|
1
|
Courtneidge SA and Fumagalli S: A mitotic
function for Src? Trends Cell Biol. 4:345–347. 1994. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
Frisone P, Pradella D, Di Matteo A,
Belloni E, Ghigna C and Paronetto MP: SAM68: Signal transduction
and RNA metabolism in human cancer. Biomed Res Int.
2015:5289542015. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Najib S, Martín-Romero C, González-Yanes C
and Sánchez-Margalet V: Role of Sam68 as an adaptor protein in
signal transduction. Cell Mol Life Sci. 62:36–43. 2005. View Article : Google Scholar
|
|
4
|
Pagliarini V, Jolly A, Bielli P, Di Rosa
V, De la Grange P and Sette C: Sam68 binds Alu-rich introns in SMN
and promotes pre-mRNA circularization. Nucleic Acids Res.
48:633–645. 2020. View Article : Google Scholar :
|
|
5
|
Messina V, Meikar O, Paronetto MP,
Calabretta S, Geremia R, Kotaja N and Sette C: The RNA binding
protein SAM68 transiently localizes in the chromatoid body of male
germ cells and influences expression of select microRNAs. PLoS One.
7:e397292012. View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Li J, Liu Y, Kim BO and He JJ: Direct
participation of Sam68, the 68-kilodalton Src-associated protein in
mitosis, in the CRM1-mediated Rev nuclear export pathway. J Virol.
76:8374–8382. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Vilariño-García T, Pérez-Pérez A,
Santamaría-López E, Prados N, Fernández-Sánchez M and
Sánchez-Margalet V: Sam68 mediates leptin signaling and action in
human granulosa cells: Possible role in leptin resistance in PCOS.
Endocr Connect. 9:479–488. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Adinolfi A, Di Sante G, Rivignani Vaccari
L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C and Geloso
MC: Regionally restricted modulation of Sam68 expression and
Arhgef9 alternative splicing in the hippocampus of a murine model
of multiple sclerosis. Front Mol Neurosci. 15:10736272022.
View Article : Google Scholar
|
|
9
|
Wang Y, Zhang W, Wang X, Wang D, Xie J,
Tang C, Xi Q, Zhong J and Deng Y: Expression of Sam68 correlates
with cell proliferation and survival in epithelial ovarian cancer.
Reprod Sci. 24:97–108. 2017. View Article : Google Scholar
|
|
10
|
Pieraccioli M, Caggiano C, Mignini L,
Zhong C, Babini G, Lattanzio R, Di Stasi S, Tian B, Sette C and
Bielli P: The transcriptional terminator XRN2 and the RNA-binding
protein Sam68 link alternative polyadenylation to cell cycle
progression in prostate cancer. Nat Struct Mol Biol. 29:1101–1112.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Taylor SJ, Resnick RJ and Shalloway D:
Sam68 exerts separable effects on cell cycle progression and
apoptosis. BMC Cell Biol. 5:52004. View Article : Google Scholar : PubMed/NCBI
|
|
12
|
Sanchez-Jimenez F and Sanchez-Margalet V:
Role of Sam68 in post-transcriptional gene regulation. Int J Mol
Sci. 14:23402–23419. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Richard S, Vogel G, Huot ME, Guo T, Muller
WJ and Lukong KE: Sam68 haploinsufficiency delays onset of mammary
tumorigenesis and metastasis. Oncogene. 27:548–556. 2008.
View Article : Google Scholar
|
|
14
|
Irwin ME, Bohin N and Boerner JL: Src
family kinases mediate epidermal growth factor receptor signaling
from lipid rafts in breast cancer cells. Cancer Biol Ther.
12:718–726. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Pillay I, Nakano H and Sharma SV:
Radicicol inhibits tyrosine phosphorylation of the mitotic Src
substrate Sam68 and retards subsequent exit from mitosis of
Src-transformed cells. Cell Growth Differ. 7:1487–1499.
1996.PubMed/NCBI
|
|
16
|
Barlat I, Maurier F, Duchesne M, Guitard
E, Tocque B and Schweighoffer F: A role for Sam68 in cell cycle
progression antagonized by a spliced variant within the KH domain.
J Biol Chem. 272:3129–3132. 1997. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Paronetto MP, Achsel T, Massiello A,
Chalfant CE and Sette C: The RNA-binding protein Sam68 modulates
the alternative splicing of Bcl-x. J Cell Biol. 176:929–939. 2007.
View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Zambuzzi WF, Granjeiro JM, Parikh K,
Yuvaraj S, Peppelenbosch MP and Ferreira CV: Modulation of Src
activity by low molecular weight protein tyrosine phosphatase
during osteoblast differentiation. Cell Physiol Biochem.
