Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
March-2025 Volume 55 Issue 3

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

The role of astrocyte metabolic reprogramming in ischemic stroke (Review)

  • Authors:
    • Weixin Chen
    • Tangyou Mao
    • Rui Ma
    • Yuxuan Xiong
    • Ran Han
    • Le Wang
  • View Affiliations / Copyright

    Affiliations: Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China, Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China, Clinical Laboratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China, Cerebrovascular Disease Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China
    Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 49
    |
    Published online on: January 21, 2025
       https://doi.org/10.3892/ijmm.2025.5490
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

 Ischemic stroke, a leading cause of disability and mortality worldwide, is characterized by the sudden loss of blood flow in specific area of the brain. Intravenous thrombolysis with recombinant tissue plasminogen activator is the only approved pharmacological treatment for acute ischemic stroke; however, the aforementioned treatment has significant clinical limitations, thus there is an urgent need for the development of novel mechanisms and therapeutic strategies for ischemic stroke. Astrocytes, abundant and versatile cells in the central nervous system, offer crucial support to neurons nutritionally, structurally and physically. They also contribute to blood‑brain barrier formation and regulate neuronal extracellular ion concentrations. Accumulated evidence has revealed the involvement of astrocytes in the regulation of host neurotransmitter metabolism, immune response and tissue repair, and different metabolic characteristics of astrocytes can contribute to the process and development of ischemic stroke, suggesting that targeted regulation of astrocyte metabolic reprogramming may contribute to the treatment and prognosis of ischemic stroke. In the present review, the current understanding of the multifaceted mechanisms of astrocyte metabolic reprogramming in ischemic stroke, along with its regulatory factors and pathways, as well as the strategies to promote its polarization balance, which hold promise for astrocyte immunometabolism‑targeted therapies in the treatment of ischemic stroke, were summarized.
View Figures

Figure 1

Figure 2

Figure 3

View References

1 

Saini V, Guada L and Yavagal DR: Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 97(20 Suppl 2): S6–S16. 2021. View Article : Google Scholar : PubMed/NCBI

2 

GBD 2019 Stroke Collaborators: Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20:795–820. 2021. View Article : Google Scholar : PubMed/NCBI

3 

Han RT, Kim RD, Molofsky AV and Liddelow SA: Astrocyte-immune cell interactions in physiology and pathology. Immunity. 54:211–224. 2021. View Article : Google Scholar : PubMed/NCBI

4 

Chiellini G: Metabolic reprogramming in health and disease. Int J Mol Sci. 21:27682020. View Article : Google Scholar : PubMed/NCBI

5 

Candelario-Jalil E, Dijkhuizen RM and Magnus T: Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 53:1473–1486. 2022. View Article : Google Scholar : PubMed/NCBI

6 

Wu D, Chen Q, Chen X, Han F, Chen Z and Wang Y: The blood-brain barrier: Structure, regulation, and drug delivery. Signal Transduct Target Ther. 8:2172023. View Article : Google Scholar : PubMed/NCBI

7 

Verkhratsky A and Nedergaard M: Physiology of astroglia. Physiol Rev. 98:239–389. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Lacoste B, Prat A, Freitas-Andrade M and Gu C: The blood-brain barrier: Composition, properties, and roles in brain health. Cold Spring Harb Perspect Biol. a0414222024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI

9 

Vandebroek A and Yasui M: Regulation of AQP4 in the central nervous system. Int J Mol Sci. 21:16032020. View Article : Google Scholar : PubMed/NCBI

10 

Hertz L and Chen Y: Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev. 71:484–505. 2016. View Article : Google Scholar : PubMed/NCBI

11 

Seifert G, Henneberger C and Steinhäuser C: Diversity of astrocyte potassium channels: An update. Brain Res Bull. 136:26–36. 2018. View Article : Google Scholar

12 

Felix L, Delekate A, Petzold GC and Rose CR: Sodium fluctuations in astroglia and their potential impact on astrocyte function. Front Physiol. 11:8712020. View Article : Google Scholar : PubMed/NCBI

