Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data.xlsx
Article Open Access

Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping

  • Authors:
    • Ning Ji
    • Chong-Guang Wu
    • Wen-Xia Wang
    • Xiao-Die Wang
    • Yu Zhai
    • Luqman Ali
    • Zhi-Xue Song
    • Guozhong Zhang
    • Xu Feng
    • Yu Wang
    • Zhan-Jun Lv
    • Xiufang Wang
  • View Affiliations / Copyright

    Affiliations: Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China, Department of Genetics, Hebei Key Lab of Laboratory Animal Science, Hebei Medical University, Shijiazhuang, Hebei 050017, P.R. China, Department of Basic Medicine, Hebei University of Chinese Medicine, Shijiazhuang, Hebei 050200, P.R. China
    Copyright: © Ji et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 2
    |
    Published online on: October 21, 2024
       https://doi.org/10.3892/ijmm.2024.5443
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Long interspersed nuclear element‑1 (L1) is highly expressed in the early embryos of humans, rodents and fish. To investigate the molecular mechanisms underlying high expression of L1 during early embryonic development, a C1‑open reading frame (ORF)2 vector was constructed in which ORF2 of human L1 (L1‑ORF2) was inserted into a pEGFP‑C1 plasmid. C1‑ORF2 vector was injected into early zebrafish embryos (EZEs) to observe expression of EGFP reporter protein by fluorescence microscopy. RNA‑seq and RT‑qPCR were used to detect the effects of lipovitellin (LV)  on gene expression in EZEs. The binding ability of LV to L1‑ORF2 DNA was detected by electrophoretic mobility‑shift assay (EMSA). The chromatin recombinant DNase I digestion and ATAC‑seq assay were used to evaluate the accessibility of plasmid DNA. C1‑ORF2 vector induced high expression of enhanced green fluorescent protein (EGFP) reporter gene after it had been injected into 0 h post‑fertilization (hpf) zebrafish embryos, although histone octamer inhibited expression of EGFP in C1‑ORF2. SDS‑PAGE was used to show that LV was the predominant protein binding ORF2 DNA in 0 hpf zebrafish embryo lysate (ZEL). Both ZEL and purified LV from ZEL attenuated the inhibitory effects induced by histone. LV bound histone to interfere with the binding of histone to ORF2 DNA. Both in vitro chromatin reconstitution experiments and assay for transposase‑accessible chromatin with sequencing with HeLa cells were utilized to demonstrate that the interference induced by LV resulted in increased accessibility of C1‑ORF2. Transcription experiments in vitro verified that LV could enhance the mRNA levels of zebrafish early embryo expression genes grainyhead‑like transcription factor 3 (GRHL3), SRY‑box transcription factor 19a (SOX19A) and nanor (NNR) and also of the EGFP gene. LV was found to increase the expression levels of the zebrafish early embryo expression genes in liver tissue after LV had been injected into the abdominal cavity of adult male zebrafish. Taken together, the findings of the present study demonstrated that LV activates the expression of EGFP induced by ORF2 in EZEs by enhancing the accessibility of ORF2 DNA.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

Figure 10

View References

1 

Percharde M, Lin CJ, Yin Y, Guan J, Peixoto GA, Bulut-Karslioglu A, Biechele S, Huang B, Shen X and Ramalho-Santos M: A LINE1-nucleolin partnership regulates early development and ESC identity. Cell. 174:391–405.e19. 2018. View Article : Google Scholar : PubMed/NCBI

2 

Milioto V, Perelman PL, Paglia L, Biltueva L, Roelke M and Dumas F: Mapping retrotransposon LINE-1 sequences into two cebidae species and homo sapiens genomes and a short review on primates. Genes (Basel). 13:17422022. View Article : Google Scholar : PubMed/NCBI

3 

Otsu M and Kawai G: Distinct RNA recognition mechanisms in closely related LINEs from zebrafish. Nucleosides Nucleotides Nucleic Acids. 38:294–304. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Wang F, Chamani IJ, Luo D, Chan K, Navarro PA and Keefe DL: Inhibition of LINE-1 retrotransposition represses telomere reprogramming during mouse 2-cell embryo development. J Assist Reprod Genet. 38:3145–3153. 2021. View Article : Google Scholar : PubMed/NCBI

5 

Tiwari B, Jones AE, Caillet CJ, Das S, Royer SK and Abrams JM: p53 directly represses human LINE1 transposons. Genes Dev. 34:1439–1451. 2020. View Article : Google Scholar : PubMed/NCBI

