Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
December-2024 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
December-2024 Volume 54 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review)

  • Authors:
    • Maksymilian Baryła
    • Michał Skrzycki
    • Roman Danielewicz
    • Maciej Kosieradzki
    • Marta Struga
  • View Affiliations / Copyright

    Affiliations: Chair and Department of Biochemistry, Medical University of Warsaw, 02‑097 Warsaw, Poland, Department of General and Transplant Surgery, Infant Jesus Hospital, Medical University of Warsaw, 02‑006 Warsaw, Poland
    Copyright: © Baryła et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 107
    |
    Published online on: September 25, 2024
       https://doi.org/10.3892/ijmm.2024.5431
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

To meet the demand for kidney transplants (KTx), organs are frequently retrieved not only from standard criteria donors (SCD; a donor who is aged <50 years and suffered brain death from any number of causes, such as traumatic injuries or a stroke) but also from expanded criteria donors (any donor aged >60 years or donors aged >50 years with two of the following: A history of high blood pressure, a creatinine serum level ≥1.5 mg/dl or death resulting from a stroke). This comes at the cost of a higher risk of primary non‑function (the permanent hyperkalemia, hyperuremia and fluid overload that result in the need for continuous dialysis after KTx), delayed graft function (the need for dialysis session at least once during the first week after KTx), earlier graft loss and urinary complications (vesico‑ureteral reflux, obstruction of the vesico‑ureteral anastomosis, urine leakage). At present, there are no commercially available diagnostic tools for assessing kidney quality prior to KTx. Currently available predictive models based on clinical data, such as the Kidney Donor Profile Index, are insufficient. One promising option is the application of perfusion solutions for protein biomarkers of kidney quality and predictors of short‑ and long‑term outcomes. However, to date, protein markers that can be detected with ELISA, western blotting and cytotoxic assays have not been identified to be a beneficial predictors of kidney quality. These include lactate dehydrogenases, glutathione S‑transferases, fatty acid binding proteins, extracellular histones, IL‑18, neutrophil gelatinase‑associated lipocalin, MMPs and kidney injury molecule‑1. However, novel methods, including liquid chromatography‑mass spectrometry (LC‑MS) and microarrays, allow the analysis of all renal proteins suspended/dissolved in the acellular preservation solution used for kidney storage before KTx (including hypothermic machine perfusion as one of kidney storage methods) e.g. Belzer University of Wisconsin. Recent proteomic studies utilizing LC‑MS have identified complement pathway elements (C3, C1QB, C4BPA, C1S, C1R and C1RL), desmoplakin, blood coagulation pathway elements and immunoglobulin heavy variable 2‑26 to be novel predictors of kidney quality before transplantation. This was because they were found to correlate with estimated glomerular filtration rate at 3 and 12 months after kidney transplantation. However, further proteomic studies focusing on distinct markers obtained from hypothermic and normothermic machine perfusion are needed to confirm their predictive value and to improve kidney storage methods. Therefore, the present literature review from PubMed, Scopus, Embase and Web of Science was performed with the aims of summarizing the current knowledge on the most frequently studied single protein biomarkers. In addition, novel analytical methods and insights into organ injury during preservation were documented, where future directions in assessing organ quality before kidney transplantation were also discussed.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

View References

1 

Querard AH, Le Borgne F, Dion A, Giral M, Mourad G, Garrigue V, Rostaing L, Kamar N, Loupy A, Legendre C, et al: Propensity score-based comparison of the graft failure risk between kidney transplant recipients of standard and expanded criteria donor grafts: Toward increasing the pool of marginal donors. Am J Transplant. 18:1151–1157. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Querard AH, Foucher Y, Combescure C, Dantan E, Larmet D, Lorent M, Pouteau LM, Giral M and Gillaizeau F: Comparison of survival outcomes between expanded criteria donor and standard criteria donor kidney transplant recipients: A systematic review and meta-analysis. Transpl Int. 29:403–415. 2016. View Article : Google Scholar : PubMed/NCBI

3 

Barba J, Zudaire JJ, Robles JE, Rosell D, Berian JM and Pascual I: Complications of kidney transplantation with grafts from expanded criteria donors. World J Urol. 31:893–900. 2013. View Article : Google Scholar

4 

Coupel S, Giral-Classe M, Karam G, Morcet JF, Dantal J, Cantarovich D, Blancho G, Bignon JD, Daguin P, Soulillou JP and Hourmant M: Ten-year survival of second kidney transplants: Impact of immunologic factors and renal function at 12 months. Kidney Int. 64:674–680. 2003. View Article : Google Scholar : PubMed/NCBI

5 

Kousoulas L, Vondran FWR, Syryca P, Klempnauer J, Schrem H and Lehner F: Risk-adjusted analysis of relevant outcome drivers for patients after more than two kidney transplants. J Transplant. 2015:7120492015. View Article : Google Scholar : PubMed/NCBI

6 

Zádori G, Kovács DÁ, Fedor R, Kanyári Z, Zsom L, Asztalos L and Nemes B: Results of expanded-criteria donor kidneys: A single-center experience in hungary. Transplant Proc. 47:2189–2191. 2015. View Article : Google Scholar : PubMed/NCBI

7 

Hwang JK, Park SC, Kwon KH, Choi BS, Kim JI, Yang CW, Kim YS and Moon IS: Long-term outcomes of kidney transplantation from expanded criteria deceased donors at a single center: Comparison with standard criteria deceased donors. Transplant Proc. 46:431–436. 2014. View Article : Google Scholar : PubMed/NCBI

8 

De Beule J and Jochmans I: Kidney perfusion as an organ quality assessment tool-are we counting our chickens before they have hatched? J Clin Med. 9:8792020. View Article : Google Scholar : PubMed/NCBI

9 

Mourão TB, Mine KL, Campos EF, Medina-Pestana JO, Tedesco-Silva H and Gerbase-DeLima M: Predicting delayed kidney graft function with gene expression in preimplantation biopsies and first-day posttransplant blood. Hum Immunol. 77:353–357. 2016. View Article : Google Scholar : PubMed/NCBI

10 

Hall IE, Reese PP, Weng FL, Schröppel B, Doshi MD, Hasz RD, Reitsma W, Goldstein MJ, Hong K and Parikh CR: Preimplant histologic acute tubular necrosis and allograft outcomes. Clin J Am Soc Nephrol. 9:573–582. 2014. View Article : Google Scholar : PubMed/NCBI

11 

Bachmann Q, Haberfellner F, Büttner-Herold M, Torrez C, Haller B, Assfalg V, Renders L, Amann K, Heemann U, Schmaderer C and Kemmner S: The kidney donor profile index (KDPI) correlates with histopathologic findings in post-reperfusion baseline biopsies and predicts kidney transplant outcome. Front Med (Lausanne). 9:8752062022. View Article : Google Scholar : PubMed/NCBI

