You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
|
Sanger HL, Klotz G, Riesner D, Gross HJ and Kleinschmidt AK: Viroids are single-stranded covalently closed circular RNA molecules existing as highly base-paired rod-like structures. Proc Natl Acad Sci USA. 73:3852–3856. 1976. View Article : Google Scholar : PubMed/NCBI |
|
|
Hsu MT and Coca-Prados M: Electron microscopic evidence for the circular form of RNA in the cytoplasm of eukaryotic cells. Nature. 280:339–340. 1979. View Article : Google Scholar : PubMed/NCBI |
|
|
Memczak S, Jens M, Elefsinioti A, Torti F, Krueger J, Rybak A, Maier L, Mackowiak SD, Gregersen LH, Munschauer M, et al: Circular RNAs are a large class of animal RNAs with regulatory potency. Nature. 495:333–338. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Jeck WR, Sorrentino JA, Wang K, Slevin MK, Burd CE, Liu J, Marzluff WF and Sharpless NE: Circular RNAs are abundant, conserved, and associated with ALU repeats. RNA. 19:141–157. 2013. View Article : Google Scholar : |
|
|
Kelly S, Greenman C, Cook PR and Papantonis A: Exon skipping is correlated with exon circularization. J Mol Biol. 427:2414–2417. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Kristensen LS, Andersen MS, Stagsted LVW, Ebbesen KK, Hansen TB and Kjems J: The biogenesis, biology and characterization of circular RNAs. Nat Rev Genet. 20:675–691. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Schmidt CA, Giusto JD, Bao A, Hopper AK and Matera AG: Molecular determinants of metazoan tricRNA biogenesis. Nucleic Acids Res. 47:6452–6465. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Su M, Xiao Y, Ma J, Tang Y, Tian B, Zhang Y, Li X, Wu Z, Yang D, Zhou Y, et al: Circular RNAs in cancer: Emerging functions in hallmarks, stemness, resistance and roles as potential biomarkers. Mol Cancer. 18:902019. View Article : Google Scholar : PubMed/NCBI |
|
|
Jeck WR and Sharpless NE: Detecting and characterizing circular RNAs. Nat Biotechnol. 32:453–461. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Suzuki H and Tsukahara T: A view of pre-mRNA splicing from RNase R resistant RNAs. Int J Mol Sci. 15:9331–9342. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Glažar P, Papavasileiou P and Rajewsky N: circBase: A database for circular RNAs. RNA. 20:1666–1670. 2014. View Article : Google Scholar |
|
|
Xia S, Feng J, Lei L, Hu J, Xia L, Wang J, Xiang Y, Liu L, Zhong S, Han L and He C: Comprehensive characterization of tissue-specific circular RNAs in the human and mouse genomes. Brief Bioinform. 18:984–992. 2017. |
|
|
Guo JU, Agarwal V, Guo H and Bartel DP: Expanded identification and characterization of mammalian circular RNAs. Genome Biol. 15:4092014. View Article : Google Scholar : PubMed/NCBI |
|
|
Salzman J, Chen RE, Olsen MN, Wang PL and Brown PO: Cell-type specific features of circular RNA expression. PLoS Genet. 9:e10037772013. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang M, Wu J, Wu P and Li Y: Emerging roles of circular RNAs in stem cells. Genes Dis. 10:1920–1936. 2023. View Article : Google Scholar : |
|
|
Reya T, Morrison SJ, Clarke MF and Weissman IL: Stem cells, cancer, and cancer stem cells. Nature. 414:105–111. 2001. View Article : Google Scholar : PubMed/NCBI |
|
|
Lapidot T, Sirard C, Vormoor J, Murdoch B, Hoang T, Caceres-Cortes J, Minden M, Paterson B, Caligiuri MA and Dick JE: A cell initiating human acute myeloid leukaemia after transplantation into SCID mice. Nature. 367:645–648. 1994. View Article : Google Scholar : PubMed/NCBI |
|
|
Takebe N, Harris PJ, Warren RQ and Ivy SP: Targeting cancer stem cells by inhibiting Wnt, Notch, and Hedgehog pathways. Nat Rev Clin Oncol. 8:97–106. 2011. View Article : Google Scholar |
|
|
Pattabiraman DR and Weinberg RA: Tackling the cancer stem cells-what challenges do they pose? Nat Rev Drug Discov. 13:497–512. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Espinoza I and Miele L: Deadly crosstalk: Notch signaling at the intersection of EMT and cancer stem cells. Cancer Lett. 341:41–45. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Yang L, Shi P, Zhao G, Xu J, Peng W, Zhang J, Zhang G, Wang X, Dong Z, Chen F and Cui H: Targeting cancer stem cell pathways for cancer therapy. Signal Transduct Target Ther. 5:82020. View Article : Google Scholar : PubMed/NCBI |
|
|
Cojoc M, Mäbert K, Muders MH and Dubrovska A: A role for cancer stem cells in therapy resistance: Cellular and molecular mechanisms. Semin Cancer Biol. 31:16–27. 2015. View Article : Google Scholar |
|
|
Huntly BJ and Gilliland DG: Leukaemia stem cells and the evolution of cancer-stem-cell research. Nat Rev Cancer. 5:311–321. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Chaffer CL and Weinberg RA: A perspective on cancer cell metastasis. Science. 331:1559–1564. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Steeg PS: Tumor metastasis: Mechanistic insights and clinical challenges. Nat Med. 12:895–904. 2006. View Article : Google Scholar : PubMed/NCBI |
|
|
Bao Q, Zhao Y, Renner A, Niess H, Seeliger H, Jauch KW and Bruns CJ: Cancer stem cells in pancreatic cancer. Cancers (Basel). 2:1629–1641. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Velasco-Velazquez MA, Popov VM, Lisanti MP and Pestell RG: The role of breast cancer stem cells in metastasis and therapeutic implications. Am J Pathol. 179:2–11. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Verma P, Shukla N, Kumari S, Ansari MS, Gautam NK and Patel GK: Cancer stem cell in prostate cancer progression, metastasis and therapy resistance. Biochim Biophys Acta Rev Cancer. 1878:1888872023. View Article : Google Scholar : PubMed/NCBI |
|
|
Mei X, Chen YS, Chen FR, Xi SY and Chen ZP: Glioblastoma stem cell differentiation into endothelial cells evidenced through live-cell imaging. Neuro Oncol. 19:1109–1118. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Tang KH, Ma S, Lee TK, Chan YP, Kwan PS, Tong CM, Ng IO, Man K, To KF, Lai PB, et al: CD133(+) liver tumor-initiating cells promote tumor angiogenesis, growth, and self-renewal through neurotensin/interleukin-8/CXCL1 signaling. Hepatology. 55:807–820. 2012. View Article : Google Scholar |
|
|
Bussolati B, Bruno S, Grange C, Ferrando U and Camussi G: Identification of a tumor-initiating stem cell population in human renal carcinomas. FASEB J. 22:3696–3705. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Diehn M, Cho RW, Lobo NA, Kalisky T, Dorie MJ, Kulp AN, Qian D, Lam JS, Ailles LE, Wong M, et al: Association of reactive oxygen species levels and radioresistance in cancer stem cells. Nature. 458:780–783. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Raha D, Wilson TR, Peng J, Peterson D, Yue P, Evangelista M, Wilson C, Merchant M and Settleman J: The cancer stem cell marker aldehyde dehydrogenase is required to maintain a drug-tolerant tumor cell subpopulation. Cancer Res. 74:3579–3590. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Meng E, Mitra A, Tripathi K, Finan MA, Scalici J, McClellan S, Madeira da Silva L, Reed E, Shevde LA, Palle K and Rocconi RP: ALDH1A1 maintains ovarian cancer stem cell-like properties by altered regulation of cell cycle checkpoint and DNA repair network signaling. PLoS One. 9:e1071422014. View Article : Google Scholar : PubMed/NCBI |
|
|
Ishizawa K, Rasheed ZA, Karisch R, Wang Q, Kowalski J, Susky E, Pereira K, Karamboulas C, Moghal N, Rajeshkumar NV, et al: Tumor-initiating cells are rare in many human tumors. Cell Stem Cell. 7:279–282. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Svensson A, Engervall P, Söderstrom T and Hansson M: PBSC harvests individually optimized by using pre-collection CD34(+) values and on-line flow cytometric analysis of the mononuclear cell enrichment. Cytotherapy. 1:165–174. 1999. View Article : Google Scholar |
|
|
