|
1
|
De Duve C and Wattiaux R: Functions of
lysosomes. Annu Rev Physiol. 28:435–492. 1966. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Kaushik S and Cuervo AM: The coming of age
of chaperone-mediated autophagy. Nat Rev Mol Cell Biol. 19:365–381.
2018. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Glick D, Barth S and Macleod KF:
Autophagy: Cellular and molecular mechanisms. J Pathol. 221:3–12.
2010. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Xie Z and Klionsky DJ: Autophagosome
formation: Core machinery and adaptations. Nat Cell Biol.
9:1102–1109. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Saka HA, Gutiérrez MG, Bocco JL and
Colombo MI: The autophagic pathway: A cell survival strategy
against the bacterial pore-forming toxin Vibrio cholerae cytolysin.
Autophagy. 3:363–365. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Dowdle WE, Nyfeler B, Nagel J, Elling RA,
Liu S, Triantafellow E, Menon S, Wang Z, Honda A, Pardee G, et al:
Selective VPS34 inhibitor blocks autophagy and uncovers a role for
NCOA4 in ferritin degradation and iron homeostasis in vivo. Nat
Cell Biol. 16:1069–1079. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Yao R and Shen J: Chaperone-mediated
autophagy: Molecular mechanisms, biological functions, and
diseases. MedComm (2020). 4:e3472023. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Wang L, Klionsky DJ and Shen HM: The
emerging mechanisms and functions of microautophagy. Nat Rev Mol
Cell Bio. 24:186–203. 2023. View Article : Google Scholar
|
|
9
|
Levine B and Kroemer G: Autophagy in the
pathogenesis of disease. Cell. 132:27–42. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Yang Z and Klionsky DJ: Eaten alive: A
history of macroautophagy. Nat Cell Biol. 12:814–822. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Li X, He S and Ma B: Autophagy and
autophagy-related proteins in cancer. Mol Cancer. 19:122020.
View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Kundu M and Thompson CB: Autophagy: Basic
principles and relevance to disease. Annu Rev Pathol. 3:427–455.
2008. View Article : Google Scholar
|
|
13
|
Katheder NS, Khezri R, O'Farrell F,
Schultz SW, Jain A, Rahman MM, Schink KO, Theodossiou TA, Johansen
T, Juhász G, et al: Microenvironmental autophagy promotes tumour
growth. Nature. 541:417–420. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Biddle A, Gammon L, Liang X, Costea DE and
Mackenzie IC: Phenotypic plasticity determines cancer stem cell
therapeutic resistance in oral squamous cell carcinoma.
eBioMedicine. 4:138–145. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Miller DR and Thorburn A: Autophagy and
organelle homeostasis in cancer. Dev Cell. 56:906–918. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
16
|
Debnath J, Gammoh N and Ryan KM: Autophagy
and autophagy-related pathways in cancer. Nat Rev Mol Cell Bio.
24:560–575. 2023. View Article : Google Scholar
|
|
17
|
Bøe SO and Simonsen A: Autophagic
degradation of an oncoprotein. Autophagy. 6:964–965. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Tooze SA and Dikic I: Autophagy captures
the nobel prize. Cell. 167:1433–1435. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Mizushima N: The pleiotropic role of
autophagy: From protein metabolism to bactericide. Cell Death
Differ. 12(Suppl 2): S1535–S1541. 2005. View Article : Google Scholar
|
|
20
|
Chen G, Gao C, Jiang S, Cai Q, Li R, Sun
Q, Xiao C, Xu Y, Wu B and Zhou H: Fusobacterium nucleatum outer
membrane vesicles activate autophagy to promote oral cancer
metastasis. J Adv Res. 56:167–179. 2024. View Article : Google Scholar :
|
|
21
|
An Y, Liu W, Xue P, Zhang Y, Wang Q and
Jin Y: Increased autophagy is required to protect periodontal
ligament stem cells from apoptosis in inflammatory
microenvironment. J Clin Periodontol. 43:618–625. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Nakai A, Yamaguchi O, Takeda T, Higuchi Y,
Hikoso S, Taniike M, Omiya S, Mizote I, Matsumura Y, Asahi M, et
al: The role of autophagy in cardiomyocytes in the basal state and
in response to hemodynamic stress. Nat Med. 13:619–624. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
23
|
Nakagawa I, Amano A, Mizushima N, Yamamoto
A, Yamaguchi H, Kamimoto T, Nara A, Funao J, Nakata M, Tsuda K, et
al: Autophagy defends cells against invading group A Streptococcus.
Science. 306:1037–1040. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mizushima N, Levine B, Cuervo AM and
Klionsky DJ: Autophagy fights disease through cellular
self-digestion. Nature. 451:1069–1075. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Meijer AJ: Autophagy research: Lessons
from metabolism. Autophagy. 5:3–5. 2009. View Article : Google Scholar
|
|
26
|
Mizushima N and Klionsky DJ: Protein
turnover via autophagy: Implications for metabolism. Annu Rev Nutr.
