|
1
|
Saini V, Guada L and Yavagal DR: Global
epidemiology of stroke and access to acute ischemic stroke
interventions. Neurology. 97(20 Suppl 2): S6–S16. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
2
|
GBD 2019 Stroke Collaborators: Global,
regional, and national burden of stroke and its risk factors,
1990-2019: A systematic analysis for the Global Burden of Disease
Study 2019. Lancet Neurol. 20:795–820. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
3
|
Han RT, Kim RD, Molofsky AV and Liddelow
SA: Astrocyte-immune cell interactions in physiology and pathology.
Immunity. 54:211–224. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
4
|
Chiellini G: Metabolic reprogramming in
health and disease. Int J Mol Sci. 21:27682020. View Article : Google Scholar : PubMed/NCBI
|
|
5
|
Candelario-Jalil E, Dijkhuizen RM and
Magnus T: Neuroinflammation, stroke, blood-brain barrier
dysfunction, and imaging modalities. Stroke. 53:1473–1486. 2022.
View Article : Google Scholar : PubMed/NCBI
|
|
6
|
Wu D, Chen Q, Chen X, Han F, Chen Z and
Wang Y: The blood-brain barrier: Structure, regulation, and drug
delivery. Signal Transduct Target Ther. 8:2172023. View Article : Google Scholar : PubMed/NCBI
|
|
7
|
Verkhratsky A and Nedergaard M: Physiology
of astroglia. Physiol Rev. 98:239–389. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
8
|
Lacoste B, Prat A, Freitas-Andrade M and
Gu C: The blood-brain barrier: Composition, properties, and roles
in brain health. Cold Spring Harb Perspect Biol. a0414222024.Epub
ahead of print. View Article : Google Scholar : PubMed/NCBI
|
|
9
|
Vandebroek A and Yasui M: Regulation of
AQP4 in the central nervous system. Int J Mol Sci. 21:16032020.
View Article : Google Scholar : PubMed/NCBI
|
|
10
|
Hertz L and Chen Y: Importance of
astrocytes for potassium ion (K+) homeostasis in brain
and glial effects of K+ and its transporters on
learning. Neurosci Biobehav Rev. 71:484–505. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
11
|
Seifert G, Henneberger C and Steinhäuser
C: Diversity of astrocyte potassium channels: An update. Brain Res
Bull. 136:26–36. 2018. View Article : Google Scholar
|
|
12
|
Felix L, Delekate A, Petzold GC and Rose
CR: Sodium fluctuations in astroglia and their potential impact on
astrocyte function. Front Physiol. 11:8712020. View Article : Google Scholar : PubMed/NCBI
|
|
13
|
Allen NJ and Eroglu C: Cell biology of
astrocyte-synapse interactions. Neuron. 96:697–708. 2017.
View Article : Google Scholar : PubMed/NCBI
|
|
14
|
Oliveira JF and Araque A: Astrocyte
regulation of neural circuit activity and network states. Glia.
70:1455–1466. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
15
|
Hara M, Kobayakawa K, Ohkawa Y, Kumamaru
H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima
Y and Okada S: Interaction of reactive astrocytes with type I
collagen induces astrocytic scar formation through the
integrin-N-cadherin pathway after spinal cord injury. Nat Med.
23:818–828. 2017. View
Article : Google Scholar : PubMed/NCBI
|
|
16
|
Wang C and Li L: The critical role of KLF4
in regulating the activation of A1/A2 reactive astrocytes following
ischemic stroke. J Neuroinflammation. 20:442023. View Article : Google Scholar : PubMed/NCBI
|
|
17
|
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou
L, Giffard RG and Barres BA: Genomic analysis of reactive
astrogliosis. J Neurosci. 32:6391–6410. 2012. View Article : Google Scholar : PubMed/NCBI
|
|
18
|
Liddelow SA, Guttenplan KA, Clarke LE,
Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS,
Peterson TC, et al: Neurotoxic reactive astrocytes are induced by
activated microglia. Nature. 541:481–487. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
19
|
Patel MR and Weaver AM: Astrocyte-derived
small extracellular vesicles promote synapse formation via
fibulin-2-mediated TGF-β signaling. Cell Rep. 34:1088292021.
