Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

NLRP3 inflammasome in health and disease (Review)

  • Authors:
    • Haoran Wang
    • Li Ma
    • Weiran Su
    • Yangruoyu Liu
    • Ning Xie
    • Jun Liu
  • View Affiliations / Copyright

    Affiliations: Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China, Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China, Department of Internal Medicine, Jiading District Central Hospital, Shanghai 201800, P.R. China, Department of Orthopaedics, Tongji Hospital Affiliated to Tongji University, Shanghai 200065, P.R. China, Department of Orthopaedics, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu 210011, P.R. China
    Copyright: © Wang et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 48
    |
    Published online on: January 20, 2025
       https://doi.org/10.3892/ijmm.2025.5489
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Activation of inflammasomes is the activation of inflammation‑related caspase mediated by the assembly signal of multi‑protein complex and the maturity of inflammatory factors, such as IL‑1β and IL‑18. Among them, the Nod‑like receptor family pyrin domain containing 3 (NLRP3) inflammasome is the most thoroughly studied type of inflammatory corpuscle at present, which is involved in the occurrence and development of numerous human diseases. Therefore, targeting the NLRP3 inflammasome has become the focus of drug development for related diseases. In this paper, the research progress of the NLRP3 inflammasome in recent years is summarized, including the activation and regulation of NLRP3 and its association with diseases. A deep understanding of the regulatory mechanism of NLRP3 will be helpful to the discovery of new drug targets and the development of therapeutic drugs.
View Figures

Figure 1

Figure 2

View References

1 

Li Y, Huang H, Liu B, Zhang Y, Pan X, Yu XY, Shen Z and Song YH: Inflammasomes as therapeutic targets in human diseases. Signal Transduct Target Ther. 6:2472021. View Article : Google Scholar : PubMed/NCBI

2 

Duncan JA, Bergstralh DT, Wang Y, Willingham SB, Ye Z, Zimmermann AG and Ting JP: Cryopyrin/NALP3 binds ATP/dATP, is an ATPase, and requires ATP binding to mediate inflammatory signaling. Proc Natl Acad Sci USA. 104:8041–8046. 2007. View Article : Google Scholar : PubMed/NCBI

3 

Jo EK, Kim JK, Shin DM and Sasakawa C: Molecular mechanisms regulating NLRP3 inflammasome activation. Cell Mol Immunol. 13:148–159. 2016. View Article : Google Scholar :

4 

Swanson KV, Deng M and Ting JP: The NLRP3 inflammasome: Molecular activation and regulation to therapeutics. Nat Rev Immunol. 19:477–489. 2019. View Article : Google Scholar : PubMed/NCBI

5 

Ozaki E, Campbell M and Doyle SL: Targeting the NLRP3 inflammasome in chronic inflammatory diseases: Current perspectives. J Inflamm Res. 8:15–27. 2015.PubMed/NCBI

6 

Leemans JC, Cassel SL and Sutterwala FS: Sensing damage by the NLRP3 inflammasome. Immunol Rev. 243:152–162. 2011. View Article : Google Scholar : PubMed/NCBI

7 

Schroder K, Zhou R and Tschopp J: The NLRP3 inflammasome: A sensor for metabolic danger? Science. 327:296–300. 2010. View Article : Google Scholar : PubMed/NCBI

8 

Inoue M and Shinohara ML: NLRP3 Inflammasome and MS/EAE. Autoimmune Dis. 2013:8591452013.PubMed/NCBI

9 

Zhen Y and Zhang H: NLRP3 inflammasome and inflammatory bowel disease. Front Immunol. 10:2762019. View Article : Google Scholar : PubMed/NCBI

10 

Kelley N, Jeltema D, Duan Y and He Y: The NLRP3 inflammasome: An overview of mechanisms of activation and regulation. Int J Mol Sci. 20:33282019. View Article : Google Scholar : PubMed/NCBI

11 

Xu J and Núñez G: The NLRP3 inflammasome: Activation and regulation. Trends Biochem Sci. 48:331–344. 2023. View Article : Google Scholar

12 

Paik S, Kim JK, Silwal P, Sasakawa C and Jo EK: An update on the regulatory mechanisms of NLRP3 inflammasome activation. Cell Mol Immunol. 18:1141–1160. 2021. View Article : Google Scholar : PubMed/NCBI

13 

Muñoz-Planillo R, Kuffa P, Martínez-Colón G, Smith BL, Rajendiran TM and Núñez G: K+ efflux is the common trigger of NLRP3 inflammasome activation by bacterial toxins and particulate matter. Immunity. 38:1142–1153. 2013. View Article : Google Scholar

14 

Xu Z, Chen ZM, Wu X, Zhang L, Cao Y and Zhou P: Distinct molecular mechanisms underlying potassium efflux for NLRP3 inflammasome activation. Front Immunol. 11:6094412020. View Article : Google Scholar

15 

Groß CJ, Mishra R, Schneider KS, Médard G, Wettmarshausen J, Dittlein DC, Shi H, Gorka O, Koenig PA, Fromm S, et al: K(+) efflux-independent NLRP3 inflammasome activation by small molecules targeting mitochondria. Immunity. 45:761–773. 2016. View Article : Google Scholar

16 

Sanman LE, Qian Y, Eisele NA, Ng TM, van der Linden WA, Monack DM, Weerapana E and Bogyo M: Disruption of glycolytic flux is a signal for inflammasome signaling and pyroptotic cell death. Elife. 5:e136632016. View Article : Google Scholar : PubMed/NCBI

17 

Rajamäki K, Nordström T, Nurmi K, Åkerman KE, Kovanen PT, Öörni K and Eklund KK: Extracellular acidosis is a novel danger signal alerting innate immunity via the NLRP3 inflammasome. J Biol Chem. 288:13410–13419. 2013. View Article : Google Scholar : PubMed/NCBI

18 

Chae BJ, Lee KS, Hwang I and Yu JW: Extracellular acidification augments NLRP3-mediated inflammasome signaling in macrophages. Immune Netw. 23:e232023. View Article : Google Scholar : PubMed/NCBI

19 

Lee GS, Subramanian N, Kim AI, Aksentijevich I, Goldbach-Mansky R, Sacks DB, Germain RN, Kastner DL and Chae JJ: The calcium-sensing receptor regulates the NLRP3 inflammasome through Ca2+ and cAMP. Nature. 492:123–127. 2012. View Article : Google Scholar : PubMed/NCBI

20 

Brough D, Le Feuvre RA, Wheeler RD, Solovyova N, Hilfiker S, Rothwell NJ and Verkhratsky A: Ca2+ stores and Ca2+ entry differentially contribute to the release of IL-1 beta and IL-1 alpha from murine macrophages. J Immunol. 170:3029–3036. 2003. View Article : Google Scholar : PubMed/NCBI

21 

Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S and Beer HD: The inflammasome mediates UVB-induced activation and secretion of interleukin-1beta by keratinocytes. Curr Biol. 17:1140–1145. 2007. View Article : Google Scholar : PubMed/NCBI

22 

Chu J, Thomas LM, Watkins SC, Franchi L, Núñez G and Salter RD: Cholesterol-dependent cytolysins induce rapid release of mature IL-1beta from murine macrophages in a NLRP3 inflammasome and cathepsin B-dependent manner. J Leukoc Biol. 86:1227–1238. 2009. View Article : Google Scholar : PubMed/NCBI

23 

Katsnelson MA, Rucker LG, Russo HM and Dubyak GR: K+ efflux agonists induce NLRP3 inflammasome activation independently of Ca2+ signaling. J Immunol. 194:3937–3952. 2015. View Article : Google Scholar : PubMed/NCBI

24 

Tang T, Lang X, Xu C, Wang X, Gong T, Yang Y, Cui J, Bai L, Wang J, Jiang W and Zhou R: CLICs-dependent chloride efflux is an essential and proximal upstream event for NLRP3 inflammasome activation. Nat Commun. 8:2022017. View Article : Google Scholar : PubMed/NCBI

25 

Verhoef PA, Kertesy SB, Lundberg K, Kahlenberg JM and Dubyak GR: Inhibitory effects of chloride on the activation of caspase-1, IL-1beta secretion, and cytolysis by the P2X7 receptor. J Immunol. 175:7623–7634. 2005. View Article : Google Scholar : PubMed/NCBI

26 

Mayes-Hopfinger L, Enache A, Xie J, Huang CL, Köchl R, Tybulewicz VLJ, Fernandes-Alnemri T and Alnemri ES: Chloride sensing by WNK1 regulates NLRP3 inflammasome activation and pyroptosis. Nat Commun. 12:45462021. View Article : Google Scholar : PubMed/NCBI

27 

Green JP, Yu S, Martín-Sánchez F, Pelegrin P, Lopez-Castejon G, Lawrence CB and Brough D: Chloride regulates dynamic NLRP3-dependent ASC oligomerization and inflammasome priming. Proc Natl Acad Sci USA. 115:E9371–E9380. 2018. View Article : Google Scholar : PubMed/NCBI

28 

Zhou R, Yazdi AS, Menu P and Tschopp J: A role for mitochondria in NLRP3 inflammasome activation. Nature. 469:221–225. 2011. View Article : Google Scholar

29 

Dominic A, Le NT and Takahashi M: Loop between NLRP3 inflammasome and reactive oxygen species. Antioxid Redox Signal. 36:784–796. 2022. View Article : Google Scholar

30 

Shimada K, Crother TR, Karlin J, Dagvadorj J, Chiba N, Chen S, Ramanujan VK, Wolf AJ, Vergnes L, Ojcius DM, et al: Oxidized mitochondrial DNA activates the NLRP3 inflammasome during apoptosis. Immunity. 36:401–414. 2012. View Article : Google Scholar : PubMed/NCBI