22:497–506. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Horn S, Meyer J, Stocking C, Ostertag W
and Jücker M: An increase in the expression and total activity of
endogenous p60(c-Src) in several factor-independent mutants of a
human GM-CSF-dependent leukemia cell line (TF-1). Oncogene.
22:7170–7180. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
20
|
Brignatz C, Paronetto MP, Opi S,
Cappellari M, Audebert S, Feuillet V, Bismuth G, Roche S, Arold ST,
Sette C and Collette Y: Alternative splicing modulates
autoinhibition and SH3 accessibility in the Src kinase Fyn. Mol
Cell Biol. 29:6438–48. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Gorla L, Cantù M, Miccichè F, Patelli C,
Mondellini P, Pierotti MA and Bongarzone I: RET oncoproteins induce
tyrosine phosphorylation changes of proteins involved in RNA
metabolism. Cell Signal. 18:2272–2282. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
22
|
Mamidipudi V, Dhillon NK, Parman T, Miller
LD, Lee KC and Cartwright CA: RACK1 inhibits colonic cell growth by
regulating Src activity at cell cycle checkpoints. Oncogene.
26:2914–2924. 2007. View Article : Google Scholar
|
|
23
|
Lukong KE, Larocque D, Tyner AL and
Richard S: Tyrosine phosphorylation of sam68 by breast tumor kinase
regulates intranuclear localization and cell cycle progression. J
Biol Chem. 280:38639–38647. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Mizuguchi Y, Specht S, Isse K, Sasatomi E,
Lunz JG III, Takizawa T and Demetris AJ: Breast tumor
kinase/protein tyrosine kinase 6 (Brk/PTK6) activity in normal and
neoplastic biliary epithelia. J Hepatol. 63:399–407. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Brauer PM, Zheng Y, Wang L and Tyner AL:
Cytoplasmic retention of protein tyrosine kinase 6 promotes growth
of prostate tumor cells. Cell Cycle. 9:4190–4199. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Paronetto MP, Farini D, Sammarco I, Maturo
G, Vespasiani G, Geremia R, Rossi P and Sette C: Expression of a
truncated form of the c-Kit tyrosine kinase receptor and activation
of Src kinase in human prostatic cancer. Am J Pathol.
164:1243–1251. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Locatelli A and Lange CA: Met receptors
induce Sam68-dependent cell migration by activation of alternate
extracellular signal-regulated kinase family members. J Biol Chem.
286:21062–21072. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Babic I, Jakymiw A and Fujita DJ: The RNA
binding protein Sam68 is acetylated in tumor cell lines, and its
acetylation correlates with enhanced RNA binding activity.
Oncogene. 23:3781–3789. 2004. View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Sánchez-Jiménez F, Pérez-Pérez A, de la
Cruz-Merino L and Sánchez-Margalet V: Obesity and breast cancer:
Role of leptin. Front Oncol. 9:5962019. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Sanchez-Margalet V and Najib S: p68 Sam is
a substrate of the insulin receptor and associates with the SH2
domains of p85 PI3K. FEBS Lett. 455:307–310. 1999. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Pérez-Pérez A, Sánchez-Jiménez F,
Vilariño-García T, de la Cruz L, Virizuela JA and Sánchez-Margalet
V: Sam68 mediates the activation of insulin and leptin signalling
in breast cancer cells. PLoS One. 11:e01582182016. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Sánchez-Jiménez F, Pérez-Pérez A,
González-Yanes C, Najib S, Varone CL and Sánchez-Margalet V: Leptin
receptor activation increases Sam68 tyrosine phosphorylation and
expression in human trophoblastic cells. Mol Cell Endocrinol.
332:221–227. 2011. View Article : Google Scholar
|
|
33
|
Sánchez-Jiménez F, Pérez-Pérez A,
González-Yanes C, Varone CL and Sánchez-Margalet V: Sam68 mediates
leptin-stimulated growth by modulating leptin receptor signaling in
human trophoblastic JEG-3 cells. Hum Reprod. 26:2306–2315. 2011.
View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Reiss K, Del Valle L, Lassak A and
Trojanek J: Nuclear IRS-1 and cancer. J Cell Physiol.