12 

Rege A, Irish B, Castleberry A, Vikraman D, Sanoff S, Ravindra K, Collins B and Sudan D: Trends in usage and outcomes for expanded criteria donor kidney transplantation in the United States characterized by kidney donor profile index. Cureus. 8:e8872016.PubMed/NCBI

13 

Rao PS, Schaubel DE, Guidinger MK, Andreoni KA, Wolfe RA, Merion RM, Port FK and Sung RS: A comprehensive risk quantification score for deceased donor kidneys: The kidney donor risk index. Transplantation. 88:231–236. 2009. View Article : Google Scholar : PubMed/NCBI

14 

Nyberg SL, Baskin-Bey ES, Kremers W, Prieto M, Henry ML and Stegall MD: Improving the prediction of donor kidney quality: Deceased donor score and resistive indices. Transplantation. 80:925–929. 2005. View Article : Google Scholar : PubMed/NCBI

15 

Guzzi F, Knight SR, Ploeg RJ and Hunter JP: A systematic review to identify whether perfusate biomarkers produced during hypothermic machine perfusion can predict graft outcomes in kidney transplantation. Transpl Int. 33:590–602. 2020. View Article : Google Scholar : PubMed/NCBI

16 

Bhangoo RS, Hall IE, Reese PP and Parikh CR: Deceased-donor kidney perfusate and urine biomarkers for kidney allograft outcomes: A systematic review. Nephrol Dial Transplant. 27:3305–3314. 2012. View Article : Google Scholar : PubMed/NCBI

17 

Snoeijs MG, Pulinx B, van Dieijen-Visser MP, Buurman WA, van Heurn LW and Wodzig WK: Characterization of the perfusate proteome of human donor kidneys. Ann Clin Biochem. 50:140–146. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Khan AA, Allemailem KS, Alhumaydhi FA, Gowder SJT and Rahmani AH: The biochemical and clinical perspectives of lactate dehydrogenase: An enzyme of active metabolism. Endocr Metab Immune Disord Drug Targets. 20:855–868. 2020. View Article : Google Scholar

19 

Mårtensson J and Bellomo R: The rise and fall of NGAL in acute kidney injury. Blood Purif. 37:304–310. 2014. View Article : Google Scholar : PubMed/NCBI

20 

Markert CL: Lactate dehydrogenase. Biochemistry and function of lactate dehydrogenase. Cell Biochem Funct. 2:131–134. 1984. View Article : Google Scholar : PubMed/NCBI

21 

Holmes RS and Goldberg E: Computational analyses of mammalian lactate dehydrogenases: Human, mouse, opossum and platypus LDHs. Comput Biol Chem. 33:379–385. 2009. View Article : Google Scholar : PubMed/NCBI

22 

Dubach UC: On the origin of lactic dehydrogenase isoenzymes in urine. Helv Med Acta. 33:139–150. 1966.PubMed/NCBI

23 

Osis G, Traylor AM, Black LM, Spangler D, George JF, Zarjou A, Verlander JW and Agarwal A: Expression of lactate dehydrogenase A and B isoforms in the mouse kidney. Am J Physiol Renal Physiol. 320:F706–F718. 2021. View Article : Google Scholar : PubMed/NCBI

24 

Kootstra G and Daemen JH: The non-heart-beating donor. Transplant Proc. 28:161996.PubMed/NCBI

25 

Daemen JW, Oomen AP, Janssen MA, van de Schoot L, van Kreel BK, Heineman E and Kootstra G: Glutathione S-transferase as predictor of functional outcome in transplantation of machine-preserved non-heart-beating donor kidneys. Transplantation. 63:89–93. 1997. View Article : Google Scholar : PubMed/NCBI

26 

Modgill VK, Wiggins PA, Rosenberg IL, Humphrey CS and Giles GR: An evaluation of viability tests of human cadaveric kidneys. Br J Surg. 64:548–553. 1977. View Article : Google Scholar : PubMed/NCBI

27 

Skillen AW: Clinical biochemistry of lactate dehydrogenase. Cell Biochem Funct. 2:140–144. 1984. View Article : Google Scholar : PubMed/NCBI

28 

Huijgen HJ, Sanders GT, Koster RW, Vreeken J and Bossuyt PM: The clinical value of lactate dehydrogenase in serum: A quantitative review. Eur J Clin Chem Clin Biochem. 35:569–579. 1997.PubMed/NCBI

29 

Moser MA, Arcand S, Lin HB, Wojnarowicz C, Sawicka J, Banerjee T, Luo Y, Beck GR, Luke PP and Sawicki G: Protection of the transplant kidney from preservation injury by inhibition of matrix metalloproteinases. PLoS One. 11:e01575082016. View Article : Google Scholar : PubMed/NCBI

30 

Nagelschmidt M, Minor T, Gallinat A, Moers C, Jochmans I, Pirenne J, Ploeg RJ, Paul A and Treckmann J: Lipid peroxidation products in machine perfusion of older donor kidneys. J Surg Res. 180:337–342. 2013. View Article : Google Scholar

31 

de Vries B, Snoeijs MGJ, von Bonsdorff L, Ernest van Heurn LW, Parkkinen J and Buurman WA: Redox-active iron released during machine perfusion predicts viability of ischemically injured deceased donor kidneys. Am J Transplant. 6:2686–2693. 2006. View Article : Google Scholar : PubMed/NCBI

32 

Hoogland ER, de Vries EE, Christiaans MH, Winkens B, Snoeijs MG and van Heurn LW: The value of machine perfusion biomarker concentration in DCD kidney transplantations. Transplantation. 95:603–610. 2013. View Article : Google Scholar : PubMed/NCBI

33 

Moers C, Varnav OC, van Heurn E, Jochmans I, Kirste GR, Rahmel A, Leuvenink HG, Squifflet JP, Paul A, Pirenne J, et al: The value of machine perfusion perfusate biomarkers for predicting kidney transplant outcome. Transplantation. 90:966–973. 2010. View Article : Google Scholar : PubMed/NCBI

34 

Moser MAJ, Sawicka K, Arcand S, O'Brien P, Luke P, Beck G, Sawicka J, Cohen A and Sawicki G: Proteomic analysis of perfusate from machine cold perfusion of transplant kidneys: Insights into protection from injury. Ann Transplant. 22:730–739. 2017. View Article : Google Scholar : PubMed/NCBI

35 

Udomsinprasert R, Pongjaroenkit S, Wongsantichon J, Oakley AJ, Prapanthadara LA, Wilce MC and Ketterman AJ: Identification, characterization and structure of a new Delta class glutathione transferase isoenzyme. Biochem J. 388:763–771. 2005. View Article : Google Scholar : PubMed/NCBI