31 

Iyer SS, He Q, Janczy JR, Elliott EI, Zhong Z, Olivier AK, Sadler JJ, Knepper-Adrian V, Han R, Qiao L, et al: Mitochondrial cardiolipin is required for Nlrp3 inflammasome activation. Immunity. 39:311–323. 2013. View Article : Google Scholar : PubMed/NCBI

32 

Halle A, Hornung V, Petzold GC, Stewart CR, Monks BG, Reinheckel T, Fitzgerald KA, Latz E, Moore KJ and Golenbock DT: The NALP3 inflammasome is involved in the innate immune response to amyloid-beta. Nat Immunol. 9:857–865. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Lima H Jr, Jacobson LS, Goldberg MF, Chandran K, Diaz-Griffero F, Lisanti MP and Brojatsch J: Role of lysosome rupture in controlling Nlrp3 signaling and necrotic cell death. Cell Cycle. 12:1868–1878. 2013. View Article : Google Scholar : PubMed/NCBI

34 

Schorn C, Frey B, Lauber K, Janko C, Strysio M, Keppeler H, Gaipl US, Voll RE, Springer E, Munoz LE, et al: Sodium overload and water influx activate the NALP3 inflammasome. J Biol Chem. 286:35–41. 2011. View Article : Google Scholar :

35 

Hornung V, Bauernfeind F, Halle A, Samstad EO, Kono H, Rock KL, Fitzgerald KA and Latz E: Silica crystals and aluminum salts activate the NALP3 inflammasome through phagosomal destabilization. Nat Immunol. 9:847–856. 2008. View Article : Google Scholar : PubMed/NCBI

36 

Dostert C, Guarda G, Romero JF, Menu P, Gross O, Tardivel A, Suva ML, Stehle JC, Kopf M, Stamenkovic I, et al: Malarial hemozoin is a Nalp3 inflammasome activating danger signal. PLoS One. 4:e65102009. View Article : Google Scholar : PubMed/NCBI

37 

Orlowski GM, Colbert JD, Sharma S, Bogyo M, Robertson SA and Rock KL: Multiple cathepsins promote Pro-IL-1β synthesis and NLRP3-mediated IL-1β activation. J Immunol. 195:1685–1697. 2015. View Article : Google Scholar : PubMed/NCBI

38 

Kayagaki N, Stowe IB, Lee BL, O'Rourke K, Anderson K, Warming S, Cuellar T, Haley B, Roose-Girma M, Phung QT, et al: Caspase-11 cleaves gasdermin D for non-canonical inflammasome signalling. Nature. 526:666–671. 2015. View Article : Google Scholar : PubMed/NCBI

39 

Kayagaki N, Warming S, Lamkanfi M, Vande Walle L, Louie S, Dong J, Newton K, Qu Y, Liu J, Heldens S, et al: Non-canonical inflammasome activation targets caspase-11. Nature. 479:117–121. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Shi J, Zhao Y, Wang Y, Gao W, Ding J, Li P, Hu L and Shao F: Inflammatory caspases are innate immune receptors for intracellular LPS. Nature. 514:187–192. 2014. View Article : Google Scholar : PubMed/NCBI

41 

Ding J, Wang K, Liu W, She Y, Sun Q, Shi J, Sun H, Wang DC and Shao F: Pore-forming activity and structural autoinhibition of the gasdermin family. Nature. 535:111–116. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Ramirez MLG, Poreba M, Snipas SJ, Groborz K, Drag M and Salvesen GS: Extensive peptide and natural protein substrate screens reveal that mouse caspase-11 has much narrower substrate specificity than caspase-1. J Biol Chem. 293:7058–7067. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Gaidt MM, Ebert TS, Chauhan D, Schmidt T, Schmid-Burgk JL, Rapino F, Robertson AA, Cooper MA, Graf T and Hornung V: Human monocytes engage an alternative inflammasome pathway. Immunity. 44:833–846. 2016. View Article : Google Scholar : PubMed/NCBI

44 

Wang L and Hauenstein AV: The NLRP3 inflammasome: Mechanism of action, role in disease and therapies. Mol Aspects Med. 76:1008892020. View Article : Google Scholar : PubMed/NCBI

45 

He Y, Franchi L and Núñez G: TLR agonists stimulate Nlrp3-dependent IL-1β production independently of the purinergic P2X7 receptor in dendritic cells and in vivo. J Immunol. 190:334–339. 2013. View Article : Google Scholar

46 

Wang C, Zhou J, Wang J, Li S, Fukunaga A, Yodoi J and Tian H: Progress in the mechanism and targeted drug therapy for COPD. Signal Transduct Target Ther. 5:2482020. View Article : Google Scholar : PubMed/NCBI

47 

Birrell MA and Eltom S: The role of the NLRP3 inflammasome in the pathogenesis of airway disease. Pharmacol Ther. 130:364–370. 2011. View Article : Google Scholar : PubMed/NCBI

48 

Cicko S, Lucattelli M, Müller T, Lommatzsch M, De Cunto G, Cardini S, Sundas W, Grimm M, Zeiser R, Dürk T, et al: Purinergic receptor inhibition prevents the development of smoke-induced lung injury and emphysema. J Immunol. 185:688–697. 2010. View Article : Google Scholar : PubMed/NCBI

49 

De Nardo D, De Nardo CM and Latz E: New insights into mechanisms controlling the NLRP3 inflammasome and its role in lung disease. Am J Pathol. 184:42–54. 2014. View Article : Google Scholar :

50 

Hosseinian N, Cho Y, Lockey RF and Kolliputi N: The role of the NLRP3 inflammasome in pulmonary diseases. Ther Adv Respir Dis. 9:188–197. 2015. View Article : Google Scholar : PubMed/NCBI

51 

Pauwels NS, Bracke KR, Dupont LL, Van Pottelberge GR, Provoost S, Vanden Berghe T, Vandenabeele P, Lambrecht BN, Joos GF and Brusselle GG: Role of IL-1α and the Nlrp3/caspase-1/IL-1β axis in cigarette smoke-induced pulmonary inflammation and COPD. Eur Respir J. 38:1019–1028. 2011. View Article : Google Scholar : PubMed/NCBI

52 

Hoshino T, Kato S, Oka N, Imaoka H, Kinoshita T, Takei S, Kitasato Y, Kawayama T, Imaizumi T, Yamada K, et al: Pulmonary inflammation and emphysema: Role of the cytokines IL-18 and IL-13. Am J Respir Crit Care Med. 176:49–62. 2007. View Article : Google Scholar : PubMed/NCBI

53 

Churg A, Zhou S, Wang X, Wang R and Wright JL: The role of interleukin-1beta in murine cigarette smoke-induced emphysema and small airway remodeling. Am J Respir Cell Mol Biol. 40:482–490. 2009. View Article : Google Scholar

54 

Eltom S, Stevenson CS, Rastrick J, Dale N, Raemdonck K, Wong S, Catley MC, Belvisi MG and Birrell MA: P2X7 receptor and caspase 1 activation are central to airway inflammation observed after exposure to tobacco smoke. PLoS One. 6:e240972011. View Article : Google Scholar : PubMed/NCBI

55 

Xu S, Panettieri RA Jr and Jude J: Metabolomics in asthma: A platform for discovery. Mol Aspects Med. 85:1009902022. View Article : Google Scholar :

56 

Müller T, Vieira RP, Grimm M, Dürk T, Cicko S, Zeiser R, Jakob T, Martin SF, Blumenthal B, Sorichter S, et al: A potential role for P2X7R in allergic airway inflammation in mice and humans. Am J Respir Cell Mol Biol. 44:456–464. 2011. View Article : Google Scholar

57 

Yazdi AS, Guarda G, Riteau N, Drexler SK, Tardivel A, Couillin I and Tschopp J: Nanoparticles activate the NLR pyrin domain containing 3 (Nlrp3) inflammasome and cause pulmonary inflammation through release of IL-1α and IL-1β. Proc Natl Acad Sci USA. 107:19449–19454. 2010. View Article : Google Scholar

58 

Ather JL, Ckless K, Martin R, Foley KL, Suratt BT, Boyson JE, Fitzgerald KA, Flavell RA, Eisenbarth SC and Poynter ME: Serum amyloid A activates the NLRP3 inflammasome and promotes Th17 allergic asthma in mice. J Immunol. 187:64–73. 2011. View Article : Google Scholar : PubMed/NCBI

59 

Idzko M, Hammad H, van Nimwegen M, Kool M, Willart MA, Muskens F, Hoogsteden HC, Luttmann W, Ferrari D, Di Virgilio F, et al: Extracellular ATP triggers and maintains asthmatic airway inflammation by activating dendritic cells. Nat Med. 13:913–919. 2007. View Article : Google Scholar : PubMed/NCBI

60 

Nakae S, Komiyama Y, Yokoyama H, Nambu A, Umeda M, Iwase M, Homma I, Sudo K, Horai R, Asano M and Iwakura Y: IL-1 is required for allergen-specific Th2 cell activation and the development of airway hypersensitivity response. Int Immunol. 15:483–490. 2003. View Article : Google Scholar : PubMed/NCBI

61 

Wang CC, Fu CL, Yang YH, Lo YC, Wang LC, Chuang YH, Chang DM and Chiang BL: Adenovirus expressing interleukin-1 receptor antagonist alleviates allergic airway inflammation in a murine model of asthma. Gene Ther. 13:1414–1421. 2006. View Article : Google Scholar : PubMed/NCBI

62 

Harada M, Obara K, Hirota T, Yoshimoto T, Hitomi Y, Sakashita M, Doi S, Miyatake A, Fujita K, Enomoto T, et al: A functional polymorphism in IL-18 is associated with severity of bronchial asthma. Am J Respir Crit Care Med. 180:1048–1055. 2009. View Article : Google Scholar : PubMed/NCBI