13 

Allen NJ and Eroglu C: Cell biology of astrocyte-synapse interactions. Neuron. 96:697–708. 2017. View Article : Google Scholar : PubMed/NCBI

14 

Oliveira JF and Araque A: Astrocyte regulation of neural circuit activity and network states. Glia. 70:1455–1466. 2022. View Article : Google Scholar : PubMed/NCBI

15 

Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima Y and Okada S: Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med. 23:818–828. 2017. View Article : Google Scholar : PubMed/NCBI

16 

Wang C and Li L: The critical role of KLF4 in regulating the activation of A1/A2 reactive astrocytes following ischemic stroke. J Neuroinflammation. 20:442023. View Article : Google Scholar : PubMed/NCBI

17 

Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG and Barres BA: Genomic analysis of reactive astrogliosis. J Neurosci. 32:6391–6410. 2012. View Article : Google Scholar : PubMed/NCBI

18 

Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, et al: Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 541:481–487. 2017. View Article : Google Scholar : PubMed/NCBI

19 

Patel MR and Weaver AM: Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep. 34:1088292021. View Article : Google Scholar

20 

Anderson MA, Burda JE, Ren Y, Ao Y, O'Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ and Sofroniew MV: Astrocyte scar formation aids central nervous system axon regeneration. Nature. 532:195–200. 2016. View Article : Google Scholar : PubMed/NCBI

21 

Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, et al: NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron. 85:101–115. 2015. View Article : Google Scholar

22 

Amalia L: Glial fibrillary acidic protein (GFAP): Neuroinflammation biomarker in acute ischemic stroke. J Inflamm Res. 14:7501–7506. 2021. View Article : Google Scholar

23 

Liu G and Geng J: Glial fibrillary acidic protein as a prognostic marker of acute ischemic stroke. Hum Exp Toxicol. 37:1048–1053. 2018. View Article : Google Scholar : PubMed/NCBI

24 

Song X, Gong Z and Liu K, Kou J, Liu B and Liu K: Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol. 34:1015592020. View Article : Google Scholar : PubMed/NCBI

25 

Shi X, Luo L, Wang J, Shen H, Li Y, Mamtilahun M, Liu C, Shi R, Lee JH, Tian H, et al: Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat Commun. 12:69432021. View Article : Google Scholar : PubMed/NCBI

26 

Williamson MR, Fuertes CJA, Dunn AK, Drew MR and Jones TA: Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep. 35:1090482021. View Article : Google Scholar : PubMed/NCBI

27 

Ma H, Zhou Y, Li Z, Zhu L, Li H, Zhang G, Wang J, Gong H, Xu D, Hua W, et al: Single-cell RNA-sequencing analyses revealed heterogeneity and dynamic changes of metabolic pathways in astrocytes at the acute phase of ischemic stroke. Oxid Med Cell Longev. 2022:18177212022. View Article : Google Scholar : PubMed/NCBI

28 

Denecke KM, McBain CA, Hermes BG, Teertam SK, Farooqui M, Virumbrales-Muñoz M, Panackal J, Beebe DJ, Famakin B and Ayuso JM: Microfluidic model to evaluate astrocyte activation in penumbral region following ischemic stroke. Cells. 11:23562022. View Article : Google Scholar : PubMed/NCBI

29 

Lochhead JJ, Williams EI, Reddell ES, Dorn E, Ronaldson PT and Davis TP: High resolution multiplex confocal imaging of the neurovascular unit in health and experimental ischemic stroke. Cells. 12:6452023. View Article : Google Scholar : PubMed/NCBI

30 

Zhou J, Zhang L, Peng J, Zhang X, Zhang F, Wu Y, Huang A, Du F, Liao Y, He Y, et al: Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab. 36:2054–2068.e14. 2024. View Article : Google Scholar : PubMed/NCBI

