Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
January-2025 Volume 55 Issue 1

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Role of Sam68 in different types of cancer (Review)

  • Authors:
    • Carlos Jiménez‑Cortegana
    • Flora Sánchez‑Jiménez
    • Luis De La Cruz‑Merino
    • Víctor Sánchez‑Margalet
  • View Affiliations / Copyright

    Affiliations: Department of Medical Biochemistry, Molecular Biology and Immunology, School of Medicine, University of Seville, 41009 Seville, Spain, Department of Medicine, School of Medicine, University of Seville, 41009 Seville, Spain; 4Medical Oncology Service, Virgen Macarena University Hospital, 41009 Seville, Spain
    Copyright: © Jiménez‑Cortegana et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 3
    |
    Published online on: October 22, 2024
       https://doi.org/10.3892/ijmm.2024.5444
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Src‑associated in mitosis 68 kDa protein (Sam68) is a protein encoded by the heteronuclear ribonucleoprotein particle K homology (KH) single domain‑containing, RNA‑binding, signal transduction‑associated protein 1 (known as KHDRBS1) gene in humans. This protein contains binding sites for critical components in a variety of cellular processes, including the regulation of gene expression, RNA processing and cell signaling. Thus, Sam68 may play a role in a variety of diseases, including cancer. Sam68 has been widely demonstrated to participate in tumor cell proliferation, progression and metastasis to be involved in the regulation of cancer stem cell self‑renewal. Based on the body of evidence available, Sam68 emerges as a promising target for this disease. The objectives of the present included summarizing the role of Sam68 in cancer murine models and cancer patients, unraveling the molecular mechanisms underlying its oncogenic potential and discussing the effectiveness of antitumor agents in reducing the malignant effects of Sam68 during tumorigenesis.
View Figures

Figure 1

Figure 2

View References

1 

Courtneidge SA and Fumagalli S: A mitotic function for Src? Trends Cell Biol. 4:345–347. 1994. View Article : Google Scholar : PubMed/NCBI

2 

Frisone P, Pradella D, Di Matteo A, Belloni E, Ghigna C and Paronetto MP: SAM68: Signal transduction and RNA metabolism in human cancer. Biomed Res Int. 2015:5289542015. View Article : Google Scholar : PubMed/NCBI

3 

Najib S, Martín-Romero C, González-Yanes C and Sánchez-Margalet V: Role of Sam68 as an adaptor protein in signal transduction. Cell Mol Life Sci. 62:36–43. 2005. View Article : Google Scholar

4 

Pagliarini V, Jolly A, Bielli P, Di Rosa V, De la Grange P and Sette C: Sam68 binds Alu-rich introns in SMN and promotes pre-mRNA circularization. Nucleic Acids Res. 48:633–645. 2020. View Article : Google Scholar :

5 

Messina V, Meikar O, Paronetto MP, Calabretta S, Geremia R, Kotaja N and Sette C: The RNA binding protein SAM68 transiently localizes in the chromatoid body of male germ cells and influences expression of select microRNAs. PLoS One. 7:e397292012. View Article : Google Scholar : PubMed/NCBI

6 

Li J, Liu Y, Kim BO and He JJ: Direct participation of Sam68, the 68-kilodalton Src-associated protein in mitosis, in the CRM1-mediated Rev nuclear export pathway. J Virol. 76:8374–8382. 2002. View Article : Google Scholar : PubMed/NCBI

7 

Vilariño-García T, Pérez-Pérez A, Santamaría-López E, Prados N, Fernández-Sánchez M and Sánchez-Margalet V: Sam68 mediates leptin signaling and action in human granulosa cells: Possible role in leptin resistance in PCOS. Endocr Connect. 9:479–488. 2020. View Article : Google Scholar : PubMed/NCBI

8 

Adinolfi A, Di Sante G, Rivignani Vaccari L, Tredicine M, Ria F, Bonvissuto D, Corvino V, Sette C and Geloso MC: Regionally restricted modulation of Sam68 expression and Arhgef9 alternative splicing in the hippocampus of a murine model of multiple sclerosis. Front Mol Neurosci. 15:10736272022. View Article : Google Scholar

9 

Wang Y, Zhang W, Wang X, Wang D, Xie J, Tang C, Xi Q, Zhong J and Deng Y: Expression of Sam68 correlates with cell proliferation and survival in epithelial ovarian cancer. Reprod Sci. 24:97–108. 2017. View Article : Google Scholar

10 

Pieraccioli M, Caggiano C, Mignini L, Zhong C, Babini G, Lattanzio R, Di Stasi S, Tian B, Sette C and Bielli P: The transcriptional terminator XRN2 and the RNA-binding protein Sam68 link alternative polyadenylation to cell cycle progression in prostate cancer. Nat Struct Mol Biol. 29:1101–1112. 2022. View Article : Google Scholar : PubMed/NCBI

11 

Taylor SJ, Resnick RJ and Shalloway D: Sam68 exerts separable effects on cell cycle progression and apoptosis. BMC Cell Biol. 5:52004. View Article : Google Scholar : PubMed/NCBI

12 

Sanchez-Jimenez F and Sanchez-Margalet V: Role of Sam68 in post-transcriptional gene regulation. Int J Mol Sci. 14:23402–23419. 2013. View Article : Google Scholar : PubMed/NCBI

13 

Richard S, Vogel G, Huot ME, Guo T, Muller WJ and Lukong KE: Sam68 haploinsufficiency delays onset of mammary tumorigenesis and metastasis. Oncogene. 27:548–556. 2008. View Article : Google Scholar

