|
1
|
Furman D, Campisi J, Verdin E,
Carrera-Bastos P, Targ S, Franceschi C, Ferrucci L, Gilroy DW,
Fasano A, Miller GW, et al: Chronic inflammation in the etiology of
disease across the life span. Nat Med. 25:1822–1832. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Li T, Zheng G, Li B and Tang L:
Pyroptosis: A promising therapeutic target for noninfectious
diseases. Cell Proliferat. 54:e131372021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Yu P, Zhang X, Liu N, Tang L, Peng C and
Chen X: Pyroptosis: Mechanisms and diseases. Signal Transduct Tar.
6:1282021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Kovacs SB and Miao EA: Gasdermins:
Effectors of pyroptosis. Trends Cell Biol. 27:673–684. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Dekoninck S and Blanpain C: Stem cell
dynamics, migration and plasticity during wound healing. Nat Cell
Biol. 21:18–24. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Mapp PI and Walsh DA: Mechanisms and
targets of angiogenesis and nerve growth in osteoarthritis. Nat Rev
Rheumatol. 8:390–398. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yue R, Lu S, Luo Y, Zeng J, Liang H, Qin
D, Wang X, Wang T, Pu J and Hu H: Mesenchymal stem cell-derived
exosomal microRNA-182-5p alleviates myocardial ischemia/reperfusion
injury by targeting GSDMD in mice. Cell Death Discov. 8:2022022.
View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Hade MD, Suire CN and Suo Z: Mesenchymal
stem cell-derived exosomes: Applications in regenerative medicine.
Cells-Basel. 10:19592021. View Article : Google Scholar
|
|
9
|
Zhang J, Zhang J, Zhang Y, Liu W, Ni W,
Huang X, Yuan J, Zhao B, Xiao H and Xue F: Mesenchymal stem
cells-derived exosomes ameliorate intervertebral disc degeneration
through inhibiting pyroptosis. J Cell Mol Med. 24:11742–11754.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Xu J and Zhang M, Liu F, Shi L, Jiang X,
Chen C, Wang J, Diao M, Khan ZU and Zhang M: Mesenchymal stem cells
alleviate post-resuscitation cardiac and cerebral injuries by
inhibiting cell pyroptosis and ferroptosis in a swine model of
cardiac arrest. Front Pharmacol. 12:7938292021. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li K, Yan G, Huang H, Zheng M, Ma K, Cui
X, Lu D, Zheng L, Zhu B, Cheng J and Zhao J: Anti-inflammatory and
immunomodulatory effects of the extracellular vesicles derived from
human umbilical cord mesenchymal stem cells on osteoarthritis via
M2 macrophages. J Nanobiotechnol. 20:382022. View Article : Google Scholar
|
|
12
|
Wang Y, Chen H, Fan X, Xu C, Li M, Sun H,
Song J, Jia F, Wei W, Jiang F, et al: Bone marrow mesenchymal stem
cell-derived exosomal miR-193b-5p reduces pyroptosis after ischemic
stroke by targeting AIM2. J Stroke Cerebrovasc. 32:1072352023.
View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Xu YF, Wu YX, Wang HM, Gao CH, Xu YY and
Yan Y: Bone marrow-derived mesenchymal stem cell-conditioned medium
ameliorates diabetic foot ulcers in rats. Clinics (Sao Paulo).
78:1001812023. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Zhao Y, Chen Y, Wang Z, Xu C, Qiao S, Liu
T, Qi K, Tong D and Li C: Bone marrow mesenchymal stem cell exosome
attenuates Inflammasome-Related pyroptosis via delivering
circ_003564 to improve the recovery of spinal cord injury. Mol
Neurobiol. 59:6771–6789. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Xu H and Xu B: BMSC-Derived exosomes
ameliorate osteoarthritis by inhibiting pyroptosis of cartilage via
delivering miR-326 targeting HDAC3 and STAT1//NF-kappaB p65 to
chondrocytes. Mediat Inflamm. 2021:99728052021. View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Liang C, Liu Y, Xu H, Huang J, Shen Y,
Chen F and Luo M: Exosomes of human umbilical cord MSCs protect
against Hypoxia/Reoxygenation-Induced pyroptosis of cardiomyocytes
via the miRNA-100-5p/FOXO3/NLRP3 pathway. Front Bioeng Biotech.
8:6158502020. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Broz P, Ruby T, Belhocine K, Bouley DM,
Kayagaki N, Dixit VM and Monack DM: Caspase-11 increases
susceptibility to Salmonella infection in the absence of caspase-1.
Nature. 490:288–291. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Strowig T, Henao-Mejia J, Elinav E and
Flavell R: Inflammasomes in health and disease. Nature.