27:19–40. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Li L, Tong M, Fu Y, Chen F, Zhang S, Chen
H, Ma X, Li D, Liu X and Zhong Q: Lipids and membrane-associated
proteins in autophagy. Protein Cell. 12:520–544. 2021. View Article : Google Scholar
|
|
28
|
Klionsky DJ, Cregg JM, Dunn WA Jr, Emr SD,
Sakai Y, Sandoval IV, Sibirny A, Subramani S, Thumm M, Veenhuis M
and Ohsumi Y: A unified nomenclature for yeast autophagy-related
genes. Dev Cell. 5:539–545. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Ohsumi Y: Historical landmarks of
autophagy research. Cell Res. 24:9–23. 2014. View Article : Google Scholar :
|
|
30
|
Yang Z and Klionsky DJ: Mammalian
autophagy: Core molecular machinery and signaling regulation. Curr
Opin Cell Biol. 22:124–131. 2010. View Article : Google Scholar :
|
|
31
|
Cui Z, Napolitano G, de Araujo MEG,
Esposito A, Monfregola J, Huber LA, Ballabio A and Hurley JH:
Structure of the lysosomal mTORC1-TFEB-Rag-Ragulator megacomplex.
Nature. 614:572–579. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Zada S, Hwang JS, Ahmed M, Lai TH, Pham
TM, Elashkar O and Kim DR: Cross talk between autophagy and
oncogenic signaling pathways and implications for cancer therapy.
Biochim Biophys Acta Rev Cancer. 1876:1885652021. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Grumati P and Dikic I: Ubiquitin signaling
and autophagy. J Biol Chem. 293:5404–5413. 2018. View Article : Google Scholar :
|
|
34
|
Jewell JL, Russell RC and Guan KL: Amino
acid signalling upstream of mTOR. Nat Rev Mol Cell Biol.
14:133–139. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Reggiori F, Tucker KA, Stromhaug PE and
Klionsky DJ: The Atg1-Atg13 complex regulates Atg9 and Atg23
retrieval transport from the pre-autophagosomal structure. Dev
Cell. 6:79–90. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Wijdeven RH, Janssen H, Nahidiazar L,
Janssen L, Jalink K, Berlin I and Neefjes J: Cholesterol and
ORP1L-mediated ER contact sites control autophagosome transport and
fusion with the endocytic pathway. Nat Commun. 7:118082016.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Kihara A, Noda T, Ishihara N and Ohsumi Y:
Two distinct Vps34 phosphatidylinositol 3-kinase complexes function
in autophagy and carboxypeptidase Y sorting in Saccharomyces
cerevisiae. J Cell Biol. 152:519–530. 2001. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Zachari M and Ganley IG: The mammalian
ULK1 complex and autophagy initiation. Essays Biochem. 61:585–596.
2017. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Alers S, Löffler AS, Wesselborg S and
Stork B: Role of AMPK-mTOR-Ulk1/2 in the regulation of autophagy:
Cross talk, shortcuts, and feedbacks. Mol Cell Biol. 32:2–11. 2012.
View Article : Google Scholar :
|
|
40
|
Shariq M, Quadir N, Alam A, Zarin S,
Sheikh JA, Sharma N, Samal J, Ahmad U, Kumari I, Hasnain SE and
Ehtesham NZ: The exploitation of host autophagy and ubiquitin
machinery by Mycobacterium tuberculosis in shaping immune responses
and host defense during infection. Autophagy. 19:3–23. 2023.
View Article : Google Scholar :
|
|
41
|
Deretic V, Saitoh T and Akira S: Autophagy
in infection, inflammation and immunity. Nat Rev Immunol.
13:722–737. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Poillet-Perez L and White E: Role of tumor
and host autophagy in cancer metabolism. Gene Dev. 33:610–619.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Gozuacik D and Kimchi A: Autophagy as a
cell death and tumor suppressor mechanism. Oncogene. 23:2891–2906.
2004. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Klionsky DJ, Abdel-Aziz AK, Abdelfatah S,
Abdellatif M, Abdoli A, Abel S, Abeliovich H, Abildgaard MH, Abudu
YP, Acevedo-Arozena A, et al: Guidelines for the use and
interpretation of assays for monitoring autophagy (4th
edition)1. Autophagy. 17:1–382. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Geng J and Klionsky DJ: Direct
quantification of autophagic flux by a single molecule-based probe.
Autophagy. 13:639–641. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Ylä-Anttila P, Vihinen H, Jokitalo E and
Eskelinen EL: Monitoring autophagy by electron microscopy in
Mammalian cells. Methods Enzymol. 452:143–164. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Zhang L, Yu J, Pan H, Hu P, Hao Y, Cai W,
Zhu H, Yu AD, Xie X, Ma D and Yuan J: Small molecule regulators of
autophagy identified by an image-based high-throughput screen. Proc
Natl Acad Sci USA. 104:19023–19028. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Tsvetkov AS, Arrasate M, Barmada S, Ando
DM, Sharma P, Shaby BA and Finkbeiner S: Proteostasis of
polyglutamine varies among neurons and predicts neurodegeneration.
Nat Chem Biol. 9:586–592. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Iwai-Kanai E, Yuan H, Huang C, Sayen MR,
Perry-Garza CN, Kim L and Gottlieb RA: A method to measure cardiac
autophagic flux in vivo. Autophagy. 4:322–329. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
du Toit A, Hofmeyr JHS, Gniadek TJ and
Loos B: Measuring autophagosome flux. Autophagy. 14:1060–1071.
2018.PubMed/NCBI
|
|
51
|
Mauthe M, Orhon I, Rocchi C, Zhou X, Luhr
M, Hijlkema KJ, Coppes RP, Engedal N, Mari M and Reggiori F:
Chloroquine inhibits autophagic flux by decreasing
autophagosome-lysosome fusion. Autophagy. 14:1435–1455. 2018.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Kuma A, Matsui M and Mizushima N: LC3, an
autophagosome marker, can be incorporated into protein aggregates
independent of autophagy: Caution in the interpretation of LC3
localization. Autophagy. 3:323–328. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
Dikic I: Proteasomal and autophagic
degradation systems. Annu Rev Biochem. 86:193–224. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Ichimura Y, Kominami E, Tanaka K and
Komatsu M: Selective turnover of p62/A170/SQSTM1 by autophagy.