14 

Irwin ME, Bohin N and Boerner JL: Src family kinases mediate epidermal growth factor receptor signaling from lipid rafts in breast cancer cells. Cancer Biol Ther. 12:718–726. 2011. View Article : Google Scholar : PubMed/NCBI

15 

Pillay I, Nakano H and Sharma SV: Radicicol inhibits tyrosine phosphorylation of the mitotic Src substrate Sam68 and retards subsequent exit from mitosis of Src-transformed cells. Cell Growth Differ. 7:1487–1499. 1996.PubMed/NCBI

16 

Barlat I, Maurier F, Duchesne M, Guitard E, Tocque B and Schweighoffer F: A role for Sam68 in cell cycle progression antagonized by a spliced variant within the KH domain. J Biol Chem. 272:3129–3132. 1997. View Article : Google Scholar : PubMed/NCBI

17 

Paronetto MP, Achsel T, Massiello A, Chalfant CE and Sette C: The RNA-binding protein Sam68 modulates the alternative splicing of Bcl-x. J Cell Biol. 176:929–939. 2007. View Article : Google Scholar : PubMed/NCBI

18 

Zambuzzi WF, Granjeiro JM, Parikh K, Yuvaraj S, Peppelenbosch MP and Ferreira CV: Modulation of Src activity by low molecular weight protein tyrosine phosphatase during osteoblast differentiation. Cell Physiol Biochem. 22:497–506. 2008. View Article : Google Scholar : PubMed/NCBI

19 

Horn S, Meyer J, Stocking C, Ostertag W and Jücker M: An increase in the expression and total activity of endogenous p60(c-Src) in several factor-independent mutants of a human GM-CSF-dependent leukemia cell line (TF-1). Oncogene. 22:7170–7180. 2003. View Article : Google Scholar : PubMed/NCBI

20 

Brignatz C, Paronetto MP, Opi S, Cappellari M, Audebert S, Feuillet V, Bismuth G, Roche S, Arold ST, Sette C and Collette Y: Alternative splicing modulates autoinhibition and SH3 accessibility in the Src kinase Fyn. Mol Cell Biol. 29:6438–48. 2009. View Article : Google Scholar : PubMed/NCBI

21 

Gorla L, Cantù M, Miccichè F, Patelli C, Mondellini P, Pierotti MA and Bongarzone I: RET oncoproteins induce tyrosine phosphorylation changes of proteins involved in RNA metabolism. Cell Signal. 18:2272–2282. 2006. View Article : Google Scholar : PubMed/NCBI

22 

Mamidipudi V, Dhillon NK, Parman T, Miller LD, Lee KC and Cartwright CA: RACK1 inhibits colonic cell growth by regulating Src activity at cell cycle checkpoints. Oncogene. 26:2914–2924. 2007. View Article : Google Scholar

23 

Lukong KE, Larocque D, Tyner AL and Richard S: Tyrosine phosphorylation of sam68 by breast tumor kinase regulates intranuclear localization and cell cycle progression. J Biol Chem. 280:38639–38647. 2005. View Article : Google Scholar : PubMed/NCBI

24 

Mizuguchi Y, Specht S, Isse K, Sasatomi E, Lunz JG III, Takizawa T and Demetris AJ: Breast tumor kinase/protein tyrosine kinase 6 (Brk/PTK6) activity in normal and neoplastic biliary epithelia. J Hepatol. 63:399–407. 2015. View Article : Google Scholar : PubMed/NCBI

25 

Brauer PM, Zheng Y, Wang L and Tyner AL: Cytoplasmic retention of protein tyrosine kinase 6 promotes growth of prostate tumor cells. Cell Cycle. 9:4190–4199. 2010. View Article : Google Scholar : PubMed/NCBI

26 

Paronetto MP, Farini D, Sammarco I, Maturo G, Vespasiani G, Geremia R, Rossi P and Sette C: Expression of a truncated form of the c-Kit tyrosine kinase receptor and activation of Src kinase in human prostatic cancer. Am J Pathol. 164:1243–1251. 2004. View Article : Google Scholar : PubMed/NCBI

27 

Locatelli A and Lange CA: Met receptors induce Sam68-dependent cell migration by activation of alternate extracellular signal-regulated kinase family members. J Biol Chem. 286:21062–21072. 2011. View Article : Google Scholar : PubMed/NCBI

28 

Babic I, Jakymiw A and Fujita DJ: The RNA binding protein Sam68 is acetylated in tumor cell lines, and its acetylation correlates with enhanced RNA binding activity. Oncogene. 23:3781–3789. 2004. View Article : Google Scholar : PubMed/NCBI

29 

Sánchez-Jiménez F, Pérez-Pérez A, de la Cruz-Merino L and Sánchez-Margalet V: Obesity and breast cancer: Role of leptin. Front Oncol. 9:5962019. View Article : Google Scholar : PubMed/NCBI

30 

Sanchez-Margalet V and Najib S: p68 Sam is a substrate of the insulin receptor and associates with the SH2 domains of p85 PI3K. FEBS Lett. 455:307–310. 1999. View Article : Google Scholar : PubMed/NCBI

31 

Pérez-Pérez A, Sánchez-Jiménez F, Vilariño-García T, de la Cruz L, Virizuela JA and Sánchez-Margalet V: Sam68 mediates the activation of insulin and leptin signalling in breast cancer cells. PLoS One. 11:e01582182016. View Article : Google Scholar : PubMed/NCBI