481:278–286. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
He Y, Hara H and Nunez G: Mechanism and
regulation of NLRP3 inflammasome activation. Trends Biochem Sci.
41:1012–1021. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Cookson BT and Brennan MA:
Pro-inflammatory programmed cell death. Trends Microbiol.
9:113–114. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Chen X, He WT, Hu L, Li J, Fang Y, Wang X,
Xu X, Wang Z, Huang K and Han J: Pyroptosis is driven by
non-selective gasdermin-D pore and its morphology is different from
MLKL channel-mediated necroptosis. Cell Res. 26:1007–1020. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Kayagaki N, Stowe IB, Lee BL, O'Rourke K,
Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT,
et al: Caspase-11 cleaves gasdermin D for non-canonical
inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Boise LH and Collins CM:
Salmonella-induced cell death: Apoptosis, necrosis or programmed
cell death? Trends Microbiol. 9:64–67. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Li J and Yuan J: Caspases in apoptosis and
beyond. Oncogene. 27:6194–6206. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shi J, Zhao Y, Wang K, Shi X, Wang Y,
Huang H, Zhuang Y, Cai T, Wang F and Shao F: Cleavage of GSDMD by
inflammatory caspases determines pyroptotic cell death. Nature.
526:660–665. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Matikainen S, Nyman TA and Cypryk W:
Function and regulation of noncanonical Caspase-4/5/11
inflammasome. J Immunol. 204:3063–3069. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
O'Neill TW and Felson DT: Mechanisms of
osteoarthritis (OA) pain. Curr Osteoporos Rep. 16:611–616. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Yu H, Yao S, Zhou C, Fu F, Luo H, Du W,
Jin H, Tong P, Chen D, Wu C and Ruan H: Morroniside attenuates
apoptosis and pyroptosis of chondrocytes and ameliorates
osteoarthritic development by inhibiting NF-kappaB signaling. J
Ethnopharmacol. 266:1134472021. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Wu X, Ren G, Zhou R, Ge J and Chen FH: The
role of Ca2+ in acid-sensing ion channel 1a-mediated
chondrocyte pyroptosis in rat adjuvant arthritis. Lab Invest.
99:499–513. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhao LR, Xing RL, Wang PM, Zhang NS, Yin
SJ, Li XC and Zhang L: NLRP1 and NLRP3 inflammasomes mediate
LPS/ATP-induced pyroptosis in knee osteoarthritis. Mol Med Rep.
17:5463–5469. 2018.PubMed/NCBI
|
|
31
|
Zhang L, Zhang L, Huang Z, Xing R, Li X,
Yin S, Mao J, Zhang N, Mei W, Ding L and Wang P: Increased HIF-α in
knee osteoarthritis aggravate synovial fibrosis via Fibroblast-Like
synoviocyte pyroptosis. Oxid Med Cell Longev.
2019:63265172019.PubMed/NCBI
|
|
32
|
Xu L, Zhang F, Cheng G, Yuan X, Wu Y, Wu
H, Wang Q, Chen J, Kuai J, Chang Y, et al: Attenuation of
experimental osteoarthritis with human adipose-derived mesenchymal
stem cell therapy: Inhibition of the pyroptosis in chondrocytes.
Inflamm Res. 72:89–105. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Liu W, Liu A, Li X, Sun Z, Sun Z, Liu Y,
Wang G, Huang D, Xiong H, Yu S, et al: Dual-engineered
cartilage-targeting extracellular vesicles derived from mesenchymal
stem cells enhance osteoarthritis treatment via
miR-223/NLRP3/pyroptosis axis: Toward a precision therapy. Bioact
Mater. 30:169–183. 2023.PubMed/NCBI
|
|
34
|
Sergio MR, Godinho C, Guerra L, Agapito A,
Fonseca F and Costa C: TSH anti-receptor antibodies in Graves'
disease. Acta Medica Port. 9:229–231, (In Portuguese). PubMed/NCBI
|
|
35
|
Buckley CT, Hoyland JA, Fujii K, Pandit A,
Iatridis JC and Grad S: Critical aspects and challenges for
intervertebral disc repair and regeneration-Harnessing advances in
tissue engineering. Jor Spine. 1:e10292018. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Zhao CQ, Wang LM, Jiang LS and Dai LY: The
cell biology of intervertebral disc aging and degeneration. Ageing
Res Rev. 6:247–261. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Basso M, Cavagnaro L, Zanirato A, Divano
S, Formica C, Formica M and Felli L: What is the clinical evidence
on regenerative medicine in intervertebral disc degeneration?
