Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
May-2025 Volume 55 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
May-2025 Volume 55 Issue 5

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML

  • Supplementary Files
    • Supplementary_Data1.pdf
    • Supplementary_Data2.pdf
Article Open Access

ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells

  • Authors:
    • Young Shin Ko
    • Ju Yeong Won
    • Hana Jin
    • Nam Binh Nguyen
    • Yaeram Won
    • Vedaste Nsanzimana
    • Seung Pil Yun
    • Sang Won Park
    • Hye Jung Kim
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacology, College of Medicine, Institute of Medical Sciences, Gyeongsang National University, Jinju, Gyeongsangnam‑do 52727, Republic of Korea
    Copyright: © Ko et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 80
    |
    Published online on: March 20, 2025
       https://doi.org/10.3892/ijmm.2025.5521
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Expression levels of ATP‑binding cassette (ABC) transporters are known to be increased in various tumor cells, including in breast cancer, and they are responsible for mediating drug resistance, leading to treatment failure. In the present study, gene expression array analysis revealed that among ABC transporter subtypes, ABC subfamily G member 8 (ABCG8) was one of the most increased in radiotherapy‑resistant triple‑negative breast cancer (RT‑R‑TNBC) cells compared with in TNBC cells. ABCG8 is involved in sterol efflux; however, its role in cancer is not well known. Therefore, the present study investigated the effect of ABCG8 on tumor progression in RT‑R‑TNBC cells. Gene expression profiling was conducted using the QuantiSeq 3' mRNA‑Seq Service, followed by western blotting to confirm protein levels. Loss‑of‑function assays using small interfering RNA (si) transfection were performed to assess the roles of ABCG8 and its regulatory signaling pathways. RT‑R‑MDA‑MB‑231 cells exhibited increased cholesterol levels in both cells and the surrounding media via induction of sterol regulatory element binding protein 1 (mature form) and fatty acid synthase. siABCG8 transfection increased intracellular cholesterol levels but decreased cholesterol levels in the media, indicating an accumulation of cholesterol inside cells. Additionally, RT‑R‑MDA‑MB‑231 cells exhibited increased levels of β‑catenin compared with MDA‑MB‑231 cells, which was significantly reduced by ABCG8 knockdown. Furthermore, ABCG8 knockdown led to cell cycle arrest in the G2/M phase in RT‑R‑MDA‑MB‑231 cells by reducing Polo‑like kinase 1 (PLK1) and Cyclin B1 expression. RT‑R‑MDA‑MB‑231 cells also exhibited increased phosphorylated‑low‑density lipoprotein (LDL) receptor‑related protein 6 (LRP6) levels compared with MDA‑MB‑231 cells, and these were decreased by siABCG8 transfection. LRP6 siRNA transfection decreased β‑catenin, PLK1 and Cyclin B1 expression. In addition, feedback mechanisms such as liver X receptor and inducible degrader of LDL were decreased in RT‑R‑MDA‑MB‑231 cells under normal conditions compared with in MDA‑MB‑231 cells. To the best of our knowledge, the present study was the first to suggest that the cholesterol exported by ABCG8, not inside the cells, may affect cancer progression via the LRP6/Wnt/β‑catenin signaling pathway in RT‑R‑TNBC. The regulation of this pathway may offer a potential therapeutic strategy for the treatment of RT‑R‑TNBC.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

View References

1 

Xu Y, Gong M, Wang Y, Yang Y, Liu S and Zeng Q: Global trends and forecasts of breast cancer incidence and deaths. Sci Data. 10:3342023. View Article : Google Scholar : PubMed/NCBI

2 

Courtney D, Davey MG, Moloney BM, Barry MK, Sweeney K, McLaughlin RP, Malone CM, Lowery AJ and Kerin MJL: Breast cancer recurrence: Factors impacting occurrence and survival. Ir J Med Sci. 191:2501–2510. 2022. View Article : Google Scholar : PubMed/NCBI