Miltenyi S, Müller W, Weichel W and Radbruch A: High gradient magnetic cell separation with MACS. Cytometry. 11:231–238. 1990. View Article : Google Scholar : PubMed/NCBI |
|
|
Bonnet D and Dick JE: Human acute myeloid leukemia is organized as a hierarchy that originates from a primitive hematopoietic cell. Nat Med. 3:730–737. 1997. View Article : Google Scholar : PubMed/NCBI |
|
|
Greve B, Kelsch R, Spaniol K, Eich HT and Götte M: Flow cytometry in cancer stem cell analysis and separation. Cytometry A. 81:284–293. 2012. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu L and Borlak J: Advances in liver cancer stem cell isolation and their characterization. Stem Cell Rev Rep. 17:1215–1238. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang DG, Jiang AG, Lu HY, Zhang LX and Gao XY: Isolation, cultivation and identification of human lung adenocarcinoma stem cells. Oncol Lett. 9:47–54. 2015. View Article : Google Scholar |
|
|
Goodell MA, Brose K, Paradis G, Conner AS and Mulligan RC: Isolation and functional properties of murine hematopoietic stem cells that are replicating in vivo. J Exp Med. 183:1797–1806. 1996. View Article : Google Scholar : PubMed/NCBI |
|
|
Boesch M, Zeimet AG, Reimer D, Schmidt S, Gastl G, Parson W, Spoeck F, Hatina J, Wolf D and Sopper S: The side population of ovarian cancer cells defines a heterogeneous compartment exhibiting stem cell characteristics. Oncotarget. 5:7027–7039. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Feng L, Wu JB and Yi FM: Isolation and phenotypic characterization of cancer stem-like side population cells in colon cancer. Mol Med Rep. 12:3531–3536. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Li R, Wu X, Wei H and Tian S: Characterization of side population cells isolated from the gastric cancer cell line SGC-7901. Oncol Lett. 5:877–883. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Ho MM, Ng AV, Lam S and Hung JY: Side population in human lung cancer cell lines and tumors is enriched with stem-like cancer cells. Cancer Res. 67:4827–4833. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
Ai J, Tan G, Li W, Liu H, Li T, Zhang G, Zhou Z and Gan Y: Exosomes loaded with circPARD3 promotes EBV-miR-BART4-induced stemness and cisplatin resistance in nasopharyngeal carcinoma side population cells through the miR-579-3p/SIRT1/SSRP1 axis. Cell Biol Toxicol. 39:537–556. 2023. View Article : Google Scholar |
|
|
Nimmakayala RK, Leon F, Rachagani S, Rauth S, Nallasamy P, Marimuthu S, Shailendra GK, Chhonker YS, Chugh S, Chirravuri R, et al: Metabolic programming of distinct cancer stem cells promotes metastasis of pancreatic ductal adenocarcinoma. Oncogene. 40:215–231. 2021. View Article : Google Scholar |
|
|
Fang D, Nguyen TK, Leishear K, Finko R, Kulp AN, Hotz S, Van Belle PA, Xu X, Elder DE and Herlyn M: A tumorigenic subpopulation with stem cell properties in melanomas. Cancer Res. 65:9328–9337. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Lobo NA, Shimono Y, Qian D and Clarke MF: The biology of cancer stem cells. Annu Rev Cell Dev Biol. 23:675–699. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
Taylor MD, Poppleton H, Fuller C, Su X, Liu Y, Jensen P, Magdaleno S, Dalton J, Calabrese C, Board J, et al: Radial glia cells are candidate stem cells of ependymoma. Cancer Cell. 8:323–335. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Waldron NN, Kaufman DS, Oh S, Inde Z, Hexum MK, Ohlfest JR and Vallera DA: Targeting tumor-initiating cancer cells with dCD133KDEL shows impressive tumor reductions in a xenotransplant model of human head and neck cancer. Mol Cancer Ther. 10:1829–1838. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Son MJ, Ryu JS, Kim JY, Kwon Y, Chung KS, Mun SJ and Cho YS: Upregulation of mitochondrial NAD+ levels impairs the clonogenicity of SSEA1+ glioblastoma tumor-initiating cells. Exp Mol Med. 49:e3442017. View Article : Google Scholar |
|
|
Xu J, Zhang G, Hu J, Li H, Zhao J, Zong S, Guo Z, Jiang Y and Jing Z: UPF1/circRPPH1/ATF3 feedback loop promotes the malignant phenotype and stemness of GSCs. Cell Death Dis. 13:6452022. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen L, Kong R, Wu C, Wang S, Liu Z and Liu S, Li S, Chen T, Mao C and Liu S: Circ-MALAT1 functions as both an mRNA Translation brake and a microRNA sponge to promote self-renewal of hepatocellular cancer stem cells. Adv Sci (Weinh). 7:19009492020. View Article : Google Scholar : PubMed/NCBI |
|
|
Calcagno AM, Salcido CD, Gillet JP, Wu CP, Fostel JM, Mumau MD, Gottesman MM, Varticovski L and Ambudkar SV: Prolonged drug selection of breast cancer cells and enrichment of cancer stem cell characteristics. J Natl Cancer Inst. 102:1637–1652. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Ma L, Lai D, Liu T, Cheng W and Guo L: Cancer stem-like cells can be isolated with drug selection in human ovarian cancer cell line SKOV3. Acta Biochim Biophys Sin (Shanghai). 42:593–602. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Nicot C: RNA-seq reveals novel CircRNAs involved in breast cancer progression and patient therapy response. Mol Cancer. 19:762020. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang C, Tan S, Liu WR, Lei Q, Qiao W, Wu Y, Liu X, Cheng W, Wei YQ, Peng Y and Li W: RNA-Seq profiling of circular RNA in human lung adenocarcinoma and squamous cell carcinoma. Mol Cancer. 18:1342019. View Article : Google Scholar : PubMed/NCBI |
|
|
Szabo L and Salzman J: Detecting circular RNAs: Bioinformatic and experimental challenges. Nat Rev Genet. 17:679–692. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Li S, Teng S, Xu J, Su G, Zhang Y, Zhao J, Zhang S, Wang H, Qin W, Lu ZJ, et al: Microarray is an efficient tool for circRNA profiling. Brief Bioinform. 20:1420–1433. 2019. View Article : Google Scholar |
|
|
Shi Y and Shang J: Circular RNA Expression Profiling by Microarray-A technical and practical perspective. Biomolecules. 13:6792023. View Article : Google Scholar : PubMed/NCBI |
|
|
Wu W, Zhao F and Zhang J: circAtlas 3.0: A gateway to 3 million curated vertebrate circular RNAs based on a standardized nomenclature scheme. Nucleic Acids Res. 52:D52–D60. 2024. View Article : Google Scholar |
|
|
Dong R, Ma XK, Li GW and Yang L: CIRCpedia v2: An updated database for comprehensive circular RNA annotation and expression comparison. Genomics Proteomics Bioinformatics. 16:226–233. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Vo JN, Cieslik M, Zhang Y, Shukla S, Xiao L, Zhang Y, Wu YM, Dhanasekaran SM, Engelke CG, Cao X, et al: The landscape of circular RNA in cancer. Cell. 176:869–881.e13. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen X, Han P, Zhou T, Guo X, Song X and Li Y: circRNADb: A comprehensive database for human circular RNAs with protein-coding annotations. Sci Rep. 6:349852016. View Article : Google Scholar : PubMed/NCBI |
|
|
John B, Enright AJ, Aravin A, Tuschl T, Sander C and Marks DS: Human MicroRNA targets. PLoS Biol. 2:e3632004. View Article : Google Scholar : PubMed/NCBI |
|
|
Grimson A, Farh KK, Johnston WK, Garrett-Engele P, Lim LP and Bartel DP: MicroRNA targeting specificity in mammals: Determinants beyond seed pairing. Mol Cell. 27:91–105. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
Dudekula DB, Panda AC, Grammatikakis I, De S, Abdelmohsen K and Gorospe M: CircInteractome: A web tool for exploring circular RNAs and their interacting proteins and microRNAs. RNA Biol. 13:34–42. 2016. View Article : Google Scholar : |
|
|
Xia S, Feng J, Chen K, Ma Y, Gong J, Cai F, Jin Y, Gao Y, Xia L, Chang H, et al: CSCD: A database for cancer-specific circular RNAs. Nucleic Acids Res. 46:D925–D929. 2018. View Article : Google Scholar : |
|
|
Vromman M, Vandesompele J and Volders PJ: Closing the circle: Current state and perspectives of circular RNA databases. Brief Bioinform. 22:288–297. 2021. View Article : Google Scholar : |