View Article : Google Scholar
|
|
20
|
Anderson MA, Burda JE, Ren Y, Ao Y, O'Shea
TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ and Sofroniew MV:
Astrocyte scar formation aids central nervous system axon
regeneration. Nature. 532:195–200. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
21
|
Lian H, Yang L, Cole A, Sun L, Chiang AC,
Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky
JL, et al: NFκB-activated astroglial release of complement C3
compromises neuronal morphology and function associated with
Alzheimer's disease. Neuron. 85:101–115. 2015. View Article : Google Scholar
|
|
22
|
Amalia L: Glial fibrillary acidic protein
(GFAP): Neuroinflammation biomarker in acute ischemic stroke. J
Inflamm Res. 14:7501–7506. 2021. View Article : Google Scholar
|
|
23
|
Liu G and Geng J: Glial fibrillary acidic
protein as a prognostic marker of acute ischemic stroke. Hum Exp
Toxicol. 37:1048–1053. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
24
|
Song X, Gong Z and Liu K, Kou J, Liu B and
Liu K: Baicalin combats glutamate excitotoxicity via protecting
glutamine synthetase from ROS-induced 20S proteasomal degradation.
Redox Biol. 34:1015592020. View Article : Google Scholar : PubMed/NCBI
|
|
25
|
Shi X, Luo L, Wang J, Shen H, Li Y,
Mamtilahun M, Liu C, Shi R, Lee JH, Tian H, et al: Stroke
subtype-dependent synapse elimination by reactive gliosis in mice.
Nat Commun. 12:69432021. View Article : Google Scholar : PubMed/NCBI
|
|
26
|
Williamson MR, Fuertes CJA, Dunn AK, Drew
MR and Jones TA: Reactive astrocytes facilitate vascular repair and
remodeling after stroke. Cell Rep. 35:1090482021. View Article : Google Scholar : PubMed/NCBI
|
|
27
|
Ma H, Zhou Y, Li Z, Zhu L, Li H, Zhang G,
Wang J, Gong H, Xu D, Hua W, et al: Single-cell RNA-sequencing
analyses revealed heterogeneity and dynamic changes of metabolic
pathways in astrocytes at the acute phase of ischemic stroke. Oxid
Med Cell Longev. 2022:18177212022. View Article : Google Scholar : PubMed/NCBI
|
|
28
|
Denecke KM, McBain CA, Hermes BG, Teertam
SK, Farooqui M, Virumbrales-Muñoz M, Panackal J, Beebe DJ, Famakin
B and Ayuso JM: Microfluidic model to evaluate astrocyte activation
in penumbral region following ischemic stroke. Cells. 11:23562022.
View Article : Google Scholar : PubMed/NCBI
|
|
29
|
Lochhead JJ, Williams EI, Reddell ES, Dorn
E, Ronaldson PT and Davis TP: High resolution multiplex confocal
imaging of the neurovascular unit in health and experimental
ischemic stroke. Cells. 12:6452023. View Article : Google Scholar : PubMed/NCBI
|
|
30
|
Zhou J, Zhang L, Peng J, Zhang X, Zhang F,
Wu Y, Huang A, Du F, Liao Y, He Y, et al: Astrocytic LRP1 enables
mitochondria transfer to neurons and mitigates brain ischemic
stroke by suppressing ARF1 lactylation. Cell Metab.
36:2054–2068.e14. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
31
|
Scott EY, Safarian N, Casasbuenas DL,
Dryden M, Tockovska T, Ali S, Peng J, Daniele E, Nie Xin Lim I,
Bang KWA, et al: Integrating single-cell and spatially resolved
transcriptomic strategies to survey the astrocyte response to
stroke in male mice. Nat Commun. 15:15842024. View Article : Google Scholar : PubMed/NCBI
|
|
32
|
Wang S, Pan Y, Zhang C, Zhao Y, Wang H, Ma
H, Sun J, Zhang S, Yao J, Xie D and Zhang Y: Transcriptome analysis
reveals dynamic microglial-induced A1 astrocyte reactivity via
C3/C3aR/NF-κB signaling after ischemic stroke. Mol Neurobiol.
61:10246–10270. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
33
|
Bormann D, Knoflach M, Poreba E, Riedl CJ,
Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, et
al: Single-nucleus RNA sequencing reveals glial cell type-specific
responses to ischemic stroke in male rodents. Nat Commun.