36 

Di Ilio C, Aceto A, Bucciarelli T, Angelucci S, Felaco M, Grilli A, Zezza A, Tenaglia R and Federici G: Glutathione transferase isoenzymes in normal and neoplastic human kidney tissue. Carcinogenesis. 12:1471–1475. 1991. View Article : Google Scholar : PubMed/NCBI

37 

Harrison DJ, Kharbanda R, Cunningham DS, McLellan LI and Hayes JD: Distribution of glutathione S-transferase isoenzymes in human kidney: Basis for possible markers of renal injury. J Clin Pathol. 42:624–628. 1989. View Article : Google Scholar : PubMed/NCBI

38 

Laborde E: Glutathione transferases as mediators of signaling pathways involved in cell proliferation and cell death. Cell Death Differ. 17:1373–1380. 2010. View Article : Google Scholar : PubMed/NCBI

39 

Hall IE, Bhangoo RS, Reese PP, Doshi MD, Weng FL, Hong K, Lin H, Han G, Hasz RD, Goldstein MJ, et al: Glutathione S-transferase iso-enzymes in perfusate from pumped kidneys are associated with delayed graft function. Am J Transplant. 14:886–896. 2014. View Article : Google Scholar : PubMed/NCBI

40 

Qiao Y, Ding C, Li Y, Tian X, Tian P, Ding X, Xiang H, Zheng J and Xue W: Predictive value of hypothermic machine perfusion parameters combined perfusate biomarkers in deceased donor kidney transplantation. Chin Med J (Engl). 135:181–186. 2021. View Article : Google Scholar : PubMed/NCBI

41 

Gok MA, Pelsers M, Glatz JFC, Bhatti AA, Shenton BK, Peaston R, Cornell C, Mantle D and Talbot D: Comparison of perfusate activities of glutathione S-transferase, alanine aminopeptidase and fatty acid binding protein in the assessment of non-heart-beating donor kidneys. Ann Clin Biochem. 40:252–258. 2003. View Article : Google Scholar : PubMed/NCBI

42 

van Smaalen TC, Beurskens DMH, Hoogland ERP, Winkens B, Christiaans MHL, Reutelingsperger CP, van Heurn LWE and Nicolaes GAF: Presence of cytotoxic extracellular histones in machine perfusate of donation after circulatory death kidneys. Transplantation. 101:e93–e101. 2017. View Article : Google Scholar

43 

Felsenfeld G and Groudine M: Controlling the double helix. Nature. 421:448–453. 2003. View Article : Google Scholar : PubMed/NCBI

44 

Silk E, Zhao H, Weng H and Ma D: The role of extracellular histone in organ injury. Cell Death Dis. 8:e28122017. View Article : Google Scholar : PubMed/NCBI

45 

Wickman GR, Julian L, Mardilovich K, Schumacher S, Munro J, Rath N, Zander SA, Mleczak A, Sumpton D, Morrice N, et al: Blebs produced by actin-myosin contraction during apoptosis release damage-associated molecular pattern proteins before secondary necrosis occurs. Cell Death Differ. 20:1293–1305. 2013. View Article : Google Scholar : PubMed/NCBI

46 

van Smaalen TC, Beurskens DMH, Kox JJHFM, Polonia R, Vos R, Duimel H, van de Wetering WJ, López-Iglesias C, Reutelingsperger CP, Ernest van Heurn LW, et al: Extracellular histone release by renal cells after warm and cold ischemic kidney injury: Studies in an ex-vivo porcine kidney perfusion model. PLoS One. 18:e02799442023. View Article : Google Scholar : PubMed/NCBI

47 

Campos EI and Reinberg D: Histones: Annotating chromatin. Annu Rev Genet. 43:559–599. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Strahl BD and Allis CD: The language of covalent histone modifications. Nature. 403:41–45. 2000. View Article : Google Scholar : PubMed/NCBI

49 

Kono H and Rock KL: How dying cells alert the immune system to danger. Nat Rev Immunol. 8:279–289. 2008. View Article : Google Scholar : PubMed/NCBI

50 

Li B, Hao J, Zeng J and Sauter ER: SnapShot: FABP functions. Cell. 182:1066–1066.e1. 2020. View Article : Google Scholar : PubMed/NCBI

51 

Zager RA, Johnson ACM and Hanson SY: Renal tubular triglyercide accumulation following endotoxic, toxic, and ischemic injury. Kidney Int. 67:111–121. 2005. View Article : Google Scholar

52 

Bobulescu IA: Renal lipid metabolism and lipotoxicity. Curr Opin Nephrol Hypertens. 19:393–402. 2010. View Article : Google Scholar : PubMed/NCBI

53 

Storch J and Thumser AE: The fatty acid transport function of fatty acid-binding proteins. Biochim Biophys Acta. 1486:28–44. 2000. View Article : Google Scholar : PubMed/NCBI

54 

Pelsers MMAL: Fatty acid-binding protein as marker for renal injury. Scand J Clin Lab Invest Suppl. 241:73–77. 2008. View Article : Google Scholar : PubMed/NCBI

55 

Yamamoto T, Noiri E, Ono Y, Doi K, Negishi K, Kamijo A, Kimura K, Fujita T, Kinukawa T, Taniguchi H, et al: Renal L-type fatty acid-binding protein in acute ischemic injury. J Am Soc Nephrol. 18:2894–2902. 2007. View Article : Google Scholar : PubMed/NCBI

56 

Parikh CR, Hall IE, Bhangoo RS, Ficek J, Abt PL, Thiessen-Philbrook H, Lin H, Bimali M, Murray PT, Rao V, et al: Associations of perfusate biomarkers and pump parameters with delayed graft function and deceased donor kidney allograft function. Am J Transplant. 16:1526–1539. 2016. View Article : Google Scholar :

57 

Sun Z, Gao Z, Li X, Zheng X, Wang W and Qiao P: Perfusate neutrophil gelatinase-associated lipocalin, kidney injury molecular-1, liver-type fatty acid binding protein, and interleukin-18 as potential biomarkers to predict delayed graft function and long-term prognosis in kidney transplant recipients: A single-center retrospective study. Med Sci Monit. 29:e9387582023. View Article : Google Scholar

58 

Borregaard N and Cowland JB: Granules of the human neutrophilic polymorphonuclear leukocyte. Blood. 89:3503–3521. 1997. View Article : Google Scholar : PubMed/NCBI

59 

Flo TH, Smith KD, Sato S, Rodriguez DJ, Holmes MA, Strong RK, Akira S and Aderem A: Lipocalin 2 mediates an innate immune response to bacterial infection by sequestrating iron. Nature. 432:917–921. 2004. View Article : Google Scholar : PubMed/NCBI

