
The role of astrocyte metabolic reprogramming in ischemic stroke (Review)
- Authors:
- Weixin Chen
- Tangyou Mao
- Rui Ma
- Yuxuan Xiong
- Ran Han
- Le Wang
-
Affiliations: Second Clinical Medical College, Beijing University of Chinese Medicine, Beijing 100105, P.R. China, Gastroenterology Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China, Clinical Laboratory Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China, Cerebrovascular Disease Department, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, P.R. China - Published online on: January 21, 2025 https://doi.org/10.3892/ijmm.2025.5490
- Article Number: 49
-
Copyright: © Chen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Saini V, Guada L and Yavagal DR: Global epidemiology of stroke and access to acute ischemic stroke interventions. Neurology. 97(20 Suppl 2): S6–S16. 2021. View Article : Google Scholar : PubMed/NCBI | |
GBD 2019 Stroke Collaborators: Global, regional, and national burden of stroke and its risk factors, 1990-2019: A systematic analysis for the Global Burden of Disease Study 2019. Lancet Neurol. 20:795–820. 2021. View Article : Google Scholar : PubMed/NCBI | |
Han RT, Kim RD, Molofsky AV and Liddelow SA: Astrocyte-immune cell interactions in physiology and pathology. Immunity. 54:211–224. 2021. View Article : Google Scholar : PubMed/NCBI | |
Chiellini G: Metabolic reprogramming in health and disease. Int J Mol Sci. 21:27682020. View Article : Google Scholar : PubMed/NCBI | |
Candelario-Jalil E, Dijkhuizen RM and Magnus T: Neuroinflammation, stroke, blood-brain barrier dysfunction, and imaging modalities. Stroke. 53:1473–1486. 2022. View Article : Google Scholar : PubMed/NCBI | |
Wu D, Chen Q, Chen X, Han F, Chen Z and Wang Y: The blood-brain barrier: Structure, regulation, and drug delivery. Signal Transduct Target Ther. 8:2172023. View Article : Google Scholar : PubMed/NCBI | |
Verkhratsky A and Nedergaard M: Physiology of astroglia. Physiol Rev. 98:239–389. 2018. View Article : Google Scholar : PubMed/NCBI | |
Lacoste B, Prat A, Freitas-Andrade M and Gu C: The blood-brain barrier: Composition, properties, and roles in brain health. Cold Spring Harb Perspect Biol. a0414222024.Epub ahead of print. View Article : Google Scholar : PubMed/NCBI | |
Vandebroek A and Yasui M: Regulation of AQP4 in the central nervous system. Int J Mol Sci. 21:16032020. View Article : Google Scholar : PubMed/NCBI | |
Hertz L and Chen Y: Importance of astrocytes for potassium ion (K+) homeostasis in brain and glial effects of K+ and its transporters on learning. Neurosci Biobehav Rev. 71:484–505. 2016. View Article : Google Scholar : PubMed/NCBI | |
Seifert G, Henneberger C and Steinhäuser C: Diversity of astrocyte potassium channels: An update. Brain Res Bull. 136:26–36. 2018. View Article : Google Scholar | |
Felix L, Delekate A, Petzold GC and Rose CR: Sodium fluctuations in astroglia and their potential impact on astrocyte function. Front Physiol. 11:8712020. View Article : Google Scholar : PubMed/NCBI | |
Allen NJ and Eroglu C: Cell biology of astrocyte-synapse interactions. Neuron. 96:697–708. 2017. View Article : Google Scholar : PubMed/NCBI | |