227:2992–3000. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Sung CK, Choi WS and Sanchez-Margalet V:
Guanosine triphosphatase-activating protein-associated protein, but
not src-associated protein p68 in mitosis, is a part of insulin
signaling complexes. Endocrinology. 139:2392–2398. 1998. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Matter N, Herrlich P and König H:
Signal-dependent regulation of splicing via phosphorylation of
Sam68. Nature. 420:691–695. 2002. View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Malki I, Liepina I, Kogelnik N, Watmuff H,
Robinson S, Lightfoot A, Gonchar O, Bottrill A, Fry AM and
Dominguez C: Cdk1-mediated threonine phosphorylation of Sam68
modulates its RNA binding, alternative splicing activity and
cellular functions. Nucleic Acids Res. 50:13045–13062. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Yang J, Song C and Zhan X: The role of
protein acetylation in carcinogenesis and targeted drug discovery.
Front Endocrinol (Lausanne). 13:9723122022. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Sobulo OM, Borrow J, Tomek R, Reshmi S,
Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD and
Zeleznik-Le NJ: MLL is fused to CBP, a histone acetyltransferase,
in therapy-related acute myeloid leukemia with a t(11;16)
(q23;p13.3). Proc Natl Acad Sci USA. 94:8732–8737. 1997. View Article : Google Scholar
|
|
40
|
Lavau C, Du C, Thirman M and Zeleznik-Le
N: Chromatin-related properties of CBP fused to MLL generate a
myelodysplastic-like syndrome that evolves into myeloid leukemia.
EMBO J. 19:4655–4664. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cheung N, Chan LC, Thompson A, Cleary ML
and So CW: Protein arginine-methyltransferase-dependent
oncogenesis. Nat Cell Biol. 9:1208–1215. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Bielli P, Busà R, Paronetto MP and Sette
C: The RNA-binding protein Sam68 is a multifunctional player in
human cancer. Endocr Relat Cancer. 18:R91–R102. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Siam A, Baker M, Amit L, Regev G, Rabner
A, Najar RA, Bentata M, Dahan S, Cohen K, Araten S, et al:
Regulation of alternative splicing by p300-mediated acetylation of
splicing factors. RNA. 25:813–824. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Bordonaro M: Hypothesis: Sam68 and Pygo2
mediate cell type-specific effects of the modulation of CBP-Wnt and
p300-Wnt activities in colorectal cancer cells. J Cancer.
12:5046–5052. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Nakka KK, Chaudhary N, Joshi S, Bhat J,
Singh K, Chatterjee S, Malhotra R, De A, Santra MK, Dilworth FJ and
Chattopadhyay S: Nuclear matrix-associated protein SMAR1 regulates
alternative splicing via HDAC6-mediated deacetylation of Sam68.
Proc Natl Acad Sci USA. 112:E3374–E3383. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Hwang JW, Cho Y, Bae GU, Kim SN and Kim
YK: Protein arginine methyltransferases: Promising targets for
cancer therapy. Exp Mol Med. 53:788–808. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
47
|
Yu Z, Chen T, Hébert J, Li E and Richard
S: A mouse PRMT1 null allele defines an essential role for arginine
methylation in genome maintenance and cell proliferation. Mol Cell
Biol. 29:2982–2996. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Robin-Lespinasse Y, Sentis S, Kolytcheff
C, Rostan MC, Corbo L and Le Romancer M: hCAF1, a new regulator of
PRMT1-dependent arginine methylation. J Cell Sci. 120:638–647.
2007. View Article : Google Scholar : PubMed/NCBI
|
|
49
|
Vhuiyan MI, Pak ML, Park MA, Thomas D,
Lakowski TM, Chalfant CE and Frankel A: PRMT2 interacts with
splicing factors and regulates the alternative splicing of BCL-X. J
Biochem. 162:17–25. 2017.PubMed/NCBI
|
|
50
|
Deng L, Meng T, Chen L, Wei W and Wang P:
The role of ubiquitination in tumorigenesis and targeted drug
discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Benoit YD, Mitchell RR, Risueño RM,
Orlando L, Tanasijevic B, Boyd AL, Aslostovar L, Salci KR,
Shapovalova Z, Russell J, et al: Sam68 allows selective targeting
of human cancer stem cells. Cell Chem Biol. 24:833–844.e9. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Babic I, Cherry E and Fujita DJ: SUMO
modification of Sam68 enhances its ability to repress cyclin D1
expression and inhibits its ability to induce apoptosis. Oncogene.
25:4955–4964. 2006. View Article : Google Scholar : PubMed/NCBI
|
|
53
|
La Rosa P, Bielli P, Compagnucci C, Cesari
E, Volpe E, Farioli Vecchioli S and Sette C: Sam68 promotes
self-renewal and glycolytic metabolism in mouse neural progenitor
cells by modulating Aldh1a3 pre-mRNA 3'-end processing. Elife.