31 

Scott EY, Safarian N, Casasbuenas DL, Dryden M, Tockovska T, Ali S, Peng J, Daniele E, Nie Xin Lim I, Bang KWA, et al: Integrating single-cell and spatially resolved transcriptomic strategies to survey the astrocyte response to stroke in male mice. Nat Commun. 15:15842024. View Article : Google Scholar : PubMed/NCBI

32 

Wang S, Pan Y, Zhang C, Zhao Y, Wang H, Ma H, Sun J, Zhang S, Yao J, Xie D and Zhang Y: Transcriptome analysis reveals dynamic microglial-induced A1 astrocyte reactivity via C3/C3aR/NF-κB signaling after ischemic stroke. Mol Neurobiol. 61:10246–10270. 2024. View Article : Google Scholar : PubMed/NCBI

33 

Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, et al: Single-nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke in male rodents. Nat Commun. 15:62322024. View Article : Google Scholar : PubMed/NCBI

34 

Endo F, Kasai A, Soto JS, Yu X, Qu Z, Hashimoto H, Gradinaru V, Kawaguchi R and Khakh BS: Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science. 378:eadc90202022. View Article : Google Scholar : PubMed/NCBI

35 

Preman P, Alfonso-Triguero M, Alberdi E, Verkhratsky A and Arranz AM: Astrocytes in Alzheimer's disease: Pathological significance and molecular pathways. Cells. 10:5402021. View Article : Google Scholar : PubMed/NCBI

36 

Price BR, Johnson LA and Norris CM: Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev. 68:1013352021. View Article : Google Scholar : PubMed/NCBI

37 

Cai Z, Wan CQ and Liu Z: Astrocyte and Alzheimer's disease. J Neurol. 264:2068–2074. 2017. View Article : Google Scholar : PubMed/NCBI

38 

Kim J, Yoo ID, Lim J and Moon JS: Pathological phenotypes of astrocytes in Alzheimer's disease. Exp Mol Med. 56:95–99. 2024. View Article : Google Scholar : PubMed/NCBI

39 

Booth HDE, Hirst WD and Wade-Martins R: The role of astrocyte dysfunction in Parkinson's disease pathogenesis. Trends Neurosci. 40:358–370. 2017. View Article : Google Scholar : PubMed/NCBI

40 

Wang T, Sun Y and Dettmer U: Astrocytes in Parkinson's disease: From role to possible intervention. Cells. 12:23362023. View Article : Google Scholar : PubMed/NCBI

41 

Cohen J and Torres C: Astrocyte senescence: Evidence and significance. Aging Cell. 18:e129372019. View Article : Google Scholar : PubMed/NCBI

42 

Ponath G, Park C and Pitt D: The role of astrocytes in multiple sclerosis. Front Immunol. 9:2172018. View Article : Google Scholar : PubMed/NCBI

43 

Yi W, Schlüter D and Wang X: Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun. 80:10–24. 2019. View Article : Google Scholar : PubMed/NCBI

44 

Aharoni R, Eilam R and Arnon R: Astrocytes in multiple sclerosis-essential constituents with diverse multifaceted functions. Int J Mol Sci. 22:59042021. View Article : Google Scholar : PubMed/NCBI

45 

Xu S, Lu J, Shao A, Zhang JH and Zhang J: Glial cells: Role of the immune response in ischemic stroke. Front Immunol. 11:2942020. View Article : Google Scholar : PubMed/NCBI

46 

Liu Z and Chopp M: Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 144:103–120. 2016. View Article : Google Scholar :

47 

Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, et al: Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 23:407–431. 2023. View Article : Google Scholar : PubMed/NCBI

48 

Lu W, Chen Z and Wen J: Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells. Biomed Pharmacother. 170:1158472024. View Article : Google Scholar

49 

Shen XY, Gao ZK, Han Y, Yuan M, Guo YS and Bi X: Activation and role of astrocytes in ischemic stroke. Front Cell Neurosci. 15:7559552021. View Article : Google Scholar : PubMed/NCBI