15:62322024. View Article : Google Scholar : PubMed/NCBI
|
|
34
|
Endo F, Kasai A, Soto JS, Yu X, Qu Z,
Hashimoto H, Gradinaru V, Kawaguchi R and Khakh BS: Molecular basis
of astrocyte diversity and morphology across the CNS in health and
disease. Science. 378:eadc90202022. View Article : Google Scholar : PubMed/NCBI
|
|
35
|
Preman P, Alfonso-Triguero M, Alberdi E,
Verkhratsky A and Arranz AM: Astrocytes in Alzheimer's disease:
Pathological significance and molecular pathways. Cells.
10:5402021. View Article : Google Scholar : PubMed/NCBI
|
|
36
|
Price BR, Johnson LA and Norris CM:
Reactive astrocytes: The nexus of pathological and clinical
hallmarks of Alzheimer's disease. Ageing Res Rev. 68:1013352021.
View Article : Google Scholar : PubMed/NCBI
|
|
37
|
Cai Z, Wan CQ and Liu Z: Astrocyte and
Alzheimer's disease. J Neurol. 264:2068–2074. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
38
|
Kim J, Yoo ID, Lim J and Moon JS:
Pathological phenotypes of astrocytes in Alzheimer's disease. Exp
Mol Med. 56:95–99. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
39
|
Booth HDE, Hirst WD and Wade-Martins R:
The role of astrocyte dysfunction in Parkinson's disease
pathogenesis. Trends Neurosci. 40:358–370. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
40
|
Wang T, Sun Y and Dettmer U: Astrocytes in
Parkinson's disease: From role to possible intervention. Cells.
12:23362023. View Article : Google Scholar : PubMed/NCBI
|
|
41
|
Cohen J and Torres C: Astrocyte
senescence: Evidence and significance. Aging Cell. 18:e129372019.
View Article : Google Scholar : PubMed/NCBI
|
|
42
|
Ponath G, Park C and Pitt D: The role of
astrocytes in multiple sclerosis. Front Immunol. 9:2172018.
View Article : Google Scholar : PubMed/NCBI
|
|
43
|
Yi W, Schlüter D and Wang X: Astrocytes in
multiple sclerosis and experimental autoimmune encephalomyelitis:
Star-shaped cells illuminating the darkness of CNS autoimmunity.
Brain Behav Immun. 80:10–24. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
44
|
Aharoni R, Eilam R and Arnon R: Astrocytes
in multiple sclerosis-essential constituents with diverse
multifaceted functions. Int J Mol Sci. 22:59042021. View Article : Google Scholar : PubMed/NCBI
|
|
45
|
Xu S, Lu J, Shao A, Zhang JH and Zhang J:
Glial cells: Role of the immune response in ischemic stroke. Front
Immunol. 11:2942020. View Article : Google Scholar : PubMed/NCBI
|
|
46
|
Liu Z and Chopp M: Astrocytes, therapeutic
targets for neuroprotection and neurorestoration in ischemic
stroke. Prog Neurobiol. 144:103–120. 2016. View Article : Google Scholar :
|
|
47
|
Alsbrook DL, Di Napoli M, Bhatia K, Biller
J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY,
Selim M, et al: Neuroinflammation in acute ischemic and hemorrhagic
stroke. Curr Neurol Neurosci Rep. 23:407–431. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
48
|
Lu W, Chen Z and Wen J: Flavonoids and
ischemic stroke-induced neuroinflammation: Focus on the glial
cells. Biomed Pharmacother. 170:1158472024. View Article : Google Scholar
|
|
49
|
Shen XY, Gao ZK, Han Y, Yuan M, Guo YS and
Bi X: Activation and role of astrocytes in ischemic stroke. Front
Cell Neurosci. 15:7559552021. View Article : Google Scholar : PubMed/NCBI
|
|
50
|
Zhu G, Wang X, Chen L, Lenahan C, Fu Z,
Fang Y and Yu W: Crosstalk between the oxidative stress and glia
cells after stroke: From mechanism to therapies. Front Immunol.