3 

de Ruijter TC, Veeck J, de Hoon JP, van Engeland M and Tjan-Heijnen VC: Characteristics of triple-negative breast cancer. J Cancer Res Clin Oncol. 137:1831922011. View Article : Google Scholar

4 

Bai X, Ni J, Beretov J, Graham P and Li Y: Triple-negative breast cancer therapeutic resistance: Where is the Achilles' heel? Cancer Lett. 28(497): 100–111. 2021. View Article : Google Scholar

5 

Zhang C, Wang S, Israel HP, Yan SX, Horowitz DP, Crockford S, Gidea-Addeo D, Chao KSC, Kalinsky K and Connolly EP: Higher locoregional recurrence rate for triple-negative breast cancer following neoadjuvant chemotherapy, surgery and radiotherapy. Springer Plus. 4:3862015. View Article : Google Scholar : PubMed/NCBI

6 

Dent R, Trudeau M, Pritchard KI, Wedad MP, Harriet KH, Sawka CA, Lickley LA, Rawlinson E, Sun P and Narod SA: Triple-negative breast cancer: Clinical features and patterns of recurrence. Clin Cancer Res. 13:4429–4434. 2007. View Article : Google Scholar : PubMed/NCBI

7 

Ko YS, Jin H, Lee JS, Park SW, Chang KC, Kang KM, Jeong BK and Kim HJ: Radioresistant breast cancer cells exhibit increased resistance to chemotherapy and enhanced invasive properties due to cancer stem cells. Oncol Rep. 40:3752–3762. 2018.PubMed/NCBI

8 

Ko YS, Rugira T, Jin H, Joo YN and Kim HJ: Radiotherapy-resistant breast cancer cells enhance tumor progression by enhancing premetastatic niche formation through the HIF-1α-LOX axis. Int J Mol Sci. 21:80272020. View Article : Google Scholar

9 

Modi A, Roy D, Sharma S, Vishnoi JR, Pareek P, Elhence P, Sharma P and Purohit P: ABC transporters in breast cancer: Their roles in multidrug resistance and beyond. J Drug Target. 9:927–947. 2022. View Article : Google Scholar

10 

Beretta GL, Cassinelli G, Pennate M, Zuco V and Gatti L: Overcoming ABC transporter-mediated multidrug resistance: The dual role of tyrosine kinase inhibitors as multitargeting agents. Eur J Med Chem. 142:271–289. 2017. View Article : Google Scholar : PubMed/NCBI

11 

Fletcher JI, Henderson MJ and Norris MD: ABC transporters in cancer: More than just drug efflux pumps. Nat Rev Cancer. 10:147–156. 2010. View Article : Google Scholar : PubMed/NCBI

12 

Begicevic RR and Falasca M: ABC transporters in cancer stem cells: Beyond chemoresistance. Int J Mol Sci. 18:23622017. View Article : Google Scholar : PubMed/NCBI

13 

Chen ZS and Tiwari AK: Multidrug resistance proteins (MRPs/ABCCs) in cancer chemotherapy and genetic diseases. FEBS J. 278:3266–3245. 2011. View Article : Google Scholar

14 

Sun YL, Patel A, Kumar P and Chen ZS: Role of ABC transporters in cancer chemotherapy. Chin J Cancer. 31:51–57. 2012. View Article : Google Scholar : PubMed/NCBI

15 

Sabeva NS, Liu J and Graf GA: The ABCG5ABCG8 sterol transporter and phytosterols: Implications for cardiometabolic disease. Curr Opin Endocrinol Diabetes Obes. 16:172–177. 2009. View Article : Google Scholar : PubMed/NCBI

16 

Wang J, Mitsche MA, Lütjohann D, Cohen JC, Xie XS and Hobbs HH: Relative roles of ABCG5/ABCG8 in liver and intestine. J Lipid Res. 56:319–330. 2015. View Article : Google Scholar :

17 

Xiao H, Zheng Y, Ma L, Tian L and Sun Q: Clinically-relevant ABC transporter for anti-Cancer drug resistance. Front Pharmacol. 19(12): 6484072021. View Article : Google Scholar