50 

Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y and Yu W: Crosstalk between the oxidative stress and glia cells after stroke: From mechanism to therapies. Front Immunol. 13:8524162022. View Article : Google Scholar : PubMed/NCBI

51 

Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K, Xu J, Guo G, Tong A and Zhou L: The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif. 53:e127812020. View Article : Google Scholar : PubMed/NCBI

52 

Hertz L and Rothman DL: Glucose, lactate, β-hydroxybutyrate, acetate, GABA, and succinate as substrates for synthesis of glutamate and GABA in the glutamine-glutamate/GABA cycle. Adv Neurobiol. 13:9–42. 2016. View Article : Google Scholar

53 

Wang F, Xie X, Xing X and Sun X: Excitatory synaptic transmission in ischemic stroke: A new outlet for classical neuroprotective strategies. Int J Mol Sci. 23:93812022. View Article : Google Scholar : PubMed/NCBI

54 

Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA and Aldana BI: Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 196:1087192021. View Article : Google Scholar : PubMed/NCBI

55 

Perea G, Navarrete M and Araque A: Tripartite synapses: Astrocytes process and control synaptic information. Trends Neurosci. 32:421–431. 2009. View Article : Google Scholar : PubMed/NCBI

56 

Patabendige A, Singh A, Jenkins S, Sen J and Chen R: Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int J Mol Sci. 22:42802021. View Article : Google Scholar : PubMed/NCBI

57 

Yu X, Nagai J and Khakh BS: Improved tools to study astrocytes. Nat Rev Neurosci. 21:121–138. 2020. View Article : Google Scholar : PubMed/NCBI

58 

Mollinari C, Zhao J, Lupacchini L, Garaci E, Merlo D and Pei G: Transdifferentiation: A new promise for neurodegenerative diseases. Cell Death Dis. 9:8302018. View Article : Google Scholar : PubMed/NCBI

59 

Popa-Wagner A, Hermann D and Gresita A: Genetic conversion of proliferative astroglia into neurons after cerebral ischemia: A new therapeutic tool for the aged brain? Geroscience. 41:363–368. 2019. View Article : Google Scholar : PubMed/NCBI

60 

Jiang MQ, Yu SP, Wei ZZ, Zhong W, Cao W, Gu X, Wu A, McCrary MR, Berglund K and Wei L: Conversion of reactive astrocytes to induced neurons enhances neuronal repair and functional recovery after ischemic stroke. Front Aging Neurosci. 13:6128562021. View Article : Google Scholar : PubMed/NCBI

61 

Zhang H, Zheng Q, Guo T, Zhang S, Zheng S, Wang R, Deng Q, Yang G, Zhang S, Tang L, et al: Metabolic reprogramming in astrocytes results in neuronal dysfunction in intellectual disability. Mol Psychiatry. 29:1569–1582. 2024. View Article : Google Scholar

62 

Perelroizen R, Philosof B, Budick-Harmelin N, Chernobylsky T, Ron A, Katzir R, Shimon D, Tessler A, Adir O, Gaoni-Yogev A, et al: Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain. 145:3288–3307. 2022. View Article : Google Scholar : PubMed/NCBI

63 

Giaume C, Naus CC, Sáez JC and Leybaert L: Glial connexins and pannexins in the healthy and diseased brain. Physiol Rev. 101:93–145. 2021. View Article : Google Scholar

64 

Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y and Li J: Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci. 17:12174512023. View Article : Google Scholar : PubMed/NCBI

65 

Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D and Baranowska-Bosiacka I: Energy Metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci. 16:25959–25981. 2015. View Article : Google Scholar : PubMed/NCBI

66 

Chandel NS: Glycolysis. Cold Spring Harb Perspect Biol. 13:a0405352021. View Article : Google Scholar : PubMed/NCBI