Musculoskelet Surg. 101:93–104. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Binch A, Fitzgerald JC, Growney EA and
Barry F: Cell-based strategies for IVD repair: Clinical progress
and translational obstacles. Nat Rev Rheumatol. 17:158–175. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Francisco V, Pino J, Gonzalez-Gay MA, Lago
F, Karppinen J, Tervonen O, Mobasheri A and Gualillo O: A new
immunometabolic perspective of intervertebral disc degeneration.
Nat Rev Rheumatol. 18:47–60. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Ge Y, Chen Y, Guo C, Luo H, Fu F, Ji W, Wu
C and Ruan H: Pyroptosis and intervertebral disc degeneration:
Mechanistic insights and therapeutic implications. J Inflamm Res.
15:5857–5871. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Luo J, Yang Y, Wang X, Chang X and Fu S:
Role of pyroptosis in intervertebral disc degeneration and its
therapeutic implications. Biomolecules. 12:18042022. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Zhang X, Cai Z, Wu M, Huangfu X, Li J and
Liu X: Adipose stem Cell-Derived exosomes recover impaired matrix
metabolism of torn human rotator cuff tendons by maintaining tissue
homeostasis. Am J Sport Med. 49:899–908. 2021. View Article : Google Scholar
|
|
43
|
Shi Y and Wang Y, Li Q, Liu K, Hou J, Shao
C and Wang Y: Immunoregulatory mechanisms of mesenchymal stem and
stromal cells in inflammatory diseases. Nat Rev Nephrol.
14:493–507. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Xing H, Zhang Z, Mao Q, Wang C, Zhou Y,
Zhou X, Ying L, Xu H, Hu S and Zhang N: Injectable
exosome-functionalized extracellular matrix hydrogel for metabolism
balance and pyroptosis regulation in intervertebral disc
degeneration. J Nanobiotechnol. 19:2642021. View Article : Google Scholar
|
|
45
|
Zhu B, Chen HX, Li S, Tan JH, Xie Y, Zou
MX, Wang C, Xue JB, Li XL, Cao Y and Yan YG: Comprehensive analysis
of N6-methyladenosine (m6A) modification during the degeneration of
lumbar intervertebral disc in mice. J Orthop Transl. 31:126–138.
2021.
|
|
46
|
Shen C, Xuan B, Yan T, Ma Y, Xu P, Tian X,
Zhang X, Cao Y, Ma D, Zhu X, et al: m6A-dependent
glycolysis enhances colorectal cancer progression. Mol Cancer.
19:722020. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yuan X, Li T, Shi L, Miao J, Guo Y and
Chen Y: Human umbilical cord mesenchymal stem cells deliver
exogenous miR-26a-5p via exosomes to inhibit nucleus pulposus cell
pyroptosis through METTL14/NLRP3. Mol Med. 27:912021. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Yu Y, Li W, Xian T, Tu M, Wu H and Zhang
J: Human embryonic stem-cell-derived exosomes repress NLRP3
inflammasome to alleviate pyroptosis in nucleus pulposus cells by
transmitting miR-302c. Int J Mol Sci. 24:76642023. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Hunziker EB: Articular cartilage repair:
Basic science and clinical progress. A review of the current status
and prospects. Osteoarthr Cartilage. 10:432–463. 2002. View Article : Google Scholar
|
|
50
|
Lin F, Zhang W, Xue D, Zhu T, Li J, Chen
E, Yao X and Pan Z: Signaling pathways involved in the effects of
HMGB1 on mesenchymal stem cell migration and osteoblastic
differentiation. Int J Mol Med. 37:789–797. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Bertheloot D and Latz E: HMGB1, IL-1α,
IL-33 and S100 proteins: Dual-function alarmins. Cell Mol Immunol.
14:43–64. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Koh TJ and DiPietro LA: Inflammation and
wound healing: The role of the macrophage. Expert Rev Mol Med.
13:e232011. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Han SA, Lee S, Seong SC and Lee MC:
Effects of CD14 macrophages and proinflammatory cytokines on
chondrogenesis in osteoarthritic synovium-derived stem cells.
Tissue Eng Pt A. 20:2680–2691. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Wehling N, Palmer GD, Pilapil C, Liu F,
Wells JW, Muller PE, Evans CH and Porter RM: Interleukin-1beta and
tumor necrosis factor alpha inhibit chondrogenesis by human
mesenchymal stem cells through NF-kappaB-dependent pathways.
Arthritis Rheum. 60:801–812. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Yang Z, Li H, Yuan Z, Fu L, Jiang S, Gao
C, Wang F, Zha K, Tian G, Sun Z, et al: Endogenous cell recruitment
strategy for articular cartilage regeneration. Acta Biomater.