Oliveira JF and Araque A: Astrocyte regulation of neural circuit activity and network states. Glia. 70:1455–1466. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hara M, Kobayakawa K, Ohkawa Y, Kumamaru H, Yokota K, Saito T, Kijima K, Yoshizaki S, Harimaya K, Nakashima Y and Okada S: Interaction of reactive astrocytes with type I collagen induces astrocytic scar formation through the integrin-N-cadherin pathway after spinal cord injury. Nat Med. 23:818–828. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang C and Li L: The critical role of KLF4 in regulating the activation of A1/A2 reactive astrocytes following ischemic stroke. J Neuroinflammation. 20:442023. View Article : Google Scholar : PubMed/NCBI | |
Zamanian JL, Xu L, Foo LC, Nouri N, Zhou L, Giffard RG and Barres BA: Genomic analysis of reactive astrogliosis. J Neurosci. 32:6391–6410. 2012. View Article : Google Scholar : PubMed/NCBI | |
Liddelow SA, Guttenplan KA, Clarke LE, Bennett FC, Bohlen CJ, Schirmer L, Bennett ML, Münch AE, Chung WS, Peterson TC, et al: Neurotoxic reactive astrocytes are induced by activated microglia. Nature. 541:481–487. 2017. View Article : Google Scholar : PubMed/NCBI | |
Patel MR and Weaver AM: Astrocyte-derived small extracellular vesicles promote synapse formation via fibulin-2-mediated TGF-β signaling. Cell Rep. 34:1088292021. View Article : Google Scholar | |
Anderson MA, Burda JE, Ren Y, Ao Y, O'Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ and Sofroniew MV: Astrocyte scar formation aids central nervous system axon regeneration. Nature. 532:195–200. 2016. View Article : Google Scholar : PubMed/NCBI | |
Lian H, Yang L, Cole A, Sun L, Chiang AC, Fowler SW, Shim DJ, Rodriguez-Rivera J, Taglialatela G, Jankowsky JL, et al: NFκB-activated astroglial release of complement C3 compromises neuronal morphology and function associated with Alzheimer's disease. Neuron. 85:101–115. 2015. View Article : Google Scholar | |
Amalia L: Glial fibrillary acidic protein (GFAP): Neuroinflammation biomarker in acute ischemic stroke. J Inflamm Res. 14:7501–7506. 2021. View Article : Google Scholar | |
Liu G and Geng J: Glial fibrillary acidic protein as a prognostic marker of acute ischemic stroke. Hum Exp Toxicol. 37:1048–1053. 2018. View Article : Google Scholar : PubMed/NCBI | |
Song X, Gong Z and Liu K, Kou J, Liu B and Liu K: Baicalin combats glutamate excitotoxicity via protecting glutamine synthetase from ROS-induced 20S proteasomal degradation. Redox Biol. 34:1015592020. View Article : Google Scholar : PubMed/NCBI | |
Shi X, Luo L, Wang J, Shen H, Li Y, Mamtilahun M, Liu C, Shi R, Lee JH, Tian H, et al: Stroke subtype-dependent synapse elimination by reactive gliosis in mice. Nat Commun. 12:69432021. View Article : Google Scholar : PubMed/NCBI | |
Williamson MR, Fuertes CJA, Dunn AK, Drew MR and Jones TA: Reactive astrocytes facilitate vascular repair and remodeling after stroke. Cell Rep. 35:1090482021. View Article : Google Scholar : PubMed/NCBI | |
Ma H, Zhou Y, Li Z, Zhu L, Li H, Zhang G, Wang J, Gong H, Xu D, Hua W, et al: Single-cell RNA-sequencing analyses revealed heterogeneity and dynamic changes of metabolic pathways in astrocytes at the acute phase of ischemic stroke. Oxid Med Cell Longev. 2022:18177212022. View Article : Google Scholar : PubMed/NCBI | |
Denecke KM, McBain CA, Hermes BG, Teertam SK, Farooqui M, Virumbrales-Muñoz M, Panackal J, Beebe DJ, Famakin B and Ayuso JM: Microfluidic model to evaluate astrocyte activation in penumbral region following ischemic stroke. Cells. 11:23562022. View Article : Google Scholar : PubMed/NCBI | |
Lochhead JJ, Williams EI, Reddell ES, Dorn E, Ronaldson PT and Davis TP: High resolution multiplex confocal imaging of the neurovascular unit in health and experimental ischemic stroke. Cells. 12:6452023. View Article : Google Scholar : PubMed/NCBI | |