60 

Yang J, Goetz D, Li JY, Wang W, Mori K, Setlik D, Du T, Erdjument-Bromage H, Tempst P, Strong R and Barasch J: An iron delivery pathway mediated by a lipocalin. Mol Cell. 10:1045–1056. 2002. View Article : Google Scholar : PubMed/NCBI

61 

Cowland JB, Sørensen OE, Sehested M and Borregaard N: Neutrophil gelatinase-associated lipocalin is up-regulated in human epithelial cells by IL-1 beta, but not by TNF-alpha. J Immunol. 171:6630–6639. 2003. View Article : Google Scholar : PubMed/NCBI

62 

Mishra J, Ma Q, Prada A, Mitsnefes M, Zahedi K, Yang J, Barasch J and Devarajan P: Identification of neutrophil gelatinase-associated lipocalin as a novel early urinary biomarker for ischemic renal injury. J Am Soc Nephrol. 14:2534–2543. 2003. View Article : Google Scholar : PubMed/NCBI

63 

Mishra J, Mori K, Ma Q, Kelly C, Barasch J and Devarajan P: Neutrophil gelatinase-associated lipocalin: A novel early urinary biomarker for cisplatin nephrotoxicity. Am J Nephrol. 24:307–315. 2004. View Article : Google Scholar : PubMed/NCBI

64 

Weissenbacher A, Stone JP, Lo Faro ML, Hunter JP, Ploeg RJ, Coussios CC, Fildes JE and Friend PJ: Hemodynamics and metabolic parameters in normothermic kidney preservation are linked with donor factors, perfusate cells, and cytokines. Front Med (Lausanne). 8:8010982022. View Article : Google Scholar : PubMed/NCBI

65 

Cai L, Rubin J, Han W, Venge P and Xu S: The origin of multiple molecular forms in urine of HNL/NGAL. Clin J Am Soc Nephrol. 5:2229–2235. 2010. View Article : Google Scholar : PubMed/NCBI

66 

Rosell A and Lo EH: Multiphasic roles for matrix metalloproteinases after stroke. Curr Opin Pharmacol. 8:82–89. 2008. View Article : Google Scholar : PubMed/NCBI

67 

Soccal PM, Gasche Y, Miniati DN, Hoyt G, Berry GJ, Doyle RL, Theodore J and Robbins RC: Matrix metalloproteinase inhibition decreases ischemia-reperfusion injury after lung transplantation. Am J Transplant. 4:41–50. 2004. View Article : Google Scholar

68 

Viappiani S, Sariahmetoglu M and Schulz R: The role of matrix metalloproteinase inhibitors in ischemia-reperfusion injury in the liver. Curr Pharm Des. 12:2923–2934. 2006. View Article : Google Scholar : PubMed/NCBI

69 

Nagase H, Visse R and Murphy G: Structure and function of matrix metalloproteinases and TIMPs. Cardiovasc Res. 69:562–573. 2006. View Article : Google Scholar : PubMed/NCBI

70 

Chow AK, Cena J and Schulz R: Acute actions and novel targets of matrix metalloproteinases in the heart and vasculature. Br J Pharmacol. 152:189–205. 2007. View Article : Google Scholar : PubMed/NCBI

71 

Roach DM, Fitridge RA, Laws PE, Millard SH, Varelias A and Cowled PA: Up-regulation of MMP-2 and MMP-9 leads to degradation of type IV collagen during skeletal muscle reperfusion injury; protection by the MMP inhibitor, doxycycline. Eur J Vasc Endovasc Surg. 23:260–269. 2002. View Article : Google Scholar : PubMed/NCBI

72 

Mathalone N, Lahat N, Rahat MA, Bahar-Shany K, Oron Y and Geyer O: The involvement of matrix metalloproteinases 2 and 9 in rat retinal ischemia. Graefes Arch Clin Exp Ophthalmol. 245:725–732. 2007. View Article : Google Scholar

73 

Cavdar Z, Ural C, Celik A, Arslan S, Terzioglu G, Ozbal S, Yildiz S, Ergur UB, Guneli E, Camsari T, et al: Protective effects of taurine against renal ischemia/reperfusion injury in rats by inhibition of gelatinases, MMP-2 and MMP-9, and p38 mitogen-activated protein kinase signaling. Biotech Histochem. 92:524–535. 2017. View Article : Google Scholar : PubMed/NCBI

74 

Zhao H, Dong Y, Tian X, Tan TK, Liu Z, Zhao Y, Zhang Y, Harris DCh and Zheng G: Matrix metalloproteinases contribute to kidney fibrosis in chronic kidney diseases. World J Nephrol. 2:84–89. 2013. View Article : Google Scholar : PubMed/NCBI

75 

Cavdar Z, Ozbal S, Celik A, Ergur BU, Guneli E, Ural C, Camsari T and Guner GA: The effects of alpha-lipoic acid on MMP-2 and MMP-9 activities in a rat renal ischemia and re-perfusion model. Biotech Histochem. 89:304–314. 2014. View Article : Google Scholar

76 

Kunugi S, Shimizu A, Kuwahara N, Du X, Takahashi M, Terasaki Y, Fujita E, Mii A, Nagasaka S, Akimoto T, et al: Inhibition of matrix metalloproteinases reduces ischemia-reperfusion acute kidney injury. Lab Invest. 91:170–180. 2011. View Article : Google Scholar

77 

Han WK, Waikar SS, Johnson A, Betensky RA, Dent CL, Devarajan P and Bonventre JV: Urinary biomarkers in the early diagnosis of acute kidney injury. Kidney Int. 73:863–869. 2008. View Article : Google Scholar

78 

Nagase H: Activation mechanisms of matrix metalloproteinases. Biol Chem. 378:151–160. 1997.PubMed/NCBI

79 

Visse R and Nagase H: Matrix metalloproteinases and tissue inhibitors of metalloproteinases: Structure, function, and biochemistry. Circ Res. 92:827–839. 2003. View Article : Google Scholar : PubMed/NCBI

80 

Nagase H and Woessner JF Jr: Matrix metalloproteinases. J Biol Chem. 274:21491–21494. 1999. View Article : Google Scholar : PubMed/NCBI

81 

Carmeliet P, Moons L, Lijnen R, Baes M, Lemaître V, Tipping P, Drew A, Eeckhout Y, Shapiro S, Lupu F and Collen D: Urokinase-generated plasmin activates matrix metalloproteinases during aneurysm formation. Nat Genet. 17:439–444. 1997. View Article : Google Scholar : PubMed/NCBI

82 

Mazzieri R, Masiero L, Zanetta L, Monea S, Onisto M, Garbisa S and Mignatti P: Control of type IV collagenase activity by components of the urokinase-plasmin system: A regulatory mechanism with cell-bound reactants. EMBO J. 16:2319–2332. 1997. View Article : Google Scholar : PubMed/NCBI