6 

Kajikawa M, Sugano T, Sakurai R and Okada N: Low dependency of retrotransposition on the ORF1 protein of the zebrafish LINE, ZfL2-1. Gene. 499:41–47. 2012. View Article : Google Scholar : PubMed/NCBI

7 

Peterson CL and Hansen JC: Chicken erythrocyte histone octamer preparation. CSH Protoc. 2008:pdb.prot51122008.PubMed/NCBI

8 

Wehbi SS and Zu Dohna H: A comparative analysis of L1 retrotransposition activities in human genomes suggests an ongoing increase in L1 number despite an evolutionary trend towards lower activity. Mob DNA. 12:262021. View Article : Google Scholar : PubMed/NCBI

9 

Garcia-Cañadas M, Sanchez-Luque FJ, Sanchez L, Rojas J and Garcia Perez JL: LINE-1 retrotransposition assays in embryonic stem cells. Methods Mol Biol. 2607:257–309. 2023. View Article : Google Scholar

10 

Chang NC, Rovira Q, Wells J, Feschotte C and Vaquerizas JM: Zebrafish transposable elements show extensive diversification in age, genomic distribution, and developmental expression. Genome Res. 32:1408–1423. 2022. View Article : Google Scholar : PubMed/NCBI

11 

Kohlrausch FB, Berteli TS, Wang F, Navarro PA and Keefe DL: Control of LINE-1 expression maintains genome integrity in germline and early embryo development. Reprod Sci. 29:328–340. 2022. View Article : Google Scholar

12 

Lee HJ, Hou Y, Maeng JH, Shah NM, Chen Y, Lawson HA, Yang H, Yue F and Wang T: Epigenomic analysis reveals prevalent contribution of transposable elements to cis-regulatory elements, tissue-specific expression, and alternative promoters in zebrafish. Genome Res. 32:1424–1436. 2022. View Article : Google Scholar : PubMed/NCBI

13 

Liang X, Hu Y, Feng S, Zhang S, Zhang Y and Sun C: Heavy chain (LvH) and light chain (LvL) of lipovitellin (Lv) of zebrafish can both bind to bacteria and enhance phagocytosis. Dev Comp Immunol. 63:47–55. 2016. View Article : Google Scholar : PubMed/NCBI

14 

Romero S, Laino A, Molina G, Cunningham M and Garcia CF: Embryonic and post-embryonic development of the spider Polybetes pythagoricus (Sparassidae): A biochemical point of view. An Acad Bras Cienc. 94:e202101592022. View Article : Google Scholar : PubMed/NCBI

15 

Li H and Zhang S: Functions of vitellogenin in eggs. Results Probl Cell Differ. 63:389–401. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Wang H, Sun W, Li Z, Wang X and Lv Z: Identification and characterization of two critical sequences in SV40PolyA that activate the green fluorescent protein reporter gene. Genet Mol Biol. 34:396–405. 2011. View Article : Google Scholar : PubMed/NCBI

17 

Dang Y, Wang F and Liu C: Real-time PCR array to study the effects of chemicals on the growth hormone/insulin-like growth factors (GH/IGFs) axis of zebrafish embryos/larvae. Chemosphere. 207:365–376. 2018. View Article : Google Scholar : PubMed/NCBI

18 

Dong M, Ding Y, Liu Y, Xu Z, Hong H, Sun H, Huang X, Yu X and Chen Q: Molecular insights of 2,6-dichlorobenzoquinone-induced cytotoxicity in zebrafish embryo: Activation of ROS-mediated cell cycle arrest and apoptosis. Environ Toxicol. 38:694–700. 2023. View Article : Google Scholar

19 

Holbech H, Andersen L, Petersen GI, Korsgaard B, Pedersen KL and Bjerregaard P: Development of an ELISA for vitellogenin in whole body homogenate of zebrafish (Danio rerio). Comp Biochem Physiol C Toxicol Pharmacol. 130:119–131. 2001. View Article : Google Scholar : PubMed/NCBI

20 

Li Z, Zhang S and Liu Q: Vitellogenin functions as a multivalent pattern recognition receptor with an opsonic activity. PLoS One. 3:e19402008. View Article : Google Scholar : PubMed/NCBI