5:e207502016. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Mao P, Joshi K, Li J, Kim SH, Li P,
Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L, et al:
Mesenchymal glioma stem cells are maintained by activated
glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc
Natl Acad Sci USA. 110:8644–8649. 2013. View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Rinkenbaugh AL and Baldwin AS: The NF-κB
pathway and cancer stem cells. Cells. 5:162016. View Article : Google Scholar
|
|
56
|
Vazquez-Santillan K, Melendez-Zajgla J,
Jimenez-Hernandez L, Martínez-Ruiz G and Maldonado V: NF-κB
signaling in cancer stem cells: A promising therapeutic target?
Cell Oncol (Dordr). 38:327–339. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Vazquez-Santillan K, Melendez-Zajgla J,
Jimenez-Hernandez LE, Gaytan-Cervantes J, Muñoz-Galindo L,
Piña-Sanchez P, Martinez-Ruiz G, Torres J, Garcia-Lopez P,
Gonzalez-Torres C, et al: NF-kappaB-inducing kinase regulates stem
cell phenotype in breast cancer. Sci Rep. 6:373402016. View Article : Google Scholar
|
|
58
|
Ishiguro T, Ohata H, Sato A, Yamawaki K,
Enomoto T and Okamoto K: Tumor-derived spheroids: Relevance to
cancer stem cells and clinical applications. Cancer Sci.
108:283–289. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Manuel Iglesias J, Beloqui I,
Garcia-Garcia F, Leis O, Vazquez-Martin A, Eguiara A, Cufi S, Pavon
A, Menendez JA, Dopazo J and Martin AG: Mammosphere formation in
breast carcinoma cell lines depends upon expression of E-cadherin.
PLoS One. 8:e772812013. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Wang L, Tian H, Yuan J, Wu H, Wu J and Zhu
X: CONSORT: Sam68 is directly regulated by MiR-204 and promotes the
Self-renewal potential of breast cancer cells by activating the
Wnt/beta-catenin signaling pathway. Medicine (Baltimore).
94:e22282015. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon
H, Kim KH, Jin MS, Kwon NH, Kim S, et al: Tumor suppressor
miRNA-204-5p regulates growth, metastasis, and immune
microenvironment remodeling in breast cancer. Cancer Res.
79:1520–1534. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
62
|
Li P, Wang Q and Wang H: MicroRNA-204
inhibits the proliferation, migration and invasion of human lung
cancer cells by targeting PCNA-1 and inhibits tumor growth in vivo.
Int J Mol Med. 43:1149–1156. 2019.PubMed/NCBI
|
|
63
|
Imam JS, Plyler JR, Bansal H, Prajapati S,
Bansal S, Rebeles J, Chen HI, Chang YF, Panneerdoss S, Zoghi B, et
al: Genomic loss of tumor suppressor miRNA-204 promotes cancer cell
migration and invasion by activating AKT/mTOR/Rac1 signaling and
actin reorganization. PLoS One. 7:e523972012. View Article : Google Scholar
|
|
64
|
Liang CY, Li ZY, Gan TQ, Fang YY, Gan BL,
Chen WJ, Dang YW, Shi K, Feng ZB and Chen G: Downregulation of
hsa-microRNA-204-5p and identification of its potential regulatory
network in non-small cell lung cancer: RT-qPCR, bioinformatic- and
meta-analyses. Respir Res. 21:602020. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Turdo A, Gaggianesi M, Di Franco S, Veschi
V, D'Accardo C, Porcelli G, Lo Iacono M, Pillitteri I, Verona F,
Militello G, et al: Effective targeting of breast cancer stem cells
by combined inhibition of Sam68 and Rad51. Oncogene. 41:2196–2209.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Mehner C, Hockla A, Miller E, Ran S,
Radisky DC and Radisky ES: Tumor cell-produced matrix
metalloproteinase 9 (MMP-9) drives malignant progression and
metastasis of basal-like triple negative breast cancer. Oncotarget.
5:2736–2749. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
London M and Gallo E: Critical role of
EphA3 in cancer and current state of EphA3 drug therapeutics. Mol
Biol Rep. 47:5523–5533. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Lv XY, Wang J, Huang F, Wang P, Zhou JG,
Wei B and Li SH: EphA3 contributes to tumor growth and angiogenesis
in human gastric cancer cells. Oncol Rep. 40:2408–2416.
2018.PubMed/NCBI
|
|
69
|
Chen X, Zhang L, Yuan M, Kuang Z, Zou Y,
Tang T, Zhang W, Hu X, Xia T, Cao T and Jia H: Sam68 Promotes the
progression of human breast cancer through inducing activation of
EphA3. Curr Cancer Drug Targets. 20:76–83. 2020. View Article : Google Scholar
|
|
70
|
Aubele M, Walch AK, Ludyga N, Braselmann
H, Atkinson MJ, Luber B, Auer G, Tapio S, Cooke T and Bartlett JM:
Prognostic value of protein tyrosine kinase 6 (PTK6) for long-term
survival of breast cancer patients. Br J Cancer. 99:1089–1095.