13:8524162022. View Article : Google Scholar : PubMed/NCBI
|
|
51
|
Chen Y, Qin C, Huang J, Tang X, Liu C,
Huang K, Xu J, Guo G, Tong A and Zhou L: The role of astrocytes in
oxidative stress of central nervous system: A mixed blessing. Cell
Prolif. 53:e127812020. View Article : Google Scholar : PubMed/NCBI
|
|
52
|
Hertz L and Rothman DL: Glucose, lactate,
β-hydroxybutyrate, acetate, GABA, and succinate as substrates for
synthesis of glutamate and GABA in the glutamine-glutamate/GABA
cycle. Adv Neurobiol. 13:9–42. 2016. View Article : Google Scholar
|
|
53
|
Wang F, Xie X, Xing X and Sun X:
Excitatory synaptic transmission in ischemic stroke: A new outlet
for classical neuroprotective strategies. Int J Mol Sci.
23:93812022. View Article : Google Scholar : PubMed/NCBI
|
|
54
|
Andersen JV, Markussen KH, Jakobsen E,
Schousboe A, Waagepetersen HS, Rosenberg PA and Aldana BI:
Glutamate metabolism and recycling at the excitatory synapse in
health and neurodegeneration. Neuropharmacology. 196:1087192021.
View Article : Google Scholar : PubMed/NCBI
|
|
55
|
Perea G, Navarrete M and Araque A:
Tripartite synapses: Astrocytes process and control synaptic
information. Trends Neurosci. 32:421–431. 2009. View Article : Google Scholar : PubMed/NCBI
|
|
56
|
Patabendige A, Singh A, Jenkins S, Sen J
and Chen R: Astrocyte activation in neurovascular damage and repair
following ischaemic stroke. Int J Mol Sci. 22:42802021. View Article : Google Scholar : PubMed/NCBI
|
|
57
|
Yu X, Nagai J and Khakh BS: Improved tools
to study astrocytes. Nat Rev Neurosci. 21:121–138. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
58
|
Mollinari C, Zhao J, Lupacchini L, Garaci
E, Merlo D and Pei G: Transdifferentiation: A new promise for
neurodegenerative diseases. Cell Death Dis. 9:8302018. View Article : Google Scholar : PubMed/NCBI
|
|
59
|
Popa-Wagner A, Hermann D and Gresita A:
Genetic conversion of proliferative astroglia into neurons after
cerebral ischemia: A new therapeutic tool for the aged brain?
Geroscience. 41:363–368. 2019. View Article : Google Scholar : PubMed/NCBI
|
|
60
|
Jiang MQ, Yu SP, Wei ZZ, Zhong W, Cao W,
Gu X, Wu A, McCrary MR, Berglund K and Wei L: Conversion of
reactive astrocytes to induced neurons enhances neuronal repair and
functional recovery after ischemic stroke. Front Aging Neurosci.
13:6128562021. View Article : Google Scholar : PubMed/NCBI
|
|
61
|
Zhang H, Zheng Q, Guo T, Zhang S, Zheng S,
Wang R, Deng Q, Yang G, Zhang S, Tang L, et al: Metabolic
reprogramming in astrocytes results in neuronal dysfunction in
intellectual disability. Mol Psychiatry. 29:1569–1582. 2024.
View Article : Google Scholar
|
|
62
|
Perelroizen R, Philosof B, Budick-Harmelin
N, Chernobylsky T, Ron A, Katzir R, Shimon D, Tessler A, Adir O,
Gaoni-Yogev A, et al: Astrocyte immunometabolic regulation of the
tumour microenvironment drives glioblastoma pathogenicity. Brain.
145:3288–3307. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
63
|
Giaume C, Naus CC, Sáez JC and Leybaert L:
Glial connexins and pannexins in the healthy and diseased brain.