18 

Cheng X, Li J and Guo D: SCAP/SREBPs are central players in lipid metabolism and novel metabolic targets in cancer therapy. Curr Top Med Chem. 18:484–493. 2018. View Article : Google Scholar : PubMed/NCBI

19 

Thu KL, Soria-Bretones I, Mak TW and Cescona DW: Targeting the cell cycle in breast cancer: Towards the next phase. Cell Cycle. 17:1871–1885. 2018. View Article : Google Scholar : PubMed/NCBI

20 

Lecarpentier Y, Schussler O, Hébert JL and Vallée A: Multiple targets of the canonical WNT/β-Catenin signaling in cancers. Front Oncol. 9:12482019. View Article : Google Scholar

21 

Lee SY, Jang C and Lee KA: Polo-like kinases (plks), a key regulator of cell cycle and new potential target for cancer therapy. Dev Reprod. 18:65–71. 2014. View Article : Google Scholar : PubMed/NCBI

22 

Kressin M, Fietz D, Becker S and Strebhardt K: Modelling the functions of Polo-Like Kinases in mice and their applications as cancer targets with a special focus on ovarian cancer. Cells. 10:11762021. View Article : Google Scholar : PubMed/NCBI

23 

Solc P, Kitajima TS, Yoshida S, Brzakova A, Kaido M, Baran V, Mayer A, Samalova P, Motlik J and Ellenber J: Multiple requirements of PLK1 during mouse oocyte maturation. PLoS One. 10:e01167832015. View Article : Google Scholar : PubMed/NCBI

24 

Kumar S, Sharma G, Chakraborty C, Sharma AR and Kim JB: Regulatory functional territory of PLK-1 and their substrates beyond mitosis. Oncotarget. 8:37942–37962. 2017. View Article : Google Scholar : PubMed/NCBI

25 

Shah K and Kazi J: Phosphorylation-dependent regulation Wnt/beta-catenin signaling. Front oncol. 12:8587822022. View Article : Google Scholar

26 

Kim DE, Shin SB, Kim CH, Kim YB, Oh HJ and Yim HS: PLK1-mediated phosphrylatioh of β-catenin enhances its stability and transcriptional activity for extracellular matrix remodeling in metastaic NSCLC. Theranostics. 13:1198–1216. 2023. View Article : Google Scholar :

27 

Brown MS and Goldstein JL: A receptor-mediated pathway for cholesterol homeostasis. Science. 232:34–47. 1986. View Article : Google Scholar : PubMed/NCBI

28 

Alrefaei AF and Abu-Elmagd M: LRP6 receptor plays essential functions in development and human diseases. Genes (Basel). 13:1202022. View Article : Google Scholar : PubMed/NCBI

29 

Raisch J, Côté-Biron A and Rivard N: A role for the WNT Co-receptor LRP6 in pathogenesis and therapy of epithelial cancers. Cancers (Basel). 11:11622019. View Article : Google Scholar : PubMed/NCBI

30 

Bengoechea-Alonso MT and Ericsson J: SREBP in signal transduction: Cholesterol metabolism and beyond. Curr Opin Cell Biol. 19:215–222. 2007. View Article : Google Scholar : PubMed/NCBI

31 

Horton JD, Goldstein JL and Brown MS: SREBPs: Activators of the complete program of cholesterol and fatty acid synthesis in the liver. J Clin Invest. 109:1125–1131. 2002. View Article : Google Scholar : PubMed/NCBI

32 

Eid W, Dauner K, Courtney KC, Gagnon A, Parks RJ, Sorisky A and Zha X: mTORC1 activates SREBP-2 by suppressing cholesterol trafficking to lysosomes in mammalian cells. Proc Natl Acad Sci USA. 114:7999–8004. 2017. View Article : Google Scholar : PubMed/NCBI

33 

Carroll RG, Zasłona Z, Galvan-Pena S, Koppe EL, Sevin DC, Angiari S, Triantafilou M, Triantafilou K, Modis LK and O'Neill LA: An unexpected link between fatty acid synthase and cholesterol synthesis in proinflammatory macrophage activation. J Biol Chem. 293:5509–5521. 2018. View Article : Google Scholar : PubMed/NCBI