21 

Medina-Gali R, Belló-Pérez M, Ciordia S, Mena MC, Coll J, Novoa B, Ortega-Villaizán MDM and Perez L: Plasma proteomic analysis of zebrafish following spring viremia of carp virus infection. Fish Shellfish Immunol. 86:892–899. 2019. View Article : Google Scholar

22 

Kielkopf CL, Bauer W and Urbatsch IL: Sodium dodecyl sulfate-polyacrylamide gel electrophoresis of proteins. Cold Spring Harb Protoc. 2021:pdb. prot1022282021. View Article : Google Scholar

23 

Stein A, Whitlock JP Jr and Bina M: Acidic polypeptides can assemble both histones and chromatin in vitro at physiological ionic strength. Proc Natl Acad Sci USA. 76:5000–5004. 1979. View Article : Google Scholar : PubMed/NCBI

24 

Lusser A and Kadonaga JT: Strategies for the reconstitution of chromatin. Nat Methods. 1:19–26. 2004. View Article : Google Scholar

25 

Athanikar JN, Badge RM and Moran JV: A YY1-binding site is required for accurate human LINE-1 transcription initiation. Nucleic Acids Res. 32:3846–3855. 2004. View Article : Google Scholar : PubMed/NCBI

26 

You C, Ji D, Dai X and Wang Y: Effects of Tet-mediated oxidation products of 5-methylcytosine on DNA transcription in vitro and in mammalian cells. Sci Rep. 4:70522014. View Article : Google Scholar : PubMed/NCBI

27 

Purushothaman K, Das PP, Presslauer C, Lim TK, Johansen SD, Lin Q and Babiak I: Proteomics analysis of early developmental stages of zebrafish embryos. Int J Mol Sci. 20:63592019. View Article : Google Scholar : PubMed/NCBI

28 

Ji N, Wu CG, Wang XD, Song ZX, Wu PY, Liu X, Feng X, Zhang XM, Wang XF and Lv ZJ: Anti-aging effects of Alu antisense RNA on human fibroblast senescence through the MEK-ERK pathway mediated by KIF15. Curr Med Sci. 43:35–47. 2023. View Article : Google Scholar : PubMed/NCBI

29 

Elshafie NO, Gribskov M, Lichti NI, Sayedahmed EE, Childress MO and Dos Santos AP: miRNome expression analysis in canine diffuse large B-cell lymphoma. Front Oncol. 13:12386132023. View Article : Google Scholar : PubMed/NCBI

30 

Guo M, Yang F, Zhu L, Wang L, Li Z, Qi Z, Fotopoulos V, Yu J and Zhou J: Loss of cold tolerance is conferred by absence of the WRKY34 promoter fragment during tomato evolution. Nat Commun. 15:66672024. View Article : Google Scholar : PubMed/NCBI

31 

Wei W, Cheng B, Yang X, Chu X, He D, Qin X, Zhang N, Zhao Y, Shi S, Cai Q, et al: Single-cell multiomics analysis reveals cell/tissue-specific associations in bipolar disorder. Transl Psychiatry. 14:3232024. View Article : Google Scholar : PubMed/NCBI

32 

Langmead B and Salzberg SL: Fast gapped-read alignment with Bowtie 2. Nat Methods. 9:357–359. 2012. View Article : Google Scholar : PubMed/NCBI

33 

Zhan Y, Yin A, Su X, Tang N, Zhang Z, Chen Y, Wang W and Wang J: Interpreting the molecular mechanisms of RBBP4/7 and their roles in human diseases (Review). Int J Mol Med. 53:482024. View Article : Google Scholar : PubMed/NCBI

34 

Farhana R, Lei R, Pham K, Derrien V, Cedeño J, Rodriquez V, Bernad S, Lima FF and Miksovska J: Globin X: A highly stable intrinsically hexacoordinate globin. J Inorg Biochem. 236:1119762022. View Article : Google Scholar : PubMed/NCBI

35 

Li C, Tan XF, Lim TK, Lin Q and Gong Z: Comprehensive and quantitative proteomic analyses of zebrafish plasma reveals conserved protein profiles between genders and between zebrafish and human. Sci Rep. 6:243292016. View Article : Google Scholar : PubMed/NCBI

36 

Yilmaz O, Patinote A, Nguyen TV, Com E, Lavigne R, Pineau C, Sullivan CV and Bobe J: Scrambled eggs: Proteomic portraits and novel biomarkers of egg quality in zebrafish (Danio rerio). PLoS One. 12:e01880842017. View Article : Google Scholar : PubMed/NCBI