63 

Luo W, Hu J, Xu W and Dong J: Distinct spatial and temporal roles for Th1, Th2, and Th17 cells in asthma. Front Immunol. 13:9740662022. View Article : Google Scholar : PubMed/NCBI

64 

Besnard AG, Guillou N, Tschopp J, Erard F, Couillin I, Iwakura Y, Quesniaux V, Ryffel B and Togbe D: NLRP3 inflammasome is required in murine asthma in the absence of aluminum adjuvant. Allergy. 66:1047–1057. 2011. View Article : Google Scholar : PubMed/NCBI

65 

Eisenbarth SC, Colegio OR, O'Connor W, Sutterwala FS and Flavell RA: Crucial role for the Nalp3 inflammasome in the immunostimulatory properties of aluminium adjuvants. Nature. 453:1122–1126. 2008. View Article : Google Scholar : PubMed/NCBI

66 

Demento SL, Eisenbarth SC, Foellmer HG, Platt C, Caplan MJ, Mark Saltzman W, Mellman I, Ledizet M, Fikrig E, Flavell RA and Fahmy TM: Inflammasome-activating nanoparticles as modular systems for optimizing vaccine efficacy. Vaccine. 27:3013–3021. 2009. View Article : Google Scholar : PubMed/NCBI

67 

Sawada M, Kawayama T, Imaoka H, Sakazaki Y, Oda H, Takenaka S, Kaku Y, Azuma K, Tajiri M, Edakuni N, et al: IL-18 induces airway hyperresponsiveness and pulmonary inflammation via CD4+ T cell and IL-13. PLoS One. 8:e546232013. View Article : Google Scholar : PubMed/NCBI

68 

Yamagata S, Tomita K, Sato R, Niwa A, Higashino H and Tohda Y: Interleukin-18-deficient mice exhibit diminished chronic inflammation and airway remodelling in ovalbumin-induced asthma model. Clin Exp Immunol. 154:295–304. 2008. View Article : Google Scholar : PubMed/NCBI

69 

Allen IC, Jania CM, Wilson JE, Tekeppe EM, Hua X, Brickey WJ, Kwan M, Koller BH, Tilley SL and Ting JP: Analysis of NLRP3 in the development of allergic airway disease in mice. J Immunol. 188:2884–2893. 2012. View Article : Google Scholar : PubMed/NCBI

70 

Hartwig C, Tschernig T, Mazzega M, Braun A and Neumann D: Endogenous IL-18 in experimentally induced asthma affects cytokine serum levels but is irrelevant for clinical symptoms. Cytokine. 42:298–305. 2008. View Article : Google Scholar : PubMed/NCBI

71 

Leung CC, Yu IT and Chen W: Silicosis. Lancet. 379:2008–2018. 2012. View Article : Google Scholar : PubMed/NCBI

72 

Cassel SL, Eisenbarth SC, Iyer SS, Sadler JJ, Colegio OR, Tephly LA, Carter AB, Rothman PB, Flavell RA and Sutterwala FS: The Nalp3 inflammasome is essential for the development of silicosis. Proc Natl Acad Sci USA. 105:9035–9040. 2008. View Article : Google Scholar : PubMed/NCBI

73 

Jessop F, Hamilton RF, Rhoderick JF, Shaw PK and Holian A: Autophagy deficiency in macrophages enhances NLRP3 inflammasome activity and chronic lung disease following silica exposure. Toxicol Appl Pharmacol. 309:101–110. 2016. View Article : Google Scholar : PubMed/NCBI

74 

Tong SY, Davis JS, Eichenberger E, Holland TL and Fowler VG Jr: Staphylococcus aureus infections: Epidemiology, pathophysiology, clinical manifestations, and management. Clin Microbiol Rev. 28:603–661. 2015. View Article : Google Scholar : PubMed/NCBI

75 

Craven RR, Gao X, Allen IC, Gris D, Bubeck Wardenburg J, McElvania-Tekippe E, Ting JP and Duncan JA: Staphylococcus aureus alpha-hemolysin activates the NLRP3 inflammasome in human and mouse monocytic cells. PLoS One. 4:e74462009. View Article : Google Scholar

76 

Kebaier C, Chamberland RR, Allen IC, Gao X, Broglie PM, Hall JD, Jania C, Doerschuk CM, Tilley SL and Duncan JA: Staphylococcus aureus α-hemolysin mediates virulence in a murine model of severe pneumonia through activation of the NLRP3 inflammasome. J Infect Dis. 205:807–817. 2012. View Article : Google Scholar : PubMed/NCBI

77 

Bewley MA, Naughton M, Preston J, Mitchell A, Holmes A, Marriott HM, Read RC, Mitchell TJ, Whyte MK and Dockrell DH: Pneumolysin activates macrophage lysosomal membrane permeabilization and executes apoptosis by distinct mechanisms without membrane pore formation. mBio. 5:e01710–14. 2014. View Article : Google Scholar : PubMed/NCBI

78 

Witzenrath M, Pache F, Lorenz D, Koppe U, Gutbier B, Tabeling C, Reppe K, Meixenberger K, Dorhoi A, Ma J, et al: The NLRP3 inflammasome is differentially activated by pneumolysin variants and contributes to host defense in pneumococcal pneumonia. J Immunol. 187:434–440. 2011. View Article : Google Scholar : PubMed/NCBI

79 

McNeela EA, Burke A, Neill DR, Baxter C, Fernandes VE, Ferreira D, Smeaton S, El-Rachkidy R, McLoughlin RM, Mori A, et al: Pneumolysin activates the NLRP3 inflammasome and promotes proinflammatory cytokines independently of TLR4. PLoS Pathog. 6:e10011912010. View Article : Google Scholar : PubMed/NCBI

80 

van Lieshout MH, Scicluna BP, Florquin S and van der Poll T: NLRP3 and ASC differentially affect the lung transcriptome during pneumococcal pneumonia. Am J Respir Cell Mol Biol. 50:699–712. 2014. View Article : Google Scholar

81 

Gravina AG, Zagari RM, De Musis C, Romano L, Loguercio C and Romano M: Helicobacter pylori and extragastric diseases: A review. World J Gastroenterol. 24:3204–3221. 2018. View Article : Google Scholar : PubMed/NCBI

82 

Venerito M, Vasapolli R, Rokkas T, Delchier JC and Malfertheiner P: Helicobacter pylori, gastric cancer and other gastrointestinal malignancies. Helicobacter. 22(Suppl 1)John Wiley and Sons; 2017, View Article : Google Scholar

83 

Pachathundikandi SK, Blaser N, Bruns H and Backert S: Helicobacter pylori avoids the critical activation of NLRP3 inflammasome-mediated production of oncogenic mature IL-1β in human immune cells. Cancers (Basel). 12:8032020. View Article : Google Scholar

84 

Li X, Liu S, Luo J, Liu A, Tang S, Liu S, Yu M and Zhang Y: Helicobacter pylori induces IL-1β and IL-18 production in human monocytic cell line through activation of NLRP3 inflammasome via ROS signaling pathway. Pathog Dis. 73:ftu0242015. View Article : Google Scholar

85 

Shigematsu Y, Niwa T, Rehnberg E, Toyoda T, Yoshida S, Mori A, Wakabayashi M, Iwakura Y, Ichinose M, Kim YJ and Ushijima T: Interleukin-1β induced by Helicobacter pylori infection enhances mouse gastric carcinogenesis. Cancer Lett. 340:141–147. 2013. View Article : Google Scholar : PubMed/NCBI

86 

Serizawa T, Hirata Y, Hayakawa Y, Suzuki N, Sakitani K, Hikiba Y, Ihara S, Kinoshita H, Nakagawa H, Tateishi K and Koike K: Gastric metaplasia induced by helicobacter pylori is associated with enhanced SOX9 expression via interleukin-1 signaling. Infect Immun. 84:562–572. 2015. View Article : Google Scholar : PubMed/NCBI

87 

Kameoka S, Kameyama T, Hayashi T, Sato S, Ohnishi N, Hayashi T, Murata-Kamiya N, Higashi H, Hatakeyama M and Takaoka A: Helicobacter pylori induces IL-1β protein through the inflammasome activation in differentiated macrophagic cells. Biomed Res. 37:21–27. 2016. View Article : Google Scholar

88 

Yu Q, Shi H, Ding Z, Wang Z, Yao H and Lin R: The E3 ubiquitin ligase TRIM31 attenuates NLRP3 inflammasome activation in Helicobacter pylori-associated gastritis by regulating ROS and autophagy. Cell Commun Signal. 21:12023. View Article : Google Scholar : PubMed/NCBI

89 

Davari F, Shokri-Shirvani J, Sepidarkish M and Nouri HR: Elevated expression of the AIM2 gene in response to Helicobacter pylori along with the decrease of NLRC4 inflammasome is associated with peptic ulcer development. APMIS. 131:339–350. 2023. View Article : Google Scholar : PubMed/NCBI

90 

Asrani SK, Devarbhavi H, Eaton J and Kamath PS: Burden of liver diseases in the world. J Hepatol. 70:151–171. 2019. View Article : Google Scholar

91 

Sharma A and Nagalli S: Chronic Liver Disease. StatPearls [Internet] Treasure Island, FL: 2023

92 

Wree A, McGeough MD, Peña CA, Schlattjan M, Li H, Inzaugarat ME, Messer K, Canbay A, Hoffman HM and Feldstein AE: NLRP3 inflammasome activation is required for fibrosis development in NAFLD. J Mol Med (Berl). 92:1069–1082. 2014. View Article : Google Scholar : PubMed/NCBI

93 

Arab JP, Arrese M and Trauner M: Recent insights into the pathogenesis of nonalcoholic fatty liver disease. Annu Rev Pathol. 13:321–350. 2018. View Article : Google Scholar : PubMed/NCBI