Autophagy. 4:1063–1066. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Shield KD, Ferlay J, Jemal A,
Sankaranarayanan R, Chaturvedi AK, Bray F and Soerjomataram I: The
global incidence of lip, oral cavity, and pharyngeal cancers by
subsite in 2012. CA Cancer J Clin. 67:51–64. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Bouvard V, Nethan ST, Singh D,
Warnakulasuriya S, Mehrotra R, Chaturvedi AK, Chen THH, Ayo-Yusuf
OA, Gupta PC, Kerr AR, et al: IARC perspective on oral cancer
prevention. New Engl J Med. 387:1999–2005. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Shelton J, Zotow E, Smith L, Johnson SA,
Thomson CS, Ahmad A, Murdock L, Nagarwalla D and Forman D: 25 Year
trends in cancer incidence and mortality among adults aged 35-69
years in the UK, 1993-2018: Retrospective secondary analysis. BMJ.
384:e0769622024. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Ellington TD, Henley SJ, Senkomago V,
O'Neil ME, Wilson RJ, Singh S, Thomas CC, Wu M and Richardson LC:
Trends in incidence of cancers of the oral cavity and
pharynx-United States 2007-2016. MMWR Morb Mortal Wkly Rep.
69:433–438. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Blot WJ, McLaughlin JK, Winn DM, Austin
DF, Greenberg RS, Preston-Martin S, Bernstein L, Schoenberg JB,
Stemhagen A and Fraumeni JF Jr: Smoking and drinking in relation to
oral and pharyngeal cancer. Cancer Res. 48:3282–3287.
1988.PubMed/NCBI
|
|
60
|
Mody MD, Rocco JW, Yom SS, Haddad RI and
Saba NF: Head and neck cancer. Lancet. 398:2289–2299. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Sturgis EM and Cinciripini PM: Trends in
head and neck cancer incidence in relation to smoking prevalence:
An emerging epidemic of human papillomavirus-associated cancers?
Cancer. 110:1429–1435. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Koyfman SA, Ismaila N, Crook D, D'Cruz A,
Rodriguez CP, Sher DJ, Silbermins D, Sturgis EM, Tsue TT, Weiss J,
et al: Management of the neck in squamous cell carcinoma of the
oral cavity and oropharynx: ASCO clinical practice guideline. J
Clin Oncol. 37:1753–1774. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Amin A, Twigg J, Bowe C and Ho M: 1512 A
service evaluation of transoral laser resection procedures for oral
cancer and dysplasia. Brit J Surg. 108:znab259.1692021. View Article : Google Scholar
|
|
64
|
Benak S, Buschke F and Galante M:
Treatment of carcinoma of the oral cavity. Radiology. 96:137–143.
1970. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Mendenhall NP, Malyapa RS, Su Z, Yeung D,
Mendenhall WM and Li Z: Proton therapy for head and neck cancer:
Rationale, potential indications, practical considerations, and
current clinical evidence. Acta Oncol. 50:763–771. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
O'Sullivan B, Huang SH, Su J, Garden AS,
Sturgis EM, Dahlstrom K, Lee N, Riaz N, Pei X, Koyfman SA, et al:
Development and validation of a staging system for HPV-related
oropharyngeal cancer by the International collaboration on
oropharyngeal cancer network for staging (ICON-S): A multicentre
cohort study. Lancet Oncol. 17:440–451. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Polverini PJ and Lingen MW: A history of
innovations in the diagnosis and treatment of oral and head and
neck cancer. J Dent Res. 98:489–497. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Mathew R, Khor S, Hackett SR, Rabinowitz
JD, Perlman DH and White E: Functional role of autophagy-mediated
proteome remodeling in cell survival signaling and innate immunity.
Mol Cell. 55:916–930. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Rosenfeldt MT, O'Prey J, Morton JP, Nixon
C, MacKay G, Mrowinska A, Au A, Rai TS, Zheng L, Ridgway R, et al:
p53 status determines the role of autophagy in pancreatic tumour
development. Nature. 504:296–300. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Su Z, Yang Z, Xu Y, Chen Y and Yu Q:
Apoptosis, autophagy, necroptosis, and cancer metastasis. Mol
Cancer. 14:482015. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Xie X, Koh JY, Price S, White E and
Mehnert JM: Atg7 overcomes senescence and promotes growth of
BrafV600E-driven melanoma. Cancer Discov. 5:410–423. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Strohecker AM, Guo JY, Karsli-Uzunbas G,
Price SM, Chen GJ, Mathew R, McMahon M and White E: Autophagy
sustains mitochondrial glutamine metabolism and growth of
BrafV600E-driven lung tumors. Cancer Discov. 3:1272–1285. 2013.
View Article : Google Scholar : PubMed/NCBI
|
|
73
|
Joshi S, Tolkunov D, Aviv H, Hakimi AA,
Yao M, Hsieh JJ, Ganesan S, Chan CS and White E: The genomic
landscape of renal oncocytoma identifies a metabolic barrier to
tumorigenesis. Cell Rep. 13:1895–1908. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Chang JY, Yi HS, Kim HW and Shong M:
Dysregulation of mitophagy in carcinogenesis and tumor progression.