83 

Emonard HP, Remacle AG, Noël AC, Grimaud JA, Stetler-Stevenson WG and Foidart JM: Tumor cell surface-associated binding site for the M(r) 72,000 type IV collagenase. Cancer Res. 52:5845–5848. 1992.PubMed/NCBI

84 

Monsky WL, Kelly T, Lin CY, Yeh Y, Stetler-Stevenson WG, Mueller SC and Chen WT: Binding and localization of M(r) 72,000 matrix metalloproteinase at cell surface invadopodia. Cancer Res. 53:3159–3164. 1993.PubMed/NCBI

85 

Aimes RT and Quigley JP: Matrix metalloproteinase-2 is an interstitial collagenase. Inhibitor-free enzyme catalyzes the cleavage of collagen fibrils and soluble native type I collagen generating the specific 3/4- and 1/4-length fragments. J Biol Chem. 270:5872–5876. 1995. View Article : Google Scholar : PubMed/NCBI

86 

Yabluchanskiy A, Ma Y, Iyer RP, Hall ME and Lindsey ML: Matrix metalloproteinase-9: Many shades of function in cardiovascular disease. Physiology (Bethesda). 28:391–403. 2013.PubMed/NCBI

87 

Fu Z, Ye Q, Zhang Y, Zhong Z, Xiong Y, Wang Y, Hu L, Wang W, Huang W and Ko DS: Hypothermic machine perfusion reduced inflammatory reaction by downregulating the expression of matrix metalloproteinase 9 in a reperfusion model of donation after cardiac death. Artif Organs. 40:E102–E111. 2016. View Article : Google Scholar : PubMed/NCBI

88 

Sulikowski T, Domanski L, Zietek Z, Adler G, Pawlik A, Ciechanowicz A, Ciechanowski K and Ostrowski M: Effect of preservation solutions UW and EC on the expression of matrix metalloproteinase II and tissue inhibitor of metalloproteinase II genes in rat kidney. Postepy Hig Med Dosw (Online). 66:45–50. 2012.PubMed/NCBI

89 

Ichimura T, Bonventre JV, Bailly V, Wei H, Hession CA, Cate RL and Sanicola M: Kidney injury molecule-1 (KIM-1), a putative epithelial cell adhesion molecule containing a novel immunoglobulin domain, is up-regulated in renal cells after injury. J Biol Chem. 273:4135–4142. 1998. View Article : Google Scholar : PubMed/NCBI

90 

Khan KNM, Hard GC and Alden CL: Chapter 47-Kidney. Haschek and Rousseaux's Handbook of Toxicologic Pathology. 3rd. Haschek WM, Rousseaux CG and Wallig MA: Academic Press; Boston: pp. 1667–1773. 2013, View Article : Google Scholar

91 

van Timmeren MM, van den Heuvel MC, Bailly V, Bakker SJL, van Goor H and Stegeman CA: Tubular kidney injury molecule-1 (KIM-1) in human renal disease. J Pathol. 212:209–217. 2007. View Article : Google Scholar : PubMed/NCBI

92 

Amin RP, Vickers AE, Sistare F, Thompson KL, Roman RJ, Lawton M, Kramer J, Hamadeh HK, Collins J, Grissom S, et al: Identification of putative gene based markers of renal toxicity. Environ Health Perspect. 112:465–479. 2004. View Article : Google Scholar : PubMed/NCBI

93 

Griffin BR, You Z, Noureddine L, Gitomer B, Perrenoud L, Wang W, Chonchol M and Jalal D; HALT Investigators: KIM-1 and kidney disease progression in autosomal dominant polycystic kidney disease: HALT-PKD results. Am J Nephrol. 51:473–479. 2020. View Article : Google Scholar : PubMed/NCBI

94 

Han WK, Alinani A, Wu CL, Michaelson D, Loda M, McGovern FJ, Thadhani R and Bonventre JV: Human kidney injury molecule-1 is a tissue and urinary tumor marker of renal cell carcinoma. J Am Soc Nephrol. 16:1126–1134. 2005. View Article : Google Scholar : PubMed/NCBI

95 

Bonventre JV: Kidney injury molecule-1 (KIM-1): A urinary biomarker and much more. Nephrol Dial Transplant. 24:3265–3268. 2009. View Article : Google Scholar : PubMed/NCBI

96 

Ichimura T, Asseldonk EJPV, Humphreys BD, Gunaratnam L, Duffield JS and Bonventre JV: Kidney injury molecule-1 is a phosphatidylserine receptor that confers a phagocytic phenotype on epithelial cells. J Clin Invest. 118:1657–1668. 2008. View Article : Google Scholar : PubMed/NCBI

97 

Kaplanski G: Interleukin-18: Biological properties and role in disease pathogenesis. Immunol Rev. 281:138–153. 2018. View Article : Google Scholar

98 

Ghayur T, Banerjee S, Hugunin M, Butler D, Herzog L, Carter A, Quintal L, Sekut L, Talanian R, Paskind M, et al: Caspase-1 processes IFN-gamma-inducing factor and regulates LPS-induced IFN-gamma production. Nature. 386:619–623. 1997. View Article : Google Scholar : PubMed/NCBI

99 

Sugawara S, Uehara A, Nochi T, Yamaguchi T, Ueda H, Sugiyama A, Hanzawa K, Kumagai K, Okamura H and Takada H: Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. J Immunol. 167:6568–6575. 2001. View Article : Google Scholar : PubMed/NCBI

100 

Ihim SA, Abubakar SD, Zian Z, Sasaki T, Saffarioun M, Maleknia S and Azizi G: Interleukin-18 cytokine in immunity, inflammation, and autoimmunity: Biological role in induction, regulation, and treatment. Front Immunol. 13:9199732022. View Article : Google Scholar : PubMed/NCBI

101 

Banerjee S and Bond JS: Prointerleukin-18 is activated by meprin beta in vitro and in vivo in intestinal inflammation. J Biol Chem. 283:31371–31377. 2008. View Article : Google Scholar : PubMed/NCBI

102 

Okamura H, Tsutsui H, Kashiwamura S, Yoshimoto T and Nakanishi K: Interleukin-18: A novel cytokine that augments both innate and acquired immunity. Adv Immunol. 70:281–312. 1998. View Article : Google Scholar : PubMed/NCBI

103 

Tsutsui H, Nakanishi K, Matsui K, Higashino K, Okamura H, Miyazawa Y and Kaneda K: IFN-gamma-inducing factor up-regulates Fas ligand-mediated cytotoxic activity of murine natural killer cell clones. J Immunol. 157:3967–3973. 1996. View Article : Google Scholar : PubMed/NCBI