32 

Sánchez-Jiménez F, Pérez-Pérez A, González-Yanes C, Najib S, Varone CL and Sánchez-Margalet V: Leptin receptor activation increases Sam68 tyrosine phosphorylation and expression in human trophoblastic cells. Mol Cell Endocrinol. 332:221–227. 2011. View Article : Google Scholar

33 

Sánchez-Jiménez F, Pérez-Pérez A, González-Yanes C, Varone CL and Sánchez-Margalet V: Sam68 mediates leptin-stimulated growth by modulating leptin receptor signaling in human trophoblastic JEG-3 cells. Hum Reprod. 26:2306–2315. 2011. View Article : Google Scholar : PubMed/NCBI

34 

Reiss K, Del Valle L, Lassak A and Trojanek J: Nuclear IRS-1 and cancer. J Cell Physiol. 227:2992–3000. 2012. View Article : Google Scholar : PubMed/NCBI

35 

Sung CK, Choi WS and Sanchez-Margalet V: Guanosine triphosphatase-activating protein-associated protein, but not src-associated protein p68 in mitosis, is a part of insulin signaling complexes. Endocrinology. 139:2392–2398. 1998. View Article : Google Scholar : PubMed/NCBI

36 

Matter N, Herrlich P and König H: Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature. 420:691–695. 2002. View Article : Google Scholar : PubMed/NCBI

37 

Malki I, Liepina I, Kogelnik N, Watmuff H, Robinson S, Lightfoot A, Gonchar O, Bottrill A, Fry AM and Dominguez C: Cdk1-mediated threonine phosphorylation of Sam68 modulates its RNA binding, alternative splicing activity and cellular functions. Nucleic Acids Res. 50:13045–13062. 2022. View Article : Google Scholar : PubMed/NCBI

38 

Yang J, Song C and Zhan X: The role of protein acetylation in carcinogenesis and targeted drug discovery. Front Endocrinol (Lausanne). 13:9723122022. View Article : Google Scholar : PubMed/NCBI

39 

Sobulo OM, Borrow J, Tomek R, Reshmi S, Harden A, Schlegelberger B, Housman D, Doggett NA, Rowley JD and Zeleznik-Le NJ: MLL is fused to CBP, a histone acetyltransferase, in therapy-related acute myeloid leukemia with a t(11;16) (q23;p13.3). Proc Natl Acad Sci USA. 94:8732–8737. 1997. View Article : Google Scholar

40 

Lavau C, Du C, Thirman M and Zeleznik-Le N: Chromatin-related properties of CBP fused to MLL generate a myelodysplastic-like syndrome that evolves into myeloid leukemia. EMBO J. 19:4655–4664. 2000. View Article : Google Scholar : PubMed/NCBI

41 

Cheung N, Chan LC, Thompson A, Cleary ML and So CW: Protein arginine-methyltransferase-dependent oncogenesis. Nat Cell Biol. 9:1208–1215. 2007. View Article : Google Scholar : PubMed/NCBI

42 

Bielli P, Busà R, Paronetto MP and Sette C: The RNA-binding protein Sam68 is a multifunctional player in human cancer. Endocr Relat Cancer. 18:R91–R102. 2011. View Article : Google Scholar : PubMed/NCBI

43 

Siam A, Baker M, Amit L, Regev G, Rabner A, Najar RA, Bentata M, Dahan S, Cohen K, Araten S, et al: Regulation of alternative splicing by p300-mediated acetylation of splicing factors. RNA. 25:813–824. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Bordonaro M: Hypothesis: Sam68 and Pygo2 mediate cell type-specific effects of the modulation of CBP-Wnt and p300-Wnt activities in colorectal cancer cells. J Cancer. 12:5046–5052. 2021. View Article : Google Scholar : PubMed/NCBI

45 

Nakka KK, Chaudhary N, Joshi S, Bhat J, Singh K, Chatterjee S, Malhotra R, De A, Santra MK, Dilworth FJ and Chattopadhyay S: Nuclear matrix-associated protein SMAR1 regulates alternative splicing via HDAC6-mediated deacetylation of Sam68. Proc Natl Acad Sci USA. 112:E3374–E3383. 2015. View Article : Google Scholar : PubMed/NCBI

46 

Hwang JW, Cho Y, Bae GU, Kim SN and Kim YK: Protein arginine methyltransferases: Promising targets for cancer therapy. Exp Mol Med. 53:788–808. 2021. View Article : Google Scholar : PubMed/NCBI

47 

Yu Z, Chen T, Hébert J, Li E and Richard S: A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol. 29:2982–2996. 2009. View Article : Google Scholar : PubMed/NCBI

48 

Robin-Lespinasse Y, Sentis S, Kolytcheff C, Rostan MC, Corbo L and Le Romancer M: hCAF1, a new regulator of PRMT1-dependent arginine methylation. J Cell Sci. 120:638–647. 2007. View Article : Google Scholar : PubMed/NCBI

49 

Vhuiyan MI, Pak ML, Park MA, Thomas D, Lakowski TM, Chalfant CE and Frankel A: PRMT2 interacts with splicing factors and regulates the alternative splicing of BCL-X. J Biochem. 162:17–25. 2017.PubMed/NCBI

50 

Deng L, Meng T, Chen L, Wei W and Wang P: The role of ubiquitination in tumorigenesis and targeted drug discovery. Signal Transduct Target Ther. 5:112020. View Article : Google Scholar : PubMed/NCBI