|
|
Gao Y, Wang J and Zhao F: CIRI: An efficient and unbiased algorithm for de novo circular RNA identification. Genome Biol. 16:42015. View Article : Google Scholar : PubMed/NCBI |
|
|
Ma XK, Wang MR, Liu CX, Dong R, Carmichael GG, Chen LL and Yang L: CIRCexplorer3: A CLEAR pipeline for direct comparison of circular and linear RNA expression. Genomics Proteomics Bioinformatics. 17:511–521. 2019. View Article : Google Scholar |
|
|
Wang K, Singh D, Zeng Z, Coleman SJ, Huang Y, Savich GL, He X, Mieczkowski P, Grimm SA, Perou CM, et al: MapSplice: Accurate mapping of RNA-seq reads for splice junction discovery. Nucleic Acids Res. 38:e1782010. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang J, Chen S, Yang J and Zhao F: Accurate quantification of circular RNAs identifies extensive circular isoform switching events. Nat Commun. 11:902020. View Article : Google Scholar : PubMed/NCBI |
|
|
Chuang TJ, Wu CS, Chen CY, Hung LY, Chiang TW and Yang MY: NCLscan: Accurate identification of non-co-linear transcripts (fusion, trans-splicing and circular RNA) with a good balance between sensitivity and precision. Nucleic Acids Res. 44:e292016. View Article : Google Scholar : |
|
|
Cheng J, Metge F and Dieterich C: Specific identification and quantification of circular RNAs from sequencing data. Bioinformatics. 32:1094–1096. 2016. View Article : Google Scholar |
|
|
Hansen TB, Venø MT, Damgaard CK and Kjems J: Comparison of circular RNA prediction tools. Nucleic Acids Res. 44:e582016. View Article : Google Scholar : |
|
|
Zhu YJ, Zheng B, Luo GJ, Ma XK, Lu XY, Lin XM, Yang S, Zhao Q, Wu T, Li ZX, et al: Circular RNAs negatively regulate cancer stem cells by physically binding FMRP against CCAR1 complex in hepatocellular carcinoma. Theranostics. 9:3526–3540. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Yamashita T, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E, et al: EpCAM-positive hepatocellular carcinoma cells are tumor-initiating cells with stem/progenitor cell features. Gastroenterology. 136:1012–1024. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Yan N, Ji J, Budhu A, Forgues M, Yang W, Wang HY, Jia H, Ye Q, Qin LX, Wauthier E, et al: Circular RNA profile indicates circular RNA VRK1 is negatively related with breast cancer stem cells. Oncotarget. 8:95704–95718. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Rengganaten V, Huang CJ, Tsai PH, Wang ML, Yang YP, Lan YT, Fang WL, Soo S, Ong HT, Cheong SK, et al: Mapping a circular RNA-microRNA-mRNA-signaling regulatory axis that modulates stemness properties of cancer stem cell populations in colorectal cancer spheroid cells. Int J Mol Sci. 21:78642020. View Article : Google Scholar : PubMed/NCBI |
|
|
Sohn EJ: Differentially expression and function of circular RNAs in ovarian cancer stem cells. J Ovarian Res. 15:972022. View Article : Google Scholar : PubMed/NCBI |
|
|
Tao T, Yuan S, Liu J, Shi D, Peng M, Li C and Wu S: Cancer stem cell-specific expression profiles reveal emerging bladder cancer biomarkers and identify circRNA_103809 as an important regulator in bladder cancer. Aging (Albany NY). 12:3354–3370. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Hansen TB, Jensen TI, Clausen BH, Bramsen JB, Finsen B, Damgaard CK and Kjems J: Natural RNA circles function as efficient microRNA sponges. Nature. 495:384–388. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Du WW, Yang W, Liu E, Yang Z, Dhaliwal P and Yang BB: Foxo3 circular RNA retards cell cycle progression via forming ternary complexes with p21 and CDK2. Nucleic Acids Res. 44:2846–2858. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Zeng Y, Du WW, Wu Y, Yang Z, Awan FM, Li X, Yang W, Zhang C, Yang Q, Yee A, et al: A circular RNA binds to and activates AKT phosphorylation and nuclear localization reducing apoptosis and enhancing cardiac repair. Theranostics. 7:3842–3855. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen Q, Wang H, Li Z, Li F, Liang L, Zou Y, Shen H, Li J, Xia Y, Cheng Z, et al: Circular RNA ACTN4 promotes intrahepatic cholangiocarcinoma progression by recruiting YBX1 to initiate FZD7 transcription. J Hepatol. 76:135–147. 2022. View Article : Google Scholar |
|
|
Ashwal-Fluss R, Meyer M, Pamudurti NR, Ivanov A, Bartok O, Hanan M, Evantal N, Memczak S, Rajewsky N and Kadener S: circRNA biogenesis competes with pre-mRNA splicing. Mol Cell. 56:55–66. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang L, Long H, Zheng Q, Bo X, Xiao X and Li B: Circular RNA circRHOT1 promotes hepatocellular carcinoma progression by initiation of NR2F6 expression. Mol Cancer. 18:1192019. View Article : Google Scholar : PubMed/NCBI |
|
|
Wen SY, Qadir J and Yang BB: Circular RNA translation: Novel protein isoforms and clinical significance. Trends Mol Med. 28:405–420. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Lapointe S, Perry A and Butowski NA: Primary brain tumours in adults. Lancet. 392:432–446. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Brescia P, Ortensi B, Fornasari L, Levi D, Broggi G and Elicci G: CD133 is essential for glioblastoma stem cell maintenance. Stem Cells. 31:857–869. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang J, Cai H, Sun L, Zhan P, Chen M, Zhang F, Ran Y and Wan J: LGR5, a novel functional glioma stem cell marker, promotes EMT by activating the Wnt/β-catenin pathway and predicts poor survival of glioma patients. J Exp Clin Cancer Res. 37:2252018. View Article : Google Scholar |
|
|
Sun J, Li B, Shu C, Ma Q and Wang J: Functions and clinical significance of circular RNAs in glioma. Mol Cancer. 19:342020. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen J, Chen T, Zhu Y, Li Y, Zhang Y, Wang Y, Li X, Xie X, Wang J, Huang M, et al: circPTN sponges miR-145-5p/miR-330-5p to promote proliferation and stemness in glioma. J Exp Clin Cancer Res. 38:3982019. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhou J, Wang C, Liu Y, Cui D, Wang Z, Jiang Y and Gao L: Circular RNA circPTPRF promotes the progression of GBM via sponging miR-1208 to up-regulate YY1. Cancer Cell Int. 22:3592022. View Article : Google Scholar : PubMed/NCBI |
|
|
Luo K, Liu A, Wu H, Liu Q, Dai J, Liu Y and Wang Z: CircKIF4A promotes glioma growth and temozolomide resistance by accelerating glycolysis. Cell Death Dis. 13:7402022. View Article : Google Scholar : PubMed/NCBI |
|
|
Huo LW, Wang YF, Bai XB, Zheng HL and Wang MD: circKIF4A promotes tumorogenesis of glioma by targeting miR-139-3p to activate Wnt5a signaling. Mol Med. 26:292020. View Article : Google Scholar : PubMed/NCBI |
|
|
Jiang Y, Wang Z, Ying C, Hu J, Zeng T and Gao L: FMR1/circCHAF1A/miR-211-5p/HOXC8 feedback loop regulates proliferation and tumorigenesis via MDM2-dependent p53 signaling in GSCs. Oncogene. 40:4094–4110. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhao J, Jiang Y, Zhang H, Zhou J, Chen L, Li H, Xu J, Zhang G and Jing Z: The SRSF1/circATP5B/miR-185-5p/HOXB5 feedback loop regulates the proliferation of glioma stem cells via the IL6-mediated JAK2/STAT3 signaling pathway. J Exp Clin Cancer Res. 40:1342021. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang Y, Wang B, Zhou F, Lv K, Xu X and Cao W: CircNDC80 promotes glioblastoma multiforme tumorigenesis via the miR-139-5p/ECE1 pathway. J Transl Med. 21:222023. View Article : Google Scholar : PubMed/NCBI |
|
|
Hou D, Wang Z, Li H, Liu J, Liu Y, Jiang Y and Lou M: Circular RNA circASPM promotes the progression of glioblastoma by acting as a competing endogenous RNA to regulate miR-130b-3p/E2F1 axis. J Cancer. 13:1664–1678. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Jiang Y, Zhao J, Liu Y, Hu J, Gao L, Wang H and Cui D: CircKPNB1 mediates a positive feedback loop and promotes the malignant phenotypes of GSCs via TNF-α/NF-kappaB signaling. Cell Death Dis. 13:6972022. View Article : Google Scholar |