Zhou J, Zhang L, Peng J, Zhang X, Zhang F, Wu Y, Huang A, Du F, Liao Y, He Y, et al: Astrocytic LRP1 enables mitochondria transfer to neurons and mitigates brain ischemic stroke by suppressing ARF1 lactylation. Cell Metab. 36:2054–2068.e14. 2024. View Article : Google Scholar : PubMed/NCBI | |
Scott EY, Safarian N, Casasbuenas DL, Dryden M, Tockovska T, Ali S, Peng J, Daniele E, Nie Xin Lim I, Bang KWA, et al: Integrating single-cell and spatially resolved transcriptomic strategies to survey the astrocyte response to stroke in male mice. Nat Commun. 15:15842024. View Article : Google Scholar : PubMed/NCBI | |
Wang S, Pan Y, Zhang C, Zhao Y, Wang H, Ma H, Sun J, Zhang S, Yao J, Xie D and Zhang Y: Transcriptome analysis reveals dynamic microglial-induced A1 astrocyte reactivity via C3/C3aR/NF-κB signaling after ischemic stroke. Mol Neurobiol. 61:10246–10270. 2024. View Article : Google Scholar : PubMed/NCBI | |
Bormann D, Knoflach M, Poreba E, Riedl CJ, Testa G, Orset C, Levilly A, Cottereau A, Jauk P, Hametner S, et al: Single-nucleus RNA sequencing reveals glial cell type-specific responses to ischemic stroke in male rodents. Nat Commun. 15:62322024. View Article : Google Scholar : PubMed/NCBI | |
Endo F, Kasai A, Soto JS, Yu X, Qu Z, Hashimoto H, Gradinaru V, Kawaguchi R and Khakh BS: Molecular basis of astrocyte diversity and morphology across the CNS in health and disease. Science. 378:eadc90202022. View Article : Google Scholar : PubMed/NCBI | |
Preman P, Alfonso-Triguero M, Alberdi E, Verkhratsky A and Arranz AM: Astrocytes in Alzheimer's disease: Pathological significance and molecular pathways. Cells. 10:5402021. View Article : Google Scholar : PubMed/NCBI | |
Price BR, Johnson LA and Norris CM: Reactive astrocytes: The nexus of pathological and clinical hallmarks of Alzheimer's disease. Ageing Res Rev. 68:1013352021. View Article : Google Scholar : PubMed/NCBI | |
Cai Z, Wan CQ and Liu Z: Astrocyte and Alzheimer's disease. J Neurol. 264:2068–2074. 2017. View Article : Google Scholar : PubMed/NCBI | |
Kim J, Yoo ID, Lim J and Moon JS: Pathological phenotypes of astrocytes in Alzheimer's disease. Exp Mol Med. 56:95–99. 2024. View Article : Google Scholar : PubMed/NCBI | |
Booth HDE, Hirst WD and Wade-Martins R: The role of astrocyte dysfunction in Parkinson's disease pathogenesis. Trends Neurosci. 40:358–370. 2017. View Article : Google Scholar : PubMed/NCBI | |
Wang T, Sun Y and Dettmer U: Astrocytes in Parkinson's disease: From role to possible intervention. Cells. 12:23362023. View Article : Google Scholar : PubMed/NCBI | |
Cohen J and Torres C: Astrocyte senescence: Evidence and significance. Aging Cell. 18:e129372019. View Article : Google Scholar : PubMed/NCBI | |
Ponath G, Park C and Pitt D: The role of astrocytes in multiple sclerosis. Front Immunol. 9:2172018. View Article : Google Scholar : PubMed/NCBI | |
Yi W, Schlüter D and Wang X: Astrocytes in multiple sclerosis and experimental autoimmune encephalomyelitis: Star-shaped cells illuminating the darkness of CNS autoimmunity. Brain Behav Immun. 80:10–24. 2019. View Article : Google Scholar : PubMed/NCBI | |
Aharoni R, Eilam R and Arnon R: Astrocytes in multiple sclerosis-essential constituents with diverse multifaceted functions. Int J Mol Sci. 22:59042021. View Article : Google Scholar : PubMed/NCBI | |
Xu S, Lu J, Shao A, Zhang JH and Zhang J: Glial cells: Role of the immune response in ischemic stroke. Front Immunol. 11:2942020. View Article : Google Scholar : PubMed/NCBI | |