Physiol Rev. 101:93–145. 2021. View Article : Google Scholar
|
|
64
|
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T,
Zang Y and Li J: Astrocyte metabolism and signaling pathways in the
CNS. Front Neurosci. 17:12174512023. View Article : Google Scholar : PubMed/NCBI
|
|
65
|
Falkowska A, Gutowska I, Goschorska M,
Nowacki P, Chlubek D and Baranowska-Bosiacka I: Energy Metabolism
of the brain, including the cooperation between astrocytes and
neurons, especially in the context of glycogen metabolism. Int J
Mol Sci. 16:25959–25981. 2015. View Article : Google Scholar : PubMed/NCBI
|
|
66
|
Chandel NS: Glycolysis. Cold Spring Harb
Perspect Biol. 13:a0405352021. View Article : Google Scholar : PubMed/NCBI
|
|
67
|
Takahashi S: Neuroprotective function of
high glycolytic activity in astrocytes: Common roles in stroke and
neurodegenerative diseases. Int J Mol Sci. 22:65682021. View Article : Google Scholar : PubMed/NCBI
|
|
68
|
Madai S, Kilic P, Schmidt RM, Bas-Orth C,
Korff T, Büttner M, Klinke G, Poschet G, Marti HH and Kunze R:
Activation of the hypoxia-inducible factor pathway protects against
acute ischemic stroke by reprogramming central carbon metabolism.
Theranostics. 14:2856–2880. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
69
|
Koepsell H: Glucose transporters in brain
in health and disease. Pflugers Arch. 472:1299–1343. 2020.
View Article : Google Scholar : PubMed/NCBI
|
|
70
|
Veys K, Fan Z, Ghobrial M, Bouché A,
García-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F,
Gorski T, et al: Role of the GLUT1 glucose transporter in postnatal
CNS angiogenesis and blood-brain barrier integrity. Circ Res.
127:466–482. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
71
|
Alquisiras-Burgos I and Aguilera P:
Involvement of glucose transporter overexpression in the protection
or damage after ischemic stroke. Neural Regen Res. 17:783–784.
2022. View Article : Google Scholar
|
|
72
|
Kierans SJ and Taylor CT: Regulation of
glycolysis by the hypoxia-inducible factor (HIF): Implications for
cellular physiology. J Physiol. 599:23–37. 2021. View Article : Google Scholar
|
|
73
|
Xiong XY, Pan XR, Luo XX, Wang YF, Zhang
XX, Yang SH, Zhong ZQ, Liu C, Chen Q, Wang PF, et al:
Astrocyte-derived lactate aggravates brain injury of ischemic
stroke in mice by promoting the formation of protein lactylation.
Theranostics. 14:4297–4317. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
74
|
M Tóth O, Menyhárt Á, Frank R, Hantosi D,
Farkas E and Bari F: Tissue acidosis associated with ischemic
stroke to guide neuroprotective drug delivery. Biology (Basel).
9:4602020.PubMed/NCBI
|
|
75
|
Bonvento G and Bolaños JP:
Astrocyte-neuron metabolic cooperation shapes brain activity. Cell
Metab. 33:1546–1564. 2021. View Article : Google Scholar : PubMed/NCBI
|
|
76
|
Romano A, Koczwara JB, Gallelli CA,
Vergara D, Micioni Di Bonaventura MV, Gaetani S and Giudetti AM:
Fats for thoughts: An update on brain fatty acid metabolism. Int J
Biochem Cell Biol. 84:40–45. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
77
|
Ebert D, Haller RG and Walton ME: Energy
contribution of octanoate to intact rat brain metabolism measured
by 13C nuclear magnetic resonance spectroscopy. J Neurosci.
23:5928–5935. 2003. View Article : Google Scholar : PubMed/NCBI
|
|
78
|
Le Foll C and Levin BE: Fatty acid-induced
astrocyte ketone production and the control of food intake. Am J
Physiol Regul Integr Comp Physiol. 310:R1186–R1192. 2016.
View Article : Google Scholar : PubMed/NCBI
|
|
79
|
Guo Q, Kawahata I, Cheng A, Jia W, Wang H
and Fukunaga K: Fatty acid-binding proteins: Their roles in
ischemic stroke and potential as drug targets. Int J Mol Sci.
23:96482022. View Article : Google Scholar : PubMed/NCBI
|
|
80
|
Mallick K, Paul S and Banerjee S and
Banerjee S: Lipid droplets and neurodegeneration. Neuroscience.
549:13–23. 2024. View Article : Google Scholar : PubMed/NCBI
|
|
81
|
Lee JA, Hall B, Allsop J, Alqarni R and
Allen SP: Lipid metabolism in astrocytic structure and function.