2008. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Song L, Wang L, Li Y, Xiong H, Wu J, Li J
and Li M: Sam68 up-regulation correlates with, and its
down-regulation inhibits, proliferation and tumourigenicity of
breast cancer cells. J Pathol. 222:227–237. 2010. View Article : Google Scholar : PubMed/NCBI
|
|
72
|
Paronetto MP, Cappellari M, Busà R,
Pedrotti S, Vitali R, Comstock C, Hyslop T, Knudsen KE and Sette C:
Alternative splicing of the cyclin D1 proto-oncogene is regulated
by the RNA-binding protein Sam68. Cancer Res. 70:229–239. 2010.
View Article : Google Scholar :
|
|
73
|
Caggiano C, Pieraccioli M, Panzeri V,
Sette C and Bielli P: c-MYC empowers transcription and productive
splicing of the oncogenic splicing factor Sam68 in cancer. Nucleic
Acids Res. 47:6160–6171. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
Derry JJ, Prins GS, Ray V and Tyner AL:
Altered localization and activity of the intracellular tyrosine
kinase BRK/Sik in prostate tumor cells. Oncogene. 22:4212–4220.
2003. View Article : Google Scholar : PubMed/NCBI
|
|
75
|
Busà R, Paronetto MP, Farini D,
Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G and
Sette C: The RNA-binding protein Sam68 contributes to proliferation
and survival of human prostate cancer cells. Oncogene.
26:4372–4382. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Rajan P, Gaughan L, Dalgliesh C, El-Sherif
A, Robson CN, Leung HY and Elliott DJ: The RNA-binding and adaptor
protein Sam68 modulates signal-dependent splicing and
transcriptional activity of the androgen receptor. J Pathol.
215:67–77. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Uddin MH, Li Y, Khan HY, Muqbil I,
Aboukameel A, Sexton RE, Reddy S, Landesman Y, Kashyap T, Azmi AS
and Heath EI: Nuclear export inhibitor KPT-8602 synergizes with
PARP inhibitors in escalating apoptosis in castration resistant
cancer cells. Int J Mol Sci. 22:66762021. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Mijatovic T, De Nève N, Gailly P, Mathieu
V, Haibe-Kains B, Bontempi G, Lapeira J, Decaestecker C, Facchini V
and Kiss R: Nucleolus and c-Myc: Potential targets of
cardenolide-mediated antitumor activity. Mol Cancer Ther.
7:1285–1296. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Sumithra B, Jayanthi VSPKSA, Manne HC,
Gunda R, Saxena U and Das AB: Antibody-based biosensor to detect
oncogenic splicing factor Sam68 for the diagnosis of lung cancer.
Biotechnol Lett. 42:2501–2509. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Zhang Z, Xu Y, Sun N, Zhang M, Xie J and
Jiang Z: High Sam68 expression predicts poor prognosis in Non-small
cell lung cancer. Clin Transl Oncol. 16:886–891. 2014. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lin CH, Liao CC, Wang SY, Peng CY, Yeh YC,
Chen MY and Chou TY: Comparative O-GlcNAc proteomic analysis
reveals a role of O-GlcNAcylated SAM68 in lung cancer
aggressiveness. Cancers (Basel). 14:2432022. View Article : Google Scholar : PubMed/NCBI
|
|
82
|
Zhu S, Chen W, Wang J, Qi L, Pan H, Feng Z
and Tian D: SAM68 promotes tumorigenesis in lung adenocarcinoma by
regulating metabolic conversion via PKM alternative splicing.
Theranostics. 11:3359–3375. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Li X, Zhou X, Hua F, Fan Y, Zu L, Wang Y,
Shen W, Pan H and Zhou Q: The RNA-binding protein Sam68 is critical
for non-small cell lung cancer cell proliferation by regulating
Wnt/β-catenin pathway. Int J Clin Exp Pathol. 10:8281–8291.
2017.
|
|
84
|
Sumithra B, Saxena U and Das AB: A
comprehensive study on genome-wide coexpression network of
KHDRBS1/Sam68 reveals its cancer and Patient-specific association.
Sci Rep. 9:110832019. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Masibag AN, Bergin CJ, Haebe JR, Zouggar
A, Shah MS, Sandouka T, Mendes da Silva A, Desrochers FM,
Fournier-Morin A and Benoit YD: Pharmacological targeting of Sam68
functions in colorectal cancer stem cells. iScience. 24:1034422021.