Liu Z and Chopp M: Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol. 144:103–120. 2016. View Article : Google Scholar : | |
Alsbrook DL, Di Napoli M, Bhatia K, Biller J, Andalib S, Hinduja A, Rodrigues R, Rodriguez M, Sabbagh SY, Selim M, et al: Neuroinflammation in acute ischemic and hemorrhagic stroke. Curr Neurol Neurosci Rep. 23:407–431. 2023. View Article : Google Scholar : PubMed/NCBI | |
Lu W, Chen Z and Wen J: Flavonoids and ischemic stroke-induced neuroinflammation: Focus on the glial cells. Biomed Pharmacother. 170:1158472024. View Article : Google Scholar | |
Shen XY, Gao ZK, Han Y, Yuan M, Guo YS and Bi X: Activation and role of astrocytes in ischemic stroke. Front Cell Neurosci. 15:7559552021. View Article : Google Scholar : PubMed/NCBI | |
Zhu G, Wang X, Chen L, Lenahan C, Fu Z, Fang Y and Yu W: Crosstalk between the oxidative stress and glia cells after stroke: From mechanism to therapies. Front Immunol. 13:8524162022. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Qin C, Huang J, Tang X, Liu C, Huang K, Xu J, Guo G, Tong A and Zhou L: The role of astrocytes in oxidative stress of central nervous system: A mixed blessing. Cell Prolif. 53:e127812020. View Article : Google Scholar : PubMed/NCBI | |
Hertz L and Rothman DL: Glucose, lactate, β-hydroxybutyrate, acetate, GABA, and succinate as substrates for synthesis of glutamate and GABA in the glutamine-glutamate/GABA cycle. Adv Neurobiol. 13:9–42. 2016. View Article : Google Scholar | |
Wang F, Xie X, Xing X and Sun X: Excitatory synaptic transmission in ischemic stroke: A new outlet for classical neuroprotective strategies. Int J Mol Sci. 23:93812022. View Article : Google Scholar : PubMed/NCBI | |
Andersen JV, Markussen KH, Jakobsen E, Schousboe A, Waagepetersen HS, Rosenberg PA and Aldana BI: Glutamate metabolism and recycling at the excitatory synapse in health and neurodegeneration. Neuropharmacology. 196:1087192021. View Article : Google Scholar : PubMed/NCBI | |
Perea G, Navarrete M and Araque A: Tripartite synapses: Astrocytes process and control synaptic information. Trends Neurosci. 32:421–431. 2009. View Article : Google Scholar : PubMed/NCBI | |
Patabendige A, Singh A, Jenkins S, Sen J and Chen R: Astrocyte activation in neurovascular damage and repair following ischaemic stroke. Int J Mol Sci. 22:42802021. View Article : Google Scholar : PubMed/NCBI | |
Yu X, Nagai J and Khakh BS: Improved tools to study astrocytes. Nat Rev Neurosci. 21:121–138. 2020. View Article : Google Scholar : PubMed/NCBI | |
Mollinari C, Zhao J, Lupacchini L, Garaci E, Merlo D and Pei G: Transdifferentiation: A new promise for neurodegenerative diseases. Cell Death Dis. 9:8302018. View Article : Google Scholar : PubMed/NCBI | |
Popa-Wagner A, Hermann D and Gresita A: Genetic conversion of proliferative astroglia into neurons after cerebral ischemia: A new therapeutic tool for the aged brain? Geroscience. 41:363–368. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jiang MQ, Yu SP, Wei ZZ, Zhong W, Cao W, Gu X, Wu A, McCrary MR, Berglund K and Wei L: Conversion of reactive astrocytes to induced neurons enhances neuronal repair and functional recovery after ischemic stroke. Front Aging Neurosci. 13:6128562021. View Article : Google Scholar : PubMed/NCBI | |
Zhang H, Zheng Q, Guo T, Zhang S, Zheng S, Wang R, Deng Q, Yang G, Zhang S, Tang L, et al: Metabolic reprogramming in astrocytes results in neuronal dysfunction in intellectual disability. Mol Psychiatry. 29:1569–1582. 2024. View Article : Google Scholar | |