51 

Benoit YD, Mitchell RR, Risueño RM, Orlando L, Tanasijevic B, Boyd AL, Aslostovar L, Salci KR, Shapovalova Z, Russell J, et al: Sam68 allows selective targeting of human cancer stem cells. Cell Chem Biol. 24:833–844.e9. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Babic I, Cherry E and Fujita DJ: SUMO modification of Sam68 enhances its ability to repress cyclin D1 expression and inhibits its ability to induce apoptosis. Oncogene. 25:4955–4964. 2006. View Article : Google Scholar : PubMed/NCBI

53 

La Rosa P, Bielli P, Compagnucci C, Cesari E, Volpe E, Farioli Vecchioli S and Sette C: Sam68 promotes self-renewal and glycolytic metabolism in mouse neural progenitor cells by modulating Aldh1a3 pre-mRNA 3'-end processing. Elife. 5:e207502016. View Article : Google Scholar : PubMed/NCBI

54 

Mao P, Joshi K, Li J, Kim SH, Li P, Santana-Santos L, Luthra S, Chandran UR, Benos PV, Smith L, et al: Mesenchymal glioma stem cells are maintained by activated glycolytic metabolism involving aldehyde dehydrogenase 1A3. Proc Natl Acad Sci USA. 110:8644–8649. 2013. View Article : Google Scholar : PubMed/NCBI

55 

Rinkenbaugh AL and Baldwin AS: The NF-κB pathway and cancer stem cells. Cells. 5:162016. View Article : Google Scholar

56 

Vazquez-Santillan K, Melendez-Zajgla J, Jimenez-Hernandez L, Martínez-Ruiz G and Maldonado V: NF-κB signaling in cancer stem cells: A promising therapeutic target? Cell Oncol (Dordr). 38:327–339. 2015. View Article : Google Scholar : PubMed/NCBI

57 

Vazquez-Santillan K, Melendez-Zajgla J, Jimenez-Hernandez LE, Gaytan-Cervantes J, Muñoz-Galindo L, Piña-Sanchez P, Martinez-Ruiz G, Torres J, Garcia-Lopez P, Gonzalez-Torres C, et al: NF-kappaB-inducing kinase regulates stem cell phenotype in breast cancer. Sci Rep. 6:373402016. View Article : Google Scholar

58 

Ishiguro T, Ohata H, Sato A, Yamawaki K, Enomoto T and Okamoto K: Tumor-derived spheroids: Relevance to cancer stem cells and clinical applications. Cancer Sci. 108:283–289. 2017. View Article : Google Scholar : PubMed/NCBI

59 

Manuel Iglesias J, Beloqui I, Garcia-Garcia F, Leis O, Vazquez-Martin A, Eguiara A, Cufi S, Pavon A, Menendez JA, Dopazo J and Martin AG: Mammosphere formation in breast carcinoma cell lines depends upon expression of E-cadherin. PLoS One. 8:e772812013. View Article : Google Scholar : PubMed/NCBI

60 

Wang L, Tian H, Yuan J, Wu H, Wu J and Zhu X: CONSORT: Sam68 is directly regulated by MiR-204 and promotes the Self-renewal potential of breast cancer cells by activating the Wnt/beta-catenin signaling pathway. Medicine (Baltimore). 94:e22282015. View Article : Google Scholar : PubMed/NCBI

61 

Hong BS, Ryu HS, Kim N, Kim J, Lee E, Moon H, Kim KH, Jin MS, Kwon NH, Kim S, et al: Tumor suppressor miRNA-204-5p regulates growth, metastasis, and immune microenvironment remodeling in breast cancer. Cancer Res. 79:1520–1534. 2019. View Article : Google Scholar : PubMed/NCBI

62 

Li P, Wang Q and Wang H: MicroRNA-204 inhibits the proliferation, migration and invasion of human lung cancer cells by targeting PCNA-1 and inhibits tumor growth in vivo. Int J Mol Med. 43:1149–1156. 2019.PubMed/NCBI

63 

Imam JS, Plyler JR, Bansal H, Prajapati S, Bansal S, Rebeles J, Chen HI, Chang YF, Panneerdoss S, Zoghi B, et al: Genomic loss of tumor suppressor miRNA-204 promotes cancer cell migration and invasion by activating AKT/mTOR/Rac1 signaling and actin reorganization. PLoS One. 7:e523972012. View Article : Google Scholar

64 

Liang CY, Li ZY, Gan TQ, Fang YY, Gan BL, Chen WJ, Dang YW, Shi K, Feng ZB and Chen G: Downregulation of hsa-microRNA-204-5p and identification of its potential regulatory network in non-small cell lung cancer: RT-qPCR, bioinformatic- and meta-analyses. Respir Res. 21:602020. View Article : Google Scholar : PubMed/NCBI

65 

Turdo A, Gaggianesi M, Di Franco S, Veschi V, D'Accardo C, Porcelli G, Lo Iacono M, Pillitteri I, Verona F, Militello G, et al: Effective targeting of breast cancer stem cells by combined inhibition of Sam68 and Rad51. Oncogene. 41:2196–2209. 2022. View Article : Google Scholar : PubMed/NCBI

66 

Mehner C, Hockla A, Miller E, Ran S, Radisky DC and Radisky ES: Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget. 5:2736–2749. 2014. View Article : Google Scholar : PubMed/NCBI

67 

London M and Gallo E: Critical role of EphA3 in cancer and current state of EphA3 drug therapeutics. Mol Biol Rep. 47:5523–5533. 2020. View Article : Google Scholar : PubMed/NCBI

68 

Lv XY, Wang J, Huang F, Wang P, Zhou JG, Wei B and Li SH: EphA3 contributes to tumor growth and angiogenesis in human gastric cancer cells. Oncol Rep. 40:2408–2416. 2018.PubMed/NCBI