View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Fu K, Sun X, Wier EM, Hodgson A, Liu Y,
Sears CL and Wan F: Sam68/KHDRBS1 is critical for colon
tumorigenesis by regulating genotoxic stress-induced NF-κB
activation. Elife. 5:e150182016. View Article : Google Scholar
|
|
87
|
Zhao J, Li J, Hassan W, Xu D, Wang X and
Huang Z: Huang, Sam68 promotes aerobic glycolysis in colorectal
cancer by regulating PKM2 alternative splicing. Ann Transl Med.
8:4592020. View Article : Google Scholar
|
|
88
|
Vasileva E, Shuvalov O, Petukhov A,
Fedorova O, Daks A, Nader R and Barlev N: KMT Set7/9 is a new
regulator of Sam68 STAR-protein. Biochem Biophys Res Commun.
525:1018–1024. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Li N and Richard S: Sam68 functions as a
transcriptional coactivator of the p53 tumor suppressor. Nucleic
Acids Res. 44:8726–8741. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Li N, Ngo CT, Aleynikova O, Beauchemin N
and Richard S: The p53 status can influence the role of Sam68 in
tumorigenesis. Oncotarget. 7:71651–71659. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Yu X, Kang W, Zhang J, Chen C and Liu Y:
Shortening of the KHDRBS1 3'UTR by alternative cleavage and
polyadenylation alters miRNA-mediated regulation and promotes
gastric cancer progression. Am J Transl Res. 14:6574–6585.
2022.PubMed/NCBI
|
|
92
|
Xiao J, Wang Q, Yang Q, Wang H, Qiang F,
He S, Cai J, Yang L and Wang Y: Clinical significance and effect of
Sam68 expression in gastric cancer. Oncol Lett. 15:4745–4752.
2018.PubMed/NCBI
|
|
93
|
Zhang JY, Du Y, Gong LP, Shao YT, Pan LJ,
Feng ZY, Pan YH, Huang JT, Wen JY, Sun LP, et al: ebv-circRPMS1
promotes the progression of EBV-associated gastric carcinoma via
Sam68-dependent activation of METTL3. Cancer Lett. 535:2156462022.
View Article : Google Scholar : PubMed/NCBI
|
|
94
|
Komiyama T, Kuroshima T, Sugasawa T,
Fujita SI, Ikami Y, Hirai H, Tsushima F, Michi Y, Kayamori K,
Higashino F and Harada H: High expression of Sam68 contributes to
metastasis by regulating vimentin expression and a motile phenotype
in oral squamous cell carcinoma. Oncol Rep. 48:1832022. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Chen S, Li H, Zhuang S, Zhang J, Gao F,
Wang X, Chen W and Song M: Sam68 reduces Cisplatin-induced
apoptosis in tongue carcinoma. J Exp Clin Cancer Res. 35:1232016.
View Article : Google Scholar : PubMed/NCBI
|
|
96
|
Fu K, Sun X, Xia X, Hobbs RP, Guo Y,
Coulombe PA and Wan F: Sam68 is required for the growth and
survival of nonmelanoma skin cancer. Cancer Med. 8:6106–6113. 2019.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Paronetto MP, Messina V, Bianchi E, Barchi
M, Vogel G, Moretti C, Palombi F, Stefanini M, Geremia R, Richard S
and Sette C: Sam68 regulates translation of target mRNAs in male
germ cells, necessary for mouse spermatogenesis. J Cell Biol.
185:235–249. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
98
|
Wang Q, Li Y, Cheng J, Chen L, Xu H, Li Q
and Pang T: Sam68 affects cell proliferation and apoptosis of human
adult T-acute lymphoblastic leukemia cells via AKT/mTOR signal
pathway. Leuk Res. 46:1–9. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Zhao D, Tian Y, Li P, Wang L, Xiao A,
Zhang M and Shi T: MicroRNA-203 inhibits the malignant progression
of neuroblastoma by targeting Sam68. Mol Med Rep. 12:5554–5560.