67 

Takahashi S: Neuroprotective function of high glycolytic activity in astrocytes: Common roles in stroke and neurodegenerative diseases. Int J Mol Sci. 22:65682021. View Article : Google Scholar : PubMed/NCBI

68 

Madai S, Kilic P, Schmidt RM, Bas-Orth C, Korff T, Büttner M, Klinke G, Poschet G, Marti HH and Kunze R: Activation of the hypoxia-inducible factor pathway protects against acute ischemic stroke by reprogramming central carbon metabolism. Theranostics. 14:2856–2880. 2024. View Article : Google Scholar : PubMed/NCBI

69 

Koepsell H: Glucose transporters in brain in health and disease. Pflugers Arch. 472:1299–1343. 2020. View Article : Google Scholar : PubMed/NCBI

70 

Veys K, Fan Z, Ghobrial M, Bouché A, García-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F, Gorski T, et al: Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. 127:466–482. 2020. View Article : Google Scholar : PubMed/NCBI

71 

Alquisiras-Burgos I and Aguilera P: Involvement of glucose transporter overexpression in the protection or damage after ischemic stroke. Neural Regen Res. 17:783–784. 2022. View Article : Google Scholar

72 

Kierans SJ and Taylor CT: Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J Physiol. 599:23–37. 2021. View Article : Google Scholar

73 

Xiong XY, Pan XR, Luo XX, Wang YF, Zhang XX, Yang SH, Zhong ZQ, Liu C, Chen Q, Wang PF, et al: Astrocyte-derived lactate aggravates brain injury of ischemic stroke in mice by promoting the formation of protein lactylation. Theranostics. 14:4297–4317. 2024. View Article : Google Scholar : PubMed/NCBI

74 

M Tóth O, Menyhárt Á, Frank R, Hantosi D, Farkas E and Bari F: Tissue acidosis associated with ischemic stroke to guide neuroprotective drug delivery. Biology (Basel). 9:4602020.PubMed/NCBI

75 

Bonvento G and Bolaños JP: Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 33:1546–1564. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Romano A, Koczwara JB, Gallelli CA, Vergara D, Micioni Di Bonaventura MV, Gaetani S and Giudetti AM: Fats for thoughts: An update on brain fatty acid metabolism. Int J Biochem Cell Biol. 84:40–45. 2017. View Article : Google Scholar : PubMed/NCBI

77 

Ebert D, Haller RG and Walton ME: Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 23:5928–5935. 2003. View Article : Google Scholar : PubMed/NCBI

78 

Le Foll C and Levin BE: Fatty acid-induced astrocyte ketone production and the control of food intake. Am J Physiol Regul Integr Comp Physiol. 310:R1186–R1192. 2016. View Article : Google Scholar : PubMed/NCBI

79 

Guo Q, Kawahata I, Cheng A, Jia W, Wang H and Fukunaga K: Fatty acid-binding proteins: Their roles in ischemic stroke and potential as drug targets. Int J Mol Sci. 23:96482022. View Article : Google Scholar : PubMed/NCBI

80 

Mallick K, Paul S and Banerjee S and Banerjee S: Lipid droplets and neurodegeneration. Neuroscience. 549:13–23. 2024. View Article : Google Scholar : PubMed/NCBI

81 

Lee JA, Hall B, Allsop J, Alqarni R and Allen SP: Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol. 112:123–136. 2021. View Article : Google Scholar

82 

Wang X, Zhang L, Sun W, Pei LL, Tian M, Liang J, Liu X, Zhang R, Fang H, Wu J, et al: Changes of metabolites in acute ischemic stroke and its subtypes. Front Neurosci. 14:5809292021. View Article : Google Scholar : PubMed/NCBI

83 

Sayre NL, Sifuentes M, Holstein D, Cheng SY, Zhu X and Lechleiter JD: Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J Cereb Blood Flow Metab. 37:514–527. 2017. View Article : Google Scholar :