94 

Lee HM, Kim JJ, Kim HJ, Shong M, Ku BJ and Jo EK: Upregulated NLRP3 inflammasome activation in patients with type 2 diabetes. Diabetes. 62:194–204. 2013. View Article : Google Scholar

95 

Vandanmagsar B, Youm YH, Ravussin A, Galgani JE, Stadler K, Mynatt RL, Ravussin E, Stephens JM and Dixit VD: The NLRP3 inflammasome instigates obesity-induced inflammation and insulin resistance. Nat Med. 17:179–188. 2011. View Article : Google Scholar : PubMed/NCBI

96 

Csak T, Ganz M, Pespisa J, Kodys K, Dolganiuc A and Szabo G: Fatty acid and endotoxin activate inflammasomes in mouse hepatocytes that release danger signals to stimulate immune cells. Hepatology. 54:133–144. 2011. View Article : Google Scholar : PubMed/NCBI

97 

Mellinger JL: Epidemiology of alcohol use and alcoholic liver disease. Clin Liver Dis (Hoboken). 13:136–139. 2019. View Article : Google Scholar : PubMed/NCBI

98 

Ohashi K, Pimienta M and Seki E: Alcoholic liver disease: A current molecular and clinical perspective. Liver Res. 2:161–172. 2018. View Article : Google Scholar

99 

Voican CS, Njiké-Nakseu M, Boujedidi H, Barri-Ova N, Bouchet-Delbos L, Agostini H, Maitre S, Prévot S, Cassard-Doulcier AM, Naveau S and Perlemuter G: Alcohol withdrawal alleviates adipose tissue inflammation in patients with alcoholic liver disease. Liver Int. 35:967–978. 2015. View Article : Google Scholar

100 

Petrasek J, Bala S, Csak T, Lippai D, Kodys K, Menashy V, Barrieau M, Min SY, Kurt-Jones EA and Szabo G: IL-1 receptor antagonist ameliorates inflammasome-dependent alcoholic steatohepatitis in mice. J Clin Invest. 122:3476–3489. 2012. View Article : Google Scholar : PubMed/NCBI

101 

Dixon LJ, Berk M, Thapaliya S, Papouchado BG and Feldstein AE: Caspase-1-mediated regulation of fibrogenesis in diet-induced steatohepatitis. Lab Invest. 92:713–723. 2012. View Article : Google Scholar : PubMed/NCBI

102 

Bataller R and Brenner DA: Liver fibrosis. J Clin Invest. 115:209–218. 2005. View Article : Google Scholar : PubMed/NCBI

103 

Boaru SG, Borkham-Kamphorst E, Tihaa L, Haas U and Weiskirchen R: Expression analysis of inflammasomes in experimental models of inflammatory and fibrotic liver disease. J Inflamm (Lond). 9:492012. View Article : Google Scholar : PubMed/NCBI

104 

Alyaseer AAA, de Lima MHS and Braga TT: The role of NLRP3 inflammasome activation in the epithelial to mesenchymal transition process during the fibrosis. Front Immunol. 11:8832020. View Article : Google Scholar : PubMed/NCBI

105 

Lozano-Ruiz B, Bachiller V, García-Martínez I, Zapater P, Gómez-Hurtado I, Moratalla A, Giménez P, Bellot P, Francés R, Such J and González-Navajas JM: Absent in melanoma 2 triggers a heightened inflammasome response in ascitic fluid macrophages of patients with cirrhosis. J Hepatol. 62:64–71. 2015. View Article : Google Scholar

106 

Liu X, Zhou W, Zhang X, Lu P, Du Q, Tao L, Ding Y, Wang Y and Hu R: Dimethyl fumarate ameliorates dextran sulfate sodium-induced murine experimental colitis by activating Nrf2 and suppressing NLRP3 inflammasome activation. Biochem Pharmacol. 112:37–49. 2016. View Article : Google Scholar : PubMed/NCBI

107 

Sivakumar PV, Westrich GM, Kanaly S, Garka K, Born TL, Derry JM and Viney JL: Interleukin 18 is a primary mediator of the inflammation associated with dextran sulphate sodium induced colitis: Blocking interleukin 18 attenuates intestinal damage. Gut. 50:812–820. 2002. View Article : Google Scholar : PubMed/NCBI

108 

Siegmund B, Fantuzzi G, Rieder F, Gamboni-Robertson F, Lehr HA, Hartmann G, Dinarello CA, Endres S and Eigler A: Neutralization of interleukin-18 reduces severity in murine colitis and intestinal IFN-gamma and TNF-alpha production. Am J Physiol Regul Integr Comp Physiol. 281:R1264–R1273. 2001. View Article : Google Scholar : PubMed/NCBI

109 

Siegmund B: Interleukin-1beta converting enzyme (caspase-1) in intestinal inflammation. Biochem Pharmacol. 64:1–8. 2002. View Article : Google Scholar : PubMed/NCBI

110 

Zhao S, Gong Z, Zhou J, Tian C, Gao Y, Xu C, Chen Y, Cai W and Wu J: Deoxycholic acid triggers NLRP3 inflammasome activation and aggravates DSS-induced colitis in mice. Front Immunol. 7:5362016. View Article : Google Scholar : PubMed/NCBI

111 

Zherebiatiev A and Kamyshnyi A: Expression levels of proinflammatory cytokines and NLRP3 inflammasome in an experimental model of oxazolone-induced colitis. Iran J Allergy Asthma Immunol. 15:39–45. 2016.PubMed/NCBI

112 

Bauer C, Duewell P, Lehr HA, Endres S and Schnurr M: Protective and aggravating effects of Nlrp3 inflammasome activation in IBD models: Influence of genetic and environmental factors. Dig Dis. 30(Suppl 1): S82–S90. 2012. View Article : Google Scholar

113 

Allen IC, TeKippe EM, Woodford RM, Uronis JM, Holl EK, Rogers AB, Herfarth HH, Jobin C and Ting JP: The NLRP3 inflammasome functions as a negative regulator of tumorigenesis during colitis-associated cancer. J Exp Med. 207:1045–1056. 2010. View Article : Google Scholar : PubMed/NCBI

114 

Zaki MH, Boyd KL, Vogel P, Kastan MB, Lamkanfi M and Kanneganti TD: The NLRP3 inflammasome protects against loss of epithelial integrity and mortality during experimental colitis. Immunity. 32:379–391. 2010. View Article : Google Scholar : PubMed/NCBI

115 

Dupaul-Chicoine J, Yeretssian G, Doiron K, Bergstrom KS, McIntire CR, LeBlanc PM, Meunier C, Turbide C, Gros P, Beauchemin N, et al: Control of intestinal homeostasis, colitis, and colitis-associated colorectal cancer by the inflammatory caspases. Immunity. 32:367–378. 2010. View Article : Google Scholar : PubMed/NCBI

116 

Radtke F and Clevers H: Self-renewal and cancer of the gut: two sides of a coin. Science. 307:1904–1909. 2005. View Article : Google Scholar : PubMed/NCBI

117 

Itzkowitz SH and Yio X: Inflammation and cancer IV. Colorectal cancer in inflammatory bowel disease: The role of inflammation. Am J Physiol Gastrointest Liver Physiol. 287:G7–G17. 2004. View Article : Google Scholar : PubMed/NCBI

118 

Du Q, Wang Q, Fan H, Wang J, Liu X, Wang H, Wang Y and Hu R: Dietary cholesterol promotes AOM-induced colorectal cancer through activating the NLRP3 inflammasome. Biochem Pharmacol. 105:42–54. 2016. View Article : Google Scholar : PubMed/NCBI

119 

Micallef MJ, Tanimoto T, Kohno K, Ikeda M and Kurimoto M: Interleukin 18 induces the sequential activation of natural killer cells and cytotoxic T lymphocytes to protect syngeneic mice from transplantation with Meth A sarcoma. Cancer Res. 57:4557–4563. 1997.PubMed/NCBI

120 

Micallef MJ, Yoshida K, Kawai S, Hanaya T, Kohno K, Arai S, Tanimoto T, Torigoe K, Fujii M, Ikeda M and Kurimoto M: In vivo antitumor effects of murine interferon-gamma-inducing factor/interleukin-18 in mice bearing syngeneic Meth A sarcoma malignant ascites. Cancer Immunol Immunother. 43:361–367. 1997. View Article : Google Scholar : PubMed/NCBI

121 

Osaki T, Péron JM, Cai Q, Okamura H, Robbins PD, Kurimoto M, Lotze MT and Tahara H: IFN-gamma-inducing factor/IL-18 administration mediates IFN-gamma- and IL-12-independent antitumor effects. J Immunol. 160:1742–1749. 1998. View Article : Google Scholar : PubMed/NCBI

122 

Coughlin CM, Salhany KE, Wysocka M, Aruga E, Kurzawa H, Chang AE, Hunter CA, Fox JC, Trinchieri G and Lee WM: Interleukin-12 and interleukin-18 synergistically induce murine tumor regression which involves inhibition of angiogenesis. J Clin Invest. 101:1441–1452. 1998. View Article : Google Scholar : PubMed/NCBI

123 

Hegardt P, Widegren B, Li L, Sjögren B, Kjellman C, Sur I and Sjögren HO: Nitric oxide synthase inhibitor and IL-18 enhance the anti-tumor immune response of rats carrying an intrahepatic colon carcinoma. Cancer Immunol Immunother. 50:491–501. 2001. View Article : Google Scholar

124 

Zaki MH, Vogel P, Body-Malapel M, Lamkanfi M and Kanneganti TD: IL-18 production downstream of the Nlrp3 inflammasome confers protection against colorectal tumor formation. J Immunol. 185:4912–4920. 2010. View Article : Google Scholar : PubMed/NCBI

125 

Reuter BK and Pizarro TT: Commentary: the role of the IL-18 system and other members of the IL-1R/TLR superfamily in innate mucosal immunity and the pathogenesis of inflammatory bowel disease: Friend or foe? Eur J Immunol. 34:2347–2355. 2004. View Article : Google Scholar : PubMed/NCBI

126 

Swaroop VS, Chari ST and Clain JE: Severe acute pancreatitis. JAMA. 291:2865–2868. 2004. View Article : Google Scholar : PubMed/NCBI

127 

Yang ZW, Meng XX and Xu P: Central role of neutrophil in the pathogenesis of severe acute pancreatitis. J Cell Mol Med. 19:2513–2520. 2015. View Article : Google Scholar : PubMed/NCBI

128 

Janiak A, Leśniowski B, Jasińska A, Pietruczuk M and Małecka-Panas E: Interleukin 18 as an early marker or prognostic factor in acute pancreatitis. Prz Gastroenterol. 10:203–207. 2015.