Biochim Biophys Acta Bioenerg. 1858:633–640. 2017. View Article : Google Scholar
|
|
75
|
Crighton D, Wilkinson S, O'Prey J, Syed N,
Smith P, Harrison PR, Gasco M, Garrone O, Crook T and Ryan KM:
DRAM, a p53-induced modulator of autophagy, is critical for
apoptosis. Cell. 126:121–134. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Chourasia AH, Tracy K, Frankenberger C,
Boland ML, Sharifi MN, Drake LE, Sachleben JR, Asara JM, Locasale
JW, Karczmar GS and Macleod KF: Mitophagy defects arising from
BNip3 loss promote mammary tumor progression to metastasis. EMBO
Rep. 16:1145–1163. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Kang MR, Kim MS, Oh JE, Kim YR, Song SY,
Kim SS, Ahn CH, Yoo NJ and Lee SH: Frameshift mutations of
autophagy-related genes ATG2B, ATG5, ATG9B and ATG12 in gastric and
colorectal cancers with microsatellite instability. J Pathol.
217:702–706. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Lin YX, Wang Y, Qiao SL, An HW, Wang J, Ma
Y, Wang L and Wang H: 'In vivo self-assembled' nanoprobes for
optimizing autophagy-mediated chemotherapy. Biomaterials.
141:199–209. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Levy JMM, Towers CG and Thorburn A:
Targeting autophagy in cancer. Nat Rev Cancer. 17:528–542. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Wang L, Wang C, Li X, Tao Z, Zhu W, Su Y
and Choi WS: Melatonin and erastin emerge synergistic anti-tumor
effects on oral squamous cell carcinoma by inducing apoptosis,
ferroptosis, and inhibiting autophagy through promoting ROS. Cell
Mol Biol Lett. 28:362023. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Liu JL, Chen FF, Lung J, Lo CH, Lee FH, Lu
YC and Hung CH: Prognostic significance of p62/SQSTM1 subcellular
localization and LC3B in oral squamous cell carcinoma. Brit J
Cancer. 111:944–954. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Stefenon L, Boasquevisque M, Garcez AS, de
Araújo VC, Soares AB, Santos-Silva AR, Sperandio F, Brod JMM and
Sperandio M: Autophagy upregulation may explain inhibition of oral
carcinoma in situ by photobiomodulation in vitro. J Photochem
Photobiol B. 221:1122452021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Liu PF, Chen CF, Ger LP, Tsai WL, Tseng
HH, Lee CH, Yang WH and Shu CW: MAP3K11 facilitates autophagy
activity and is correlated with malignancy of oral squamous cell
carcinoma. J Cell Physiol. 237:4275–4291. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
84
|
Kuo TJ, Jean YH, Shih PC, Cheng SY, Kuo
HM, Lee YT, Lai YC, Tseng CC, Chen WF and Wen ZH: Stellettin
B-induced oral cancer cell death via endoplasmic reticulum
stress-mitochondrial apoptotic and autophagic signaling pathway.
Int J Mol Sci. 23:88132022. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Contant C, Rouabhia M, Loubaki L, Chandad
F and Semlali A: Anethole induces anti-oral cancer activity by
triggering apoptosis, autophagy and oxidative stress and by
modulation of multiple signaling pathways. Sci Rep. 11:130872021.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Lv XX, Zheng XY, Yu JJ, Ma HR, Hua C and
Gao RT: EGFR enhances the stemness and progression of oral cancer
through inhibiting autophagic degradation of SOX2. Cancer Med.
9:1131–1140. 2020. View Article : Google Scholar :
|
|
87
|
Li H, Li M, Chen K, Li Y, Yang Z and Zhou
Z: The circadian clock gene ARNTL overexpression suppresses oral
cancer progression by inducing apoptosis via activating autophagy.
Med Oncol. 39:2442022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Yin P, Chen J, Wu Y, Gao F, Wen J, Zhang
W, Su Y and Zhang X: Chemoprevention of 4NQO-induced mouse tongue
carcinogenesis by AKT inhibitor through the MMP-9/RhoC signaling
pathway and autophagy. Anal Cell Pathol (Amst).
2022:37707152022.PubMed/NCBI
|
|
89
|
Coeli-Lacchini FB, Silva G, Belentani M,
Alves JSF, Ushida TR, Lunardelli GT, Garcia CB, Silva TA, Lopes NP
and Leopoldino AM: Spermidine suppresses oral carcinogenesis
through autophagy induction, DNA damage repair, and oxidative
stress reduction. Am J Pathol. 193:2172–2181. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Azad MB, Chen Y and Gibson SB: Regulation
of autophagy by reactive oxygen species (ROS): Implications for
cancer progression and treatment. Antioxid Redox Signal.
11:777–790. 2009. View Article : Google Scholar
|
|
91
|
Bjørkøy G, Lamark T, Brech A, Outzen H,
Perander M, Overvatn A, Stenmark H and Johansen T: p62/SQSTM1 forms
protein aggregates degraded by autophagy and has a protective
effect on huntingtin-induced cell death. J Cell Biol. 171:603–614.
2005. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Yang Y, Chen D, Liu H and Yang K:
Increased expression of lncRNA CASC9 promotes tumor progression by
suppressing autophagy-mediated cell apoptosis via the AKT/mTOR
pathway in oral squamous cell carcinoma. Cell Death Dis. 10:412019.