37 

Moyano TC, Gutiérrez RA and Alvarez JM: Genomic footprinting analyses from DNase-seq data to construct gene regulatory networks. Methods Mol Biol. 2328:25–46. 2021. View Article : Google Scholar : PubMed/NCBI

38 

Carmignac V, Barberet J, Iranzo J, Quéré R, Guilleman M, Bourc'his D and Fauque P: Effects of assisted reproductive technologies on transposon regulation in the mouse pre-implanted embryo. Hum Reprod. 34:612–622. 2019. View Article : Google Scholar : PubMed/NCBI

39 

Navarro PA, Wang F, Pimentel R, Robinson LG Jr, Berteli TS and Keefe DL: Zidovudine inhibits telomere elongation, increases the transposable element LINE-1 copy number and compromises mouse embryo development. Mol Biol Rep. 48:7767–7773. 2021. View Article : Google Scholar : PubMed/NCBI

40 

Han JS and Boeke JD: A highly active synthetic mammalian retrotransposon. Nature. 429:314–318. 2004. View Article : Google Scholar : PubMed/NCBI

41 

Zhang P, Ludwig AK, Hastert FD, Rausch C, Lehmkuhl A, Hellmann I, Smets M, Leonhardt H and Cardoso MC: L1 retrotransposition is activated by Ten-eleven-translocation protein 1 and repressed by methyl-CpG binding proteins. Nucleus. 8:548–562. 2017. View Article : Google Scholar : PubMed/NCBI

42 

Zhang S, Dong Y and Cui P: Vitellogenin is an immunocompetent molecule for mother and offspring in fish. Fish Shellfish Immunol. 46:710–715. 2015. View Article : Google Scholar : PubMed/NCBI

43 

Veil M, Yampolsky LY, Grüning B and Onichtchouk D: Pou5f3, SoxB1, and Nanog remodel chromatin on high nucleosome affinity regions at zygotic genome activation. Genome Res. 29:383–395. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Wang J, Zhang X, Shan R, Ma S, Tian H, Wang W and Ru S: Lipovitellin as an antigen to improve the precision of sandwich ELISA for quantifying zebrafish (Danio rerio) vitellogenin. Comp Biochem Physiol C Toxicol Pharmacol. 185-186:87–93. 2016. View Article : Google Scholar : PubMed/NCBI

45 

Thompson JR and Banaszak LJ: Lipid-protein interactions in lipovitellin. Biochemistry. 41:9398–9409. 2002. View Article : Google Scholar : PubMed/NCBI

46 

Ramos KS, Bojang P and Bowers E: Role of long interspersed nuclear element-1 in the regulation of chromatin landscapes and genome dynamics. Exp Biol Med (Maywood). 246:2082–2097. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Tian T, Wang L, Shen Y, Zhang B, Finnell RH and Ren A: Hypomethylation of GRHL3 gene is associated with the occurrence of neural tube defects. Epigenomics. 10:891–901. 2018. View Article : Google Scholar : PubMed/NCBI

48 

Desai K, Spikings E and Zhang T: Effect of chilling on sox2, sox3 and sox19a gene expression in zebrafish (Danio rerio) embryos. Cryobiology. 63:96–103. 2011. View Article : Google Scholar : PubMed/NCBI

49 

Fang F, Chen D, Basharat AR, Poulos W, Wang Q, Cibelli JB, Liu X and Sun L: Quantitative proteomics reveals the dynamic proteome landscape of zebrafish embryos during the maternal-to-zygotic transition. iScience. 27:1099442024. View Article : Google Scholar : PubMed/NCBI

50 

Lindeman LC, Winata CL, Aanes H, Mathavan S, Alestrom P and Collas P: Chromatin states of developmentally-regulated genes revealed by DNA and histone methylation patterns in zebrafish embryos. Int J Dev Biol. 54:803–813. 2010. View Article : Google Scholar : PubMed/NCBI

51 

Sokolova M and Vartiainen MK: Chromatin immunoprecipitation experiments from Drosophila ovaries. Methods Mol Biol. 2626:335–351. 2023. View Article : Google Scholar : PubMed/NCBI

52 

Popchock AR, Larson JD, Dubrulle J, Asbury CL and Biggins S: Direct observation of coordinated assembly of individual native centromeric nucleosomes. EMBO J. 42:e1145342023. View Article : Google Scholar : PubMed/NCBI

53 

Pallarès-Albanell J, Ortega-Flores L, Senar-Serra T, Ruiz A, Abril JF, Rossello M and Almudi I: Gene regulatory dynamics during the development of a paleopteran insect, the mayfly Cloeon dipterum. bioRxiv. May 17–2024.Epub ahead of print.