129 

Fu Q, Zhai Z, Wang Y, Xu L, Jia P, Xia P, Liu C, Zhang X, Qin T and Zhang H: NLRP3 deficiency alleviates severe acute pancreatitis and pancreatitis-associated lung injury in a mouse model. Biomed Res Int. 2018:12949512018. View Article : Google Scholar

130 

Hoque R, Farooq A, Ghani A, Gorelick F and Mehal WZ: Lactate reduces liver and pancreatic injury in Toll-like receptor- and inflammasome-mediated inflammation via GPR81-mediated suppression of innate immunity. Gastroenterology. 146:1763–1774. 2014. View Article : Google Scholar : PubMed/NCBI

131 

Wu BU, Hwang JQ, Gardner TH, Repas K, Delee R, Yu S, Smith B, Banks PA and Conwell DL: Lactated Ringer's solution reduces systemic inflammation compared with saline in patients with acute pancreatitis. Clin Gastroenterol Hepatol. 9:710–717.e1. 2011. View Article : Google Scholar : PubMed/NCBI

132 

Ren JD, Ma J, Hou J, Xiao WJ, Jin WH, Wu J and Fan KH: Hydrogen-rich saline inhibits NLRP3 inflammasome activation and attenuates experimental acute pancreatitis in mice. Mediators Inflamm. 2014:9308942014. View Article : Google Scholar : PubMed/NCBI

133 

Smolen JS, Aletaha D, Barton A, Burmester GR, Emery P, Firestein GS, Kavanaugh A, McInnes IB, Solomon DH, Strand V and Yamamoto K: Rheumatoid arthritis. Nat Rev Dis Primers. 4:180012018. View Article : Google Scholar : PubMed/NCBI

134 

Kolly L, Busso N, Palmer G, Talabot-Ayer D, Chobaz V and So A: Expression and function of the NALP3 inflammasome in rheumatoid synovium. Immunology. 129:178–185. 2010. View Article : Google Scholar :

135 

Rosengren S, Hoffman HM, Bugbee W and Boyle DL: Expression and regulation of cryopyrin and related proteins in rheumatoid arthritis synovium. Ann Rheum Dis. 64:708–714. 2005. View Article : Google Scholar

136 

Choulaki C, Papadaki G, Repa A, Kampouraki E, Kambas K, Ritis K, Bertsias G, Boumpas DT and Sidiropoulos P: Enhanced activity of NLRP3 inflammasome in peripheral blood cells of patients with active rheumatoid arthritis. Arthritis Res Ther. 17:2572015. View Article : Google Scholar : PubMed/NCBI

137 

Zhang Y, Zheng Y and Li H: NLRP3 Inflammasome plays an important role in the pathogenesis of collagen-induced arthritis. Mediators Inflamm. 2016:96562702016. View Article : Google Scholar : PubMed/NCBI

138 

Guo C, Fu R, Wang S, Huang Y, Li X, Zhou M, Zhao J and Yang N: NLRP3 inflammasome activation contributes to the pathogenesis of rheumatoid arthritis. Clin Exp Immunol. 194:231–243. 2018. View Article : Google Scholar : PubMed/NCBI

139 

Matmati M, Jacques P, Maelfait J, Verheugen E, Kool M, Sze M, Geboes L, Louagie E, Mc Guire C, Vereecke L, et al: A20 (TNFAIP3) deficiency in myeloid cells triggers erosive polyarthritis resembling rheumatoid arthritis. Nat Genet. 43:908–912. 2011. View Article : Google Scholar : PubMed/NCBI

140 

Vande Walle L, Van Opdenbosch N, Jacques P, Fossoul A, Verheugen E, Vogel P, Beyaert R, Elewaut D, Kanneganti TD, van Loo G and Lamkanfi M: Negative regulation of the NLRP3 inflammasome by A20 protects against arthritis. Nature. 512:69–73. 2014. View Article : Google Scholar : PubMed/NCBI

141 

Li XF, Shen WW, Sun YY, Li WX, Sun ZH, Liu YH, Zhang L, Huang C, Meng XM and Li J: MicroRNA-20a negatively regulates expression of NLRP3 inflammasome by targeting TXNIP in adjuvant-induced arthritis fibroblast-like synoviocytes. Joint Bone Spine. 83:695–700. 2016. View Article : Google Scholar : PubMed/NCBI

142 

Huang Y, Lu D, Ma W, Liu J, Ning Q, Tang F and Li L: miR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages. Mol Immunol. 143:68–76. 2022. View Article : Google Scholar : PubMed/NCBI

143 

Li Y, Zheng JY, Liu JQ, Yang J, Liu Y, Wang C, Ma XN, Liu BL, Xin GZ and Liu LF: Succinate/NLRP3 inflammasome induces synovial fibroblast activation: Therapeutical effects of clematichinenoside AR on arthritis. Front Immunol. 7:5322016. View Article : Google Scholar : PubMed/NCBI

144 

Han X, Lin D, Huang W, Li D, Li N and Xie X: Mechanism of NLRP3 inflammasome intervention for synovitis in knee osteoarthritis: A review of TCM intervention. Front Genet. 14:11591672023. View Article : Google Scholar : PubMed/NCBI

145 

Derfus BA, Kurian JB, Butler JJ, Daft LJ, Carrera GF, Ryan LM and Rosenthal AK: The high prevalence of pathologic calcium crystals in pre-operative knees. J Rheumatol. 29:570–574. 2002.PubMed/NCBI

146 

Pazár B, Ea HK, Narayan S, Kolly L, Bagnoud N, Chobaz V, Roger T, Lioté F, So A and Busso N: Basic calcium phosphate crystals induce monocyte/macrophage IL-1β secretion through the NLRP3 inflammasome in vitro. J Immunol. 186:2495–2502. 2011. View Article : Google Scholar

147 

An S, Hu H, Li Y and Hu Y: Pyroptosis plays a role in osteoarthritis. Aging Dis. 11:1146–1157. 2020. View Article : Google Scholar : PubMed/NCBI

148 

Shao M, Lv D, Zhou K, Sun H and Wang Z: Senkyunolide A inhibits the progression of osteoarthritis by inhibiting the NLRP3 signalling pathway. Pharm Biol. 60:535–542. 2022. View Article : Google Scholar : PubMed/NCBI

149 

Lordén G, Sanjuán-García I, de Pablo N, Meana C, Alvarez-Miguel I, Pérez-García MT, Pelegrín P, Balsinde J and Balboa MA: Lipin-2 regulates NLRP3 inflammasome by affecting P2X7 receptor activation. J Exp Med. 214:511–528. 2017. View Article : Google Scholar :

150 

Compston JE, McClung MR and Leslie WD: Osteoporosis. Lancet. 393:364–376. 2019. View Article : Google Scholar : PubMed/NCBI

151 

Alippe Y, Wang C, Ricci B, Xiao J, Qu C, Zou W, Novack DV, Abu-Amer Y, Civitelli R and Mbalaviele G: Bone matrix components activate the NLRP3 inflammasome and promote osteoclast differentiation. Sci Rep. 7:66302017. View Article : Google Scholar : PubMed/NCBI

152 

Detzen L, Cheat B, Besbes A, Hassan B, Marchi V, Baroukh B, Lesieur J, Sadoine J, Torrens C, Rochefort G, et al: NLRP3 is involved in long bone edification and the maturation of osteogenic cells. J Cell Physiol. 236:4455–4469. 2021. View Article : Google Scholar

153 

Jiang N, An J, Yang K, Liu J, Guan C, Ma C and Tang X: NLRP3 Inflammasome: A new target for prevention and control of osteoporosis? Front Endocrinol (Lausanne). 12:7525462021. View Article : Google Scholar : PubMed/NCBI

154 

Rocha FRG, Delitto AE, de Souza JAC, González-Maldonado LA, Wallet SM and Rossa Junior C: Relevance of caspase-1 and Nlrp3 inflammasome on inflammatory bone resorption in a murine model of periodontitis. Sci Rep. 10:78232020. View Article : Google Scholar : PubMed/NCBI

155 

Wang C, Xiao J, Nowak K, Gunasekera K, Alippe Y, Speckman S, Yang T, Kress D, Abu-Amer Y, Hottiger MO and Mbalaviele G: PARP1 hinders histone H2B occupancy at the NFATc1 promoter to restrain osteoclast differentiation. J Bone Miner Res. 35:776–788. 2020. View Article : Google Scholar

156 

Guaraná WL, Lima CAD, Barbosa AD, Crovella S and Sandrin-Garcia P: Can polymorphisms in NLRP3 inflammasome complex be associated with postmenopausal osteoporosis severity? Genes (Basel). 13:22712022. View Article : Google Scholar : PubMed/NCBI