|
|
Xu G, Qu J, Zhang M and Wang Q: C-Fos-activated circRPPH1 contributes to glioma stemness. Clin Transl Oncol. 25:1277–1286. 2023. View Article : Google Scholar |
|
|
Li H, Jiang Y, Hu J, Xu J, Chen L, Zhang G, Zhao J, Zong S, Guo Z, Li X, et al: The U2AF65/circNCAPG/RREB1 feedback loop promotes malignant phenotypes of glioma stem cells through activating the TGF-beta pathway. Cell Death Dis. 14:232023. View Article : Google Scholar |
|
|
Liu ZL, Chen HH, Zheng LL, Sun LP and Shi L: Angiogenic signaling pathways and anti-angiogenic therapy for cancer. Signal Transduct Target Ther. 8:1982023. View Article : Google Scholar : PubMed/NCBI |
|
|
Ahir BK, Engelhard HH and Lakka SS: Tumor development and angiogenesis in adult brain tumor: Glioblastoma. Mol Neurobiol. 57:2461–2478. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Tischer E, Gospodarowicz D, Mitchell R, Silva M, Schilling J, Lau K, Crisp T, Fiddes JC and Abraham JA: Vascular endothelial growth factor: A new member of the platelet-derived growth factor gene family. Biochem Biophys Res Commun. 165:1198–206. 1989. View Article : Google Scholar : PubMed/NCBI |
|
|
Kurihara T, Westenskow PD and Friedlander M: Hypoxia-inducible factor (HIF)/vascular endothelial growth factor (VEGF) signaling in the retina. Adv Exp Med Biol. 801:275–281. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Segawa H, Miyashita T, Hirate Y, Higashijima S, Chino N, Uyemura K, Kikuchi Y and Okamoto H: Functional repression of Islet-2 by disruption of complex with Ldb impairs peripheral axonal outgrowth in embryonic zebrafish. Neuron. 30:423–436. 2001. View Article : Google Scholar : PubMed/NCBI |
|
|
Jiang Y, Zhou J, Zhao J, Zhang H, Li L, Li H, Chen L, Hu J, Zheng W and Jing Z: The U2AF2/circRNA ARF1/miR-342-3p/ISL2 feedback loop regulates angiogenesis in glioma stem cells. J Exp Clin Cancer Res. 39:1822020. View Article : Google Scholar |
|
|
Jiang X, Stockwell BR and Conrad M: Ferroptosis: Mechanisms, biology and role in disease. Nat Rev Mol Cell Biol. 22:266–282. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Jiang Y, Zhao J, Li R, Liu Y, Zhou L, Wang C, Lv C, Gao L and Cui D: CircLRFN5 inhibits the progression of glioblastoma via PRRX2/GCH1 mediated ferroptosis. J Exp Clin Cancer Res. 41:3072022. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang C, Zhang M, Liu Y, Cui D, Gao L and Jiang Y: CircRNF10 triggers a positive feedback loop to facilitate progression of glioblastoma via redeploying the ferroptosis defense in GSCs. J Exp Clin Cancer Res. 42:2422023. View Article : Google Scholar : PubMed/NCBI |
|
|
Marquardt JU, Andersen JB and Thorgeirsson SS: Functional and genetic deconstruction of the cellular origin in liver cancer. Nat Rev Cancer. 15:653–667. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Sun JH, Luo Q, Liu LL and Song GB: Liver cancer stem cell markers: Progression and therapeutic implications. World J Gastroenterol. 22:3547–3557. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Weinberg AG and Finegold MJ: Primary hepatic tumors of childhood. Hum Pathol. 14:512–537. 1983. View Article : Google Scholar : PubMed/NCBI |
|
|
Fiegel HC, Glüer S, Roth B, Rischewski J, von Schweinitz D, Ure B, Lambrecht W and Kluth D: Stem-like cells in human hepatoblastoma. J Histochem Cytochem. 52:1495–501. 2004. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen J, Yang J, Fei X, Wang X and Wang K: CircRNA ciRS-7: A novel oncogene in multiple cancers. Int J Biol Sci. 17:379–389. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen L, Shi J, Wu Y, Qiu R, Zeng L, Lou L, Su J, Liao M and Deng X: CircRNA CDR1as promotes hepatoblastoma proliferation and stemness by acting as a miR-7-5p sponge to upregulate KLF4 expression. Aging (Albany NY). 12:19233–19253. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Forner A, Reig M and Bruix J: Hepatocellular carcinoma. Lancet. 391:1301–1314. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Yao Z, Luo J, Hu K, Lin J, Huang H, Wang Q, Zhang P, Xiong Z, He C, Huang Z, et al: ZKSCAN1 gene and its related circular RNA (circZKSCAN1) both inhibit hepatocellular carcinoma cell growth, migration, and invasion but through different signaling pathways. Mol Oncol. 11:422–437. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Jiang X, Xing L, Chen Y, Qin R, Song S, Lu Y, Xie S, Wang L, Pu H, Gui X, et al: CircMEG3 inhibits telomerase activity by reducing Cbf5 in human liver cancer stem cells. Mol Ther Nucleic Acids. 23:310–323. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Ventham NT, Kennedy NA, Nimmo ER and Satsangi J: Beyond gene discovery in inflammatory bowel disease: The emerging role of epigenetics. Gastroenterology. 145:293–308. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu W, Li X, Chu ES, Go MY, Xu L, Zhao G, Li L, Dai N, Si J, Tao Q, et al: Paired box gene 5 is a novel tumor suppressor in hepatocellular carcinoma through interaction with p53 signaling pathway. Hepatology. 53:843–853. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Niewiadomski P, Niedziółka SM, Markiewicz Ł, Uśpieński T, Baran B and Chojnowska K: Gli proteins: Regulation in development and cancer. Cells. 8:1472019. View Article : Google Scholar : PubMed/NCBI |
|
|
Gu Y, Wang Y, He L, Zhang J, Zhu X, Liu N, Wang J, Lu T, He L, Tian Y and Fan Z: Circular RNA circIPO11 drives self-renewal of liver cancer initiating cells via Hedgehog signaling. Mol Cancer. 20:132021. View Article : Google Scholar |
|
|
Chen Z, Lu T, Huang L, Wang Z, Yan Z, Guan Y, Hu W, Fan Z and Zhu P: Circular RNA cia-MAF drives self-renewal and metastasis of liver tumor-initiating cells via transcription factor MAFF. J Clin Invest. 131:e1480202021. View Article : Google Scholar : PubMed/NCBI |
|
|
Vidal AF: Read-through circular RNAs reveal the plasticity of RNA processing mechanisms in human cells. RNA Biol. 17:1823–1826. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen Z, Huang L, Wang K, Zhang L, Zhong X, Yan Z, Liu B and Zhu P: rtcisE2F promotes the self-renewal and metastasis of liver tumor-initiating cells via N6-methyladenosine-dependent E2F3/E2F6 mRNA stability. Sci China Life Sci. 65:1840–1854. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu X, Wang X, Li J, Hu S, Deng Y, Yin H, Bao X, Zhang QC, Wang G, Wang B, et al: Identification of mecciRNAs and their roles in the mitochondrial entry of proteins. Sci China Life Sci. 63:1429–1449. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu X, Yang Y and Shan G: Identification and detection of mecciRNAs. Methods. 196:147–152. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen Z, He Q, Lu T, Wu J, Shi G, He L, Zong H, Liu B and Zhu P: mcPGK1-dependent mitochondrial import of PGK1 promotes metabolic reprogramming and self-renewal of liver TICs. Nat Commun. 14:11212023. View Article : Google Scholar : PubMed/NCBI |
|
|
Siegel RL, Miller KD, Wagle NS and Jemal A: Cancer statistics, 2023. CA Cancer J Clin. 73:17–48. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Giaquinto AN, Sung H, Miller KD, Kramer JL, Newman LA, Minihan A, Jemal A and Siegel RL: Breast cancer statistics, 2022. CA Cancer J Clin. 72:524–541. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang L, Chen W, Liu S and Chen C: Targeting breast cancer stem cells. Int J Biol Sci. 19:552–570. 2023. View Article : Google Scholar : PubMed/NCBI |
|
|
Ponti D, Costa A, Zaffaroni N, Pratesi G, Petrangolini G, Coradini D, Pilotti S, Pierotti MA and Daidone MG: Isolation and in vitro propagation of tumorigenic breast cancer cells with stem/progenitor cell properties. Cancer Res. 65:5506–5511. 2005. View Article : Google Scholar : PubMed/NCBI |
|
|
Wright MH, Calcagno AM, Salcido CD, Carlson MD, Ambudkar SV and Varticovski L: Brca1 breast tumors contain distinct CD44+/CD24- and CD133+ cells with cancer stem cell characteristics. Breast Cancer Res. 10:R102008. View Article : Google Scholar : PubMed/NCBI |