2015. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Zhao X, Li Z, He B, Liu J, Li S, Zhou L,
Pan C, Yu Z and Xu Z: Sam68 is a novel marker for aggressive
neuroblastoma. Onco Targets Ther. 6:1751–1760. 2013.PubMed/NCBI
|
|
101
|
Dong L, Che H, Li M and Li X: Sam68 is
overexpressed in epithelial ovarian cancer and promotes tumor cell
proliferation. Med Sci Monit. 22:3248–3256. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Chen ZY, Cai L, Zhu J, Chen M, Chen J, Li
ZH, Liu XD, Wang SG, Bie P, Jiang P, et al: Fyn requires HnRNPA2B1
and Sam68 to synergistically regulate apoptosis in pancreatic
cancer. Carcinogenesis. 32:1419–1426. 2011. View Article : Google Scholar : PubMed/NCBI
|
|
103
|
Li Z, Yu CP, Zhong Y, Liu TJ, Huang QD,
Zhao XH, Huang H, Tu H, Jiang S, Zhang Y, et al: Sam68 expression
and cytoplasmic localization is correlated with lymph node
metastasis as well as prognosis in patients with Early-stage
cervical cancer. Ann Oncol. 23:638–646. 2012. View Article : Google Scholar
|
|
104
|
Zhang Z, Yu C, Li Y, Jiang L and Zhou F:
Utility of SAM68 in the progression and prognosis for bladder
cancer. BMC Cancer. 15:3642015. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Wang Q, Li Y, Zhou J, Liu J, Qin J, Xing
F, Zhang J and Cheng J: Clinical significance of Sam68 expression
in endometrial carcinoma. Tumour Biol. 36:4509–4518. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Wang Y, Liang L, Zhang J, Li M, Zhu J,
Gong C, Yang L, Zhu J, Chen L and Ni R: Sam68 promotes cellular
proliferation and predicts poor prognosis in esophageal squamous
cell carcinoma. Tumour Biol. 36:8735–8745. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Wu Y, Xu X, Miao X, Zhu X, Yin H, He Y, Li
C, Liu Y, Chen Y, Lu X, et al: Sam68 regulates cell proliferation
and cell adhesion-mediated drug resistance (CAM-DR) via the AKT
pathway in non-Hodgkin's lymphoma. Cell Prolif. 48:682–690. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Wen H, Li P, Ma H, Zheng J, Yu Y and Lv G:
High expression of Sam68 in sacral chordomas is associated with
worse clinical outcomes. Onco Targets Ther. 10:4691–4700. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Zhang T, Wan C, Shi W, Xu J, Fan H, Zhang
S, Lin Z, Ni R and Zhang X: The RNA-binding protein Sam68 regulates
tumor cell viability and hepatic carcinogenesis by inhibiting the
transcriptional activity of FOXOs. J Mol Histol. 46:485–497. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang Z, Li J, Zheng H, Yu C, Chen J, Liu
Z, Li M, Zeng M, Zhou F and Song L: Expression and cytoplasmic
localization of SAM68 is a significant and independent prognostic
marker for renal cell carcinoma. Cancer Epidemiol Biomarkers Prev.
18:2685–2693. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Wu Z, Peng Y, Xiong L, Wang J, Li Z, Ning
K, Deng M, Wang N, Wei W, Li Z, et al: Role of Sam68 in Sunitinib
induced renal cell carcinoma apoptosis. Cancer Med. 11:3674–3686.
2022. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Feng J, Ren X, Fu H, Li D, Chen X, Zu X,
Liu Q and Wu M: LRRC4 mediates the formation of circular RNA CD44
to inhibitGBM cell proliferation. Mol Ther Nucleic Acids.
26:473–487. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Liu K, Li L, Nisson PE, Gruber C, Jessee J
and Cohen SN: Neoplastic transformation and tumorigenesis
associated with sam68 protein deficiency in cultured murine
fibroblasts. J Biol Chem. 275:40195–40201. 2000. View Article : Google Scholar : PubMed/NCBI
|
|
114
|
Lukong KE and Richard S: Targeting the
RNA-binding protein Sam68 as a treatment for cancer? Future Oncol.
3:539–544. 2007. View Article : Google Scholar : PubMed/NCBI
|
|
115
|
Galluzzi L, Buqué A, Kepp O, Zitvogel L
and Kroemer G: Immunological effects of conventional chemotherapy
and targeted anticancer agents. Cancer Cell. 28:690–714. 2015.
View Article : Google Scholar : PubMed/NCBI
|
|
116
|
Behranvand N, Nasri F, Zolfaghari Emameh
R, Khani P, Hosseini A, Garssen J and Falak R: Chemotherapy: A
double-edged sword in cancer treatment. Cancer Immunol Immunother.