157 

Xu L, Zhang L, Wang Z, Li C, Li S, Li L, Fan Q and Zheng L: Melatonin suppresses estrogen deficiency-induced osteoporosis and promotes osteoblastogenesis by inactivating the NLRP3 inflammasome. Calcif Tissue Int. 103:400–410. 2018. View Article : Google Scholar : PubMed/NCBI

158 

Dehlin M, Jacobsson L and Roddy E: Global epidemiology of gout: Prevalence, incidence, treatment patterns and risk factors. Nat Rev Rheumatol. 16:380–390. 2020. View Article : Google Scholar : PubMed/NCBI

159 

Mangan MSJ, Olhava EJ, Roush WR, Seidel HM, Glick GD and Latz E: Targeting the NLRP3 inflammasome in inflammatory diseases. Nat Rev Drug Discov. 17:6882018. View Article : Google Scholar : PubMed/NCBI

160 

Zhao Q, Xia N, Xu J, Wang Y, Feng L, Su D and Cheng Z: Pro-Inflammatory of PRDM1/SIRT2/NLRP3 axis in monosodium urate-induced acute gouty arthritis. J Innate Immun. 15:614–628. 2023. View Article : Google Scholar : PubMed/NCBI

161 

Renaudin F, Orliaguet L, Castelli F, Fenaille F, Prignon A, Alzaid F, Combes C, Delvaux A, Adimy Y, Cohen-Solal M, et al: Gout and pseudo-gout-related crystals promote GLUT1-mediated glycolysis that governs NLRP3 and interleukin-1β activation on macrophages. Ann Rheum Dis. 79:1506–1514. 2020. View Article : Google Scholar : PubMed/NCBI

162 

Lee HE, Yang G, Park YB, Kang HC, Cho YY, Lee HS and Lee JY: Epigallocatechin-3-gallate prevents acute gout by suppressing NLRP3 inflammasome activation and mitochondrial DNA synthesis. Molecules. 24:21382019. View Article : Google Scholar : PubMed/NCBI

163 

Li X, Liu Y, Luo C and Tao J: Z1456467176 alleviates gouty arthritis by allosterically modulating P2X7R to inhibit NLRP3 inflammasome activation. Front Pharmacol. 13:9799392022. View Article : Google Scholar : PubMed/NCBI

164 

Xin J, Wang Y, Zheng Z, Wang S, Na S and Zhang S: Treatment of intervertebral disc degeneration. Orthop Surg. 14:1271–1280. 2022. View Article : Google Scholar : PubMed/NCBI

165 

Chen F, Jiang G, Liu H, Li Z, Pei Y, Wang H, Pan H, Cui H, Long J, Wang J and Zheng Z: Melatonin alleviates intervertebral disc degeneration by disrupting the IL-1β/NF-κB-NLRP3 inflammasome positive feedback loop. Bone Res. 8:102020. View Article : Google Scholar

166 

Chen S, Wu X, Lai Y, Chen D, Bai X, Liu S, Wu Y, Chen M, Lai Y, Cao H, et al: Kindlin-2 inhibits Nlrp3 inflammasome activation in nucleus pulposus to maintain homeostasis of the intervertebral disc. Bone Res. 10:52022. View Article : Google Scholar : PubMed/NCBI

167 

Zhao K, An R, Xiang Q, Li G, Wang K, Song Y, Liao Z, Li S, Hua W, Feng X, et al: Acid-sensing ion channels regulate nucleus pulposus cell inflammation and pyroptosis via the NLRP3 inflammasome in intervertebral disc degeneration. Cell Prolif. 54:e129412021. View Article : Google Scholar

168 

Wojtasińska A, Frąk W, Lisińska W, Sapeda N, Młynarska E, Rysz J and Franczyk B: Novel insights into the molecular mechanisms of atherosclerosis. Int J Mol Sci. 24:134342023. View Article : Google Scholar

169 

Duewell P, Kono H, Rayner KJ, Sirois CM, Vladimer G, Bauernfeind FG, Abela GS, Franchi L, Nuñez G, Schnurr M, et al: NLRP3 inflammasomes are required for atherogenesis and activated by cholesterol crystals. Nature. 464:1357–1361. 2010. View Article : Google Scholar : PubMed/NCBI

170 

Paramel Varghese G, Folkersen L, Strawbridge RJ, Halvorsen B, Yndestad A, Ranheim T, Krohg-Sørensen K, Skjelland M, Espevik T, Aukrust P, et al: NLRP3 inflammasome expression and activation in human atherosclerosis. J Am Heart Assoc. 5:e0030312016. View Article : Google Scholar : PubMed/NCBI

171 

Usui F, Shirasuna K, Kimura H, Tatsumi K, Kawashima A, Karasawa T, Hida S, Sagara J, Taniguchi S and Takahashi M: Critical role of caspase-1 in vascular inflammation and development of atherosclerosis in Western diet-fed apolipoprotein E-deficient mice. Biochem Biophys Res Commun. 425:162–168. 2012. View Article : Google Scholar : PubMed/NCBI

172 

Zheng F, Xing S, Gong Z, Mu W and Xing Q: Silence of NLRP3 suppresses atherosclerosis and stabilizes plaques in apolipoprotein E-deficient mice. Mediators Inflamm. 2014:5072082014. View Article : Google Scholar : PubMed/NCBI

173 

Satoh M, Tabuchi T, Itoh T and Nakamura M: NLRP3 inflammasome activation in coronary artery disease: Results from prospective and randomized study of treatment with atorvastatin or rosuvastatin. Clin Sci (Lond). 126:233–241. 2014. View Article : Google Scholar

174 

Butts B, Gary RA, Dunbar SB and Butler J: The importance of NLRP3 inflammasome in heart failure. J Card Fail. 21:586–593. 2015. View Article : Google Scholar : PubMed/NCBI

175 

Bracey NA, Beck PL, Muruve DA, Hirota SA, Guo J, Jabagi H, Wright JR Jr, Macdonald JA, Lees-Miller JP, Roach D, et al: The Nlrp3 inflammasome promotes myocardial dysfunction in structural cardiomyopathy through interleukin-1β. Exp Physiol. 98:462–472. 2013. View Article : Google Scholar

176 

Mezzaroma E, Toldo S, Farkas D, Seropian IM, Van Tassell BW, Salloum FN, Kannan HR, Menna AC, Voelkel NF and Abbate A: The inflammasome promotes adverse cardiac remodeling following acute myocardial infarction in the mouse. Proc Natl Acad Sci USA. 108:19725–19730. 2011. View Article : Google Scholar : PubMed/NCBI

177 

Van Tassell BW, Seropian IM, Toldo S, Mezzaroma E and Abbate A: Interleukin-1β induces a reversible cardiomyopathy in the mouse. Inflamm Res. 62:637–640. 2013. View Article : Google Scholar : PubMed/NCBI

178 

Toldo S, Mezzaroma E, O'Brien L, Marchetti C, Seropian IM, Voelkel NF, Van Tassell BW, Dinarello CA and Abbate A: Interleukin-18 mediates interleukin-1-induced cardiac dysfunction. Am J Physiol Heart Circ Physiol. 306:H1025–H1031. 2014. View Article : Google Scholar : PubMed/NCBI

179 

Abbate A, Kontos MC, Grizzard JD, Biondi-Zoccai GG, Van Tassell BW, Robati R, Roach LM, Arena RA, Roberts CS, Varma A, et al: Interleukin-1 blockade with anakinra to prevent adverse cardiac remodeling after acute myocardial infarction (Virginia Commonwealth University Anakinra Remodeling Trial (VCU-ART) Pilot study). Am J Cardiol. 105:1371–1377.e1. 2010. View Article : Google Scholar

180 

Abbate A, Van Tassell BW, Biondi-Zoccai G, Kontos MC, Grizzard JD, Spillman DW, Oddi C, Roberts CS, Melchior RD, Mueller GH, et al: Effects of interleukin-1 blockade with anakinra on adverse cardiac remodeling and heart failure after acute myocardial infarction (from the Virginia Commonwealth University-Anakinra Remodeling Trial (2) (VCU-ART2) pilot study). Am J Cardiol. 111:1394–1400. 2013. View Article : Google Scholar : PubMed/NCBI

181 

Kawaguchi M, Takahashi M, Hata T, Kashima Y, Usui F, Morimoto H, Izawa A, Takahashi Y, Masumoto J, Koyama J, et al: Inflammasome activation of cardiac fibroblasts is essential for myocardial ischemia/reperfusion injury. Circulation. 123:594–604. 2011. View Article : Google Scholar : PubMed/NCBI

182 

Sandanger Ø, Ranheim T, Vinge LE, Bliksøen M, Alfsnes K, Finsen AV, Dahl CP, Askevold ET, Florholmen G, Christensen G, et al: The NLRP3 inflammasome is up-regulated in cardiac fibroblasts and mediates myocardial ischaemia-reperfusion injury. Cardiovasc Res. 99:164–174. 2013. View Article : Google Scholar : PubMed/NCBI

183 

Liu Y, Lian K, Zhang L, Wang R, Yi F, Gao C, Xin C, Zhu D, Li Y, Yan W, et al: TXNIP mediates NLRP3 inflammasome activation in cardiac microvascular endothelial cells as a novel mechanism in myocardial ischemia/reperfusion injury. Basic Res Cardiol. 109:4152014. View Article : Google Scholar : PubMed/NCBI

184 

Capizzi A, Woo J and Verduzco-Gutierrez M: Traumatic brain injury: An overview of epidemiology, pathophysiology, and medical management. Med Clin North Am. 104:213–238. 2020. View Article : Google Scholar : PubMed/NCBI

185 

Liu W, Chen Y, Meng J, Wu M, Bi F, Chang C, Li H and Zhang L: Ablation of caspase-1 protects against TBI-induced pyroptosis in vitro and in vivo. J Neuroinflammation. 15:482018. View Article : Google Scholar : PubMed/NCBI