View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Jhou AJ, Chang HC, Hung CC, Lin HC, Lee
YC, Liu W, Han KF, Lai YW, Lin MY and Lee CH: Chlorpromazine, an
antipsychotic agent, induces G2/M phase arrest and apoptosis via
regulation of the PI3K/AKT/mTOR-mediated autophagy pathways in
human oral cancer. Biochem Pharmacol. 184:1144032021. View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Nguyen MT, Choe HC, Kim BH and Ahn SG: A
new link between apoptosis induced by the metformin derivative
HL156A and autophagy in oral squamous cell carcinoma. Eur J
Pharmacol. 920:1748592022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Patra S, Panda PK, Naik PP, Panigrahi DP,
Praharaj PP, Bhol CS, Mahapatra KK, Padhi P, Jena M, Patil S, et
al: Terminalia bellirica extract induces anticancer activity
through modulation of apoptosis and autophagy in oral squamous cell
carcinoma. Food Chem Toxicol. 136:1110732020. View Article : Google Scholar
|
|
96
|
Shi F, Xue D, Jiang Q and Qiu J:
Glaucocalyxin A induces apoptosis and autophagy in tongue squamous
cell carcinoma cells by regulating ROS. Cancer Chemother Pharmacol.
88:235–246. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Lin HC, Wang CC, Wu CF, Lin YH, Lee WC,
Chen PJ, Chang YU and Su YC: Hinokitiol inhibits the viability of
oral squamous carcinoma cells by inducing apoptosis and autophagy.
Anticancer Res. 43:1167–1173. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Weng JR, Gopula B, Chu PC, Hu JL and Feng
CH: A PKM2 inhibitor induces apoptosis and autophagy through JAK2
in human oral squamous cell carcinoma cells. Chem Biol Interact.
380:1105382023. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Hsieh MJ, Chien SY, Lin JT, Yang SF and
Chen MK: Polyphyllin G induces apoptosis and autophagy cell death
in human oral cancer cells. Phytomedicine. 23:1545–1554. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Ko CP, Lin CW, Chen MK, Yang SF, Chiou HL
and Hsieh MJ: Pterostilbene induce autophagy on human oral cancer
cells through modulation of Akt and mitogen-activated protein
kinase pathway. Oral Oncol. 51:593–601. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
101
|
Liu YT, Ho HY, Lin CC, Chuang YC, Lo YS,
Hsieh MJ and Chen MK: Platyphyllenone induces autophagy and
apoptosis by modulating the AKT and JNK mitogen-activated protein
kinase pathways in oral cancer cells. Int J Mol Sci. 22:42112021.
View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Choi EY, Han EJ, Jeon SJ, Lee SW, Moon JM,
Jung SH and Jung JY: Piperlongumine induces apoptosis and
cytoprotective autophagy via the MAPK signaling pathway in human
oral cancer cells. Biomedicines. 11:24422023. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Zhang H, Ma L, Kim E, Yi J, Huang H, Kim
H, Raza MA, Park S, Jang S, Kim J, et al: Rhein induces oral cancer
cell apoptosis and ROS via suppresse AKT/mTOR signaling pathway in
vitro and in vivo. Int J Mol Sci. 24:85072023. View Article : Google Scholar : PubMed/NCBI
|
|
104
|
Han EJ, Choi EY, Jeon SJ, Lee SW, Moon JM,
Jung SH and Jung JY: Piperine induces apoptosis and autophagy in
HSC-3 human oral cancer cells by regulating PI3K signaling pathway.
Int J Mol Sci. 24:139492023. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Sophia J, Kowshik J, Dwivedi A, Bhutia SK,
Manavathi B, Mishra R and Nagini S: Nimbolide, a neem limonoid
inhibits cytoprotective autophagy to activate apoptosis via
modulation of the PI3K/Akt/GSK-3β signalling pathway in oral
cancer. Cell Death Dis. 9:10872018. View Article : Google Scholar
|
|
106
|
Wang Y, Liu R, Meng F and Su Z:
Antiproliferative activity of an angular furanocoumarin-oroselol in
human oral cancer cells is mediated via autophagy induction,
inhibition of cell migration, invasion, and downregulation of
PI3K/AKT signalling pathway. Acta Biochim Pol. 69:85–89.
2022.PubMed/NCBI
|
|
107
|
Park DB, Park BS, Kang HM, Kim JH and Kim
IR: Chrysophanol-induced autophagy disrupts apoptosis via the
PI3K/Akt/mTOR pathway in oral squamous cell carcinoma cells.
Medicina (Kaunas). 59:422022. View Article : Google Scholar
|
|
108
|
Wei M, Wu Y, Liu H and Xie C: Genipin
Induces autophagy and suppresses cell growth of oral squamous cell
carcinoma via PI3K/AKT/MTOR pathway. Drug Des Dev Ther. 14:395–405.
2020. View Article : Google Scholar
|
|
109
|
Ji Y, Hu W, Jin Y, Yu H and Fang J:
Liquiritigenin exerts the anti-cancer role in oral cancer via
inducing autophagy-related apoptosis through PI3K/AKT/mTOR pathway
inhibition in vitro and in vivo. Bioengineered. 12:6070–6082. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang H, Wang J, Xun W, Wang J, Song W and
Wang X: Long non-coding RNA PTCSC3 inhibits human oral cancer cell
proliferation by inducing apoptosis and autophagy. Arch Med Sci.
17:492–499. 2020. View Article : Google Scholar
|
|
111
|
Fukuda M, Ogasawara Y, Hayashi H, Inoue K
and Sakashita H: Resveratrol inhibits proliferation and induces
autophagy by blocking SREBP1 expression in oral cancer cells.
Molecules. 27:82502022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Seo J, Nam YW, Kim S, Oh DB and Song J:
Necroptosis molecular mechanisms: Recent findings regarding novel
necroptosis regulators. Exp Mol Med. 53:1007–1017. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Yun HM, Park JE, Lee JY and Park KR:
Latifolin, a natural flavonoid, isolated from the heartwood of
dalbergia odorifera induces bioactivities through apoptosis,
autophagy, and necroptosis in human oral squamous cell carcinoma.