114:31–52. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Liao Z, Fu L, Li P, Wu J, Yuan X, Ning C,
Ding Z, Sui X, Liu S and Guo Q: Incorporation of magnesium ions
into an Aptamer-Functionalized ECM bioactive scaffold for articular
cartilage regeneration. Acs Appl Mater Inter. 15:22944–22958. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Park KS, Kim BJ, Lih E, Park W, Lee SH,
Joung YK and Han DK: Versatile effects of magnesium hydroxide
nanoparticles in PLGA scaffold-mediated chondrogenesis. Acta
Biomater. 73:204–216. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Barakat AH, Elwell VA and Lam KS: Stem
cell therapy in discogenic back pain. J Spine Surg. 5:561–583.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Sakai D and Andersson GB: Stem cell
therapy for intervertebral disc regeneration: Obstacles and
solutions. Nat Rev Rheumatol. 11:243–256. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Yu C, Li D, Wang C, Xia K, Wang J, Zhou X,
Ying L, Shu J, Huang X, Xu H, et al: Injectable kartogenin and
apocynin loaded micelle enhances the alleviation of intervertebral
disc degeneration by adipose-derived stem cell. Bioact Mater.
6:3568–3579. 2021.PubMed/NCBI
|
|
61
|
Zhou X, Wang J, Fang W, Tao Y, Zhao T, Xia
K, Liang C, Hua J, Li F and Chen Q: Genipin cross-linked type II
collagen/chondroitin sulfate composite hydrogel-like cell delivery
system induces differentiation of adipose-derived stem cells and
regenerates degenerated nucleus pulposus. Acta Biomater.
71:496–509. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Xia KS, Li DD, Wang CG, Ying LW, Wang JK,
Yang B, Shu JW, Huang XP, Zhang YA, Yu C, et al: An
esterase-responsive ibuprofen nano-micelle pre-modified embryo
derived nucleus pulposus progenitor cells promote the regeneration
of intervertebral disc degeneration. Bioact Mater. 21:69–85.
2023.PubMed/NCBI
|
|
63
|
Yang J, Hu S, Bian Y, Yao J, Wang D, Liu
X, Guo Z, Zhang S and Peng L: Targeting cell death: Pyroptosis,
ferroptosis, apoptosis and necroptosis in osteoarthritis. Front
Cell Dev Biol. 9:7899482021. View Article : Google Scholar : PubMed/NCBI
|
|
64
|
Tibaut M, Mekis D and Petrovic D:
Pathophysiology of myocardial infarction and acute management
strategies. Cardiovasc Hematol Agents Med Chem. 14:150–159. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Zhou M, Yu Y, Luo X, Wang J, Lan X, Liu P,
Feng Y and Jian W: Myocardial Ischemia-reperfusion injury:
Therapeutics from a mitochondria-centric perspective. Cardiology.
146:781–792. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Toldo S, Mauro AG, Cutter Z and Abbate A:
Inflammasome, pyroptosis, and cytokines in myocardial
ischemia-reperfusion injury. Am J Physiol-Heart C. 315:H1553–H1568.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Qiu Z, Lei S, Zhao B, Wu Y, Su W, Liu M,
Meng Q, Zhou B, Leng Y and Xia ZY: NLRP3 inflammasome
activation-mediated pyroptosis aggravates myocardial
ischemia/reperfusion injury in diabetic rats. Oxid Med Cell Longev.
2017:97432802017. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Kalluri R and LeBleu VS: The biology,
function, and biomedical applications of exosomes. Science.
367:eaau69772020. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Tang J, Jin L, Liu Y, Li L, Ma Y, Lu L, Ma
J, Ding P, Yang X, Liu J and Yang J: Exosomes derived from
mesenchymal stem cells protect the myocardium against
ischemia/reperfusion injury through inhibiting pyroptosis. Drug Des
Devel Ther. 14:3765–7375. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Mao Q, Liang XL, Zhang CL, Pang YH and Lu
YX: LncRNA KLF3-AS1 in human mesenchymal stem cell-derived exosomes
ameliorates pyroptosis of cardiomyocytes and myocardial infarction
through miR-138-5p/Sirt1 axis. Stem Cell Res Ther. 10:3932019.
View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Yan B, Liu T, Yao C, Liu X, Du Q and Pan
L: LncRNA XIST shuttled by adipose tissue-derived mesenchymal stem
cell-derived extracellular vesicles suppresses myocardial
pyroptosis in atrial fibrillation by disrupting miR-214-3p-mediated
Arl2 inhibition. Lab Invest. 101:1427–1438. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Yan B, Zhang Y, Liang C, Liu B, Ding F,
Wang Y, Zhu B, Zhao R, Yu XY and Li Y: Stem cell-derived exosomes
prevent pyroptosis and repair ischemic muscle injury through a
novel exosome/circHIPK3/ FOXO3a pathway. Theranostics.