Perelroizen R, Philosof B, Budick-Harmelin N, Chernobylsky T, Ron A, Katzir R, Shimon D, Tessler A, Adir O, Gaoni-Yogev A, et al: Astrocyte immunometabolic regulation of the tumour microenvironment drives glioblastoma pathogenicity. Brain. 145:3288–3307. 2022. View Article : Google Scholar : PubMed/NCBI | |
Giaume C, Naus CC, Sáez JC and Leybaert L: Glial connexins and pannexins in the healthy and diseased brain. Physiol Rev. 101:93–145. 2021. View Article : Google Scholar | |
Zhang YM, Qi YB, Gao YN, Chen WG, Zhou T, Zang Y and Li J: Astrocyte metabolism and signaling pathways in the CNS. Front Neurosci. 17:12174512023. View Article : Google Scholar : PubMed/NCBI | |
Falkowska A, Gutowska I, Goschorska M, Nowacki P, Chlubek D and Baranowska-Bosiacka I: Energy Metabolism of the brain, including the cooperation between astrocytes and neurons, especially in the context of glycogen metabolism. Int J Mol Sci. 16:25959–25981. 2015. View Article : Google Scholar : PubMed/NCBI | |
Chandel NS: Glycolysis. Cold Spring Harb Perspect Biol. 13:a0405352021. View Article : Google Scholar : PubMed/NCBI | |
Takahashi S: Neuroprotective function of high glycolytic activity in astrocytes: Common roles in stroke and neurodegenerative diseases. Int J Mol Sci. 22:65682021. View Article : Google Scholar : PubMed/NCBI | |
Madai S, Kilic P, Schmidt RM, Bas-Orth C, Korff T, Büttner M, Klinke G, Poschet G, Marti HH and Kunze R: Activation of the hypoxia-inducible factor pathway protects against acute ischemic stroke by reprogramming central carbon metabolism. Theranostics. 14:2856–2880. 2024. View Article : Google Scholar : PubMed/NCBI | |
Koepsell H: Glucose transporters in brain in health and disease. Pflugers Arch. 472:1299–1343. 2020. View Article : Google Scholar : PubMed/NCBI | |
Veys K, Fan Z, Ghobrial M, Bouché A, García-Caballero M, Vriens K, Conchinha NV, Seuwen A, Schlegel F, Gorski T, et al: Role of the GLUT1 glucose transporter in postnatal CNS angiogenesis and blood-brain barrier integrity. Circ Res. 127:466–482. 2020. View Article : Google Scholar : PubMed/NCBI | |
Alquisiras-Burgos I and Aguilera P: Involvement of glucose transporter overexpression in the protection or damage after ischemic stroke. Neural Regen Res. 17:783–784. 2022. View Article : Google Scholar | |
Kierans SJ and Taylor CT: Regulation of glycolysis by the hypoxia-inducible factor (HIF): Implications for cellular physiology. J Physiol. 599:23–37. 2021. View Article : Google Scholar | |
Xiong XY, Pan XR, Luo XX, Wang YF, Zhang XX, Yang SH, Zhong ZQ, Liu C, Chen Q, Wang PF, et al: Astrocyte-derived lactate aggravates brain injury of ischemic stroke in mice by promoting the formation of protein lactylation. Theranostics. 14:4297–4317. 2024. View Article : Google Scholar : PubMed/NCBI | |
M Tóth O, Menyhárt Á, Frank R, Hantosi D, Farkas E and Bari F: Tissue acidosis associated with ischemic stroke to guide neuroprotective drug delivery. Biology (Basel). 9:4602020.PubMed/NCBI | |
Bonvento G and Bolaños JP: Astrocyte-neuron metabolic cooperation shapes brain activity. Cell Metab. 33:1546–1564. 2021. View Article : Google Scholar : PubMed/NCBI | |
Romano A, Koczwara JB, Gallelli CA, Vergara D, Micioni Di Bonaventura MV, Gaetani S and Giudetti AM: Fats for thoughts: An update on brain fatty acid metabolism. Int J Biochem Cell Biol. 84:40–45. 2017. View Article : Google Scholar : PubMed/NCBI | |