34 

Jin Y, Chen Z, Dong J, Wang B, Fan S, Yang X and Cui M: SEBP1/FASN/cholesterol axis facilitates radioresistance in colorectal cancer. FEBS Open Bio. 11:1343–1352. 2021. View Article : Google Scholar : PubMed/NCBI

35 

Mylonis I, Simos G and Paraskeva E: Hypoxia-inducible factors and the regulation of lipid metabolism. Cells. 8:2142019. View Article : Google Scholar : PubMed/NCBI

36 

Dean M: The genetics of ATP-binding cassette transporters. Methods Enzymol. 400:409–429. 2005. View Article : Google Scholar

37 

Fletcher JI, Williams RT, Henderson MJ, Norris MD and Haber M: ABC transporters as mediators of drug resistance and contributors to cancer cell biology. Drug Resist Updat. 26:1–9. 2016. View Article : Google Scholar : PubMed/NCBI

38 

Copsel S, Garcia C, Diez F, Vermeulem M, Baldi A, Bianciotti LG, Russel FGM, Shayo C and Davio C: Multidrug resistance protein 4 (MRP4/ABCC4) regulates cAMP cellular levels and controls human leukemia cell proliferation and differentiation. J Biol Chem. 286:6979–6988. 2011. View Article : Google Scholar : PubMed/NCBI

39 

Henderson MJ, Haber M, Porro A, Munoz MA, Iraci N, Xue C, Murray J, Flemming CL, Smith J and Fletcher JI: ABCC multidrug transporters in childhood neuroblastoma: Clinical and biological effects independent of cytotoxic drug efflux. J Natl Cancer Inst. 103:1236–1251. 2011. View Article : Google Scholar : PubMed/NCBI

40 

Beloribi-Djefaflia S, Vasseur S and Guillaumond F: Lipid metabolic reprogramming in cancer cells. Oncogenesis. 5:e1892016. View Article : Google Scholar : PubMed/NCBI

41 

Yan A, Jia Z, Qiao C, Wang M and Ding X: Cholesterol metabolism in drug-resistant cancer. Int J Oncol. 57:1103–1115. 2020.

42 

Sheng R, Chen Y, Gee HY, Stec E, Melowic HR, Blatner NR, Tun MP, Kim YJ, Källberg M and Fujiwara TK: Cholesterol modulates cell signaling and protein networking by specifically interacting with PDZ domain-containing scaffold proteins. Nat Commun. 3:12492012. View Article : Google Scholar : PubMed/NCBI

43 

Halimi H and Farjadian S: Cholesterol: An important actor on the cancer immune scene. Front Immunol. 13:10575462022. View Article : Google Scholar : PubMed/NCBI

44 

Song JW: Targeting Epithelial-mesenchymal transition pathway in hepatocellular carcinoma. Clin Mol Hepatol. 26:484–486. 2020. View Article : Google Scholar : PubMed/NCBI

45 

Maharati A and Moghbeli M: PI3K/AKT signaling pathway as a critical regulator of Epithelial-mesenchymal transition in colorectal tumor cells. Cell Commun Signal. 21:2012023. View Article : Google Scholar : PubMed/NCBI

46 

Manore SG, Doheny DL, Wong GL and Lo HW: IL-6/JAK/STAT3 signaling in breast cancer metastasis: Biology and Treatment. Front Oncol. 12:8660142022. View Article : Google Scholar : PubMed/NCBI

47 

Zhang G, Hou S, Li S, Wang Y and Cui W: Role of STAT3 in cancer cell Epithelial-mesenchymal transition. Int J Oncol. 64:482024. View Article : Google Scholar

48 

Sheng R, Kim HJ, Lee HY, Xin Y, Chen Y, Tian Y, Cui Y, Choi JC, Doh JS, Han JK and Cho WH: Cholesterol selectively activates canonical Wnt signalling over Non-canonical Wnt signaling. Nat Commun. 5:43932014. View Article : Google Scholar