10:6728–6742. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Feigin VL, Norrving B, George MG, Foltz
JL, Roth GA and Mensah GA: Prevention of stroke: A strategic global
imperative. Nat Rev Neurol. 12:501–512. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Jayaraj RL, Azimullah S, Beiram R, Jalal
FY and Rosenberg GA: Neuroinflammation: Friend and foe for ischemic
stroke. J Neuroinflamm. 16:1422019. View Article : Google Scholar
|
|
75
|
Madore C, Yin Z, Leibowitz J and Butovsky
O: Microglia, lifestyle stress, and neurodegeneration. Immunity.
52:222–240. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Li W, Shen N, Kong L, Huang H, Wang X,
Zhang Y, Wang G, Xu P and Hu W: STING mediates microglial
pyroptosis via interaction with NLRP3 in cerebral ischaemic stroke.
Stroke Vasc Neurol. svn-2023-002320. 2023.doi:
10.1136/svn-2023-002320. View Article : Google Scholar
|
|
77
|
Huang Y, Tan F, Zhuo Y, Liu J, He J, Duan
D, Lu M and Hu Z: Hypoxia-preconditioned olfactory mucosa
mesenchymal stem cells abolish cerebral
ischemia/reperfusion-induced pyroptosis and apoptotic death of
microglial cells by activating HIF-1alpha. Aging (Albany Ny).
12:10931–10950. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Hu Z, Yuan Y, Zhang X, Lu Y, Dong N, Jiang
X, Xu J and Zheng D: Human umbilical cord mesenchymal stem
Cell-Derived exosomes attenuate Oxygen-Glucose
Deprivation/Reperfusion-Induced microglial pyroptosis by promoting
FOXO3a-dependent mitophagy. Oxid Med Cell Longev. 2021:62197152021.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Liu X, Zhang M, Liu H, Zhu R, He H, Zhou
Y, Zhang Y, Li C, Liang D, Zeng Q and Huang G: Bone marrow
mesenchymal stem cell-derived exosomes attenuate cerebral
ischemia-reperfusion injury-induced neuroinflammation and
pyroptosis by modulating microglia M1/M2 phenotypes. Exp Neurol.
341:1137002021. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Huang Y, Wang S, Huang F, Zhang Q, Qin B,
Liao L, Wang M, Wan H, Yan W, Chen D, et al: c-FLIP regulates
pyroptosis in retinal neurons following oxygen-glucose
deprivation/recovery via a GSDMD-mediated pathway. Ann Anat.
235:1516722021. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Zhou Z, Shang L, Zhang Q, Hu X, Huang JF
and Xiong K: DTX3L induced NLRP3 ubiquitination inhibit R28 cell
pyroptosis in OGD/R injury. Bba-Mol Cell Res.
1870:1194332023.PubMed/NCBI
|
|
82
|
Dreixler JC, Poston JN, Balyasnikova I,
Shaikh AR, Tupper KY, Conway S, Boddapati V, Marcet MM, Lesniak MS
and Roth S: Delayed administration of bone marrow mesenchymal stem
cell conditioned medium significantly improves outcome after
retinal ischemia in rats. Invest Ophth Vis Sci. 55:3785–3796. 2014.
View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Mathew B, Poston JN, Dreixler JC, Torres
L, Lopez J, Zelkha R, Balyasnikova I, Lesniak MS and Roth S:
Bone-marrow mesenchymal stem-cell administration significantly
improves outcome after retinal ischemia in rats. Graef Arch Clin
Exp. 255:1581–1592. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Mathew B, Ravindran S, Liu X, Torres L,
Chennakesavalu M, Huang CC, Feng L, Zelka R, Lopez J, Sharma M and
Roth S: Mesenchymal stem cell-derived extracellular vesicles and
retinal ischemia-reperfusion. Biomaterials. 197:146–1460. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Neumar RW, Nolan JP, Adrie C, Aibiki M,
Berg RA, Bottiger BW, Callaway C, Clark RS, Geocadin RG, Jauch EC,
et al: Post-cardiac arrest syndrome: Epidemiology, pathophysiology,
treatment, and prognostication. A consensus statement from the
International Liaison Committee on Resuscitation (American Heart
Association, Australian and New Zealand Council on Resuscitation,
European Resuscitation Council, Heart and Stroke Foundation of
Canada, InterAmerican Heart Foundation, Resuscitation Council of
Asia, and the Resuscitation Council of Southern Africa); the
American Heart Association Emergency Cardiovascular Care Committee;
the Council on Cardiovascular Surgery and Anesthesia; the Council
on Cardiopulmonary, Perioperative, and Critical Care; the Council
on Clinical Cardiology; and the Stroke Council. Circulation.