|
|
Li W, Yang X, Shi C and Zhou Z: Hsa_circ_002178 promotes the growth and migration of breast cancer cells and maintains cancer Stem-like cell properties through regulating miR-1258/KDM7A Axis. Cell Transplant. 29:9636897209601742020. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen W, Cen S, Zhou X, Yang T, Wu K, Zou L, Luo J, Li C, Lv D and Mao X: Circular RNA CircNOLC1, upregulated by NF-KappaB, promotes the progression of prostate cancer via miR-647/PAQR4 axis. Front Cell Dev Biol. 8:6247642020. View Article : Google Scholar |
|
|
Chen S, Wu W, Li QH, Xie BM, Shen F, Du YP, Zong ZH, Wang LL, Wei XQ and Zhao Y: Circ-NOLC1 promotes epithelial ovarian cancer tumorigenesis and progression by binding ESRP1 and modulating CDK1 and RhoA expression. Cell Death Discov. 7:222021. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu YP, Heng JY, Zhao XY and Li EY: The inhibition of circular RNA circNOLC1 by propofol/STAT3 attenuates breast cancer stem cells function via miR-365a-3p/STAT3 signaling. J Transl Med. 19:4672021. View Article : Google Scholar : PubMed/NCBI |
|
|
Du WW, Fang L, Yang W, Wu N, Awan FM, Yang Z and Yang BB: Induction of tumor apoptosis through a circular RNA enhancing Foxo3 activity. Cell Death Differ. 24:357–370. 2017. View Article : Google Scholar : |
|
|
Chen D, Zeng S, Qiu H, Yang M, Lin X, Lv X, Li P, Weng S, Kou S, Luo K, et al: Circ-FOXO3 inhibits triple-negative breast cancer growth and metastasis via regulating WHSC1-H3K36me2-Zeb2 axis. Cell Signal. 117:1110792024. View Article : Google Scholar : PubMed/NCBI |
|
|
Kamalabadi-Farahani M, Atashi A and Eslami MM: Downregulation of circ-Foxo3 in breast cancer stem-like cells. BMC Res Notes. 16:1322023. View Article : Google Scholar : PubMed/NCBI |
|
|
Charafe-Jauffret E, Ginestier C, Iovino F, Tarpin C, Diebel M, Esterni B, Houvenaeghel G, Extra JM, Bertucci F, Jacquemier J, et al: Aldehyde dehydrogenase 1-positive cancer stem cells mediate metastasis and poor clinical outcome in inflammatory breast cancer. Clin Cancer Res. 16:45–55. 2010. View Article : Google Scholar |
|
|
Kamalabadi-Farahani M, Karimi R and Atashi A: High percentage of Cancer Stem cells in metastatic locations: Upregulation of cicBIRC6 in highly metastatic breast Cancer Subline. Mol Biol Rep. 50:1303–1309. 2023. View Article : Google Scholar |
|
|
Eramo A, Lotti F, Sette G, Pilozzi E, Biffoni M, Di Virgilio A, Conticello C, Ruco L, Peschle C and De Maria R: Identification and expansion of the tumorigenic lung cancer stem cell population. Cell Death Differ. 15:504–514. 2008. View Article : Google Scholar |
|
|
Bertolini G, Roz L, Perego P, Tortoreto M, Fontanella E, Gatti L, Pratesi G, Fabbri A, Andriani F, Tinelli S, et al: Highly tumorigenic lung cancer CD133+ cells display stem-like features and are spared by cisplatin treatment. Proc Natl Acad Sci USA. 106:16281–16286. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Jiang F, Qiu Q, Khanna A, Todd NW, Deepak J, Xing L, Wang H, Liu Z, Su Y, Stass SA and Katz RL: Aldehyde dehydrogenase 1 is a tumor stem cell-associated marker in lung cancer. Mol Cancer Res. 7:330–338. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen YW, Du QR, He YJ, Chen WS, Jiang WY, Gui Q, Xu CC, Wang W and Cheng HY: Circ_0044516 regulates miR-136/MAT2A pathway to facilitate lung cancer development. J Immunol Res. 2021:55108692021. View Article : Google Scholar : PubMed/NCBI |
|
|
Li C, Zhang J, Yang X, Hu C, Chu T, Zhong R, Shen Y, Hu F, Pan F, Xu J, et al: hsa_circ_0003222 accelerates stemness and progression of non-small cell lung cancer by sponging miR-527. Cell Death Dis. 12:8072021. View Article : Google Scholar : PubMed/NCBI |
|
|
MacDonagh L, Gallagher MF, Ffrench B, Gasch C, Breen E, Gray SG, Nicholson S, Leonard N, Ryan R, Young V, et al: Targeting the cancer stem cell marker, aldehyde dehydrogenase 1, to circumvent cisplatin resistance in NSCLC. Oncotarget. 8:72544–72563. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
MacDonagh L, Gray SG, Breen E, Cuffe S, Finn SP, O'Byrne KJ and Barr MP: BBI608 inhibits cancer stemness and reverses cisplatin resistance in NSCLC. Cancer Lett. 428:117–126. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Li K, Peng ZY, Wang R, Li X, Du N, Liu DP, Zhang J, Zhang YF, Ma L, Sun Y, et al: Enhancement of TKI sensitivity in lung adenocarcinoma through m6A-dependent translational repression of Wnt signaling by circ-FBXW7. Mol Cancer. 22:1032023. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang L, Liu X, Ren Y, Zhang J, Chen J, Zhou W, Guo W, Wang X, Chen H, Li M, et al: Cisplatin-enriching cancer stem cells confer multidrug resistance in non-small cell lung cancer via enhancing TRIB1/HDAC activity. Cell Death Dis. 8:e27462017. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhao Y, Zheng R, Chen J and Ning D: CircRNA CDR1as/miR-641/HOXA9 pathway regulated stemness contributes to cisplatin resistance in non-small cell lung cancer (NSCLC). Cancer Cell Int. 20:2892020. View Article : Google Scholar : PubMed/NCBI |
|
|
Siegel RL, Miller KD, Fuchs HE and Jemal A: Cancer statistics, 2022. CA Cancer J Clin. 72:7–33. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Beck B and Blanpain C: Unravelling cancer stem cell potential. Nat Rev Cancer. 13:727–738. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Xu G, Shen J, Ou Yang X, Sasahara M and Su X: Cancer stem cells: The 'heartbeat' of gastric cancer. J Gastroenterol. 48:781–797. 2013. View Article : Google Scholar |
|
|
Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, Gordon SA, Shimada Y and Wang TC: Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 27:1006–1020. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang C, Li C, He F, Cai Y and Yang H: Identification of CD44+CD24+ gastric cancer stem cells. J Cancer Res Clin Oncol. 137:1679–1686. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Xing Y, Chen H, Guo Z and Zhou X: Circular RNA circ0007360 attenuates gastric cancer progression by altering the miR-762/IRF7 Axis. Front Cell Dev Biol. 10:7890732022. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen QY, Xu KX, Huang XB, Fan DH, Chen YJ, Li YF, Huang Q, Liu ZY, Zheng HL, Huang ZN, et al: Circ-0075305 hinders gastric cancer stem cells by indirectly disrupting TCF4-beta-catenin complex and downregulation of SOX9. Commun Biol. 7:5452024. View Article : Google Scholar |
|
|
Xia Y, Lv J, Jiang T, Li B, Li Y, He Z, Xuan Z, Sun G, Wang S, Li Z, et al: CircFAM73A promotes the cancer stem cell-like properties of gastric cancer through the miR-490-3p/HMGA2 positive feedback loop and HNRNPK-mediated β-catenin stabilization. J Exp Clin Cancer Res. 40:1032021. View Article : Google Scholar |
|
|
Deng M, Xu Y, Yao Y, Wang Y, Yan Q, Cheng M and Liu Y: Circular RNA hsa_circ_0051246 acts as a microRNA-375 sponge to promote the progression of gastric cancer stem cells via YAP1. PeerJ. 11:e165232023. View Article : Google Scholar |
|
|
Hui Y, Wenguang Y, Wei S, Haoran W, Shanglei N and Ju L: circSLC4A7 accelerates stemness and progression of gastric cancer by interacting with HSP90 to activate NOTCH1 signaling pathway. Cell Death Dis. 14:4522023. View Article : Google Scholar : PubMed/NCBI |
|
|
Biller LH and Schrag D: Diagnosis and treatment of metastatic colorectal cancer: A review. JAMA. 325:669–685. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Du L, Wang H, He L, Zhang J, Ni B, Wang X, Jin H, Cahuzac N, Mehrpour M, Lu Y and Chen Q: CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 14:6751–6760. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Li Z: CD133: A stem cell biomarker and beyond. Exp Hematol Oncol. 2:172013. View Article : Google Scholar : PubMed/NCBI |
|
|