69 

Chen X, Zhang L, Yuan M, Kuang Z, Zou Y, Tang T, Zhang W, Hu X, Xia T, Cao T and Jia H: Sam68 Promotes the progression of human breast cancer through inducing activation of EphA3. Curr Cancer Drug Targets. 20:76–83. 2020. View Article : Google Scholar

70 

Aubele M, Walch AK, Ludyga N, Braselmann H, Atkinson MJ, Luber B, Auer G, Tapio S, Cooke T and Bartlett JM: Prognostic value of protein tyrosine kinase 6 (PTK6) for long-term survival of breast cancer patients. Br J Cancer. 99:1089–1095. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Song L, Wang L, Li Y, Xiong H, Wu J, Li J and Li M: Sam68 up-regulation correlates with, and its down-regulation inhibits, proliferation and tumourigenicity of breast cancer cells. J Pathol. 222:227–237. 2010. View Article : Google Scholar : PubMed/NCBI

72 

Paronetto MP, Cappellari M, Busà R, Pedrotti S, Vitali R, Comstock C, Hyslop T, Knudsen KE and Sette C: Alternative splicing of the cyclin D1 proto-oncogene is regulated by the RNA-binding protein Sam68. Cancer Res. 70:229–239. 2010. View Article : Google Scholar :

73 

Caggiano C, Pieraccioli M, Panzeri V, Sette C and Bielli P: c-MYC empowers transcription and productive splicing of the oncogenic splicing factor Sam68 in cancer. Nucleic Acids Res. 47:6160–6171. 2019. View Article : Google Scholar : PubMed/NCBI

74 

Derry JJ, Prins GS, Ray V and Tyner AL: Altered localization and activity of the intracellular tyrosine kinase BRK/Sik in prostate tumor cells. Oncogene. 22:4212–4220. 2003. View Article : Google Scholar : PubMed/NCBI

75 

Busà R, Paronetto MP, Farini D, Pierantozzi E, Botti F, Angelini DF, Attisani F, Vespasiani G and Sette C: The RNA-binding protein Sam68 contributes to proliferation and survival of human prostate cancer cells. Oncogene. 26:4372–4382. 2007. View Article : Google Scholar : PubMed/NCBI

76 

Rajan P, Gaughan L, Dalgliesh C, El-Sherif A, Robson CN, Leung HY and Elliott DJ: The RNA-binding and adaptor protein Sam68 modulates signal-dependent splicing and transcriptional activity of the androgen receptor. J Pathol. 215:67–77. 2008. View Article : Google Scholar : PubMed/NCBI

77 

Uddin MH, Li Y, Khan HY, Muqbil I, Aboukameel A, Sexton RE, Reddy S, Landesman Y, Kashyap T, Azmi AS and Heath EI: Nuclear export inhibitor KPT-8602 synergizes with PARP inhibitors in escalating apoptosis in castration resistant cancer cells. Int J Mol Sci. 22:66762021. View Article : Google Scholar : PubMed/NCBI

78 

Mijatovic T, De Nève N, Gailly P, Mathieu V, Haibe-Kains B, Bontempi G, Lapeira J, Decaestecker C, Facchini V and Kiss R: Nucleolus and c-Myc: Potential targets of cardenolide-mediated antitumor activity. Mol Cancer Ther. 7:1285–1296. 2008. View Article : Google Scholar : PubMed/NCBI

79 

Sumithra B, Jayanthi VSPKSA, Manne HC, Gunda R, Saxena U and Das AB: Antibody-based biosensor to detect oncogenic splicing factor Sam68 for the diagnosis of lung cancer. Biotechnol Lett. 42:2501–2509. 2020. View Article : Google Scholar : PubMed/NCBI

80 

Zhang Z, Xu Y, Sun N, Zhang M, Xie J and Jiang Z: High Sam68 expression predicts poor prognosis in Non-small cell lung cancer. Clin Transl Oncol. 16:886–891. 2014. View Article : Google Scholar : PubMed/NCBI

81 

Lin CH, Liao CC, Wang SY, Peng CY, Yeh YC, Chen MY and Chou TY: Comparative O-GlcNAc proteomic analysis reveals a role of O-GlcNAcylated SAM68 in lung cancer aggressiveness. Cancers (Basel). 14:2432022. View Article : Google Scholar : PubMed/NCBI

82 

Zhu S, Chen W, Wang J, Qi L, Pan H, Feng Z and Tian D: SAM68 promotes tumorigenesis in lung adenocarcinoma by regulating metabolic conversion via PKM alternative splicing. Theranostics. 11:3359–3375. 2021. View Article : Google Scholar : PubMed/NCBI

83 

Li X, Zhou X, Hua F, Fan Y, Zu L, Wang Y, Shen W, Pan H and Zhou Q: The RNA-binding protein Sam68 is critical for non-small cell lung cancer cell proliferation by regulating Wnt/β-catenin pathway. Int J Clin Exp Pathol. 10:8281–8291. 2017.