186 

Xu X, Yin D, Ren H, Gao W, Li F, Sun D, Wu Y, Zhou S, Lyu L, Yang M, et al: Selective NLRP3 inflammasome inhibitor reduces neuroinflammation and improves long-term neurological outcomes in a murine model of traumatic brain injury. Neurobiol Dis. 117:15–27. 2018. View Article : Google Scholar : PubMed/NCBI

187 

Wallisch JS, Simon DW, Bayır H, Bell MJ, Kochanek PM and Clark RSB: Cerebrospinal fluid NLRP3 is increased after severe traumatic brain injury in infants and children. Neurocrit Care. 27:44–50. 2017. View Article : Google Scholar : PubMed/NCBI

188 

Geng F, Ma Y, Xing T, Zhuang X, Zhu J and Yao L: Effects of hyperbaric oxygen therapy on inflammasome signaling after traumatic brain injury. Neuroimmunomodulation. 23:122–129. 2016. View Article : Google Scholar : PubMed/NCBI

189 

Marino BLB, de Souza LR, Sousa KPA, Ferreira JV, Padilha EC, da Silva CHTP, Taft CA and Hage-Melim LIS: Parkinson's disease: A review from pathophysiology to treatment. Mini Rev Med Chem. 20:754–767. 2020. View Article : Google Scholar

190 

Marogianni C, Sokratous M, Dardiotis E, Hadjigeorgiou GM, Bogdanos D and Xiromerisiou G: Neurodegeneration and Inflammation-an interesting interplay in Parkinson's disease. Int J Mol Sci. 21:84212020. View Article : Google Scholar : PubMed/NCBI

191 

Mao Z, Liu C, Ji S, Yang Q, Ye H, Han H and Xue Z: The NLRP3 inflammasome is involved in the pathogenesis of Parkinson's disease in rats. Neurochem Res. 42:1104–1115. 2017. View Article : Google Scholar : PubMed/NCBI

192 

Qiao C, Zhang Q, Jiang Q, Zhang T, Chen M, Fan Y, Ding J, Lu M and Hu G: Inhibition of the hepatic Nlrp3 protects dopaminergic neurons via attenuating systemic inflammation in a MPTP/p mouse model of Parkinson's disease. J Neuroinflammation. 15:1932018. View Article : Google Scholar : PubMed/NCBI

193 

Villain N and Dubois B: Alzheimer's disease including focal presentations. Semin Neurol. 39:213–226. 2019. View Article : Google Scholar : PubMed/NCBI

194 

Cummings JL, Tong G and Ballard C: Treatment combinations for Alzheimer's disease: Current and future pharmacotherapy options. J Alzheimers Dis. 67:779–794. 2019. View Article : Google Scholar : PubMed/NCBI

195 

Abbott A: Is 'friendly fire' in the brain provoking Alzheimer's disease? Nature. 556:426–428. 2018. View Article : Google Scholar : PubMed/NCBI

196 

Zhang Y, Dong Z and Song W: NLRP3 inflammasome as a novel therapeutic target for Alzheimer's disease. Signal Transduct Target Ther. 5:372020. View Article : Google Scholar : PubMed/NCBI

197 

Ising C, Venegas C, Zhang S, Scheiblich H, Schmidt SV, Vieira-Saecker A, Schwartz S, Albasset S, McManus RM, Tejera D, et al: NLRP3 inflammasome activation drives tau pathology. Nature. 575:669–673. 2019. View Article : Google Scholar : PubMed/NCBI

198 

Srinivasan S, Kancheva D, De Ren S, Saito T, Jans M, Boone F, Vandendriessche C, Paesmans I, Maurin H, Vandenbroucke RE, et al: Inflammasome signaling is dispensable for ß-amyloid-induced neuropathology in preclinical models of Alzheimer's disease. Front Immunol. 15:13234092024. View Article : Google Scholar

199 

Dobson R and Giovannoni G: Multiple sclerosis-a review. Eur J Neurol. 26:27–40. 2019. View Article : Google Scholar

200 

Inoue M, Williams KL, Gunn MD and Shinohara ML: NLRP3 inflammasome induces chemotactic immune cell migration to the CNS in experimental autoimmune encephalomyelitis. Proc Natl Acad Sci USA. 109:10480–10485. 2012. View Article : Google Scholar : PubMed/NCBI

201 

Zhao Y, Zhang X, Chen X and Wei Y: Neuronal injuries in cerebral infarction and ischemic stroke: From mechanisms to treatment (Review). Int J Mol Med. 49:152022. View Article : Google Scholar :

202 

Zhao J, Piao X, Wu Y, Liang S, Han F, Liang Q, Shao S and Zhao D: Cepharanthine attenuates cerebral ischemia/reperfusion injury by reducing NLRP3 inflammasome-induced inflammation and oxidative stress via inhibiting 12/15-LOX signaling. Biomed Pharmacother. 127:1101512020. View Article : Google Scholar : PubMed/NCBI

203 

Wang H, Zhong D, Chen H, Jin J, Liu Q and Li G: NLRP3 inflammasome activates interleukin-23/interleukin-17 axis during ischaemia-reperfusion injury in cerebral ischaemia in mice. Life Sci. 227:101–113. 2019. View Article : Google Scholar : PubMed/NCBI

204 

Silveira LS, Antunes Bde M, Minari AL, Dos Santos RV, Neto JC and Lira FS: Macrophage polarization: Implications on metabolic diseases and the role of exercise. Crit Rev Eukaryot Gene Expr. 26:115–132. 2016. View Article : Google Scholar : PubMed/NCBI

205 

Luo L, Liu M, Fan Y, Zhang J, Liu L, Li Y, Zhang Q, Xie H, Jiang C, Wu J, et al: Intermittent theta-burst stimulation improves motor function by inhibiting neuronal pyroptosis and regulating microglial polarization via TLR4/NFκB/NLRP3 signaling pathway in cerebral ischemic mice. J Neuroinflammation. 19:1412022. View Article : Google Scholar

206 

Ye X, Shen T, Hu J, Zhang L, Zhang Y, Bao L, Cui C, Jin G, Zan K, Zhang Z, et al: Purinergic 2X7 receptor/NLRP3 pathway triggers neuronal apoptosis after ischemic stroke in the mouse. Exp Neurol. 292:46–55. 2017. View Article : Google Scholar : PubMed/NCBI

207 

Seok JK, Kang HC, Cho YY, Lee HS and Lee JY: Therapeutic regulation of the NLRP3 inflammasome in chronic inflammatory diseases. Arch Pharm Res. 44:16–35. 2021. View Article : Google Scholar : PubMed/NCBI

208 

Liu W, Guo W, Wu J, Luo Q, Tao F, Gu Y, Shen Y, Li J, Tan R, Xu Q and Sun Y: A novel benzo(d)imidazole derivate prevents the development of dextran sulfate sodium-induced murine experimental colitis via inhibition of NLRP3 inflammasome. Biochem Pharmacol. 85:1504–1512. 2013. View Article : Google Scholar : PubMed/NCBI

209 

Youm YH, Nguyen KY, Grant RW, Goldberg EL, Bodogai M, Kim D, D'Agostino D, Planavsky N, Lupfer C, Kanneganti TD, et al: The ketone metabolite β-hydroxybutyrate blocks NLRP3 inflammasome-mediated inflammatory disease. Nat Med. 21:263–269. 2015. View Article : Google Scholar : PubMed/NCBI

210 

Yan CY, Ouyang SH, Wang X, Wu YP, Sun WY, Duan WJ, Liang L, Luo X, Kurihara H, Li YF and He RR: Celastrol ameliorates propionibacterium acnes/LPS-induced liver damage and MSU-induced gouty arthritis via inhibiting K63 deubiquitination of NLRP3. Phytomedicine. 80:1533982021. View Article : Google Scholar

211 

Li M, Liu H, Shao H, Zhang P, Gao M, Huang L, Shang P, Zhang Q, Wang W and Feng F: Glyburide attenuates B(a)p and LPS-induced inflammation-related lung tumorigenesis in mice. Environ Toxicol. 36:1713–1722. 2021. View Article : Google Scholar : PubMed/NCBI

212 

Yang G, Lee HE, Moon SJ, Ko KM, Koh JH, Seok JK, Min JK, Heo TH, Kang HC, Cho YY, et al: Direct binding to NLRP3 pyrin domain as a novel strategy to prevent NLRP3-driven inflammation and gouty arthritis. Arthritis Rheumatol. 72:1192–1202. 2020. View Article : Google Scholar : PubMed/NCBI

213 

Jiang H, He H, Chen Y, Huang W, Cheng J, Ye J, Wang A, Tao J, Wang C, Liu Q, et al: Identification of a selective and direct NLRP3 inhibitor to treat inflammatory disorders. J Exp Med. 214:3219–3238. 2017. View Article : Google Scholar : PubMed/NCBI

214 

He Y, Varadarajan S, Muñoz-Planillo R, Burberry A, Nakamura Y and Núñez G: 3,4-methylenedioxy-β-nitrostyrene inhibits NLRP3 inflammasome activation by blocking assembly of the inflammasome. J Biol Chem. 289:1142–1150. 2014. View Article : Google Scholar

215 

Juliana C, Fernandes-Alnemri T, Wu J, Datta P, Solorzano L, Yu JW, Meng R, Quong AA, Latz E, Scott CP and Alnemri ES: Anti-inflammatory compounds parthenolide and Bay 11-7082 are direct inhibitors of the inflammasome. J Biol Chem. 285:9792–9802. 2010. View Article : Google Scholar : PubMed/NCBI