49 

Liu CC, Prior J, Piwnica-Worms D and Bu G: LRP6 overexpression defines a class of breast cancer subtype and is a target for therapy. Proc Natl Acad Sci USA. 107:5136–5141. 2010. View Article : Google Scholar : PubMed/NCBI

50 

Yang L, Wu X, Wang Y, Zhang KW, Ju Y, Yuan YC, Deng X, Chen L, Kim CCH and Lau S: FZD7 has a critical role in cell proliferation in triple negative breast cancer. Oncogene. 30:4437–4446. 2011. View Article : Google Scholar : PubMed/NCBI

51 

Ma J, Lu W, Chen D, Xu B and Li Y: Role of Wnt Co-receptor LRP6 in triple negative breast cancer cell migration and invasion. J Cell Biochem. 118:2968–2976. 2017. View Article : Google Scholar : PubMed/NCBI

52 

Zhang Y and Wang X: Targeting the Wnt/β-catenin signaling pathway in cancer. J Hematol Oncol. 13:1652020. View Article : Google Scholar

53 

Paskeh MDA, Mirzaei S, Ashrafizadeh M, Zarrabi A and Sethi G: Wnt/β-Catenin signaling as a driver of hepatocellular carcinoma progression: An emphasis on molecular pathways. J Hepatocell Carcinoma. 8:1415–1444. 2021. View Article : Google Scholar

54 

Bianchini G, Balko JM, Mayer IA, Sanders ME and Gianni L: Triple-negative breast cancer: Challenges and opportunities of a heterogeneous disease. Nat Rev Clin Oncol. 13:674–690. 2016. View Article : Google Scholar : PubMed/NCBI

55 

Weichert W: Polo-like kinase isoforms in breast cancer: Expression patterns and prognostic implications. Virchows Arch. 446:442–450. 2005. View Article : Google Scholar : PubMed/NCBI

56 

Takahashi T: Polo-like kinase 1 (PLK1) is overexpressed in primary colorectal cancers. Cancer Sci. 94:148–152. 2003. View Article : Google Scholar : PubMed/NCBI

57 

Mann B, Gelos M, Siedow A, Hanski ML, Gratchev A and Ilyas M: Target genes of beta-catenin-T cell-factor/lymphoid-enhancer-factor signaling in human colorectal carcinomas. Proc Natl Acad Sci USA. 96:1603–1608. 1999. View Article : Google Scholar : PubMed/NCBI

58 

Martin BT and Strebhardt K: Polo-like kinase 1: Target and regulator of transcriptional control. Cell Cycle. 5:2881–2085. 2006. View Article : Google Scholar : PubMed/NCBI

59 

Gao Y, Nan X, Shi X, Mu X, Liu B and Zhu H: SREBP1 promotes the invasion of colorectal cancer accompanied upregulation of MMP7 expression and NF-Kappa b pathway activation. BMC Cancer. 19:6852019. View Article : Google Scholar

60 

Zhu Z, Zhao X, Zhao L, Yang H, Liu L and Li J: P54(nrb)/NONO regulates lipid metabolism and breast cancer growth through SREBP-1A. Oncogene. 35:1399–1410. 2006. View Article : Google Scholar

61 

Li C, Yang W, Zhang J, Zheng X, Yao Y and Tu K: SREBP-1 has a prognostic role and contributes to invasion and metastasis in human hepatocellular carcinoma. Int J Mol Sci. 15:7124–7138. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Yong L, Tang S, Yu H, Zhang H, Zhang Y, Wan Y and Cai F: The role of hypoxia-inducible factor-1 alpha in multidrug-resistant breast cancer. Front Oncol. 12:9649342022. View Article : Google Scholar : PubMed/NCBI

63 

Jun JC, Rathore A, Younas H, Gilkes D and Polotsky YV: Hypoxia-inducible factors and cancer. Curr Sleep Med Rep. 3:1–10. 2017. View Article : Google Scholar : PubMed/NCBI

64 

Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL and Simons JW: Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res. 59:5830–5835. 1999.PubMed/NCBI