Shimokawa M, Ohta Y, Nishikori S, Matano M, Takano A, Fujii M, Date S, Sugimoto S, Kanai T and Sato T: Visualization and targeting of LGR5+ human colon cancer stem cells. Nature. 545:187–192. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Leng Z, Xia Q, Chen J, Li Y, Xu J, Zhao E, Zheng H, Ai W and Dong J: Lgr5+CD44+EpCAM+ strictly defines cancer stem cells in human colorectal cancer. Cell Physiol Biochem. 46:860–872. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Zahran AM, Rayan A, Fakhry H, Attia AM, Ashmawy AM, Soliman A, Elkady A and Hetta HF: Pretreatment detection of circulating and tissue CD133+ CD44+ cancer stem cells as a prognostic factor affecting the outcomes in Egyptian patients with colorectal cancer. Cancer Manag Res. 11:1237–1248. 2019. View Article : Google Scholar : |
|
|
Yang R, Xing L, Zheng X, Sun Y, Wang X and Chen J: The circRNA circAGFG1 acts as a sponge of miR-195-5p to promote triple-negative breast cancer progression through regulating CCNE1 expression. Mol Cancer. 18:42019. View Article : Google Scholar : PubMed/NCBI |
|
|
Ma X, Wang C, Chen J, Wei D, Yu F and Sun J: circAGFG1 sponges miR-28-5p to promote non-small-cell lung cancer progression through modulating HIF-1α level. Open Med (Wars). 16:703–717. 2021. View Article : Google Scholar |
|
|
Luo J, Zhong H, Guo M, Xiao P, Cao R, Zhao M and Jing Y: CircAGFG1 promotes ovarian cancer progression through the miR-409-3 p/ZEB1 axis. Technol Cancer Res Treat. 23:153303382412524232024. View Article : Google Scholar : PubMed/NCBI |
|
|
Li T, Xing G, Lu L, Kong X and Guo J: CircAGFG1 promotes osteosarcoma progression and stemness by competing with miR-302a-3p to upregulate the expression of LATS2. Evid Based Complement Alternat Med. 2022:63707662022.PubMed/NCBI |
|
|
Zhang L, Dong X, Yan B, Yu W and Shan L: CircAGFG1 drives metastasis and stemness in colorectal cancer by modulating YY1/CTNNB1. Cell Death Dis. 11:5422020. View Article : Google Scholar : PubMed/NCBI |
|
|
Sun J, Liu J, Zhu Q, Xu F, Kang L and Shi X: Hsa_circ_0001806 Acts as a ceRNA to facilitate the stemness of colorectal cancer cells by increasing COL1A1. Onco Targets Ther. 13:6315–6327. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Rengganaten V, Huang CJ, Wang ML, Chien Y, Tsai PH, Lan YT, Ong HT, Chiou SH and Choo KB: Circular RNA ZNF800 (hsa_circ_0082096) regulates cancer stem cell properties and tumor growth in colorectal cancer. BMC Cancer. 23:10882023. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen Z, He L, Zhao L, Zhang G, Wang Z, Zhu P and Liu B: circREEP3 drives colorectal cancer progression via activation of FKBP10 transcription and restriction of antitumor immunity. Adv Sci (Weinh). 9:e21051602022. View Article : Google Scholar : PubMed/NCBI |
|
|
Meyer KD and Jaffrey SR: Rethinking m6A readers, writers, and erasers. Annu Rev Cell Dev Biol. 33:319–342. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang L, Hou C, Chen C, Guo Y, Yuan W, Yin D, Liu J and Sun Z: The role of N6-methyladenosine (m6A) modification in the regulation of circRNAs. Mol Cancer. 19:1052020. View Article : Google Scholar |
|
|
Zeng W, Zhu JF, Guo J, Huang GJ, Ai LS, Zeng Y and Liao WJ: m6A-modified circFNDC3B inhibits colorectal cancer stemness and metastasis via RNF41-dependent ASB6 degradation. Cell Death Dis. 13:10082022. View Article : Google Scholar |
|
|
Zhan W, Liao X, Wang Y, Li L, Li J, Chen Z, Tian T and He J: circCTIC1 promotes the self-renewal of colon TICs through BPTF-dependent c-Myc expression. Carcinogenesis. 40:560–568. 2019. View Article : Google Scholar |
|
|
Chen Z, Wu J, Liu B, Zhang G, Wang Z, Zhang L, Wang K, Fan Z and Zhu P: Identification of cis-HOX-HOXC10 axis as a therapeutic target for colorectal tumor-initiating cells without APC mutations. Cell Rep. 36:1094312021. View Article : Google Scholar : PubMed/NCBI |
|
|
Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA and Jemal A: Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J Clin. 68:394–424. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Chen Q, Yin Q, Mao Y, Zhang Z, Wu S, Cheng Z, Chen X, Xu H, Jin S, Jiang H and Yang C: Hsa_circ_0068307 mediates bladder cancer stem cell-like properties via miR-147/c-Myc axis regulation. Cancer Cell Int. 20:1512020. View Article : Google Scholar : PubMed/NCBI |
|
|
Fan L, Yang J, Shen C, Wu Z and Hu H: Circ_0030586 inhibits cell proliferation and stemness in bladder cancer by inactivating the ERK signaling via miR-665/NR4A3 axis. Acta Histochem. 123:1517452021. View Article : Google Scholar : PubMed/NCBI |
|
|
Tian Y, Gao P, Dai D, Chen L, Chu X and Mei X: Circular RNA circSETD3 hampers cell growth, migration, and stem cell properties in bladder cancer through sponging miR-641 to upregulate PTEN. Cell Cycle. 20:1589–1602. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Gu C, Zhou N, Wang Z, Li G, Kou Y, Yu S, Feng Y, Chen L, Yang J and Tian F: circGprc5a promoted bladder oncogenesis and metastasis through Gprc5a-Targeting peptide. Mol Ther Nucleic Acids. 13:633–641. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Yang J, Yang L, Li S and Hu N: HGF/c-Met promote renal carcinoma cancer stem cells enrichment through upregulation of Cir-CCDC66. Technol Cancer Res Treat. 19:15330338199011142020. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang Y, Yang Z, Gu J, Zhang Y, Wang X, Teng Z, Wang D, Gao L, Li W, Yeh S and Han Z: Estrogen receptor beta increases clear cell renal cell carcinoma stem cell phenotype via altering the circPHACTR4/miR-34b-5p/c-Myc signaling. FASEB J. 36:e221632022.PubMed/NCBI |
|
|
Lin G, Fei Y and Zhang Y: Zhang, Hsa-circ_0003420 induces apoptosis in acute myeloid leukemia stem cells and impairs stem cell properties. Immunopharmacol Immunotoxicol. 43:622–631. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Shi P, Li Y and Guo Q: Circular RNA circPIP5K1A contributes to cancer stemness of osteosarcoma by miR-515-5p/YAP axis. J Transl Med. 19:4642021. View Article : Google Scholar : PubMed/NCBI |
|
|
Schulenburg A, Blatt K, Cerny-Reiterer S, Sadovnik I, Herrmann H, Marian B, Grunt TW, Zielinski CC and Valent P: Cancer stem cells in basic science and in translational oncology: Can we translate into clinical application? J Hematol Oncol. 8:162015. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhou BB, Zhang H, Damelin M, Geles KG, Grindley JC and Dirks PB: Tumour-initiating cells: Challenges and opportunities for anticancer drug discovery. Nat Rev Drug Discov. 8:806–823. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Nassar D and Blanpain C: Cancer stem cells: Basic concepts and therapeutic implications. Annu Rev Pathol. 11:47–76. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhou F, Wang B, Wang H, Hu L, Zhang J, Yu T, Xu X, Tian W, Zhao C, Zhu H and Liu N: circMELK promotes glioblastoma multiforme cell tumorigenesis through the miR-593/EphB2 axis. Mol Ther Nucleic Acids. 25:25–36. 2021. View Article : Google Scholar : PubMed/NCBI |
|
|
Hu J, Zhang G, Wang Y, Xu K, Chen L, Luo G, Xu J, Li H, Pei D, Zhao X, et al: CircGNB1 facilitates the malignant phenotype of GSCs by regulating miR-515-5p/miR-582-3p-XPR1 axis. Cancer Cell Int. 23:1322023. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang D, Yang L, Liu X, Gao J, Liu T, Yan Q and Yang X: Hypoxia modulates stem cell properties and induces EMT through N-glycosylation of EpCAM in breast cancer cells. J Cell Physiol. 235:3626–3633. 2020. View Article : Google Scholar |
|
|
Ricardo S, Vieira AF, Gerhard R, Leitão D, Pinto R, Cameselle-Teijeiro JF, Milanezi F, Schmitt F and Paredes J: Breast cancer stem cell markers CD44, CD24 and ALDH1: Expression distribution within intrinsic molecular subtype. J Clin Pathol. 64:937–946. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Shackleton M, Vaillant F, Simpson KJ, Stingl J, Smyth GK, Asselin-Labat ML, Wu L, Lindeman GJ and Visvader JE: Generation of a functional mammary gland from a single stem cell. Nature. 439:84–88. 2006. View Article : Google Scholar : PubMed/NCBI |