Int J Mol Sci. 23:136292022. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Yun HM, Kwon YJ, Kim E, Chung HJ and Park
KR: Machilin D promotes apoptosis and autophagy, and inhibits
necroptosis in human oral squamous cell carcinoma cells. Int J Mol
Sci. 24:45762023. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Yun HM, Kim B, Kim SH, Kwon SH and Park
KR: Xanol promotes apoptosis and autophagy and inhibits necroptosis
and metastasis via the inhibition of AKT signaling in human oral
squamous cell carcinoma. Cells. 12:17682023. View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Zabirnyk O, Yezhelyev M and Seleverstov O:
Nanoparticles as a novel class of autophagy activators. Autophagy.
3:278–281. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
117
|
Yu L, Lu Y, Man N, Yu SH and Wen LP: Rare
earth oxide nanocrystals induce autophagy in HeLa cells. Small.
5:2784–2787. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Dai H, Yan H, Dong F, Zhang L, Du N, Sun
L, Li N, Yu G, Yang Z, Wang Y and Huang M: Tumor-targeted
biomimetic nanoplatform precisely integrates photodynamic therapy
and autophagy inhibition for collaborative treatment of oral
cancer. Biomater. 10:1456–1469. 2022. View Article : Google Scholar
|
|
119
|
Popovici V, Matei E, Cozaru GC, Bucur L,
Gîrd CE, Schröder V, Ozon EA, Musuc AM, Mitu MA, Atkinson I, et al:
In vitro anticancer activity of mucoadhesive oral films loaded with
Usnea barbata (L.) F. H. Wigg dry acetone extract, with potential
applications in oral squamous cell carcinoma complementary therapy.
Antioxidants (Basel). 11:19342022. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Wu YN, Yang LX, Shi XY, Li IC, Biazik JM,
Ratinac KR, Chen DH, Thordarson P, Shieh DB and Braet F: The
selective growth inhibition of oral cancer by iron core-gold shell
nanoparticles through mitochondria-mediated autophagy.
Biomaterials. 32:4565–4573. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Tao Y, Liu Y, Dong Z, Chen X, Wang Y, Li
T, Li J, Zang S, He X, Chen D, et al: Cellular hypoxia mitigation
by dandelion-like nanoparticles for synergistic photodynamic
therapy of oral squamous cell carcinoma. ACS Appl Mater Interfaces.
14:44039–44053. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Cui Z, Zhang Y, Xia K, Yan Q, Kong H,
Zhang J, Zuo X, Shi J, Wang L, Zhu Y and Fan C: Nanodiamond
autophagy inhibitor allosterically improves the arsenical-based
therapy of solid tumors. Nat Commun. 9:43472018. View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Moosavi MA, Sharifi M, Ghafary SM,
Mohammadalipour Z, Khataee A, Rahmati M, Hajjaran S, Łos MJ,
Klonisch T and Ghavami S: Photodynamic N-TiO2
nanoparticle treatment induces controlled ROS-mediated autophagy
and terminal differentiation of leukemia cells. Sci Rep.
6:344132016. View Article : Google Scholar
|
|
124
|
Li Q, Liu X, Yan W and Chen Y: Antitumor
effect of poly lactic acid nanoparticles loaded with cisplatin and
chloroquine on the oral squamous cell carcinoma. Aging (Albany NY).
13:2593–2603. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
125
|
Stern ST, Adiseshaiah PP and Crist RM:
Autophagy and lysosomal dysfunction as emerging mechanisms of
nanomaterial toxicity. Part Fibre Toxicol. 9:202012. View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Ma Z, Lin K, Tang M, Ramachandran M, Qiu
R, Li J, Solano LN, Huang Y, De Souza C, Abou-Adas S, et al: A
pH-driven small-molecule nanotransformer hijacks lysosomes and
overcomes autophagy-induced resistance in cancer. Angew Chem Int Ed
Engl. 61:e2022045672022. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Chen J, Zhu Z, Pan Q, Bai Y, Yu M and Zhou
Y: Targeted therapy of oral squamous cell carcinoma with cancer
cell membrane coated Co-Fc nanoparticles via autophagy inhibition.
Adv Funct Mater. 33:23002352023. View Article : Google Scholar
|
|
128
|
Zhang C, Cai Q and Ke J: Poor prognosis of
oral squamous cell carcinoma correlates With ITGA6. Int Dent J.
73:178–185. 2023. View Article : Google Scholar :
|
|
129
|
Patel D, Dabhi AM, Dmello C, Seervi M,
Sneha KM, Agrawal P, Sahani MH and Kanojia D: FKBP1A upregulation
correlates with poor prognosis and increased metastatic potential
of HNSCC. Cell Biol Int. 46:443–453. 2022. View Article : Google Scholar
|
|
130
|
Shih YH, Chen CC, Kuo YH, Fuh LJ, Lan WC,
Wang TH, Chiu KC, Nguyen TV, Hsia SM and Shieh TM: Caffeic acid
phenethyl ester and caffeamide derivatives suppress oral squamous
cell carcinoma cells. Int J Mol Sci. 24:98192023. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Fan T, Wang X, Zhang S, Deng P, Jiang Y,
Liang Y, Jie S, Wang Q, Li C, Tian G, et al: NUPR1 promotes the
proliferation and metastasis of oral squamous cell carcinoma cells
by activating TFE3-dependent autophagy. Signal Transduct Target
Ther. 7:1302022. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Tan ML, Parkinson EK, Yap LF and Paterson
IC: Autophagy is deregulated in cancer-associated fibroblasts from
oral cancer and is stimulated during the induction of fibroblast
senescence by TGF-β1. Sci Rep. 11:5842021. View Article : Google Scholar
|
|
133
|
Park KR, Leem HH, Kwon YJ, Kwon IK, Hong
JT and Yun HM: Falcarindiol stimulates apoptotic and autophagic
cell death to attenuate cell proliferation, cell division, and
metastasis through the PI3K/AKT/mTOR/p70S6K pathway in human oral
squamous cell carcinomas. Am J Chin Med. 50:295–311. 2022.