84 

Sumithra B, Saxena U and Das AB: A comprehensive study on genome-wide coexpression network of KHDRBS1/Sam68 reveals its cancer and Patient-specific association. Sci Rep. 9:110832019. View Article : Google Scholar : PubMed/NCBI

85 

Masibag AN, Bergin CJ, Haebe JR, Zouggar A, Shah MS, Sandouka T, Mendes da Silva A, Desrochers FM, Fournier-Morin A and Benoit YD: Pharmacological targeting of Sam68 functions in colorectal cancer stem cells. iScience. 24:1034422021. View Article : Google Scholar : PubMed/NCBI

86 

Fu K, Sun X, Wier EM, Hodgson A, Liu Y, Sears CL and Wan F: Sam68/KHDRBS1 is critical for colon tumorigenesis by regulating genotoxic stress-induced NF-κB activation. Elife. 5:e150182016. View Article : Google Scholar

87 

Zhao J, Li J, Hassan W, Xu D, Wang X and Huang Z: Huang, Sam68 promotes aerobic glycolysis in colorectal cancer by regulating PKM2 alternative splicing. Ann Transl Med. 8:4592020. View Article : Google Scholar

88 

Vasileva E, Shuvalov O, Petukhov A, Fedorova O, Daks A, Nader R and Barlev N: KMT Set7/9 is a new regulator of Sam68 STAR-protein. Biochem Biophys Res Commun. 525:1018–1024. 2020. View Article : Google Scholar : PubMed/NCBI

89 

Li N and Richard S: Sam68 functions as a transcriptional coactivator of the p53 tumor suppressor. Nucleic Acids Res. 44:8726–8741. 2016. View Article : Google Scholar : PubMed/NCBI

90 

Li N, Ngo CT, Aleynikova O, Beauchemin N and Richard S: The p53 status can influence the role of Sam68 in tumorigenesis. Oncotarget. 7:71651–71659. 2016. View Article : Google Scholar : PubMed/NCBI

91 

Yu X, Kang W, Zhang J, Chen C and Liu Y: Shortening of the KHDRBS1 3'UTR by alternative cleavage and polyadenylation alters miRNA-mediated regulation and promotes gastric cancer progression. Am J Transl Res. 14:6574–6585. 2022.PubMed/NCBI

92 

Xiao J, Wang Q, Yang Q, Wang H, Qiang F, He S, Cai J, Yang L and Wang Y: Clinical significance and effect of Sam68 expression in gastric cancer. Oncol Lett. 15:4745–4752. 2018.PubMed/NCBI

93 

Zhang JY, Du Y, Gong LP, Shao YT, Pan LJ, Feng ZY, Pan YH, Huang JT, Wen JY, Sun LP, et al: ebv-circRPMS1 promotes the progression of EBV-associated gastric carcinoma via Sam68-dependent activation of METTL3. Cancer Lett. 535:2156462022. View Article : Google Scholar : PubMed/NCBI

94 

Komiyama T, Kuroshima T, Sugasawa T, Fujita SI, Ikami Y, Hirai H, Tsushima F, Michi Y, Kayamori K, Higashino F and Harada H: High expression of Sam68 contributes to metastasis by regulating vimentin expression and a motile phenotype in oral squamous cell carcinoma. Oncol Rep. 48:1832022. View Article : Google Scholar : PubMed/NCBI

95 

Chen S, Li H, Zhuang S, Zhang J, Gao F, Wang X, Chen W and Song M: Sam68 reduces Cisplatin-induced apoptosis in tongue carcinoma. J Exp Clin Cancer Res. 35:1232016. View Article : Google Scholar : PubMed/NCBI

96 

Fu K, Sun X, Xia X, Hobbs RP, Guo Y, Coulombe PA and Wan F: Sam68 is required for the growth and survival of nonmelanoma skin cancer. Cancer Med. 8:6106–6113. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Paronetto MP, Messina V, Bianchi E, Barchi M, Vogel G, Moretti C, Palombi F, Stefanini M, Geremia R, Richard S and Sette C: Sam68 regulates translation of target mRNAs in male germ cells, necessary for mouse spermatogenesis. J Cell Biol. 185:235–249. 2009. View Article : Google Scholar : PubMed/NCBI

98 

Wang Q, Li Y, Cheng J, Chen L, Xu H, Li Q and Pang T: Sam68 affects cell proliferation and apoptosis of human adult T-acute lymphoblastic leukemia cells via AKT/mTOR signal pathway. Leuk Res. 46:1–9. 2016. View Article : Google Scholar : PubMed/NCBI

99 

Zhao D, Tian Y, Li P, Wang L, Xiao A, Zhang M and Shi T: MicroRNA-203 inhibits the malignant progression of neuroblastoma by targeting Sam68. Mol Med Rep. 12:5554–5560. 2015. View Article : Google Scholar : PubMed/NCBI

100 

Zhao X, Li Z, He B, Liu J, Li S, Zhou L, Pan C, Yu Z and Xu Z: Sam68 is a novel marker for aggressive neuroblastoma. Onco Targets Ther. 6:1751–1760. 2013.PubMed/NCBI

101 

Dong L, Che H, Li M and Li X: Sam68 is overexpressed in epithelial ovarian cancer and promotes tumor cell proliferation. Med Sci Monit. 22:3248–3256. 2016. View Article : Google Scholar : PubMed/NCBI

102 

Chen ZY, Cai L, Zhu J, Chen M, Chen J, Li ZH, Liu XD, Wang SG, Bie P, Jiang P, et al: Fyn requires HnRNPA2B1 and Sam68 to synergistically regulate apoptosis in pancreatic cancer. Carcinogenesis. 32:1419–1426. 2011. View Article : Google Scholar : PubMed/NCBI

103 

Li Z, Yu CP, Zhong Y, Liu TJ, Huang QD, Zhao XH, Huang H, Tu H, Jiang S, Zhang Y, et al: Sam68 expression and cytoplasmic localization is correlated with lymph node metastasis as well as prognosis in patients with Early-stage cervical cancer. Ann Oncol. 23:638–646. 2012. View Article : Google Scholar