|
|
Liu TJ, Sun BC, Zhao XL, Zhao XM, Sun T, Gu Q, Yao Z, Dong XY, Zhao N and Liu N: CD133+ cells with cancer stem cell characteristics associates with vasculogenic mimicry in triple-negative breast cancer. Oncogene. 32:544–553. 2013. View Article : Google Scholar |
|
|
Fillmore CM and Kuperwasser C: Human breast cancer cell lines contain stem-like cells that self-renew, give rise to phenotypically diverse progeny and survive chemotherapy. Breast Cancer Res. 10:R252008. View Article : Google Scholar : PubMed/NCBI |
|
|
Lu H, Clauser KR, Tam WL, Fröse J, Ye X, Eaton EN, Reinhardt F, Donnenberg VS, Bhargava R, Carr SA and Weinberg RA: A breast cancer stem cell niche supported by juxtacrine signalling from monocytes and macrophages. Nat Cell Biol. 16:1105–1117. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Nishikawa S, Nishikawa S, Konno M, Hamabe A, Hasegawa S, Kano Y, Ohta K, Fukusumi T, Sakai D, Kudo T, et al: Aldehyde dehydrogenase high gastric cancer stem cells are resistant to chemotherapy. Int J Oncol. 42:1437–1442. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Lau WM, Teng E, Chong HS, Lopez KA, Tay AY, Salto-Tellez M, Shabbir A, So JB and Chan SL: CD44v8-10 is a cancer-specific marker for gastric cancer stem cells. Cancer Res. 74:2630–2641. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhu Y, Yu J, Wang S, Lu R, Wu J and Jiang B: Overexpression of CD133 enhances chemoresistance to 5-fluorouracil by activating the PI3K/Akt/p70S6K pathway in gastric cancer cells. Oncol Rep. 32:2437–2444. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Fujikuni N, Yamamoto H, Tanabe K, Naito Y, Sakamoto N, Tanaka Y, Yanagihara K, Oue N, Yasui W and Ohdan H: Hypoxia-mediated CD24 expression is correlated with gastric cancer aggressiveness by promoting cell migration and invasion. Cancer Sci. 105:1411–1420. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Xue Z, Yan H, Li J, Liang S, Cai X, Chen X, Wu Q, Gao L, Wu K, Nie Y and Fan D: Identification of cancer stem cells in vincristine preconditioned SGC7901 gastric cancer cell line. J Cell Biochem. 113:302–312. 2012. View Article : Google Scholar |
|
|
Wenqi D, Li W, Shanshan C, Bei C, Yafei Z, Feihu B, Jie L and Daiming F: EpCAM is overexpressed in gastric cancer and its downregulation suppresses proliferation of gastric cancer. J Cancer Res Clin Oncol. 135:1277–1285. 2009. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang C, Gao Y, Liang W, Lu Y, Zhang K, Wu D, Zhuang Z, Li K, Qiao Z, Xi H and Chen L: Rspondin-1 contributes to the progression and stemness of gastric cancer by LGR5. Biochem Biophys Res Commun. 627:91–96. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang SS, Huang ZW, Li LX, Fu JJ and Xiao B: Identification of CD200+ colorectal cancer stem cells and their gene expression profile. Oncol Rep. 36:2252–2260. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Tseng JY, Yang CY, Yang SH, Lin JK, Lin CH and Jiang JK: Circulating CD133(+)/ESA(+) cells in colorectal cancer patients. J Surg Res. 199:362–370. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Ren F, Sheng WQ and Du X: CD133: A cancer stem cells marker, is used in colorectal cancers. World J Gastroenterol. 19:2603–2611. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, Hoey T, Gurney A, Huang EH, Simeone DM, et al: Phenotypic characterization of human colorectal cancer stem cells. Proc Natl Acad Sci USA. 104:10158–10163. 2007. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhou F, Mu YD, Liang J, Liu ZX, Zhou D, Ning WL, Li YZ, Ding D and Zhang JF: Aldehyde dehydrogenase 1: A specific cancer stem cell marker for human colorectal carcinoma. Mol Med Rep. 11:3894–3899. 2015. View Article : Google Scholar : PubMed/NCBI |
|
|
Peng H, Ye T, Deng L, Yang X, Li Q, Tong J and Guo J: Activin and hepatocyte growth factor promotes colorectal cancer stemness and metastasis through FOXM1/SOX2/CXCR4 signaling. Gut Liver. 18:476–488. 2024. View Article : Google Scholar : |
|
|
Murata K, Jadhav U, Madha S, van Es J, Dean J, Cavazza A, Wucherpfennig K, Michor F, Clevers H and Shivdasani RA: Ascl2-Dependent cell dedifferentiation drives regeneration of ablated intestinal stem cells. Cell Stem Cell. 26:377–390.e6. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Seyfrid M, Maich WT, Shaikh VM, Tatari N, Upreti D, Piyasena D, Subapanditha M, Savage N, McKenna D, Mikolajewicz N, et al: CD70 as an actionable immunotherapeutic target in recurrent glioblastoma and its microenvironment. J Immunother Cancer. 10:e0032892022. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang A, Qu L and Wang L: At the crossroads of cancer stem cells and targeted therapy resistance. Cancer Lett. 385:87–96. 2017. View Article : Google Scholar |
|
|
Schulte A, Günther HS, Phillips HS, Kemming D, Martens T, Kharbanda S, Soriano RH, Modrusan Z, Zapf S, Westphal M and Lamszus K: A distinct subset of glioma cell lines with stem cell-like properties reflects the transcriptional phenotype of glioblastomas and overexpresses CXCR4 as therapeutic target. Glia. 59:590–602. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Lu Y, Wang W and Tan S: EHD1 promotes the cancer stem cell (CSC)-like traits of glioma cells via interacting with CD44 and suppressing CD44 degradation. Environ Toxicol. 37:2259–2268. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Gopinath S, Malla R, Alapati K, Gorantla B, Gujrati M, Dinh DH and Rao JS: Cathepsin B and uPAR regulate self-renewal of glioma-initiating cells through GLI-regulated Sox2 and Bmi1 expression. Carcinogenesis. 34:550–559. 2013. View Article : Google Scholar : |
|
|
Rasper M, Schäfer A, Piontek G, Teufel J, Brockhoff G, Ringel F, Heindl S, Zimmer C and Schlegel J: Aldehyde dehydrogenase 1 positive glioblastoma cells show brain tumor stem cell capacity. Neuro Oncol. 12:1024–1033. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Mani SK, Zhang H, Diab A, Pascuzzi PE, Lefrançois L, Fares N, Bancel B, Merle P and Andrisani O: EpCAM-regulated intramembrane proteolysis induces a cancer stem cell-like gene signature in hepatitis B virus-infected hepatocytes. J Hepatol. 65:888–898. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Akbari S, Kunter I, Azbazdar Y, Ozhan G, Atabey N, Firtina Karagonlar Z and Erdal E: LGR5/R-Spo1/Wnt3a axis promotes stemness and aggressive phenotype in hepatoblast-like hepatocellular carcinoma cell lines. Cell Signal. 82:1099722021. View Article : Google Scholar : PubMed/NCBI |
|
|
Li Y, Wang R, Xiong S, Wang X, Zhao Z, Bai S, Wang Y, Zhao Y and Cheng B: Cancer-associated fibroblasts promote the stemness of CD24+ liver cells via paracrine signaling. J Mol Med (Berl). 97:243–255. 2019. View Article : Google Scholar |
|
|
Ma S, Chan KW, Lee TK, Tang KH, Wo JY, Zheng BJ and Guan XY: Aldehyde dehydrogenase discriminates the CD133 liver cancer stem cell populations. Mol Cancer Res. 6:1146–1153. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang R, Li Y, Tsung A, Huang H, Du Q, Yang M, Deng M, Xiong S, Wang X, Zhang L, et al: iNOS promotes CD24+CD133+ liver cancer stem cell phenotype through a TACE/ADAM17-dependent Notch signaling pathway. Proc Natl Acad Sci USA. 115:E10127–E10136. 2018. |
|
|
Zhang K, Che S, Pan C, Su Z, Zheng S, Yang S, Zhang H, Li W, Wang W and Liu J: The SHH/Gli axis regulates CD90-mediated liver cancer stem cell function by activating the IL6/JAK2 pathway. J Cell Mol Med. 22:3679–3690. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhu Z, Hao X, Yan M, Yao M, Ge C, Gu J and Li J: Cancer stem/progenitor cells are highly enriched in CD133+CD44+ population in hepatocellular carcinoma. Int J Cance. 126:2067–2078. 2010. View Article : Google Scholar |
