchymal stem cells-derived exosomes alleviate acute lung injury by inhibiting alveolar macrophage pyroptosis. Stem Cell Transl Med. szad0942024.doi: 10.1093/stcltm/szad094 (Epub ahead of print). View Article : Google Scholar | |
Tao Y, Xu X, Yang B, Zhao H and Li Y: Mitigation of sepsis-induced acute lung injury by BMSC-Derived exosomal miR-125b-5p through STAT3-Mediated suppression of macrophage pyroptosis. Int J Nanomed. 18:7095–7113. 2023. View Article : Google Scholar : PubMed/NCBI | |
Zhang T, Lu L, Li M, Zhang D, Yu P, Zhang X, Zhang Z and Lei C: Exosome from BMMSC attenuates cardiopulmonary bypass-induced acute lung injury via YAP/beta-catenin pathway: Downregulation of pyroptosis. Stem Cells. 40:1122–1133. 2022. View Article : Google Scholar : PubMed/NCBI | |
Li C, Lu Y, Du S, Li S, Zhang Y, Liu F, Chen Y, Weng D and Chen J: Dioscin exerts protective effects against crystalline silica-induced pulmonary fibrosis in mice. Theranostics. 7:4255–4275. 2017. View Article : Google Scholar : PubMed/NCBI | |
Song M, Wang J, Sun Y, Pang J, Li X, Liu Y, Zhou Y, Yang P, Fan T, Liu Y, et al: Inhibition of gasdermin D-dependent pyroptosis attenuates the progression of silica-induced pulmonary inflammation and fibrosis. Acta Pharm Sin B. 12:1213–1224. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhao Q, Hao C, Wei J, Huang R, Li C and Yao W: Bone marrow-derived mesenchymal stem cells attenuate silica-induced pulmonary fibrosis by inhibiting apoptosis and pyroptosis but not autophagy in rats. Ecotox Environ Safe. 216:1121812021. View Article : Google Scholar : PubMed/NCBI | |
Levey AS and James MT: Acute Kidney Injury. Ann Intern Med. 167:ITC66–ITC80. 2017. View Article : Google Scholar : PubMed/NCBI | |
Li N, Wang Y, Wang X, Sun N and Gong YH: Pathway network of pyroptosis and its potential inhibitors in acute kidney injury. Pharmacol Res. 175:1060332022. View Article : Google Scholar : PubMed/NCBI | |
Xie Z, Tang J, Chen Z, Wei L, Chen J and Liu Q: Human bone marrow mesenchymal stem cell-derived extracellular vesicles reduce inflammation and pyroptosis in acute kidney injury via miR-223-3p/HDAC2/SNRK. Inflamm Res. 72:553–576. 2023. View Article : Google Scholar : PubMed/NCBI | |
Guo J, Wang R and Liu D: Bone marrow-derived mesenchymal stem cells ameliorate sepsis-induced acute kidney injury by promoting mitophagy of renal tubular epithelial cells via the SIRT1/Parkin axis. Front Endocrinol. 12:6391652021. View Article : Google Scholar : PubMed/NCBI | |
Reddi S, Thakker-Varia S, Alder J and Giarratana AO: Status of precision medicine approaches to traumatic brain injury. Neural Regen Res. 17:2166–2171. 2022. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Lin Y, Bai W, Sun L and Tian M: Human umbilical cord mesenchymal stem cell-derived exosome suppresses programmed cell death in traumatic brain injury via PINK1/Parkin-mediated mitophagy. Cns Neurosci Ther. 29:2236–2258. 2023. View Article : Google Scholar : PubMed/NCBI | |
Al MA, Wu Y, Monalisa I, Jia C, Zhou K, Munir F and Xiao J: Role of pyroptosis in spinal cord injury and its therapeutic implications. J Adv Res. 28:97–109. 2021. View Article : Google Scholar | |
Sheth KN: Spontaneous intracerebral hemorrhage. New Engl J Med. 387:1589–1596. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hu LT, Wang BY, Fan YH, He ZY and Zheng WX: Exosomal miR-23b from bone marrow mesenchymal stem cells alleviates oxidative stress and pyroptosis after intracerebral hemorrhage. Neural Regen Res. 18:560–567. 2023. View Article : Google Scholar : PubMed/NCBI | |
Giri TK, Alexander A, Agrawal M and Saraf S and Saraf S: Ajazuddin: Current status of stem cell therapies in tissue repair and regeneration. Curr Stem Cell Res Ther. 14:117–126. 2019. View Article : Google Scholar : PubMed/NCBI | |
Yamanaka S: Pluripotent stem cell-based cell therapy-promise and challenges. Cell Stem Cell. 27:523–531. 2020. View Article : Google Scholar : PubMed/NCBI | |
Masuda S: Risk of teratoma formation after transplantation of induced pluripotent stem cells. Chest. 141:1120–1121. 2012. View Article : Google Scholar : PubMed/NCBI | |
Chour T, Tian L, Lau E, Thomas D, Itzhaki I, Malak O, Zhang JZ, Qin X, Wardak M, Liu Y, et al: Method for selective ablation of undifferentiated human pluripotent stem cell populations for cell-based therapies. JCI Insight. 6:e1420002021. View Article : Google Scholar : PubMed/NCBI | |
Alessandrini M, Preynat-Seauve O, De Bruin K and Pepper MS: Stem cell therapy for neurological disorders. S Afr Med J. 109:70–77. 2019. View Article : Google Scholar : PubMed/NCBI | |
Trounson A and McDonald C: Stem cell therapies in clinical trials: Progress and challenges. Cell Stem Cell. 17:11–22. 2015. View Article : Google Scholar : PubMed/NCBI | |
Liu XY, Yang LP and Zhao L: Stem cell therapy for Alzheimer's disease. World J Stem Cells. 12:787–802. 2020. View Article : Google Scholar : PubMed/NCBI | |
Al-Ghadban S and Bunnell BA: Adipose Tissue-Derived stem cells: Immunomodulatory effects and therapeutic potential. Physiology. 35:125–133. 2020. View Article : Google Scholar : PubMed/NCBI | |
Li Q, Wang Z, Xing H, Wang Y and Guo Y: Exosomes derived from miR-188-3p-modified adipose-derived mesenchymal stem cells protect Parkinson's disease. Mol Ther Nucleic Acids. 23:1334–1344. 2021. View Article : Google Scholar : PubMed/NCBI |