84 

Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, Puchowicz M, Serra D, Herrero L, Rini BI, et al: HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 8:17692017. View Article : Google Scholar : PubMed/NCBI

85 

Andersen JV, Schousboe A and Verkhratsky A: Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: Integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol. 217:1023312022. View Article : Google Scholar : PubMed/NCBI

86 

Hsu PC, Lan YJ, Chen CC, Lee LY, Chen WP, Wang YC and Lee YH: Erinacine A attenuates glutamate transporter 1 downregulation and protects against ischemic brain injury. Life Sci. 306:1208332022. View Article : Google Scholar : PubMed/NCBI

87 

Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y and Cui X: Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother. 151:1131252022. View Article : Google Scholar : PubMed/NCBI

88 

Mahmoud S, Gharagozloo M, Simard C and Gris D: Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 8:1842019. View Article : Google Scholar : PubMed/NCBI

89 

Andersen JV, Jakobsen E, Westi EW, Lie MEK, Voss CM, Aldana BI, Schousboe A, Wellendorph P, Bak LK, Pinborg LH and Waagepetersen HS: Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex. Glia. 68:2601–2612. 2020. View Article : Google Scholar : PubMed/NCBI

90 

Kwak H, Koh W, Kim S, Song K, Shin JI, Lee JM, Lee EH, Bae JY, Ha GE, Oh JE, et al: Astrocytes control sensory acuity via tonic inhibition in the thalamus. Neuron. 108:691–706.e10. 2020. View Article : Google Scholar : PubMed/NCBI

91 

Qureshi T, Bjørkmo M, Nordengen K, Gundersen V, Utheim TP, Watne LO, Storm-Mathisen J, Hassel B and Chaudhry FA: Slc38a1 conveys astroglia-derived glutamine into GABAergic interneurons for neurotransmitter GABA synthesis. Cells. 9:16862020. View Article : Google Scholar : PubMed/NCBI

92 

Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, Ben Haim L and Escartin C: The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway? Neuroscience. 330:205–218. 2016. View Article : Google Scholar : PubMed/NCBI

93 

Rakers C, Schleif M, Blank N, Matušková H, Ulas T, Händler K, Torres SV, Schumacher T, Tai K, Schultze JL, et al: Stroke target identification guided by astrocyte transcriptome analysis. Glia. 67:619–633. 2019. View Article : Google Scholar

94 

Borbor M, Yin D, Brockmeier U, Wang C, Doeckel M, Pillath-Eilers M, Kaltwasser B, Hermann DM and Dzyubenko E: Neurotoxicity of ischemic astrocytes involves STAT3-mediated metabolic switching and depends on glycogen usage. Glia. 71:1553–1569. 2023. View Article : Google Scholar : PubMed/NCBI

95 

Wu M, Wang L, Li F, Hu R, Ma J, Zhang K and Cheng X: Resveratrol downregulates STAT3 expression and astrocyte activation in primary astrocyte cultures of rat. Neurochem Res. 45:455–464. 2020. View Article : Google Scholar

96 

Koutsifeli P, Varma U, Daniels LJ, Annandale M, Li X, Neale JPH, Hayes S, Weeks KL, James S, Delbridge LMD and Mellor KM: Glycogen-autophagy: Molecular machinery and cellular mechanisms of glycophagy. J Biol Chem. 298:1020932022. View Article : Google Scholar : PubMed/NCBI

97 

Heden TD, Chow LS, Hughey CC and Mashek DG: Regulation and role of glycophagy in skeletal muscle energy metabolism. Autophagy. 18:1078–1089. 2022. View Article : Google Scholar :

98 

Mayeuf-Louchart A, Lancel S, Sebti Y, Pourcet B, Loyens A, Delhaye S, Duhem C, Beauchamp J, Ferri L, Thorel Q, et al: Glycogen dynamics drives lipid droplet biogenesis during brown adipocyte differentiation. Cell Rep. 29:1410–1418.e6. 2019. View Article : Google Scholar : PubMed/NCBI