216 

Kerr ID, Lee JH, Farady CJ, Marion R, Rickert M, Sajid M, Pandey KC, Caffrey CR, Legac J, Hansell E, et al: Vinyl sulfones as antiparasitic agents and a structural basis for drug design. J Biol Chem. 284:25697–25703. 2009. View Article : Google Scholar : PubMed/NCBI

217 

Lee HE, Yang G, Kim ND, Jeong S, Jung Y, Choi JY, Park HH and Lee JY: Targeting ASC in NLRP3 inflammasome by caffeic acid phenethyl ester: A novel strategy to treat acute gout. Sci Rep. 6:386222016. View Article : Google Scholar : PubMed/NCBI

218 

Linton SD: Caspase inhibitors: a pharmaceutical industry perspective. Curr Top Med Chem. 5:1697–1717. 2005. View Article : Google Scholar : PubMed/NCBI

219 

Dinarello CA, Simon A and van der Meer JW: Treating inflammation by blocking interleukin-1 in a broad spectrum of diseases. Nat Rev Drug Discov. 11:633–652. 2012. View Article : Google Scholar : PubMed/NCBI

220 

Ridker PM, Everett BM, Thuren T, MacFadyen JG, Chang WH, Ballantyne C, Fonseca F, Nicolau J, Koenig W, Anker SD, et al: Antiinflammatory therapy with canakinumab for atherosclerotic disease. N Engl J Med. 377:1119–1131. 2017. View Article : Google Scholar : PubMed/NCBI

221 

Neudecker V, Haneklaus M, Jensen O, Khailova L, Masterson JC, Tye H, Tye H, Biette K, Jedlicka P, Brodsky KS, et al: Myeloid-derived miR-223 regulates intestinal inflammation via repression of the NLRP3 inflammasome. J Exp Med. 214:1737–1752. 2017. View Article : Google Scholar : PubMed/NCBI

222 

Feng Z, Qi S, Zhang Y, Qi Z, Yan L, Zhou J, He F, Li Q, Yang Y, Chen Q, et al: Ly6G+ neutrophil-derived miR-223 inhibits the NLRP3 inflammasome in mitochondrial DAMP-induced acute lung injury. Cell Death Dis. 8:e31702017. View Article : Google Scholar : PubMed/NCBI

223 

Li X, Zhang Y, Zhang H, Liu X, Gong T, Li M, Sun L, Ji G, Shi Y, Han Z, et al: miRNA-223 promotes gastric cancer invasion and metastasis by targeting tumor suppressor EPB41L3. Mol Cancer Res. 9:824–833. 2011. View Article : Google Scholar : PubMed/NCBI

224 

Bandyopadhyay S, Lane T, Venugopal R, Parthasarathy PT, Cho Y, Galam L, Lockey R and Kolliputi N: MicroRNA-133a-1 regulates inflammasome activation through uncoupling protein-2. Biochem Biophys Res Commun. 439:407–412. 2013. View Article : Google Scholar : PubMed/NCBI

225 

Li S, Liang X, Ma L, Shen L, Li T, Zheng L, Sun A, Shang W, Chen C, Zhao W and Jia J: MiR-22 sustains NLRP3 expression and attenuates H. pylori-induced gastric carcinogenesis. Oncogene. 37:884–896. 2018. View Article : Google Scholar

226 

Li D, Yang H, Ma J, Luo S, Chen S and Gu Q: MicroRNA-30e regulates neuroinflammation in MPTP model of Parkinson's disease by targeting Nlrp3. Hum Cell. 31:106–115. 2018. View Article : Google Scholar

227 

Zhou Y, Lu M, Du RH, Qiao C, Jiang CY, Zhang KZ, Ding JH and Hu G: MicroRNA-7 targets Nod-like receptor protein 3 inflammasome to modulate neuroinflammation in the pathogenesis of Parkinson's disease. Mol Neurodegener. 11:282016. View Article : Google Scholar : PubMed/NCBI

228 

Boxberger N, Hecker M and Zettl UK: Dysregulation of inflammasome priming and activation by MicroRNAs in human immune-mediated diseases. J Immunol. 202:2177–2187. 2019. View Article : Google Scholar : PubMed/NCBI

229 

Tezcan G, Martynova EV, Gilazieva ZE, McIntyre A, Rizvanov AA and Khaiboullina SF: MicroRNA post-transcriptional regulation of the NLRP3 inflammasome in immunopathologies. Front Pharmacol. 10:4512019. View Article : Google Scholar : PubMed/NCBI

230 

Zhou T, Xiang DK, Li SN, Yang LH, Gao LF and Feng C: MicroRNA-495 ameliorates cardiac microvascular endothelial cell injury and inflammatory reaction by suppressing the NLRP3 inflammasome signaling pathway. Cell Physiol Biochem. 49:798–815. 2018. View Article : Google Scholar : PubMed/NCBI

231 

Cyranoski D: CRISPR gene-editing tested in a person for the first time. Nature. 539:4792016. View Article : Google Scholar : PubMed/NCBI

232 

Ran FA, Cong L, Yan WX, Scott DA, Gootenberg JS, Kriz AJ, Zetsche B, Shalem O, Wu X, Makarova KS, et al: In vivo genome editing using Staphylococcus aureus Cas9. Nature. 520:186–191. 2015. View Article : Google Scholar : PubMed/NCBI

233 

Bengtsson NE, Hall JK, Odom GL, Phelps MP, Andrus CR, Hawkins RD, Hauschka SD, Chamberlain JR and Chamberlain JS: Muscle-specific CRISPR/Cas9 dystrophin gene editing ameliorates pathophysiology in a mouse model for Duchenne muscular dystrophy. Nat Commun. 8:144542017. View Article : Google Scholar : PubMed/NCBI

234 

Xu C, Lu Z, Luo Y, Liu Y, Cao Z, Shen S, Li H, Liu J, Chen K, Chen Z, et al: Targeting of NLRP3 inflammasome with gene editing for the amelioration of inflammatory diseases. Nat Commun. 9:40922018. View Article : Google Scholar : PubMed/NCBI

235 

Wang YC, Liu QX, Zheng Q, Liu T, Xu XE, Liu XH, Gao W, Bai XJ and Li ZF: Dihydromyricetin alleviates sepsis-induced acute lung injury through inhibiting NLRP3 inflammasome-dependent pyroptosis in mice model. Inflammation. 42:1301–1310. 2019. View Article : Google Scholar : PubMed/NCBI

236 

Tang F, Fan K, Wang K and Bian C: Amygdalin attenuates acute liver injury induced by D-galactosamine and lipopolysaccharide by regulating the NLRP3, NF-κB and Nrf2/NQO1 signalling pathways. Biomed Pharmacother. 111:527–536. 2019. View Article : Google Scholar : PubMed/NCBI

237 

Zhao Q, Bi Y, Guo J, Liu YX, Zhong J, Pan LR, Tan Y and Yu XJ: Pristimerin protects against inflammation and metabolic disorder in mice through inhibition of NLRP3 inflammasome activation. Acta Pharmacol Sin. 42:975–986. 2021. View Article : Google Scholar :

238 

Shi J, Xia Y, Wang H, Yi Z, Zhang R and Zhang X: Piperlongumine Is an NLRP3 Inhibitor With Anti-inflammatory Activity. Front Pharmacol. 12:8183262021. View Article : Google Scholar

239 

Zhao J, Liu H, Hong Z, Luo W, Mu W, Hou X, Xu G, Fang Z, Ren L, Liu T, et al: Tanshinone I specifically suppresses NLRP3 inflammasome activation by disrupting the association of NLRP3 and ASC. Mol Med. 29:842023. View Article : Google Scholar : PubMed/NCBI

240 

Liao T, Ding L, Wu P, Zhang L, Li X, Xu B, Zhang H, Ma Z, Xiao Y and Wang P: Chrysin attenuates the NLRP3 inflammasome cascade to reduce synovitis and pain in KOA rats. Drug Des Devel Ther. 14:3015–3027. 2020. View Article : Google Scholar : PubMed/NCBI

241 

Liu B and Yu J: Anti-NLRP3 inflammasome natural compounds: An update. Biomedicines. 9:1362021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Wang H, Ma L, Su W, Liu Y, Xie N and Liu J: NLRP3 inflammasome in health and disease (Review). Int J Mol Med 55: 48, 2025.
APA
Wang, H., Ma, L., Su, W., Liu, Y., Xie, N., & Liu, J. (2025). NLRP3 inflammasome in health and disease (Review). International Journal of Molecular Medicine, 55, 48. https://doi.org/10.3892/ijmm.2025.5489
MLA
Wang, H., Ma, L., Su, W., Liu, Y., Xie, N., Liu, J."NLRP3 inflammasome in health and disease (Review)". International Journal of Molecular Medicine 55.3 (2025): 48.
Chicago
Wang, H., Ma, L., Su, W., Liu, Y., Xie, N., Liu, J."NLRP3 inflammasome in health and disease (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 48. https://doi.org/10.3892/ijmm.2025.5489
Copy and paste a formatted citation
x
Spandidos Publications style
Wang H, Ma L, Su W, Liu Y, Xie N and Liu J: NLRP3 inflammasome in health and disease (Review). Int J Mol Med 55: 48, 2025.
APA
Wang, H., Ma, L., Su, W., Liu, Y., Xie, N., & Liu, J. (2025). NLRP3 inflammasome in health and disease (Review). International Journal of Molecular Medicine, 55, 48. https://doi.org/10.3892/ijmm.2025.5489
MLA
Wang, H., Ma, L., Su, W., Liu, Y., Xie, N., Liu, J."NLRP3 inflammasome in health and disease (Review)". International Journal of Molecular Medicine 55.3 (2025): 48.
Chicago
Wang, H., Ma, L., Su, W., Liu, Y., Xie, N., Liu, J."NLRP3 inflammasome in health and disease (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 48. https://doi.org/10.3892/ijmm.2025.5489
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team