View Article : Google Scholar
|
|
134
|
Gao L, Wang Q, Ren W, Zheng J, Li S, Dou
Z, Kong X, Liang X and Zhi K: The RBP1-CKAP4 axis activates
oncogenic autophagy and promotes cancer progression in oral
squamous cell carcinoma. Cell Death Dis. 11:4882020. View Article : Google Scholar : PubMed/NCBI
|
|
135
|
Shu CW, Weng JR, Chang HW, Liu PF, Chen
JJ, Peng CC, Huang JW, Lin WY and Yen CY: Tribulus terrestris fruit
extract inhibits autophagic flux to diminish cell proliferation and
metastatic characteristics of oral cancer cells. Environ Toxicol.
36:1173–1180. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
136
|
Vo TTT, Wee Y, Cheng HC, Wu CZ, Chen YL,
Tuan VP, Liu JF, Lin WN and Lee IT: Surfactin induces autophagy,
apoptosis, and cell cycle arrest in human oral squamous cell
carcinoma. Oral Dis. 29:528–541. 2023. View Article : Google Scholar
|
|
137
|
Semlali A, Beji S, Ajala I and Rouabhia M:
Effects of tetrahydrocannabinols on human oral cancer cell
proliferation, apoptosis, autophagy, oxidative stress, and DNA
damage. Arch Oral Biol. 129:1052002021. View Article : Google Scholar : PubMed/NCBI
|
|
138
|
Zhang Q, Jiang C, Ren W, Li S, Zheng J,
Gao Y, Zhi K and Gao L: Circ-LRP6 mediates epithelial-mesenchymal
transition and autophagy in oral squamous cell carcinomas. J Oral
Pathol Med. 50:660–667. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
139
|
Chen J, Chen X, Fu L, Chen J, Chen Y and
Liu F: LncRNA GACAT1 targeting miRNA-149 regulates the molecular
mechanism of proliferation, apoptosis and autophagy of oral
squamous cell carcinoma cells. Aging (Albany NY). 13:20359–20371.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
140
|
Lu X, Chen L, Li Y, Huang R, Meng X and
Sun F: Long non-coding RNA LINC01207 promotes cell proliferation
and migration but suppresses apoptosis and autophagy in oral
squamous cell carcinoma by the microRNA-1301-3p/lactate
dehydrogenase isoform A axis. Bioengineered. 12:7780–7793. 2021.
View Article : Google Scholar : PubMed/NCBI
|
|
141
|
Huang T, Kim CK, Alvarez AA, Pangeni RP,
Wan X, Song X, Shi T, Yang Y, Sastry N, Horbinski CM, et al: MST4
phosphorylation of ATG4B regulates autophagic activity,
tumorigenicity, and radioresistance in glioblastoma. Cancer cell.
32:840–855.e8. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
142
|
Xie W and Xu L: Ubiquitin-specific
protease 14 promotes radio-resistance and suppresses autophagy in
oral squamous cell carcinoma. Exp Cell Res. 398:1123852021.
View Article : Google Scholar
|
|
143
|
Wu YH, Wu WS, Lin LC, Liu CS, Ho SY, Wang
BJ, Huang BM, Yeh YL, Chiu HW, Yang WL and Wang YJ: Bortezomib
enhances radiosensitivity in oral cancer through inducing
autophagy-mediated TRAF6 oncoprotein degradation. J Exp Clin Canc
Res. 37:912018. View Article : Google Scholar
|
|
144
|
Ma B, Hu Y, Zhu J, Zheng Z and Ye J:
Research on the role of cellular autophagy in the sensitivity of
human tongue cancer cells to radiotherapy and chemotherapy. J
Stomatol Oral Maxillofac Surg. 124:1014302023. View Article : Google Scholar : PubMed/NCBI
|
|
145
|
Gilman A: The initial clinical trial of
nitrogen mustard. Am J Surg. 105:574–578. 1963. View Article : Google Scholar : PubMed/NCBI
|
|
146
|
Weingart SN, Zhang L, Sweeney M and
Hassett M: Chemotherapy medication errors. Lancet Oncol.
19:e191–e199. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
147
|
Hou J, Zhang G, Wang X, Wang Y and Wang K:
Functions and mechanisms of lncRNA MALAT1 in cancer chemotherapy
resistance. Biomark Res. 11:232023. View Article : Google Scholar : PubMed/NCBI
|
|
148
|
Xiao X, Wang W, Li Y, Yang D, Li X, Shen
C, Liu Y, Ke X, Guo S and Guo Z: HSP90AA1-mediated autophagy
promotes drug resistance in osteosarcoma. J Exp Clin Cancer Res.