99 

Guo H, Li Y, Wang S, Yang Y, Xu T, Zhao J, Wang J, Zuo W, Wang P, Zhao G, et al: Dysfunction of astrocytic glycophagy exacerbates reperfusion injury in ischemic stroke. Redox Biol. 74:1032342024. View Article : Google Scholar : PubMed/NCBI

100 

Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, et al: Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 50:e344–e418. 2019. View Article : Google Scholar

101 

Guo H, Fan Z, Wang S, Ma L, Wang J, Yu D, Zhang Z, Wu L, Peng Z, Liu W, et al: Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J Neuroinflammation. 18:2302021. View Article : Google Scholar : PubMed/NCBI

102 

Geng J, Zhang Y, Li S, Li S, Wang J, Wang H, Aa J and Wang G: Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke. J Proteome Res. 18:57–68. 2019.

103 

Huang XX, Li L, Jiang RH, Yu JB, Sun YQ, Shan J, Yang J, Ji J, Cheng SQ, Dong YF, et al: Lipidomic analysis identifies long-chain acylcarnitine as a target for ischemic stroke. J Adv Res. 61:133–149. 2024. View Article : Google Scholar :

104 

Cao J, Dong L, Luo J, Zeng F, Hong Z, Liu Y, Zhao Y, Xia Z, Zuo D, Xu L and Tao T: Supplemental N-3 polyunsaturated fatty acids limit A1-specific astrocyte polarization via attenuating mitochondrial dysfunction in ischemic stroke in mice. Oxid Med Cell Longev. 2021:55247052021. View Article : Google Scholar : PubMed/NCBI

105 

Neal M, Luo J, Harischandra DS, Gordon R, Sarkar S, Jin H, Anantharam V, Désaubry L and Kanthasamy A and Kanthasamy A: Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes. Glia. 66:2137–2157. 2018. View Article : Google Scholar : PubMed/NCBI

106 

Pang QM, Zhang Q, Wu XC, Yang RL, Fu SP, Fan ZH, Liu J, Yu LM, Peng JC and Zhang T: Mechanism of M2 macrophages modulating astrocyte polarization through the TGF-β/PI3K/Akt pathway. Immunol Lett. 259:1–8. 2023. View Article : Google Scholar : PubMed/NCBI

107 

Chistyakov DV, Gavrish GE, Goriainov SV, Chistyakov VV, Astakhova AA, Azbukina NV and Sergeeva MG: Oxylipin profiles as functional characteristics of acute inflammatory responses in astrocytes pre-treated with IL-4, IL-10, or LPS. Int J Mol Sci. 21:17802020. View Article : Google Scholar : PubMed/NCBI

108 

Shiow LR, Favrais G, Schirmer L, Schang AL, Cipriani S, Andres C, Wright JN, Nobuta H, Fleiss B, Gressens P and Rowitch DH: Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia. 65:2024–2037. 2017. View Article : Google Scholar : PubMed/NCBI

109 

Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao J, Fu Q, Liu Y, Li H, Lou J, et al: Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflammation. 17:2702020. View Article : Google Scholar : PubMed/NCBI

110 

Zhang L, Zhao G, Luo Z, Yu Z, Liu G, Su G, Tang X, Yuan Z, Huang C, Sun HS, et al: AD16 attenuates neuroinflammation induced by cerebral ischemia through down-regulating astrocytes A1 polarization. Biomed Pharmacother. 178:1172092024. View Article : Google Scholar : PubMed/NCBI

111 

Zou Y, Pei J, Wan C, Liu S, Hu B, Li Z and Tang Z: Mechanism of scutellarin inhibition of astrocyte activation to type A1 after ischemic stroke. J Stroke Cerebrovasc Dis. 33:1075342024. View Article : Google Scholar : PubMed/NCBI