104 

Zhang Z, Yu C, Li Y, Jiang L and Zhou F: Utility of SAM68 in the progression and prognosis for bladder cancer. BMC Cancer. 15:3642015. View Article : Google Scholar : PubMed/NCBI

105 

Wang Q, Li Y, Zhou J, Liu J, Qin J, Xing F, Zhang J and Cheng J: Clinical significance of Sam68 expression in endometrial carcinoma. Tumour Biol. 36:4509–4518. 2015. View Article : Google Scholar : PubMed/NCBI

106 

Wang Y, Liang L, Zhang J, Li M, Zhu J, Gong C, Yang L, Zhu J, Chen L and Ni R: Sam68 promotes cellular proliferation and predicts poor prognosis in esophageal squamous cell carcinoma. Tumour Biol. 36:8735–8745. 2015. View Article : Google Scholar : PubMed/NCBI

107 

Wu Y, Xu X, Miao X, Zhu X, Yin H, He Y, Li C, Liu Y, Chen Y, Lu X, et al: Sam68 regulates cell proliferation and cell adhesion-mediated drug resistance (CAM-DR) via the AKT pathway in non-Hodgkin's lymphoma. Cell Prolif. 48:682–690. 2015. View Article : Google Scholar : PubMed/NCBI

108 

Wen H, Li P, Ma H, Zheng J, Yu Y and Lv G: High expression of Sam68 in sacral chordomas is associated with worse clinical outcomes. Onco Targets Ther. 10:4691–4700. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Zhang T, Wan C, Shi W, Xu J, Fan H, Zhang S, Lin Z, Ni R and Zhang X: The RNA-binding protein Sam68 regulates tumor cell viability and hepatic carcinogenesis by inhibiting the transcriptional activity of FOXOs. J Mol Histol. 46:485–497. 2015. View Article : Google Scholar : PubMed/NCBI

110 

Zhang Z, Li J, Zheng H, Yu C, Chen J, Liu Z, Li M, Zeng M, Zhou F and Song L: Expression and cytoplasmic localization of SAM68 is a significant and independent prognostic marker for renal cell carcinoma. Cancer Epidemiol Biomarkers Prev. 18:2685–2693. 2009. View Article : Google Scholar : PubMed/NCBI

111 

Wu Z, Peng Y, Xiong L, Wang J, Li Z, Ning K, Deng M, Wang N, Wei W, Li Z, et al: Role of Sam68 in Sunitinib induced renal cell carcinoma apoptosis. Cancer Med. 11:3674–3686. 2022. View Article : Google Scholar : PubMed/NCBI

112 

Feng J, Ren X, Fu H, Li D, Chen X, Zu X, Liu Q and Wu M: LRRC4 mediates the formation of circular RNA CD44 to inhibitGBM cell proliferation. Mol Ther Nucleic Acids. 26:473–487. 2021. View Article : Google Scholar : PubMed/NCBI

113 

Liu K, Li L, Nisson PE, Gruber C, Jessee J and Cohen SN: Neoplastic transformation and tumorigenesis associated with sam68 protein deficiency in cultured murine fibroblasts. J Biol Chem. 275:40195–40201. 2000. View Article : Google Scholar : PubMed/NCBI

114 

Lukong KE and Richard S: Targeting the RNA-binding protein Sam68 as a treatment for cancer? Future Oncol. 3:539–544. 2007. View Article : Google Scholar : PubMed/NCBI

115 

Galluzzi L, Buqué A, Kepp O, Zitvogel L and Kroemer G: Immunological effects of conventional chemotherapy and targeted anticancer agents. Cancer Cell. 28:690–714. 2015. View Article : Google Scholar : PubMed/NCBI

116 

Behranvand N, Nasri F, Zolfaghari Emameh R, Khani P, Hosseini A, Garssen J and Falak R: Chemotherapy: A double-edged sword in cancer treatment. Cancer Immunol Immunother. 71:507–526. 2022. View Article : Google Scholar

117 

Raguz S and Yagüe E: Resistance to chemotherapy: New treatments and novel insights into an old problem. Br J Cancer. 99:387–391. 2008. View Article : Google Scholar : PubMed/NCBI

118 

Brown FC, Still E, Koche RP, Yim CY, Takao S, Cifani P, Reed C, Gunasekera S, Ficarro SB, Romanienko P, et al: MEF2C phosphorylation is required for chemotherapy resistance in acute myeloid leukemia. Cancer Discov. 8:478–497. 2018. View Article : Google Scholar : PubMed/NCBI

119 

Saqub H, Proetsch-Gugerbauer H, Bezrookove V, Nosrati M, Vaquero EM, de Semir D, Ice RJ, McAllister S, Soroceanu L, Kashani-Sabet M, et al: Dinaciclib, a cyclin-dependent kinase inhibitor, suppresses cholangiocarcinoma growth by targeting CDK2/5/9. Sci Rep. 10:184892020. View Article : Google Scholar : PubMed/NCBI

120 

Savage G and Antman KH: Imatinib mesylate-a new oral targeted therapy. N Engl J Med. 346:683–693. 2002. View Article : Google Scholar : PubMed/NCBI

121 

Zhong L, Li Y, Xiong L, Wang W, Wu M, Yuan T, Yang W, Tian C, Miao Z, Wang T and Yang S: Small molecules in targeted cancer therapy: Advances, challenges, and future perspectives. Signal Transduct Target Ther. 6:2012021. View Article : Google Scholar : PubMed/NCBI

122 

Wang Z, Jia R, Wang L, Yang Q, Hu X, Fu Q, Zhang X, Li W and Ren Y: The emerging roles of Rad51 in cancer and its potential as a therapeutic target. Front Oncol. 12:9355932022. View Article : Google Scholar : PubMed/NCBI