Semin Cell Dev Biol. 112:123–136. 2021. View Article : Google Scholar
|
|
82
|
Wang X, Zhang L, Sun W, Pei LL, Tian M,
Liang J, Liu X, Zhang R, Fang H, Wu J, et al: Changes of
metabolites in acute ischemic stroke and its subtypes. Front
Neurosci. 14:5809292021. View Article : Google Scholar : PubMed/NCBI
|
|
83
|
Sayre NL, Sifuentes M, Holstein D, Cheng
SY, Zhu X and Lechleiter JD: Stimulation of astrocyte fatty acid
oxidation by thyroid hormone is protective against ischemic
stroke-induced damage. J Cereb Blood Flow Metab. 37:514–527. 2017.
View Article : Google Scholar :
|
|
84
|
Du W, Zhang L, Brett-Morris A, Aguila B,
Kerner J, Hoppel CL, Puchowicz M, Serra D, Herrero L, Rini BI, et
al: HIF drives lipid deposition and cancer in ccRCC via repression
of fatty acid metabolism. Nat Commun. 8:17692017. View Article : Google Scholar : PubMed/NCBI
|
|
85
|
Andersen JV, Schousboe A and Verkhratsky
A: Astrocyte energy and neurotransmitter metabolism in Alzheimer's
disease: Integration of the glutamate/GABA-glutamine cycle. Prog
Neurobiol. 217:1023312022. View Article : Google Scholar : PubMed/NCBI
|
|
86
|
Hsu PC, Lan YJ, Chen CC, Lee LY, Chen WP,
Wang YC and Lee YH: Erinacine A attenuates glutamate transporter 1
downregulation and protects against ischemic brain injury. Life
Sci. 306:1208332022. View Article : Google Scholar : PubMed/NCBI
|
|
87
|
Shen Z, Xiang M, Chen C, Ding F, Wang Y,
Shang C, Xin L, Zhang Y and Cui X: Glutamate excitotoxicity:
Potential therapeutic target for ischemic stroke. Biomed
Pharmacother. 151:1131252022. View Article : Google Scholar : PubMed/NCBI
|
|
88
|
Mahmoud S, Gharagozloo M, Simard C and
Gris D: Astrocytes maintain glutamate homeostasis in the CNS by
controlling the balance between glutamate uptake and release.
Cells. 8:1842019. View Article : Google Scholar : PubMed/NCBI
|
|
89
|
Andersen JV, Jakobsen E, Westi EW, Lie
MEK, Voss CM, Aldana BI, Schousboe A, Wellendorph P, Bak LK,
Pinborg LH and Waagepetersen HS: Extensive astrocyte metabolism of
γ-aminobutyric acid (GABA) sustains glutamine synthesis in the
mammalian cerebral cortex. Glia. 68:2601–2612. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
90
|
Kwak H, Koh W, Kim S, Song K, Shin JI, Lee
JM, Lee EH, Bae JY, Ha GE, Oh JE, et al: Astrocytes control sensory
acuity via tonic inhibition in the thalamus. Neuron.
108:691–706.e10. 2020. View Article : Google Scholar : PubMed/NCBI
|
|
91
|
Qureshi T, Bjørkmo M, Nordengen K,
Gundersen V, Utheim TP, Watne LO, Storm-Mathisen J, Hassel B and
Chaudhry FA: Slc38a1 conveys astroglia-derived glutamine into
GABAergic interneurons for neurotransmitter GABA synthesis. Cells.
9:16862020. View Article : Google Scholar : PubMed/NCBI
|
|
92
|
Ceyzériat K, Abjean L, Carrillo-de Sauvage
MA, Ben Haim L and Escartin C: The complex STATes of astrocyte
reactivity: How are they controlled by the JAK-STAT3 pathway?
Neuroscience. 330:205–218. 2016. View Article : Google Scholar : PubMed/NCBI
|
|
93
|
Rakers C, Schleif M, Blank N, Matušková H,
Ulas T, Händler K, Torres SV, Schumacher T, Tai K, Schultze JL, et
al: Stroke target identification guided by astrocyte transcriptome
analysis. Glia. 67:619–633. 2019. View Article : Google Scholar
|
|
94
|
Borbor M, Yin D, Brockmeier U, Wang C,
Doeckel M, Pillath-Eilers M, Kaltwasser B, Hermann DM and Dzyubenko
E: Neurotoxicity of ischemic astrocytes involves STAT3-mediated
metabolic switching and depends on glycogen usage. Glia.