65 

Generali D, Berruti A, Brizzi MP, Campo L, Bonardi S and Wigfield S: Hypoxia-inducible factor-1alpha expression predicts a poor response to primary chemoendocrine therapy and disease-free survival in primary human breast cancer. Clin Cancer Res. 12:4562–4568. 2006. View Article : Google Scholar : PubMed/NCBI

66 

Ezzeddini R, Taghikhani M, Somi MH, Samadi N and Rasaee MJ: Clinical importance of FASN in relation to HIF-1α and SREBP-1c in gastric adenocarcinoma. Life Sci. 224:169–176. 2019. View Article : Google Scholar : PubMed/NCBI

67 

Furuta E, Pai SK, Zhan R, Bandyopadhyay S, Watabe M, Mo YY, Hirota S, Hosobe S, Tsukada T and Miura K: Fatty Acid Synthase gene is up-regulated by hypoxia via activation of Akt and Sterol Regulatory Element Binding Protein-1. Cancer Res. 68:1003–1011. 2008. View Article : Google Scholar : PubMed/NCBI

68 

Zhang L, Reue K, Fong LG, Young SG and Tontonoz P: Feedback regulation of cholesterol uptake by the LXR-IDOL-LDLR axis. Arterioscler Thromb Vasc Biol. 32:2541–2546. 2012. View Article : Google Scholar : PubMed/NCBI

69 

Yoon HJ, Jillian L, Shaw JL, Haigis MC and Greka A: Lipid metabolism in sickness and in health: Emerging regulators of lipotoxicity. Mol Cell. 81:3708–3730. 2021. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Ko YS, Won JY, Jin H, Nguyen NB, Won Y, Nsanzimana V, Yun SP, Park SW and Kim HJ: ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells. Int J Mol Med 55: 80, 2025.
APA
Ko, Y.S., Won, J.Y., Jin, H., Nguyen, N.B., Won, Y., Nsanzimana, V. ... Kim, H.J. (2025). ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells. International Journal of Molecular Medicine, 55, 80. https://doi.org/10.3892/ijmm.2025.5521
MLA
Ko, Y. S., Won, J. Y., Jin, H., Nguyen, N. B., Won, Y., Nsanzimana, V., Yun, S. P., Park, S. W., Kim, H. J."ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells". International Journal of Molecular Medicine 55.5 (2025): 80.
Chicago
Ko, Y. S., Won, J. Y., Jin, H., Nguyen, N. B., Won, Y., Nsanzimana, V., Yun, S. P., Park, S. W., Kim, H. J."ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells". International Journal of Molecular Medicine 55, no. 5 (2025): 80. https://doi.org/10.3892/ijmm.2025.5521
Copy and paste a formatted citation
x
Spandidos Publications style
Ko YS, Won JY, Jin H, Nguyen NB, Won Y, Nsanzimana V, Yun SP, Park SW and Kim HJ: ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells. Int J Mol Med 55: 80, 2025.
APA
Ko, Y.S., Won, J.Y., Jin, H., Nguyen, N.B., Won, Y., Nsanzimana, V. ... Kim, H.J. (2025). ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells. International Journal of Molecular Medicine, 55, 80. https://doi.org/10.3892/ijmm.2025.5521
MLA
Ko, Y. S., Won, J. Y., Jin, H., Nguyen, N. B., Won, Y., Nsanzimana, V., Yun, S. P., Park, S. W., Kim, H. J."ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells". International Journal of Molecular Medicine 55.5 (2025): 80.
Chicago
Ko, Y. S., Won, J. Y., Jin, H., Nguyen, N. B., Won, Y., Nsanzimana, V., Yun, S. P., Park, S. W., Kim, H. J."ABCG8‑mediated sterol efflux increases cancer cell progression via the LRP6/Wnt/β‑catenin signaling pathway in radiotherapy‑resistant MDA‑MB‑231 triple‑negative breast cancer cells". International Journal of Molecular Medicine 55, no. 5 (2025): 80. https://doi.org/10.3892/ijmm.2025.5521
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team