123 

Huang F and Mazin AV: A small molecule inhibitor of human RAD51 potentiates breast cancer cell killing by therapeutic agents in mouse xenografts. PLoS One. 9:e1009932014. View Article : Google Scholar : PubMed/NCBI

124 

Zhang L, Xu L, Zhang F and Vlashi E: Doxycycline inhibits the cancer stem cell phenotype and Epithelial-to-mesenchymal transition in breast cancer. Cell Cycle. 16:737–745. 2017. View Article : Google Scholar :

125 

Hirai H, Sootome H, Nakatsuru Y, Miyama K, Taguchi S, Tsujioka K, Ueno Y, Hatch H, Majumder PK, Pan BS and Kotani H: MK-2206, an allosteric Akt inhibitor, enhances antitumor efficacy by standard chemotherapeutic agents or molecular targeted drugs in vitro and in vivo. Mol Cancer Ther. 9:1956–1967. 2010. View Article : Google Scholar : PubMed/NCBI

126 

Marzagalli M, Fontana F, Raimondi M and Limonta P: Cancer stem Cells-key players in tumor relapse. Cancers (Basel). 13:3762021. View Article : Google Scholar : PubMed/NCBI

127 

Naro C, Barbagallo F, Caggiano C, De Musso M, Panzeri V, Di Agostino S, Paronetto MP and Sette C: Functional interaction between the oncogenic kinase NEK2 and Sam68 promotes a splicing program involved in migration and invasion in Triple-negative breast cancer. Front Oncol. 12:8806542022. View Article : Google Scholar : PubMed/NCBI

128 

Quintana-Portillo R, Canfrán-Duque A, Issad T, Sánchez-Margalet V and González-Yanes C: Sam68 interacts with IRS1. Biochem Pharmacol. 83:78–87. 2012. View Article : Google Scholar

129 

Vilariño-García T, Guadix P, Dorado-Silva M, Sánchez-Martín P, Pérez-Pérez A and Sánchez-Margalet V: Decreased expression of Sam68 is associated with insulin resistance in granulosa cells from PCOS patients. Cells. 11:28212022. View Article : Google Scholar : PubMed/NCBI

130 

Najib S, Rodríguez-Baño J, Ríos MJ, Muniain MA, Goberna R and Sánchez-Margalet V: Sam68 is tyrosine phosphorylated and recruited to signalling in peripheral blood mononuclear cells from HIV infected patients. Clin Exp Immunol. 141:518–525. 2005. View Article : Google Scholar : PubMed/NCBI

131 

Awe O, Sinkway JM, Chow RP, Wagener Q, Schulz EV, Yu JY, Nietert PJ, Wagner CL and Lee KH: Differential regulation of a placental SAM68 and sFLT1 gene pathway and the relevance to maternal vitamin D sufficiency. Pregnancy Hypertens. 22:196–203. 2020. View Article : Google Scholar : PubMed/NCBI

132 

Shibuya M: Involvement of Flt-1 (VEGF receptor-1) in cancer and preeclampsia. Proc Jpn Acad Ser B Phys Biol Sci. 87:167–178. 2011. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Jiménez‑Cortegana C, Sánchez‑Jiménez F, De La Cruz‑Merino L and Sánchez‑Margalet V: Role of Sam68 in different types of cancer (Review). Int J Mol Med 55: 3, 2025.
APA
Jiménez‑Cortegana, C., Sánchez‑Jiménez, F., De La Cruz‑Merino, L., & Sánchez‑Margalet, V. (2025). Role of Sam68 in different types of cancer (Review). International Journal of Molecular Medicine, 55, 3. https://doi.org/10.3892/ijmm.2024.5444
MLA
Jiménez‑Cortegana, C., Sánchez‑Jiménez, F., De La Cruz‑Merino, L., Sánchez‑Margalet, V."Role of Sam68 in different types of cancer (Review)". International Journal of Molecular Medicine 55.1 (2025): 3.
Chicago
Jiménez‑Cortegana, C., Sánchez‑Jiménez, F., De La Cruz‑Merino, L., Sánchez‑Margalet, V."Role of Sam68 in different types of cancer (Review)". International Journal of Molecular Medicine 55, no. 1 (2025): 3. https://doi.org/10.3892/ijmm.2024.5444
Copy and paste a formatted citation
x
Spandidos Publications style
Jiménez‑Cortegana C, Sánchez‑Jiménez F, De La Cruz‑Merino L and Sánchez‑Margalet V: Role of Sam68 in different types of cancer (Review). Int J Mol Med 55: 3, 2025.
APA
Jiménez‑Cortegana, C., Sánchez‑Jiménez, F., De La Cruz‑Merino, L., & Sánchez‑Margalet, V. (2025). Role of Sam68 in different types of cancer (Review). International Journal of Molecular Medicine, 55, 3. https://doi.org/10.3892/ijmm.2024.5444
MLA
Jiménez‑Cortegana, C., Sánchez‑Jiménez, F., De La Cruz‑Merino, L., Sánchez‑Margalet, V."Role of Sam68 in different types of cancer (Review)". International Journal of Molecular Medicine 55.1 (2025): 3.
Chicago
Jiménez‑Cortegana, C., Sánchez‑Jiménez, F., De La Cruz‑Merino, L., Sánchez‑Margalet, V."Role of Sam68 in different types of cancer (Review)". International Journal of Molecular Medicine 55, no. 1 (2025): 3. https://doi.org/10.3892/ijmm.2024.5444
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team