104 

Li P, Li YL, Li ZY, Wu YN, Zhang CC, A X, Wang CX, Shi HT, Hui MZ, Xie B, et al: Cross talk between vascular smooth muscle cells and monocytes through interleukin-1β/interleukin-18 signaling promotes vein graft thickening. Arterioscler Thromb Vasc Biol. 34:2001–2011. 2014. View Article : Google Scholar : PubMed/NCBI

105 

Hoshino T, Wiltrout RH and Young HA: IL-18 is a potent coinducer of IL-13 in NK and T cells: A new potential role for IL-18 in modulating the immune response. J Immunol. 162:5070–5077. 1999. View Article : Google Scholar : PubMed/NCBI

106 

Yoshimoto T, Mizutani H, Tsutsui H, Noben-Trauth N, Yamanaka K, Tanaka M, Izumi S, Okamura H, Paul WE and Nakanishi K: IL-18 induction of IgE: Dependence on CD4+ T cells, IL-4 and STAT6. Nat Immunol. 1:132–137. 2000. View Article : Google Scholar

107 

Yoshimoto T, Tsutsui H, Tominaga K, Hoshino K, Okamura H, Akira S, Paul WE and Nakanishi K: IL-18, although antiallergic when administered with IL-12, stimulates IL-4 and histamine release by basophils. Proc Natl Acad Sci USA. 96:13962–13966. 1999. View Article : Google Scholar : PubMed/NCBI

108 

Doshi MD, Reese PP, Hall IE, Schröppel B, Ficek J, Formica RN, Weng FL, Hasz RD, Thiessen-Philbrook H and Parikh CR: Utility of applying quality assessment tools for kidneys with KDPI ≥80. Transplantation. 101:1125–1133. 2017. View Article : Google Scholar

109 

Issaq H and Veenstra T: Two-dimensional polyacrylamide gel electrophoresis (2D-PAGE): Advances and perspectives. Biotechniques. 44:697–698. 7002008. View Article : Google Scholar : PubMed/NCBI

110 

Smith BJ: SDS polyacrylamide gel electrophoresis of proteins. Methods Mol Biol. 32:23–34. 1994.PubMed/NCBI

111 

Kielkopf CL, Bauer W and Urbatsch IL: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins. Cold Spring Harb Protoc. 20212021.

112 

Pitt JJ: Principles and applications of liquid chromatography-mass spectrometry in clinical biochemistry. Clin Biochem Rev. 30:19–34. 2009.PubMed/NCBI

113 

Aslam B, Basit M, Nisar MA, Khurshid M and Rasool MH: Proteomics: Technologies and their applications. J Chromatogr Sci. 55:182–196. 2017. View Article : Google Scholar : PubMed/NCBI

114 

Li C, Chu S, Tan S, Yin X, Jiang Y, Dai X, Gong X, Fang X and Tian D: Towards higher sensitivity of mass spectrometry: A perspective from the mass analyzers. Front Chem. 9:8133592021. View Article : Google Scholar

115 

Wieser A, Schneider L, Jung J and Schubert S: MALDI-TOF MS in microbiological diagnostics-identification of microorganisms and beyond (mini review). Appl Microbiol Biotechnol. 93:965–974. 2012. View Article : Google Scholar

116 

van Leeuwen LL, Spraakman NA, Brat A, Huang H, Thorne AM, Bonham S, van Balkom BWM, Ploeg RJ, Kessler BM and Leuvenink HGD: Proteomic analysis of machine perfusion solution from brain dead donor kidneys reveals that elevated complement, cytoskeleton and lipid metabolism proteins are associated with 1-year outcome. Transpl Int. 34:1618–1629. 2021. View Article : Google Scholar : PubMed/NCBI

117 

Mulvey JF, Ul Shaheed S, Charles PD, Snashall C, Lo Faro ML, Sutton CW, Jochmans I, Pirenne J, van Kooten C, Leuvenink HGD, et al: Perfusate proteomes provide biological insight into oxygenated versus standard hypothermic machine perfusion in kidney transplantation. Ann Surg. 278:676–682. 2023.PubMed/NCBI

118 

Karpman D, Bekassy Z, Grunenwald A and Roumenina LT: A role for complement blockade in kidney transplantation. Cell Mol Immunol. 19:755–757. 2022. View Article : Google Scholar : PubMed/NCBI

119 

Yamanaka K, Kakuta Y, Miyagawa S, Nakazawa S, Kato T, Abe T, Imamura R, Okumi M, Maeda A, Okuyama H, et al: Depression of complement regulatory factors in rat and human renal grafts is associated with the progress of acute T-cell mediated rejection. PLoS One. 11:e01488812016. View Article : Google Scholar : PubMed/NCBI

120 

De Vries B, Matthijsen RA, Wolfs TGAM, Van Bijnen AAJHM, Heeringa P and Buurman WA: Inhibition of complement factor C5 protects against renal ischemia-reperfusion injury: Inhibition of late apoptosis and inflammation. Transplantation. 75:375–382. 2003. View Article : Google Scholar : PubMed/NCBI

121 

Biglarnia AR, Huber-Lang M, Mohlin C, Ekdahl KN and Nilsson B: The multifaceted role of complement in kidney transplantation. Nat Rev Nephrol. 14:767–781. 2018. View Article : Google Scholar : PubMed/NCBI

122 

Zhang R: Donor-specific antibodies in kidney transplant recipients. Clin J Am Soc Nephrol. 13:182–192. 2018. View Article : Google Scholar :

123 

Nauser CL, Farrar CA and Sacks SH: Complement recognition pathways in renal transplantation. J Am Soc Nephrol. 28:2571–2578. 2017. View Article : Google Scholar : PubMed/NCBI

124 

Sato T, Van Dixhoorn MG, Prins FA, Mooney A, Verhagen N, Muizert Y, Savill J, Van Es LA and Daha MR: The terminal sequence of complement plays an essential role in antibody-mediated renal cell apoptosis. J Am Soc Nephrol. 10:1242–1252. 1999. View Article : Google Scholar : PubMed/NCBI

125 

Shimizu A, Masuda Y, Kitamura H, Ishizaki M, Ohashi R, Sugisaki Y and Yamanaka N: Complement-mediated killing of mesangial cells in experimental glomerulonephritis: Cell death by a combination of apoptosis and necrosis. Nephron. 86:152–160. 2000. View Article : Google Scholar : PubMed/NCBI

126 

Zhou W, Farrar CA, Abe K, Pratt JR, Marsh JE, Wang Y, Stahl GL and Sacks SH: Predominant role for C5b-9 in renal ischemia/reperfusion injury. J Clin Invest. 105:1363–1371. 2000. View Article : Google Scholar : PubMed/NCBI