37:2012018. View Article : Google Scholar : PubMed/NCBI
|
|
149
|
Hu F, Song D, Yan Y, Huang C, Shen C, Lan
J, Chen Y, Liu A, Wu Q, Sun L, et al: IL-6 regulates autophagy and
chemotherapy resistance by promoting BECN1 phosphorylation. Nat
Commun. 12:36512021. View Article : Google Scholar : PubMed/NCBI
|
|
150
|
Huang H, Han Q, Zheng H, Liu M, Shi S,
Zhang T, Yang X, Li Z, Xu Q, Guo H, et al: MAP4K4 mediates the
SOX6-induced autophagy and reduces the chemosensitivity of cervical
cancer. Cell Death Dis. 13:132021. View Article : Google Scholar : PubMed/NCBI
|
|
151
|
Li X, Yang KB, Chen W, Mai J, Wu XQ, Sun
T, Wu RY, Jiao L, Li DD, Zhang HL, et al: CUL3 (cullin 3)-mediated
ubiquitination and degradation of BECN1 (beclin 1) inhibit
autophagy and promote tumor progression. Autophagy. 17:4323–4340.
2021. View Article : Google Scholar : PubMed/NCBI
|
|
152
|
Yang Y, Sun X, Li M, Li L, Wang S and Zhu
Y: miR-214 modulates the growth and migration of oral cancer before
and after chemotherapy through mediating ULK1. J Immunol Res.
2022:e45891822022. View Article : Google Scholar
|
|
153
|
Yue Z, Jin S, Yang C, Levine AJ and Heintz
N: Beclin 1, an autophagy gene essential for early embryonic
development, is a haploinsufficient tumor suppressor. Proc Natl
Acad Sci USA. 100:15077–15082. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
154
|
Shu CW, Chang HT, Wu CS, Chen CH, Wu S,
Chang HW, Kuo SY, Fu E, Liu PF and Hsieh YD: RelA-mediated BECN1
expression is required for reactive oxygen species-induced
autophagy in oral cancer cells exposed to low-power laser
irradiation. PLoS One. 11:e01605862016. View Article : Google Scholar : PubMed/NCBI
|
|
155
|
Praharaj PP, Singh A, Patra S and Bhutia
SK: Co-targeting autophagy and NRF2 signaling triggers
mitochondrial superoxide to sensitize oral cancer stem cells for
cisplatin-induced apoptosis. Free Radical Bio Med. 207:72–88. 2023.
View Article : Google Scholar
|
|
156
|
Naik PP, Mukhopadhyay S, Praharaj PP, Bhol
CS, Panigrahi DP, Mahapatra KK, Patra S, Saha S, Panda AK, Panda K,
et al: Secretory clusterin promotes oral cancer cell survival via
inhibiting apoptosis by activation of autophagy in AMPK/mTOR/ULK1
dependent pathway. Life Sci. 264:1187222021. View Article : Google Scholar
|
|
157
|
Semlali A, Beji S, Ajala I, Al-Zharani M
and Rouabhia M: Synergistic effects of new curcumin analog (PAC)
and cisplatin on oral cancer therapy. Curr Issues Mol Biol.
45:5018–5035. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
158
|
Kumari A, Jha A, Tiwari A, Nath N, Kumar
A, Nagini S and Mishra R: Role and regulation of GLUT1/3 during
oral cancer progression and therapy resistance. Arch Oral Biol.
150:1056882023. View Article : Google Scholar : PubMed/NCBI
|
|
159
|
Panigrahi DP, Patra S, Behera BP, Behera
PK, Patil S, Patro BS, Rout L, Sarangi I and Bhutia SK: MTP18
inhibition triggers mitochondrial hyperfusion to induce apoptosis
through ROS-mediated lysosomal membrane permeabilization-dependent
pathway in oral cancer. Free Radical Bio Med. 190:307–319. 2022.
View Article : Google Scholar
|
|
160
|
Huang YC, Yuan TM, Liu BH, Liu KL, Wung CH
and Chuang SM: Capsaicin potentiates anticancer drug efficacy
through autophagy-mediated ribophorin II downregulation and
necroptosis in oral squamous cell carcinoma cells. Front Pharmacol.
12:6768132021. View Article : Google Scholar : PubMed/NCBI
|
|
161
|
de Lima JM, Castellano LRC, Bonan PRF,
Medeiros ES, Hier M, Bijian K, Alaoui-Jamali MA, da Cruz Perez DE
and da Silva SD: Chitosan/PCL nanoparticles can improve
antineoplastic activity of 5-fluorouracil in head and neck cancer
through autophagy activation. Int J Biochem Cell Biol.
134:1059642021. View Article : Google Scholar
|
|
162
|
Wang CS, Chang CH, Tzeng TY, Lin AMY and
Lo YL: Gene-editing by CRISPR-Cas9 in combination with
anthracycline therapy via tumor microenvironment-switchable,
EGFR-targeted, and nucleus-directed nanoparticles for head and neck
cancer suppression. Nanoscale Horiz. 6:729–743. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
163
|
Tsai SC, Yang JS, Lu CC, Tsai FJ, Chiu YJ
and Kuo SC: MTH-3 sensitizes oral cancer cells to cisplatin via
regulating TFEB. J Pharm Pharmacol. 74:1261–1273. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
164
|
Yang Q, Sun Y, Qiu B and Zhao H: FBXW7
enhances cisplatin-induced apoptosis in oral cancer cell lines. Int
Dent J. 73:620–627. 2023. View Article : Google Scholar :
|
|
165
|
Kimura T, Isaka Y and Yoshimori T:
Autophagy and kidney inflammation. Autophagy. 13:997–1003. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
166
|
Wei G, Wang Y, Yang G, Wang Y and Ju R:
Recent progress in nanomedicine for enhanced cancer chemotherapy.
Theranostics. 11:6370–6392. 2021. View Article : Google Scholar : PubMed/NCBI
|