Ebert D, Haller RG and Walton ME: Energy contribution of octanoate to intact rat brain metabolism measured by 13C nuclear magnetic resonance spectroscopy. J Neurosci. 23:5928–5935. 2003. View Article : Google Scholar : PubMed/NCBI | |
Le Foll C and Levin BE: Fatty acid-induced astrocyte ketone production and the control of food intake. Am J Physiol Regul Integr Comp Physiol. 310:R1186–R1192. 2016. View Article : Google Scholar : PubMed/NCBI | |
Guo Q, Kawahata I, Cheng A, Jia W, Wang H and Fukunaga K: Fatty acid-binding proteins: Their roles in ischemic stroke and potential as drug targets. Int J Mol Sci. 23:96482022. View Article : Google Scholar : PubMed/NCBI | |
Mallick K, Paul S and Banerjee S and Banerjee S: Lipid droplets and neurodegeneration. Neuroscience. 549:13–23. 2024. View Article : Google Scholar : PubMed/NCBI | |
Lee JA, Hall B, Allsop J, Alqarni R and Allen SP: Lipid metabolism in astrocytic structure and function. Semin Cell Dev Biol. 112:123–136. 2021. View Article : Google Scholar | |
Wang X, Zhang L, Sun W, Pei LL, Tian M, Liang J, Liu X, Zhang R, Fang H, Wu J, et al: Changes of metabolites in acute ischemic stroke and its subtypes. Front Neurosci. 14:5809292021. View Article : Google Scholar : PubMed/NCBI | |
Sayre NL, Sifuentes M, Holstein D, Cheng SY, Zhu X and Lechleiter JD: Stimulation of astrocyte fatty acid oxidation by thyroid hormone is protective against ischemic stroke-induced damage. J Cereb Blood Flow Metab. 37:514–527. 2017. View Article : Google Scholar : | |
Du W, Zhang L, Brett-Morris A, Aguila B, Kerner J, Hoppel CL, Puchowicz M, Serra D, Herrero L, Rini BI, et al: HIF drives lipid deposition and cancer in ccRCC via repression of fatty acid metabolism. Nat Commun. 8:17692017. View Article : Google Scholar : PubMed/NCBI | |
Andersen JV, Schousboe A and Verkhratsky A: Astrocyte energy and neurotransmitter metabolism in Alzheimer's disease: Integration of the glutamate/GABA-glutamine cycle. Prog Neurobiol. 217:1023312022. View Article : Google Scholar : PubMed/NCBI | |
Hsu PC, Lan YJ, Chen CC, Lee LY, Chen WP, Wang YC and Lee YH: Erinacine A attenuates glutamate transporter 1 downregulation and protects against ischemic brain injury. Life Sci. 306:1208332022. View Article : Google Scholar : PubMed/NCBI | |
Shen Z, Xiang M, Chen C, Ding F, Wang Y, Shang C, Xin L, Zhang Y and Cui X: Glutamate excitotoxicity: Potential therapeutic target for ischemic stroke. Biomed Pharmacother. 151:1131252022. View Article : Google Scholar : PubMed/NCBI | |
Mahmoud S, Gharagozloo M, Simard C and Gris D: Astrocytes maintain glutamate homeostasis in the CNS by controlling the balance between glutamate uptake and release. Cells. 8:1842019. View Article : Google Scholar : PubMed/NCBI | |
Andersen JV, Jakobsen E, Westi EW, Lie MEK, Voss CM, Aldana BI, Schousboe A, Wellendorph P, Bak LK, Pinborg LH and Waagepetersen HS: Extensive astrocyte metabolism of γ-aminobutyric acid (GABA) sustains glutamine synthesis in the mammalian cerebral cortex. Glia. 68:2601–2612. 2020. View Article : Google Scholar : PubMed/NCBI | |
Kwak H, Koh W, Kim S, Song K, Shin JI, Lee JM, Lee EH, Bae JY, Ha GE, Oh JE, et al: Astrocytes control sensory acuity via tonic inhibition in the thalamus. Neuron. 108:691–706.e10. 2020. View Article : Google Scholar : PubMed/NCBI | |
Qureshi T, Bjørkmo M, Nordengen K, Gundersen V, Utheim TP, Watne LO, Storm-Mathisen J, Hassel B and Chaudhry FA: Slc38a1 conveys astroglia-derived glutamine into GABAergic interneurons for neurotransmitter GABA synthesis. Cells. 9:16862020. View Article : Google Scholar : PubMed/NCBI | |