71:1553–1569. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
95
|
Wu M, Wang L, Li F, Hu R, Ma J, Zhang K
and Cheng X: Resveratrol downregulates STAT3 expression and
astrocyte activation in primary astrocyte cultures of rat.
Neurochem Res. 45:455–464. 2020. View Article : Google Scholar
|
|
96
|
Koutsifeli P, Varma U, Daniels LJ,
Annandale M, Li X, Neale JPH, Hayes S, Weeks KL, James S, Delbridge
LMD and Mellor KM: Glycogen-autophagy: Molecular machinery and
cellular mechanisms of glycophagy. J Biol Chem. 298:1020932022.
View Article : Google Scholar : PubMed/NCBI
|
|
97
|
Heden TD, Chow LS, Hughey CC and Mashek
DG: Regulation and role of glycophagy in skeletal muscle energy
metabolism. Autophagy. 18:1078–1089. 2022. View Article : Google Scholar :
|
|
98
|
Mayeuf-Louchart A, Lancel S, Sebti Y,
Pourcet B, Loyens A, Delhaye S, Duhem C, Beauchamp J, Ferri L,
Thorel Q, et al: Glycogen dynamics drives lipid droplet biogenesis
during brown adipocyte differentiation. Cell Rep. 29:1410–1418.e6.
2019. View Article : Google Scholar : PubMed/NCBI
|
|
99
|
Guo H, Li Y, Wang S, Yang Y, Xu T, Zhao J,
Wang J, Zuo W, Wang P, Zhao G, et al: Dysfunction of astrocytic
glycophagy exacerbates reperfusion injury in ischemic stroke. Redox
Biol. 74:1032342024. View Article : Google Scholar : PubMed/NCBI
|
|
100
|
Powers WJ, Rabinstein AA, Ackerson T,
Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk
BM, Hoh B, et al: Guidelines for the early management of patients
with acute ischemic stroke: 2019 Update to the 2018 guidelines for
the early management of acute ischemic stroke: A guideline for
healthcare professionals from the american heart
association/american stroke association. Stroke. 50:e344–e418.
2019. View Article : Google Scholar
|
|
101
|
Guo H, Fan Z, Wang S, Ma L, Wang J, Yu D,
Zhang Z, Wu L, Peng Z, Liu W, et al: Astrocytic A1/A2 paradigm
participates in glycogen mobilization mediated neuroprotection on
reperfusion injury after ischemic stroke. J Neuroinflammation.
18:2302021. View Article : Google Scholar : PubMed/NCBI
|
|
102
|
Geng J, Zhang Y, Li S, Li S, Wang J, Wang
H, Aa J and Wang G: Metabolomic profiling reveals that
reprogramming of cerebral glucose metabolism is involved in
ischemic preconditioning-induced neuroprotection in a rodent model
of ischemic stroke. J Proteome Res. 18:57–68. 2019.
|
|
103
|
Huang XX, Li L, Jiang RH, Yu JB, Sun YQ,
Shan J, Yang J, Ji J, Cheng SQ, Dong YF, et al: Lipidomic analysis
identifies long-chain acylcarnitine as a target for ischemic
stroke. J Adv Res. 61:133–149. 2024. View Article : Google Scholar :
|
|
104
|
Cao J, Dong L, Luo J, Zeng F, Hong Z, Liu
Y, Zhao Y, Xia Z, Zuo D, Xu L and Tao T: Supplemental N-3
polyunsaturated fatty acids limit A1-specific astrocyte
polarization via attenuating mitochondrial dysfunction in ischemic
stroke in mice. Oxid Med Cell Longev. 2021:55247052021. View Article : Google Scholar : PubMed/NCBI
|
|
105
|
Neal M, Luo J, Harischandra DS, Gordon R,
Sarkar S, Jin H, Anantharam V, Désaubry L and Kanthasamy A and
Kanthasamy A: Prokineticin-2 promotes chemotaxis and alternative A2
reactivity of astrocytes. Glia. 66:2137–2157. 2018. View Article : Google Scholar : PubMed/NCBI
|
|
106
|
Pang QM, Zhang Q, Wu XC, Yang RL, Fu SP,
Fan ZH, Liu J, Yu LM, Peng JC and Zhang T: Mechanism of M2
macrophages modulating astrocyte polarization through the
TGF-β/PI3K/Akt pathway. Immunol Lett. 259:1–8. 2023. View Article : Google Scholar : PubMed/NCBI
|
|
107
|
Chistyakov DV, Gavrish GE, Goriainov SV,
Chistyakov VV, Astakhova AA, Azbukina NV and Sergeeva MG: Oxylipin
profiles as functional characteristics of acute inflammatory
responses in astrocytes pre-treated with IL-4, IL-10, or LPS. Int J
Mol Sci. 21:17802020. View Article : Google Scholar : PubMed/NCBI
|
|
108
|
Shiow LR, Favrais G, Schirmer L, Schang
AL, Cipriani S, Andres C, Wright JN, Nobuta H, Fleiss B, Gressens P
and Rowitch DH: Reactive astrocyte COX2-PGE2 production inhibits
oligodendrocyte maturation in neonatal white matter injury. Glia.