127 

Jane-wit D, Surovtseva YV, Qin L, Li G, Liu R, Clark P, Manes TD, Wang C, Kashgarian M, Kirkiles-Smith NC, et al: Complement membrane attack complexes activate noncanonical NF-κB by forming an Akt+ NIK+ signalosome on Rab5+ endosomes. Proc Natl Acad Sci USA. 112:9686–9691. 2015. View Article : Google Scholar

128 

Jager NM, Venema LH, Arykbaeva AS, Meter-Arkema AH, Ottens PJ, van Kooten C, Mollnes TE, Alwayn IPJ, Leuvenink HGD and Pischke SE; PROPER study consortium: Complement is activated during normothermic machine perfusion of porcine and human discarded kidneys. Front Immunol. 13:8313712022. View Article : Google Scholar : PubMed/NCBI

129 

Coskun A, Baykal AT, Kazan D, Akgoz M, Senal MO, Berber I, Titiz I, Bilsel G, Kilercik H, Karaosmanoglu K, et al: Proteomic analysis of kidney preservation solutions prior to renal transplantation. PLoS One. 11:e01687552016. View Article : Google Scholar : PubMed/NCBI

130 

Nieuwenhuijs-Moeke GJ, Pischke SE, Berger SP, Sanders JSF, Pol RA, Struys MMRF, Ploeg RJ and Leuvenink HGD: Ischemia and reperfusion injury in kidney transplantation: Relevant mechanisms in injury and repair. J Clin Med. 9:2532020. View Article : Google Scholar : PubMed/NCBI

131 

Kako K, Kato M, Matsuoka T and Mustapha A: Depression of membrane-bound Na+-K+-ATPase activity induced by free radicals and by ischemia of kidney. Am J Physiol. 254:C330–C337. 1988. View Article : Google Scholar : PubMed/NCBI

132 

Salvadori M, Rosso G and Bertoni E: Update on ischemia-reperfusion injury in kidney transplantation: Pathogenesis and treatment. World J Transplant. 5:52–67. 2015. View Article : Google Scholar : PubMed/NCBI

133 

Molitoris BA, Dahl R and Geerdes A: Cytoskeleton disruption and apical redistribution of proximal tubule Na(+)-K(+)-ATPase during ischemia. Am J Physiol. 263:F488–F495. 1992.PubMed/NCBI

134 

Caron A, Desrosiers RR and Béliveau R: Kidney ischemia-reperfusion regulates expression and distribution of tubulin subunits, beta-actin and rho GTPases in proximal tubules. Arch Biochem Biophys. 431:31–46. 2004. View Article : Google Scholar : PubMed/NCBI

135 

Genescà M, Sola A and Hotter G: Actin cytoskeleton derangement induces apoptosis in renal ischemia/reperfusion. Apoptosis. 11:563–571. 2006. View Article : Google Scholar : PubMed/NCBI

136 

Sanz AB, Sanchez-Niño MD, Ramos AM and Ortiz A: Regulated cell death pathways in kidney disease. Nat Rev Nephrol. 19:281–299. 2023. View Article : Google Scholar : PubMed/NCBI

137 

Garrod D and Chidgey M: Desmosome structure, composition and function. Biochim Biophys Acta. 1778:572–587. 2008. View Article : Google Scholar

138 

Chen CS and Zhu H: Protein microarrays. Biotechniques. 40:423–425, 427 passim. 2006. View Article : Google Scholar : PubMed/NCBI

139 

Uttamchandani M, Neo JL, Ong BNZ and Moochhala S: Applications of microarrays in pathogen detection and biodefence. Trends Biotechnol. 27:53–61. 2009. View Article : Google Scholar

140 

Shome M and Labaer J: Protein microarrays and their fabrication. Methods Mol Biol. 2597:131–142. 2023. View Article : Google Scholar

141 

Baboudjian M, Gondran-Tellier B, Boissier R, Ancel P, Marjollet J, Lyonnet L, François P, Sabatier F, Lechevallier E, Dutour A and Paul P: An enhanced level of VCAM in transplant preservation fluid is an independent predictor of early kidney allograft dysfunction. Front Immunol. 13:9669512022. View Article : Google Scholar : PubMed/NCBI

142 

Gok MA, Pelzers M, Glatz JFC, Shenton BK, Buckley PE, Peaston R, Cornell C, Mantle D, Soomro N, Jaques BC, et al: Do tissue damage biomarkers used to assess machine-perfused NHBD kidneys predict long-term renal function post-transplant? Clin Chim Acta. 338:33–43. 2003. View Article : Google Scholar : PubMed/NCBI

143 

Balupuri S, Talbot D, El-Sheikh M, Snowden C, Manas DM, Kirby J and Mantle D: Comparison of proteolytic enzymes and glutathione S-transferase levels in non-heart-beating donors' (NHBD) kidney perfusates. Clin Chem Lab Med. 38:1099–1102. 2000. View Article : Google Scholar

144 

Tejchman K, Sierocka A, Kotfis K, Kotowski M, Dolegowska B, Ostrowski M and Sienko J: Assessment of oxidative stress markers in hypothermic preservation of transplanted kidneys. Antioxidants (Basel). 10:12632021. View Article : Google Scholar : PubMed/NCBI

145 

Cohen J, Ratigan E, Shigeoka A, Steiner R, Stocks L and McKay D: Inflammatory profiling of hypothermic machine pumped kidney allografts. Am J Transplant. 15(Suppl 3): C2732015.

146 

Maritan E, Franchin M, Amico F, Ietto G, Villa F, Tozzi M, Ferraro S, Negri S, Alberio MG and Carcano G: Ischemia and reperfusion injury markers in kidney transplant: Mechanical perfusion vs cold storage. Preliminary experience: 536. Transplantation. 94(10S): S11592012. View Article : Google Scholar

147 

Boenink R, Astley ME, Huijben JA, Stel VS, Kerschbaum J, Ots-Rosenberg M, Åsberg AA, Lopot F, Golan E, Castro de la Nuez P, et al: The ERA registry annual report 2019: Summary and age comparisons. Clin Kidney J. 15:452–472. 2021. View Article : Google Scholar

148 

Aubert O, Kamar N, Vernerey D, Viglietti D, Martinez F, Duong-Van-Huyen JP, Eladari D, Empana JP, Rabant M, Verine J, et al: Long term outcomes of transplantation using kidneys from expanded criteria donors: Prospective, population based cohort study. BMJ. 351:h35572015. View Article : Google Scholar : PubMed/NCBI

149 

Tomita Y, Tojimbara T, Iwadoh K, Nakajima I and Fuchinoue S: Long-term outcomes in kidney transplantation from expanded-criteria donors after circulatory death. Transplant Proc. 49:45–48. 2017. View Article : Google Scholar : PubMed/NCBI