118:2452–2483. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Yu Y, Wang D, Li H, Fan J, Liu Y, Zhao X,
Wu J and Jing X: Mesenchymal stem cells derived from induced
pluripotent stem cells play a key role in immunomodulation during
cardiopulmonary resuscitation. Brain Res. 1720:1462932019.
View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Weyker PD, Webb CA, Kiamanesh D and Flynn
BC: Lung ischemia reperfusion injury: A bench-to-bedside review.
Semin Cardiothorac Vasc Anesth. 17:28–43. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Fei L, Jingyuan X, Fangte L, Huijun D, Liu
Y, Ren J, Jinyuan L and Linghui P: Preconditioning with rHMGB1
ameliorates lung ischemia-reperfusion injury by inhibiting alveolar
macrophage pyroptosis via the Keap1/Nrf2/HO-1 signaling pathway. J
Transl Med. 18:3012020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Shologu N, Scully M, Laffey JG and O'Toole
D: Human mesenchymal stem cell secretome from bone marrow or
Adipose-Derived tissue sources for treatment of hypoxia-induced
pulmonary epithelial injury. Int J Mol Sci. 19:29962018. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Sun ZL, You T, Zhang BH, Liu Y and Liu J:
Bone marrow mesenchymal stem cell-derived exosomes miR-202-5p
inhibited pyroptosis to alleviate lung ischemic-reperfusion injury
by targeting CMPK2. Kaohsiung J Med Sci. 39:688–698. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Luo Y, Zheng D, Mou T, Pu J, Huang Z, Chen
W, Zhang Y and Wu Z: CMPK2 accelerates liver ischemia/reperfusion
injury via the NLRP3 signaling pathway. Exp Ther Med. 22:13582021.
View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Hirao H, Nakamura K and Kupiec-Weglinski
JW: Liver ischaemia-reperfusion injury: A new understanding of the
role of innate immunity. Nat Rev Gastro Hepat. 19:239–256. 2022.
View Article : Google Scholar
|
|
93
|
Piao C, Sang J, Kou Z, Wang Y, Liu T, Lu
X, Jiao Z and Wang H: Effects of exosomes derived from
adipose-derived mesenchymal stem cells on pyroptosis and
regeneration of injured liver. Int J Mol Sci. 23:120652022.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Shi H, Gao Y, Dong Z, Yang J, Gao R, Li X,
Zhang S, Ma L, Sun X, Wang Z, et al: GSDMD-Mediated cardiomyocyte
pyroptosis promotes Myocardial I/R injury. Circ Res. 129:383–396.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Tavakoli DZ, Singla R, Johnson T, Kukreja
R and Singla DK: Exosomes derived from embryonic stem cells inhibit
doxorubicin and inflammation-induced pyroptosis in muscle cells.
Can J Physiol Pharm. 96:304–307. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Tavakoli DZ and Singla DK: Embryonic stem
cell-derived exosomes inhibit doxorubicin-induced
TLR4-NLRP3-mediated cell death-pyroptosis. Am J Physiol Heart Circ
Physiol. 317:H460–H471. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Singla DK, Johnson TA and Tavakoli DZ:
Exosome treatment enhances anti-inflammatory M2 macrophages and
reduces inflammation-induced pyroptosis in doxorubicin-induced
cardiomyopathy. Cells-Basel. 8:12242019. View Article : Google Scholar
|
|
98
|
Dessouki F, Kukreja RC and Singla DK: Stem
Cell-Derived Exosomes ameliorate Doxorubicin-Induced muscle
toxicity through counteracting pyroptosis. Pharmaceuticals (Basel).
13:4502020. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Wang J, Sun M, Liu W, Li Y and Li M: Stem
cell-based therapies for liver diseases: An overview and update.
Tissue Eng Regen Med. 16:107–118. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Wang J, Ren H, Yuan X, Ma H, Shi X and
Ding Y: Interleukin-10 secreted by mesenchymal stem cells
attenuates acute liver failure through inhibiting pyroptosis.
Hepatol Res. 48:E194–E202. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Chen TS, Lai YA, Lai YJ and Chien CT:
Adipose stem cells preincubated with theanine exert liver
regeneration through increase of stem cell paracrine VEGF and
suppression of ROS, pyroptosis as well as autophagy markers in
liver damage induced by N-nitrosodiethylamine. Life Sci.