|
|
Cao HZ, Liu XF, Yang WT, Chen Q and Zheng PS: LGR5 promotes cancer stem cell traits and chemoresistance in cervical cancer. Cell Death Dis. 8:e30392017. View Article : Google Scholar : PubMed/NCBI |
|
|
Leung CON, Deng W, Ye TM, Ngan HYS, Tsao SW, Cheung ANY, Ziru N, Yuen DCK, Pang RTK and Yeung WSB: MicroRNA-135a-induced formation of CD133+ subpopulation with cancer stem cell properties in cervical cancer. Carcinogenesis. 41:1592–1604. 2020. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang J, Chen X, Bian L, Wang Y and Liu H: CD44+/CD24+-expressing cervical cancer cells and radioresistant cervical cancer cells exhibit cancer stem cell characteristics. Gynecol Obstet Invest. 84:174–182. 2019. View Article : Google Scholar |
|
|
Liu SY and Zheng PS: High aldehyde dehydrogenase activity identifies cancer stem cells in human cervical cancer. Oncotarget. 4:2462–2475. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhou T, Liu J, Xie Y, Yuan S, Guo Y, Bai W, Zhao K, Jiang W, Wang H, Wang H, et al: ESE3/EHF, a promising target of rosiglitazone, suppresses pancreatic cancer stemness by downregulating CXCR4. Gut. 71:357–371. 2022. View Article : Google Scholar |
|
|
Amsterdam A, Raanan C, Schreiber L, Polin N and Givol D: LGR5 and Nanog identify stem cell signature of pancreas beta cells which initiate pancreatic cancer. Biochem Biophys Res Commun. 433:157–162. 2013. View Article : Google Scholar : PubMed/NCBI |
|
|
Lin L, Jou D, Wang Y, Ma H, Liu T, Fuchs J, Li PK, Lü J, Li C and Lin J: STAT3 as a potential therapeutic target in ALDH+ and CD44+/CD24+ stem cell-like pancreatic cancer cells. Int J Oncol. 49:2265–2274. 2016. View Article : Google Scholar : PubMed/NCBI |
|
|
Shi J, Lu P, Shen W, He R, Yang MW, Fang Y, Sun YW, Niu N and Xue J: CD90 highly expressed population harbors a stemness signature and creates an immunosuppressive niche in pancreatic cancer. Cancer Lett. 453:158–169. 2019. View Article : Google Scholar : PubMed/NCBI |
|
|
Sasaki N, Ishii T, Kamimura R, Kajiwara M, Machimoto T, Nakatsuji N, Suemori H, Ikai I, Yasuchika K and Uemoto S: Α-fetoprotein-producing pancreatic cancer cells possess cancer stem cell characteristics. Cancer Lett. 308:152–161. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
van der Horst G, Bos L and van der Pluijm G: Epithelial plasticity, cancer stem cells, and the tumor-supportive stroma in bladder carcinoma. Mol Cancer Res. 10:995–1009. 2012. View Article : Google Scholar : PubMed/NCBI |
|
|
Verma A, Kapoor R and Mittal RD: Cluster of Differentiation 44 (CD44) gene variants: A putative cancer stem cell marker in risk prediction of bladder cancer in north indian population. Indian J Clin Biochem. 32:74–83. 2017. View Article : Google Scholar : PubMed/NCBI |
|
|
Su Y, Qiu Q, Zhang X, Jiang Z, Leng Q, Liu Z, Stass SA and Jiang F: Aldehyde dehydrogenase 1 A1-positive cell population is enriched in tumor-initiating cells and associated with progression of bladder cancer. Cancer Epidemiol Biomarkers Prev. 19:327–337. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Ooki A, VandenBussche CJ, Kates M, Hahn NM, Matoso A, McConkey DJ, Bivalacqua TJ and Hoque MO: CD24 regulates cancer stem cell (CSC)-like traits and a panel of CSC-related molecules serves as a non-invasive urinary biomarker for the detection of bladder cancer. Br J Cancer. 119:961–970. 2018. View Article : Google Scholar : PubMed/NCBI |
|
|
Gao MQ, Choi YP, Kang S, Youn JH and Cho NH: CD24+ cells from hierarchically organized ovarian cancer are enriched in cancer stem cells. Oncogene. 29:2672–2680. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Silva IA, Bai S, McLean K, Yang K, Griffith K, Thomas D, Ginestier C, Johnston C, Kueck A, Reynolds RK, et al: Aldehyde dehydrogenase in combination with CD133 defines angiogenic ovarian cancer stem cells that portend poor patient survival. Cancer Res. 71:3991–4001. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Kryczek I, Liu S, Roh M, Vatan L, Szeliga W, Wei S, Banerjee M, Mao Y, Kotarski J, Wicha MS, et al: Expression of aldehyde dehydrogenase and CD133 defines ovarian cancer stem cells. Int J Cancer. 130:29–39. 2012. View Article : Google Scholar |
|
|
Zhang S, Balch C, Chan MW, Lai HC, Matei D, Schilder JM, Yan PS, Huang TH and Nephew KP: Identification and characterization of ovarian cancer-initiating cells from primary human tumors. Cancer Res. 68:4311–4320. 2008. View Article : Google Scholar : PubMed/NCBI |
|
|
Meng E, Long B, Sullivan P, McClellan S, Finan MA, Reed E, Shevde L and Rocconi RP: CD44+/CD24-ovarian cancer cells demonstrate cancer stem cell properties and correlate to survival. Clin Exp Metastasis. 29:939–948. 2012. View Article : Google Scholar : PubMed/NCBI |
|
|
Tachezy M, Zander H, Wolters-Eisfeld G, Müller J, Wicklein D, Gebauer F, Izbicki JR and Bockhorn M: Activated leukocyte cell adhesion molecule (CD166): An 'inert' cancer stem cell marker for non-small cell lung cancer? Stem Cells. 32:1429–1436. 2014. View Article : Google Scholar : PubMed/NCBI |
|
|
Leung EL, Fiscus RR, Tung JW, Tin VP, Cheng LC, Sihoe AD, Fink LM, Ma Y and Wong MP: Non-small cell lung cancer cells expressing CD44 are enriched for stem cell-like properties. PLoS One. 5:e140622010. View Article : Google Scholar : PubMed/NCBI |
|
|
Wang J, Shao F, Yang Y, Wang W, Yang X, Li R, Cheng H, Sun S, Feng X, Gao Y, et al: A non-metabolic function of hexokinase 2 in small cell lung cancer: Promotes cancer cell stemness by increasing USP11-mediated CD133 stability. Cancer Commun (Lond). 42:1008–1027. 2022. View Article : Google Scholar : PubMed/NCBI |
|
|
Nian WQ, Chen FL, Ao XJ and Chen ZT: CXCR4 positive cells from Lewis lung carcinoma cell line have cancer metastatic stem cell characteristics. Mol Cell Biochem. 355:241–248. 2011. View Article : Google Scholar : PubMed/NCBI |
|
|
Qiu X, Wang Z, Li Y, Miao Y, Ren Y and Luan Y: Characterization of sphere-forming cells with stem-like properties from the small cell lung cancer cell line H446. Cancer Lett. 323:161–170. 2012. View Article : Google Scholar : PubMed/NCBI |
|
|
Heo SK, Noh EK, Ju LJ, Sung JY, Jeong YK, Cheon J, Koh SJ, Min YJ, Choi Y and Jo JC: CD45dimCD34+CD38-CD133+ cells have the potential as leukemic stem cells in acute myeloid leukemia. BMC Cancer. 20:2852020. View Article : Google Scholar |
|
|
Riether C, Schürch CM, Bührer ED, Hinterbrandner M, Huguenin AL, Hoepner S, Zlobec I, Pabst T, Radpour R and Ochsenbein AF: CD70/CD27 signaling promotes blast stemness and is a viable therapeutic target in acute myeloid leukemia. J Exp Med. 214:359–380. 2017. View Article : Google Scholar : |
|
|
Aoki T, Shiba N, Tsujimoto S, Yamato G, Hara Y, Kato S, Yoshida K, Ogawa S, Hayashi Y, Iwamoto S, et al: High IL2RA/CD25 expression is a prognostic stem cell biomarker for pediatric acute myeloid leukemia without a core-binding factor. Pediatr Blood Cancer. 71:e308032024. View Article : Google Scholar |
|
|
Jordan CT, Upchurch D, Szilvassy SJ, Guzman ML, Howard DS, Pettigrew AL, Meyerrose T, Rossi R, Grimes B, Rizzieri DA, et al: The interleukin-3 receptor α chain is a unique marker for human acute myelogenous leukemia stem cells. Leukemia. 14:1777–1784. 2000. View Article : Google Scholar : PubMed/NCBI |
|
|
Kikushige Y, Shima T, Takayanagi S, Urata S, Miyamoto T, Iwasaki H, Takenaka K, Teshima T, Tanaka T, Inagaki Y and Akashi K: TIM-3 is a promising target to selectively kill acute myeloid leukemia stem cells. Cell Stem Cell. 7:708–717. 2010. View Article : Google Scholar : PubMed/NCBI |
|
|
Zhang Y, Zhou SY, Yan HZ, Xu DD, Chen HX, Wang XY, Wang X, Liu YT, Zhang L, Wang S, et al: miR-203 inhibits proliferation and self-renewal of leukemia stem cells by targeting survivin and Bmi-1. Sci Rep. 6:199952016. View Article : Google Scholar : PubMed/NCBI |