Ceyzériat K, Abjean L, Carrillo-de Sauvage MA, Ben Haim L and Escartin C: The complex STATes of astrocyte reactivity: How are they controlled by the JAK-STAT3 pathway? Neuroscience. 330:205–218. 2016. View Article : Google Scholar : PubMed/NCBI | |
Rakers C, Schleif M, Blank N, Matušková H, Ulas T, Händler K, Torres SV, Schumacher T, Tai K, Schultze JL, et al: Stroke target identification guided by astrocyte transcriptome analysis. Glia. 67:619–633. 2019. View Article : Google Scholar | |
Borbor M, Yin D, Brockmeier U, Wang C, Doeckel M, Pillath-Eilers M, Kaltwasser B, Hermann DM and Dzyubenko E: Neurotoxicity of ischemic astrocytes involves STAT3-mediated metabolic switching and depends on glycogen usage. Glia. 71:1553–1569. 2023. View Article : Google Scholar : PubMed/NCBI | |
Wu M, Wang L, Li F, Hu R, Ma J, Zhang K and Cheng X: Resveratrol downregulates STAT3 expression and astrocyte activation in primary astrocyte cultures of rat. Neurochem Res. 45:455–464. 2020. View Article : Google Scholar | |
Koutsifeli P, Varma U, Daniels LJ, Annandale M, Li X, Neale JPH, Hayes S, Weeks KL, James S, Delbridge LMD and Mellor KM: Glycogen-autophagy: Molecular machinery and cellular mechanisms of glycophagy. J Biol Chem. 298:1020932022. View Article : Google Scholar : PubMed/NCBI | |
Heden TD, Chow LS, Hughey CC and Mashek DG: Regulation and role of glycophagy in skeletal muscle energy metabolism. Autophagy. 18:1078–1089. 2022. View Article : Google Scholar : | |
Mayeuf-Louchart A, Lancel S, Sebti Y, Pourcet B, Loyens A, Delhaye S, Duhem C, Beauchamp J, Ferri L, Thorel Q, et al: Glycogen dynamics drives lipid droplet biogenesis during brown adipocyte differentiation. Cell Rep. 29:1410–1418.e6. 2019. View Article : Google Scholar : PubMed/NCBI | |
Guo H, Li Y, Wang S, Yang Y, Xu T, Zhao J, Wang J, Zuo W, Wang P, Zhao G, et al: Dysfunction of astrocytic glycophagy exacerbates reperfusion injury in ischemic stroke. Redox Biol. 74:1032342024. View Article : Google Scholar : PubMed/NCBI | |
Powers WJ, Rabinstein AA, Ackerson T, Adeoye OM, Bambakidis NC, Becker K, Biller J, Brown M, Demaerschalk BM, Hoh B, et al: Guidelines for the early management of patients with acute ischemic stroke: 2019 Update to the 2018 guidelines for the early management of acute ischemic stroke: A guideline for healthcare professionals from the american heart association/american stroke association. Stroke. 50:e344–e418. 2019. View Article : Google Scholar | |
Guo H, Fan Z, Wang S, Ma L, Wang J, Yu D, Zhang Z, Wu L, Peng Z, Liu W, et al: Astrocytic A1/A2 paradigm participates in glycogen mobilization mediated neuroprotection on reperfusion injury after ischemic stroke. J Neuroinflammation. 18:2302021. View Article : Google Scholar : PubMed/NCBI | |
Geng J, Zhang Y, Li S, Li S, Wang J, Wang H, Aa J and Wang G: Metabolomic profiling reveals that reprogramming of cerebral glucose metabolism is involved in ischemic preconditioning-induced neuroprotection in a rodent model of ischemic stroke. J Proteome Res. 18:57–68. 2019. | |
Huang XX, Li L, Jiang RH, Yu JB, Sun YQ, Shan J, Yang J, Ji J, Cheng SQ, Dong YF, et al: Lipidomic analysis identifies long-chain acylcarnitine as a target for ischemic stroke. J Adv Res. 61:133–149. 2024. View Article : Google Scholar : | |
Cao J, Dong L, Luo J, Zeng F, Hong Z, Liu Y, Zhao Y, Xia Z, Zuo D, Xu L and Tao T: Supplemental N-3 polyunsaturated fatty acids limit A1-specific astrocyte polarization via attenuating mitochondrial dysfunction in ischemic stroke in mice. Oxid Med Cell Longev. 2021:55247052021. View Article : Google Scholar : PubMed/NCBI | |