150 

Borda B, Németh T, Ottlakan A, Keresztes C, Kemény É and Lázár G: Post-transplantation morphological and functional changes in kidneys from expanded criteria donors. Physiol Int. 104:329–333. 2017. View Article : Google Scholar : PubMed/NCBI

151 

Tingle SJ, Figueiredo RS, Moir JA, Goodfellow M, Talbot D and Wilson CH: Machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev. 3:CD0116712019.PubMed/NCBI

152 

Tingle SJ, Thompson ER, Figueiredo RS, Moir JA, Goodfellow M, Talbot D and Wilson CH: Normothermic and hypothermic machine perfusion preservation versus static cold storage for deceased donor kidney transplantation. Cochrane Database Syst Rev. 7:CD0116712024.PubMed/NCBI

153 

Helanterä I, Ibrahim HN, Lempinen M and Finne P: Donor age, cold ischemia time, and delayed graft function. Clin J Am Soc Nephrol. 15:813–821. 2020. View Article : Google Scholar : PubMed/NCBI

154 

Heilman RL, Mathur A, Smith ML, Kaplan B and Reddy KS: Increasing the use of kidneys from unconventional and high-risk deceased donors. Am J Transplant. 16:3086–3092. 2016. View Article : Google Scholar : PubMed/NCBI

155 

Tasaki M, Saito K, Nakagawa Y, Ikeda M, Imai N, Narita I and Takahashi K: Effect of donor-recipient age difference on long-term graft survival in living kidney transplantation. Int Urol Nephrol. 46:1441–1446. 2014. View Article : Google Scholar : PubMed/NCBI

156 

Lim K, Lee YJ, Gwon JG, Jung CW, Yang J, Oh SW, Jo SK, Cho WY and Kim MG: Impact of donor age on the outcomes of kidney transplantation from deceased donors with histologic acute kidney injury. Transplant Proc. 51:2593–2597. 2019. View Article : Google Scholar : PubMed/NCBI

157 

Scurt FG, Ernst A, Hammoud B, Wassermann T, Mertens PR, Schwarz A, Becker JU and Chatzikyrkou C: Effect of creatinine metrics on outcome after transplantation of marginal donor kidneys. Nephrology (Carlton). 27:973–982. 2022. View Article : Google Scholar : PubMed/NCBI

158 

Irish GL, Coates PT and Clayton PA: Association of admission, nadir, and terminal donor creatinine with kidney transplantation outcomes. Kidney Int Rep. 6:2075–2083. 2021. View Article : Google Scholar : PubMed/NCBI

159 

Perico N, Cattaneo D, Sayegh MH and Remuzzi G: Delayed graft function in kidney transplantation. Lancet. 364:1814–1827. 2004. View Article : Google Scholar : PubMed/NCBI

160 

Lai C, Yee SY, Ying T and Chadban S: Biomarkers as diagnostic tests for delayed graft function in kidney transplantation. Transpl Int. 34:2431–2441. 2021. View Article : Google Scholar : PubMed/NCBI

161 

Siedlecki A, Irish W and Brennan DC: Delayed graft function in the kidney transplant. Am J Transplant. 11:2279–2296. 2011. View Article : Google Scholar : PubMed/NCBI

162 

Schrezenmeier E, Müller M, Friedersdorff F, Khadzhynov D, Halleck F, Staeck O, Dürr M, Zhang K, Eckardt KU, Budde K and Lehner LJ: Evaluation of severity of delayed graft function in kidney transplant recipients. Nephrol Dial Transplant. 37:973–981. 2022. View Article : Google Scholar

163 

Parsons FM: Haemodialysis; indications and results. Postgrad Med J. 35:625–630, passim. 1959. View Article : Google Scholar : PubMed/NCBI

164 

Clark JE and Soricelli RR: Indications for dialysis. Med Clin North Am. 49:1213–1239. 1965. View Article : Google Scholar : PubMed/NCBI

165 

Hosgood SA, Callaghan CJ, Wilson CH, Smith L, Mullings J, Mehew J, Oniscu GC, Phillips BL, Bates L and Nicholson ML: Normothermic machine perfusion versus static cold storage in donation after circulatory death kidney transplantation: A randomized controlled trial. Nat Med. 29:1511–1519. 2023. View Article : Google Scholar : PubMed/NCBI

166 

Brat A, de Vries KM, van Heurn EWE, Huurman VAL, de Jongh W, Leuvenink HGD, van Zuilen AD, Haase-Kromwijk BJJM, de Jonge J, Berger SP and Hofker SH: Hypothermic machine perfusion as a national standard preservation method for deceased donor kidneys. Transplantation. 106:1043–1050. 2022. View Article : Google Scholar :

167 

Rijkse E, Bouari S, Kimenai HJAN, de Jonge J, de Bruin RWF, Slagter JS, van den Hoogen MWF, Ijzermans JNM, Hoogduijn MJ and Minnee RC: Additional Normothermic machine perfusion versus hypothermic machine perfusion in suboptimal donor kidney transplantation: Protocol of a randomized, controlled, open-label trial. Int J Surg Protoc. 25:227–237. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Baryła M, Skrzycki M, Danielewicz R, Kosieradzki M and Struga M: Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). Int J Mol Med 54: 107, 2024.
APA
Baryła, M., Skrzycki, M., Danielewicz, R., Kosieradzki, M., & Struga, M. (2024). Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). International Journal of Molecular Medicine, 54, 107. https://doi.org/10.3892/ijmm.2024.5431
MLA
Baryła, M., Skrzycki, M., Danielewicz, R., Kosieradzki, M., Struga, M."Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review)". International Journal of Molecular Medicine 54.6 (2024): 107.
Chicago
Baryła, M., Skrzycki, M., Danielewicz, R., Kosieradzki, M., Struga, M."Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review)". International Journal of Molecular Medicine 54, no. 6 (2024): 107. https://doi.org/10.3892/ijmm.2024.5431
Copy and paste a formatted citation
x
Spandidos Publications style
Baryła M, Skrzycki M, Danielewicz R, Kosieradzki M and Struga M: Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). Int J Mol Med 54: 107, 2024.
APA
Baryła, M., Skrzycki, M., Danielewicz, R., Kosieradzki, M., & Struga, M. (2024). Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review). International Journal of Molecular Medicine, 54, 107. https://doi.org/10.3892/ijmm.2024.5431
MLA
Baryła, M., Skrzycki, M., Danielewicz, R., Kosieradzki, M., Struga, M."Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review)". International Journal of Molecular Medicine 54.6 (2024): 107.
Chicago
Baryła, M., Skrzycki, M., Danielewicz, R., Kosieradzki, M., Struga, M."Protein biomarkers in assessing kidney quality before transplantation‑current status and future perspectives (Review)". International Journal of Molecular Medicine 54, no. 6 (2024): 107. https://doi.org/10.3892/ijmm.2024.5431
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team