112 

Zhou M, Zhang T, Zhang X, Zhang M, Gao S, Zhang T, Li S, Cai X, Li J and Lin Y: Effect of tetrahedral framework nucleic acids on neurological recovery via ameliorating apoptosis and regulating the activation and polarization of astrocytes in ischemic stroke. ACS Appl Mater Interfaces. 14:37478–37492. 2022. View Article : Google Scholar : PubMed/NCBI

113 

Liu R, Yu Y, Ge Q, Feng R, Zhong G, Luo L, Han Z, Wang T, Huang C, Xue J and Huang Z: Genistein-3′-sodium sulfonate promotes brain functional rehabilitation in ischemic stroke rats by regulating astrocytes polarization through NF-κB signaling pathway. Chem Biol Interact. 400:1111592024. View Article : Google Scholar

114 

Chen Z, Li T, Tang HB, Lu ZW, Chen ZY, Zhao ZH, Yang XL, Zhao LL, Dang MJ, Li Y, et al: Edaravone Dexborneol provides neuroprotective effect by inhibiting neurotoxic activation of astrocytes through inhibiting NF-κB signaling in cortical ischemia. Brain Res Bull. 218:1110972024. View Article : Google Scholar

115 

Li MC, Li MZ, Lin ZY, Zhuang YM, Wang HY, Jia JT, Lu Y, Wang ZJ, Zou HY and Zhao H: Buyang Huanwu Decoction promotes neurovascular remodeling by modulating astrocyte and microglia polarization in ischemic stroke rats. J Ethnopharmacol. 323:1176202024. View Article : Google Scholar

116 

Xia X, Chen J, Ren H, Zhou C, Zhang Q, Cheng H and Wang X: Gypenoside pretreatment alleviates the cerebral ischemia injury via inhibiting the microglia-mediated neuroinflammation. Mol Neurobiol. 61:1140–1156. 2024. View Article : Google Scholar

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Chen W, Mao T, Ma R, Xiong Y, Han R and Wang L: The role of astrocyte metabolic reprogramming in ischemic stroke (Review). Int J Mol Med 55: 49, 2025.
APA
Chen, W., Mao, T., Ma, R., Xiong, Y., Han, R., & Wang, L. (2025). The role of astrocyte metabolic reprogramming in ischemic stroke (Review). International Journal of Molecular Medicine, 55, 49. https://doi.org/10.3892/ijmm.2025.5490
MLA
Chen, W., Mao, T., Ma, R., Xiong, Y., Han, R., Wang, L."The role of astrocyte metabolic reprogramming in ischemic stroke (Review)". International Journal of Molecular Medicine 55.3 (2025): 49.
Chicago
Chen, W., Mao, T., Ma, R., Xiong, Y., Han, R., Wang, L."The role of astrocyte metabolic reprogramming in ischemic stroke (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 49. https://doi.org/10.3892/ijmm.2025.5490
Copy and paste a formatted citation
x
Spandidos Publications style
Chen W, Mao T, Ma R, Xiong Y, Han R and Wang L: The role of astrocyte metabolic reprogramming in ischemic stroke (Review). Int J Mol Med 55: 49, 2025.
APA
Chen, W., Mao, T., Ma, R., Xiong, Y., Han, R., & Wang, L. (2025). The role of astrocyte metabolic reprogramming in ischemic stroke (Review). International Journal of Molecular Medicine, 55, 49. https://doi.org/10.3892/ijmm.2025.5490
MLA
Chen, W., Mao, T., Ma, R., Xiong, Y., Han, R., Wang, L."The role of astrocyte metabolic reprogramming in ischemic stroke (Review)". International Journal of Molecular Medicine 55.3 (2025): 49.
Chicago
Chen, W., Mao, T., Ma, R., Xiong, Y., Han, R., Wang, L."The role of astrocyte metabolic reprogramming in ischemic stroke (Review)". International Journal of Molecular Medicine 55, no. 3 (2025): 49. https://doi.org/10.3892/ijmm.2025.5490
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team