71:507–526. 2022. View Article : Google Scholar
|
|
117
|
Raguz S and Yagüe E: Resistance to
chemotherapy: New treatments and novel insights into an old
problem. Br J Cancer. 99:387–391. 2008. View Article : Google Scholar : PubMed/NCBI
|
|
118
|
Brown FC, Still E, Koche RP, Yim CY, Takao
S, Cifani P, Reed C, Gunasekera S, Ficarro SB, Romanienko P, et al:
MEF2C phosphorylation is required for chemotherapy resistance in
acute myeloid leukemia. Cancer Discov. 8:478–497. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
119
|
Saqub H, Proetsch-Gugerbauer H, Bezrookove
V, Nosrati M, Vaquero EM, de Semir D, Ice RJ, McAllister S,
Soroceanu L, Kashani-Sabet M, et al: Dinaciclib, a cyclin-dependent
kinase inhibitor, suppresses cholangiocarcinoma growth by targeting
CDK2/5/9. Sci Rep. 10:184892020. View Article : Google Scholar : PubMed/NCBI
|
|
120
|
Savage G and Antman KH: Imatinib
mesylate-a new oral targeted therapy. N Engl J Med. 346:683–693.
2002. View Article : Google Scholar : PubMed/NCBI
|
|
121
|
Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan
T, Yang W, Tian C, Miao Z, Wang T and Yang S: Small molecules in
targeted cancer therapy: Advances, challenges, and future
perspectives. Signal Transduct Target Ther. 6:2012021. View Article : Google Scholar : PubMed/NCBI
|
|
122
|
Wang Z, Jia R, Wang L, Yang Q, Hu X, Fu Q,
Zhang X, Li W and Ren Y: The emerging roles of Rad51 in cancer and
its potential as a therapeutic target. Front Oncol. 12:9355932022.
View Article : Google Scholar : PubMed/NCBI
|
|
123
|
Huang F and Mazin AV: A small molecule
inhibitor of human RAD51 potentiates breast cancer cell killing by
therapeutic agents in mouse xenografts. PLoS One. 9:e1009932014.
View Article : Google Scholar : PubMed/NCBI
|
|
124
|
Zhang L, Xu L, Zhang F and Vlashi E:
Doxycycline inhibits the cancer stem cell phenotype and
Epithelial-to-mesenchymal transition in breast cancer. Cell Cycle.
16:737–745. 2017. View Article : Google Scholar :
|
|
125
|
Hirai H, Sootome H, Nakatsuru Y, Miyama K,
Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS and
Kotani H: MK-2206, an allosteric Akt inhibitor, enhances antitumor
efficacy by standard chemotherapeutic agents or molecular targeted
drugs in vitro and in vivo. Mol Cancer Ther. 9:1956–1967. 2010.
View Article : Google Scholar : PubMed/NCBI
|
|
126
|
Marzagalli M, Fontana F, Raimondi M and
Limonta P: Cancer stem Cells-key players in tumor relapse. Cancers
(Basel). 13:3762021. View Article : Google Scholar : PubMed/NCBI
|
|
127
|
Naro C, Barbagallo F, Caggiano C, De Musso
M, Panzeri V, Di Agostino S, Paronetto MP and Sette C: Functional
interaction between the oncogenic kinase NEK2 and Sam68 promotes a
splicing program involved in migration and invasion in
Triple-negative breast cancer. Front Oncol. 12:8806542022.
View Article : Google Scholar : PubMed/NCBI
|
|
128
|
Quintana-Portillo R, Canfrán-Duque A,
Issad T, Sánchez-Margalet V and González-Yanes C: Sam68 interacts
with IRS1. Biochem Pharmacol. 83:78–87. 2012. View Article : Google Scholar
|
|
129
|
Vilariño-García T, Guadix P, Dorado-Silva
M, Sánchez-Martín P, Pérez-Pérez A and Sánchez-Margalet V:
Decreased expression of Sam68 is associated with insulin resistance
in granulosa cells from PCOS patients. Cells. 11:28212022.
View Article : Google Scholar : PubMed/NCBI
|
|
130
|
Najib S, Rodríguez-Baño J, Ríos MJ,
Muniain MA, Goberna R and Sánchez-Margalet V: Sam68 is tyrosine
phosphorylated and recruited to signalling in peripheral blood
mononuclear cells from HIV infected patients. Clin Exp Immunol.
141:518–525. 2005. View Article : Google Scholar : PubMed/NCBI
|
|
131
|
Awe O, Sinkway JM, Chow RP, Wagener Q,
Schulz EV, Yu JY, Nietert PJ, Wagner CL and Lee KH: Differential
regulation of a placental SAM68 and sFLT1 gene pathway and the
relevance to maternal vitamin D sufficiency. Pregnancy Hypertens.
22:196–203. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
132
|
Shibuya M: Involvement of Flt-1 (VEGF
receptor-1) in cancer and preeclampsia. Proc Jpn Acad Ser B Phys
Biol Sci. 87:167–178. 2011. View Article : Google Scholar : PubMed/NCBI
|