65:2024–2037. 2017. View Article : Google Scholar : PubMed/NCBI
|
|
109
|
Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao
J, Fu Q, Liu Y, Li H, Lou J, et al: Cottonseed oil alleviates
ischemic stroke injury by inhibiting the inflammatory activation of
microglia and astrocyte. J Neuroinflammation. 17:2702020.
View Article : Google Scholar : PubMed/NCBI
|
|
110
|
Zhang L, Zhao G, Luo Z, Yu Z, Liu G, Su G,
Tang X, Yuan Z, Huang C, Sun HS, et al: AD16 attenuates
neuroinflammation induced by cerebral ischemia through
down-regulating astrocytes A1 polarization. Biomed Pharmacother.
178:1172092024. View Article : Google Scholar : PubMed/NCBI
|
|
111
|
Zou Y, Pei J, Wan C, Liu S, Hu B, Li Z and
Tang Z: Mechanism of scutellarin inhibition of astrocyte activation
to type A1 after ischemic stroke. J Stroke Cerebrovasc Dis.
33:1075342024. View Article : Google Scholar : PubMed/NCBI
|
|
112
|
Zhou M, Zhang T, Zhang X, Zhang M, Gao S,
Zhang T, Li S, Cai X, Li J and Lin Y: Effect of tetrahedral
framework nucleic acids on neurological recovery via ameliorating
apoptosis and regulating the activation and polarization of
astrocytes in ischemic stroke. ACS Appl Mater Interfaces.
14:37478–37492. 2022. View Article : Google Scholar : PubMed/NCBI
|
|
113
|
Liu R, Yu Y, Ge Q, Feng R, Zhong G, Luo L,
Han Z, Wang T, Huang C, Xue J and Huang Z: Genistein-3′-sodium
sulfonate promotes brain functional rehabilitation in ischemic
stroke rats by regulating astrocytes polarization through NF-κB
signaling pathway. Chem Biol Interact. 400:1111592024. View Article : Google Scholar
|
|
114
|
Chen Z, Li T, Tang HB, Lu ZW, Chen ZY,
Zhao ZH, Yang XL, Zhao LL, Dang MJ, Li Y, et al: Edaravone
Dexborneol provides neuroprotective effect by inhibiting neurotoxic
activation of astrocytes through inhibiting NF-κB signaling in
cortical ischemia. Brain Res Bull. 218:1110972024. View Article : Google Scholar
|
|
115
|
Li MC, Li MZ, Lin ZY, Zhuang YM, Wang HY,
Jia JT, Lu Y, Wang ZJ, Zou HY and Zhao H: Buyang Huanwu Decoction
promotes neurovascular remodeling by modulating astrocyte and
microglia polarization in ischemic stroke rats. J Ethnopharmacol.
323:1176202024. View Article : Google Scholar
|
|
116
|
Xia X, Chen J, Ren H, Zhou C, Zhang Q,
Cheng H and Wang X: Gypenoside pretreatment alleviates the cerebral
ischemia injury via inhibiting the microglia-mediated
neuroinflammation. Mol Neurobiol. 61:1140–1156. 2024. View Article : Google Scholar
|