308:1209692022. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Forbes JM and Cooper ME: Mechanisms of
diabetic complications. Physiol Rev. 93:137–188. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Kunkemoeller B, Bancroft T, Xing H, Morris
AH, Luciano AK, Wu J, Fernandez-Hernando C and Kyriakides TR:
Elevated thrombospondin 2 contributes to delayed wound healing in
diabetes. Diabetes. 68:2016–223. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Mu X, Wu X, He W, Liu Y, Wu F and Nie X:
Pyroptosis and inflammasomes in diabetic wound healing. Front
Endocrinol. 13:9507982022. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Yang H, Zhang Y, Du Z, Wu T and Yang C:
Hair follicle mesenchymal stem cell exosomal lncRNA H19 inhibited
NLRP3 pyroptosis to promote diabetic mouse skin wound healing.
Aging (Albany Ny). 15:791–809. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Yadav SK, Kambis TN, Kar S, Park SY and
Mishra PK: MMP9 mediates acute hyperglycemia-induced human cardiac
stem cell death by upregulating apoptosis and pyroptosis in vitro.
Cell Death Dis. 11:1862020. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Luo C, Peng Y, Zhou X, Fan J, Chen W,
Zhang H and Wei A: NLRP3 downregulation enhances engraftment and
functionality of adipose-derived stem cells to alleviate erectile
dysfunction in diabetic rats. Front Endocrinol. 13:9132962022.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Alicic RZ, Rooney MT and Tuttle KR:
Diabetic kidney disease: Challenges, progress, and possibilities.
Clin J Am Soc Nephro. 12:2032–2045. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Lv J, Hao YN, Wang XP, Lu WH, Xie LY and
Niu D: Bone marrow mesenchymal stem cell-derived exosomal
miR-30e-5p ameliorates high-glucose induced renal proximal tubular
cell pyroptosis by inhibiting ELAVL1. Renal Failure.
45:21770822023. View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang YZ and Li YY: Inflammatory bowel
disease: Pathogenesis. World J Gastroentero. 20:91–99. 2014.
View Article : Google Scholar
|
|
111
|
Zhen Y and Zhang H: NLRP3 Inflammasome and
inflammatory bowel disease. Front Immunol. 10:2762019. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zhang S, Liang Y, Yao J, Li DF and Wang
LS: Role of pyroptosis in inflammatory bowel disease (IBD): From
gasdermins to DAMPs. Front Pharmacol. 13:8335882022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Cai X, Zhang ZY, Yuan JT, Ocansey D, Tu Q,
Zhang X, Qian H, Xu WR, Qiu W and Mao F: hucMSC-derived exosomes
attenuate colitis by regulating macrophage pyroptosis via the
miR-378a-5p/NLRP3 axis. Stem Cell Res Ther. 12:4162021. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Xu Y, Tang X, Fang A, Yan J, Kofi WOD,
Zhang X and Mao F: HucMSC-Ex carrying miR-203a-3p.2 ameliorates
colitis through the suppression of caspase11/4-induced macrophage
pyroptosis. Int Immunopharmacol. 110:1089252022. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Jiao Y, Zhang T, Zhang C, Ji H, Tong X,
Xia R, Wang W, Ma Z and Shi X: Exosomal miR-30d-5p of neutrophils
induces M1 macrophage polarization and primes macrophage pyroptosis
in sepsis-related acute lung injury. Crit Care. 25:3562021.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Feng Y, Li M, Yangzhong X, Zhang X, Zu A,
Hou Y, Li L and Sun S: Pyroptosis in inflammation-related
respiratory disease. J Physiol Biochem. 78:721–737. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Zhang M, Xu G, Zhou X, Luo M, Ma N, Wang
X, Wang Z, Tang H, Wang X, Li Y, et al: Mesenchymal stem cells
ameliorate H9N2-induced acute lung injury by inhibiting
caspase-3-GSDME-mediated pyroptosis of lung alveolar epithelial
cells. Eur J Pharmacol. 960:1761482023. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Liu P, Yang S, Shao X, Li C, Wang Z, Dai H
and Wang C: Mesenchymal stem cells-derived exosomes alleviate acute
lung injury by inhibiting alveolar macrophage pyroptosis. Stem Cell
Transl Med. szad0942024.doi: 10.1093/stcltm/szad094 (Epub ahead of
print). View Article : Google Scholar
|
|
119
|
Tao Y, Xu X, Yang B, Zhao H and Li Y:
Mitigation of sepsis-induced acute lung injury by BMSC-Derived
exosomal miR-125b-5p through STAT3-Mediated suppression of
macrophage pyroptosis. Int J Nanomed. 18:7095–7113. 2023.
View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Zhang T, Lu L, Li M, Zhang D, Yu P, Zhang
X, Zhang Z and Lei C: Exosome from BMMSC attenuates cardiopulmonary
bypass-induced acute lung injury via YAP/beta-catenin pathway:
Downregulation of pyroptosis. Stem Cells. 40:1122–1133. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Li C, Lu Y, Du S, Li S, Zhang Y, Liu F,
Chen Y, Weng D and Chen J: Dioscin exerts protective effects
against crystalline silica-induced pulmonary fibrosis in mice.