Neal M, Luo J, Harischandra DS, Gordon R, Sarkar S, Jin H, Anantharam V, Désaubry L and Kanthasamy A and Kanthasamy A: Prokineticin-2 promotes chemotaxis and alternative A2 reactivity of astrocytes. Glia. 66:2137–2157. 2018. View Article : Google Scholar : PubMed/NCBI | |
Pang QM, Zhang Q, Wu XC, Yang RL, Fu SP, Fan ZH, Liu J, Yu LM, Peng JC and Zhang T: Mechanism of M2 macrophages modulating astrocyte polarization through the TGF-β/PI3K/Akt pathway. Immunol Lett. 259:1–8. 2023. View Article : Google Scholar : PubMed/NCBI | |
Chistyakov DV, Gavrish GE, Goriainov SV, Chistyakov VV, Astakhova AA, Azbukina NV and Sergeeva MG: Oxylipin profiles as functional characteristics of acute inflammatory responses in astrocytes pre-treated with IL-4, IL-10, or LPS. Int J Mol Sci. 21:17802020. View Article : Google Scholar : PubMed/NCBI | |
Shiow LR, Favrais G, Schirmer L, Schang AL, Cipriani S, Andres C, Wright JN, Nobuta H, Fleiss B, Gressens P and Rowitch DH: Reactive astrocyte COX2-PGE2 production inhibits oligodendrocyte maturation in neonatal white matter injury. Glia. 65:2024–2037. 2017. View Article : Google Scholar : PubMed/NCBI | |
Liu M, Xu Z, Wang L, Zhang L, Liu Y, Cao J, Fu Q, Liu Y, Li H, Lou J, et al: Cottonseed oil alleviates ischemic stroke injury by inhibiting the inflammatory activation of microglia and astrocyte. J Neuroinflammation. 17:2702020. View Article : Google Scholar : PubMed/NCBI | |
Zhang L, Zhao G, Luo Z, Yu Z, Liu G, Su G, Tang X, Yuan Z, Huang C, Sun HS, et al: AD16 attenuates neuroinflammation induced by cerebral ischemia through down-regulating astrocytes A1 polarization. Biomed Pharmacother. 178:1172092024. View Article : Google Scholar : PubMed/NCBI | |
Zou Y, Pei J, Wan C, Liu S, Hu B, Li Z and Tang Z: Mechanism of scutellarin inhibition of astrocyte activation to type A1 after ischemic stroke. J Stroke Cerebrovasc Dis. 33:1075342024. View Article : Google Scholar : PubMed/NCBI | |
Zhou M, Zhang T, Zhang X, Zhang M, Gao S, Zhang T, Li S, Cai X, Li J and Lin Y: Effect of tetrahedral framework nucleic acids on neurological recovery via ameliorating apoptosis and regulating the activation and polarization of astrocytes in ischemic stroke. ACS Appl Mater Interfaces. 14:37478–37492. 2022. View Article : Google Scholar : PubMed/NCBI | |
Liu R, Yu Y, Ge Q, Feng R, Zhong G, Luo L, Han Z, Wang T, Huang C, Xue J and Huang Z: Genistein-3′-sodium sulfonate promotes brain functional rehabilitation in ischemic stroke rats by regulating astrocytes polarization through NF-κB signaling pathway. Chem Biol Interact. 400:1111592024. View Article : Google Scholar | |
Chen Z, Li T, Tang HB, Lu ZW, Chen ZY, Zhao ZH, Yang XL, Zhao LL, Dang MJ, Li Y, et al: Edaravone Dexborneol provides neuroprotective effect by inhibiting neurotoxic activation of astrocytes through inhibiting NF-κB signaling in cortical ischemia. Brain Res Bull. 218:1110972024. View Article : Google Scholar | |
Li MC, Li MZ, Lin ZY, Zhuang YM, Wang HY, Jia JT, Lu Y, Wang ZJ, Zou HY and Zhao H: Buyang Huanwu Decoction promotes neurovascular remodeling by modulating astrocyte and microglia polarization in ischemic stroke rats. J Ethnopharmacol. 323:1176202024. View Article : Google Scholar | |
Xia X, Chen J, Ren H, Zhou C, Zhang Q, Cheng H and Wang X: Gypenoside pretreatment alleviates the cerebral ischemia injury via inhibiting the microglia-mediated neuroinflammation. Mol Neurobiol. 61:1140–1156. 2024. View Article : Google Scholar |