54 

Muto Y, Wilson PC, Ledru N, Wu H, Dimke H, Waikar SS and Humphreys BD: Single cell transcriptional and chromatin accessibility profiling redefine cellular heterogeneity in the adult human kidney. Nat Commun. 12:21902021. View Article : Google Scholar : PubMed/NCBI

55 

Jiang Z and Zhang B: On the role of transcription in positioning nucleosomes. PLoS Comput Biol. 17:e10085562021. View Article : Google Scholar : PubMed/NCBI

56 

Zhao M, Wang Z, Yung S and Lu Q: Epigenetic dynamics in immunity and autoimmunity. Int J Biochem Cell Biol. 67:65–74. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Hocher A, Laursen SP, Radford P, Tyson J, Lambert C, Stevens KM, Montoya A, Shliaha PV, Picardeau M, Sockett RE, et al: Histones with an unconventional DNA-binding mode in vitro are major chromatin constituents in the bacterium Bdellovibrio bacteriovorus. Nat Microbiol. 8:2006–2019. 2023. View Article : Google Scholar : PubMed/NCBI

58 

Wang SH, Liu L, Bao KY, Zhang YF, Wang WW, Du S, Jia NE, Suo S, Cai J, Guo JF and Lv G: EZH2 contributes to anoikis resistance and promotes epithelial ovarian cancer peritoneal metastasis by regulating m6A. Curr Med Sci. 43:794–802. 2023. View Article : Google Scholar : PubMed/NCBI

59 

Guo H, Zhu P, Yan L, Li R, Hu B, Lian Y, Yan J, Ren X, Lin S, Li J, et al: The DNA methylation landscape of human early embryos. Nature. 511:606–610. 2014. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ji N, Wu C, Wang W, Wang X, Zhai Y, Ali L, Song Z, Zhang G, Feng X, Wang Y, Wang Y, et al: Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping. Int J Mol Med 55: 2, 2025.
APA
Ji, N., Wu, C., Wang, W., Wang, X., Zhai, Y., Ali, L. ... Wang, X. (2025). Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping. International Journal of Molecular Medicine, 55, 2. https://doi.org/10.3892/ijmm.2024.5443
MLA
Ji, N., Wu, C., Wang, W., Wang, X., Zhai, Y., Ali, L., Song, Z., Zhang, G., Feng, X., Wang, Y., Lv, Z., Wang, X."Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping". International Journal of Molecular Medicine 55.1 (2025): 2.
Chicago
Ji, N., Wu, C., Wang, W., Wang, X., Zhai, Y., Ali, L., Song, Z., Zhang, G., Feng, X., Wang, Y., Lv, Z., Wang, X."Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping". International Journal of Molecular Medicine 55, no. 1 (2025): 2. https://doi.org/10.3892/ijmm.2024.5443
Copy and paste a formatted citation
x
Spandidos Publications style
Ji N, Wu C, Wang W, Wang X, Zhai Y, Ali L, Song Z, Zhang G, Feng X, Wang Y, Wang Y, et al: Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping. Int J Mol Med 55: 2, 2025.
APA
Ji, N., Wu, C., Wang, W., Wang, X., Zhai, Y., Ali, L. ... Wang, X. (2025). Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping. International Journal of Molecular Medicine, 55, 2. https://doi.org/10.3892/ijmm.2024.5443
MLA
Ji, N., Wu, C., Wang, W., Wang, X., Zhai, Y., Ali, L., Song, Z., Zhang, G., Feng, X., Wang, Y., Lv, Z., Wang, X."Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping". International Journal of Molecular Medicine 55.1 (2025): 2.
Chicago
Ji, N., Wu, C., Wang, W., Wang, X., Zhai, Y., Ali, L., Song, Z., Zhang, G., Feng, X., Wang, Y., Lv, Z., Wang, X."Binding of zebrafish lipovitellin and L1‑ORF2 increases the accessibility of L1‑ORF2 via interference with histone wrapping". International Journal of Molecular Medicine 55, no. 1 (2025): 2. https://doi.org/10.3892/ijmm.2024.5443
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team