Theranostics. 7:4255–4275. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Song M, Wang J, Sun Y, Pang J, Li X, Liu
Y, Zhou Y, Yang P, Fan T, Liu Y, et al: Inhibition of gasdermin
D-dependent pyroptosis attenuates the progression of silica-induced
pulmonary inflammation and fibrosis. Acta Pharm Sin B.
12:1213–1224. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Zhao Q, Hao C, Wei J, Huang R, Li C and
Yao W: Bone marrow-derived mesenchymal stem cells attenuate
silica-induced pulmonary fibrosis by inhibiting apoptosis and
pyroptosis but not autophagy in rats. Ecotox Environ Safe.
216:1121812021. View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Levey AS and James MT: Acute Kidney
Injury. Ann Intern Med. 167:ITC66–ITC80. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Li N, Wang Y, Wang X, Sun N and Gong YH:
Pathway network of pyroptosis and its potential inhibitors in acute
kidney injury. Pharmacol Res. 175:1060332022. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Xie Z, Tang J, Chen Z, Wei L, Chen J and
Liu Q: Human bone marrow mesenchymal stem cell-derived
extracellular vesicles reduce inflammation and pyroptosis in acute
kidney injury via miR-223-3p/HDAC2/SNRK. Inflamm Res. 72:553–576.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Guo J, Wang R and Liu D: Bone
marrow-derived mesenchymal stem cells ameliorate sepsis-induced
acute kidney injury by promoting mitophagy of renal tubular
epithelial cells via the SIRT1/Parkin axis. Front Endocrinol.
12:6391652021. View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Reddi S, Thakker-Varia S, Alder J and
Giarratana AO: Status of precision medicine approaches to traumatic
brain injury. Neural Regen Res. 17:2166–2171. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
129
|
Zhang L, Lin Y, Bai W, Sun L and Tian M:
Human umbilical cord mesenchymal stem cell-derived exosome
suppresses programmed cell death in traumatic brain injury via
PINK1/Parkin-mediated mitophagy. Cns Neurosci Ther. 29:2236–2258.
2023. View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Al MA, Wu Y, Monalisa I, Jia C, Zhou K,
Munir F and Xiao J: Role of pyroptosis in spinal cord injury and
its therapeutic implications. J Adv Res. 28:97–109. 2021.
View Article : Google Scholar
|
|
131
|
Sheth KN: Spontaneous intracerebral
hemorrhage. New Engl J Med. 387:1589–1596. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Hu LT, Wang BY, Fan YH, He ZY and Zheng
WX: Exosomal miR-23b from bone marrow mesenchymal stem cells
alleviates oxidative stress and pyroptosis after intracerebral
hemorrhage. Neural Regen Res. 18:560–567. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
133
|
Giri TK, Alexander A, Agrawal M and Saraf
S and Saraf S: Ajazuddin: Current status of stem cell therapies in
tissue repair and regeneration. Curr Stem Cell Res Ther.
14:117–126. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
134
|
Yamanaka S: Pluripotent stem cell-based
cell therapy-promise and challenges. Cell Stem Cell. 27:523–531.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Masuda S: Risk of teratoma formation after
transplantation of induced pluripotent stem cells. Chest.
141:1120–1121. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Chour T, Tian L, Lau E, Thomas D, Itzhaki
I, Malak O, Zhang JZ, Qin X, Wardak M, Liu Y, et al: Method for
selective ablation of undifferentiated human pluripotent stem cell
populations for cell-based therapies. JCI Insight. 6:e1420002021.
View Article : Google Scholar : PubMed/NCBI
|
|
137
|
Alessandrini M, Preynat-Seauve O, De Bruin
K and Pepper MS: Stem cell therapy for neurological disorders. S
Afr Med J. 109:70–77. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Trounson A and McDonald C: Stem cell
therapies in clinical trials: Progress and challenges. Cell Stem
Cell. 17:11–22. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Liu XY, Yang LP and Zhao L: Stem cell
therapy for Alzheimer's disease. World J Stem Cells. 12:787–802.
2020. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Al-Ghadban S and Bunnell BA: Adipose
Tissue-Derived stem cells: Immunomodulatory effects and therapeutic
potential. Physiology. 35:125–133. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Li Q, Wang Z, Xing H, Wang Y and Guo Y:
Exosomes derived from miR-188-3p-modified adipose-derived
mesenchymal stem cells protect Parkinson's disease. Mol Ther
Nucleic Acids. 23:1334–1344. 2021. View Article : Google Scholar : PubMed/NCBI
|