
Seizures in brain tumors: pathogenesis, risk factors and management (Review)
- Authors:
- Cyrille D. Dantio
- Deborah Oluwatosin Fasoranti
- Chubei Teng
- Xuejun Li
-
Affiliations: Department of Neurosurgery, Xiangya Hospital, Central South University, Changsha, Hunan 410013, P.R. China - Published online on: March 21, 2025 https://doi.org/10.3892/ijmm.2025.5523
- Article Number: 82
-
Copyright: © Dantio et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
This article is mentioned in:
Abstract
![]() |
![]() |
![]() |
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2016-2020. Neuro Oncol. 25:IV1–IV99. 2023.PubMed/NCBI | |
Bertolini F, Spallanzani A, Fontana A, Depenni R and Luppi G: Brain metastases: An overview. CNS Oncol. 4:37–46. 2015.PubMed/NCBI | |
Englot DJ, Magill ST, Han SJ, Chang EF, Berger MS and McDermott MW: Seizures in supratentorial meningioma: A systematic review and meta-analysis. J Neurosurg. 124:15522015.PubMed/NCBI | |
Englot DJ, Chang EF and Vecht CJ: Epilepsy and brain tumors. Handb Clin Neurol. 134:267–285. 2016.PubMed/NCBI | |
Easwaran TP, Lancki N, Henriquez M, Vortmeyer AO, Barbaro NM, Scholtens DM, Ahmed AU and Dey M: Molecular classification of gliomas is associated with seizure control: A retrospective analysis. Neuromolecular. 23:315–326. 2021. | |
Chen H, Judkins J, Thomas C, Wu M, Khoury L, Benjamin CG, Pacione D, Golfinos JG, Kumthekar P and Ghamsari F: Mutant IDH1 and seizures in patients with glioma. Neurology. 88:1805–1813. 2017.PubMed/NCBI | |
Seidel S, Wehner T, Miller D, Wellmer J, Schlegel U and Grönheit W: Brain tumor related epilepsy: Pathophysiological approaches and rational management of antiseizure medication. Neurol Res Pract. 4:452022.PubMed/NCBI | |
Soltani Khaboushan A, Yazdanpanah N and Rezaei N: Neuroinflammation and proinflammatory cytokines in epileptogenesis. Mol Neurobiol. 59:1724–1743. 2022.PubMed/NCBI | |
Rana A and Musto AE: The role of inflammation in the development of epilepsy. J Neuroinflammation. 15:1442018.PubMed/NCBI | |
Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, Chang H, Chao J and Yao H: Neuronal nitric oxide synthase contributes to PTZ kindling epilepsy-induced hippocampal endoplasmic reticulum stress and oxidative damage. Front Cell Neurosci. 11:3772017.PubMed/NCBI | |
Xiao Z, Peng J, Wu L, Arafat A and Yin F: The effect of IL-1β on synaptophysin expression and electrophysiology of hippocampal neurons through the PI3K/Akt/mTOR signaling pathway in a rat model of mesial temporal lobe epilepsy. Neurol Res. 39:640–648. 2017. View Article : Google Scholar : PubMed/NCBI | |
Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, Bertollini C, Limatola C, Aronica E, Vezzani A and Palma E: GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: Implications for ictogenesis. Neurobiol Dis. 82:311–320. 2015. View Article : Google Scholar : PubMed/NCBI | |
Stellwagen D and Malenka RC: Synaptic scaling mediated by glial TNF-α. Nature. 440:1054–1059. 2006. View Article : Google Scholar : PubMed/NCBI | |
Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG and Vezzani A: Tumor necrosis factor-α inhibits seizures in mice via p75 receptors. Ann Neurol. 57:804–812. 2005. View Article : Google Scholar : PubMed/NCBI | |
Galic MA, Riazi K and Pittman QJ: Cytokines and brain excitability. Front Neuroendocrinol. 33:116–125. 2011. View Article : Google Scholar | |
Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T and Suzumura A: Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 281:21362–21368. 2006. View Article : Google Scholar : PubMed/NCBI | |
Yuhas Y, Weizman A and Ashkenazi S: Bidirectional concentration-dependent effects of tumor necrosis factor alpha in Shigella dysenteriae-related seizures. Infect Immun. 71:2288–2291. 2003. View Article : Google Scholar : PubMed/NCBI | |
Grell M, Wajant H, Zimmermann G and Scheurich P: The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci USA. 95:570–575. 1998. View Article : Google Scholar : PubMed/NCBI | |
Stellwagen D, Beattie EC, Seo JY and Malenka RC: Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J Neurosci. 25:3219–3228. 2005. View Article : Google Scholar : PubMed/NCBI | |
Fu CY, He XY, Li XF, Zhang X, Huang ZW, Li J, Chen M and Duan CZ: Nefiracetam attenuates Pro-inflammatory cytokines and GABA transporter in specific brain regions of rats with Post-ischemic seizures. Cell Physiol Biochem. 37:2023–2031. 2015. View Article : Google Scholar : PubMed/NCBI | |
Su J, Yin J, Qin W, Sha S, Xu J and Jiang C: Role for Pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic Acid-induced status epilepticus. Neurochem Res. 40:621–627. 2015.PubMed/NCBI | |
Iori V, Maroso M, Rizzi M, Iyer AM, Vertemara R, Carli M, Agresti A, Antonelli A, Bianchi ME, Aronica E, et al: Receptor for advanced glycation endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis. 58:102–114. 2013.PubMed/NCBI | |
Xie J, Méndez JD, Méndez-Valenzuela V and Aguilar-Hernández MM: Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 25:2185–2197. 2013.PubMed/NCBI | |
Chang ZL: Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res. 59:791–808. 2010.PubMed/NCBI | |
Balosso S, Liu J, Bianchi ME and Vezzani A: Disulfide-containing high mobility group Box-1 promotes N-Methyl-d-Aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-Dependent signaling in hippocampal neurons. Antioxid Redox Signal. 21:1726–1740. 2014. | |
Festoff BW, Sajja RK, van Dreden P and Cucullo L: HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer's disease. J Neuroinflammation. 13:1942016.PubMed/NCBI | |
Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, et al: Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 16:413–419. 2010.PubMed/NCBI | |
Ulusoy C, Vanlı-Yavuz EN, Şanlı E, Timirci-Kahraman Ö, Yılmaz V, Bebek N, Küçükali Cİ, Baykan B and Tüzün E: Peripheral blood expression levels of inflammasome complex components in two different focal epilepsy syndromes. J Neuroimmunol. 347:5773432020.PubMed/NCBI | |
Vezzani A, Balosso S and Ravizza T: Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 15:459–472. 2019.PubMed/NCBI | |
Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG and Keane RW: Pattern recognition receptors and central nervous system repair. Exp Neurol. 258:5–16. 2014.PubMed/NCBI | |
Vezzani A and Baram TZ: New Roles for interleukin-1 beta in the mechanisms of epilepsy. Epilepsy Curr. 7:45–50. 2007. View Article : Google Scholar : PubMed/NCBI | |
Kim JY, Kanai Y, Chairoungdua A, Cha SH, Matsuo H, Kim DK, Inatomi J, Sawa H, Ida Y and Endou H: Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim Biophys Acta. 1512:335–344. 2001. View Article : Google Scholar : PubMed/NCBI | |
de Groot J and Sontheimer H: Glutamate and the biology of gliomas. Glia. 59:1181–1189. 2010. View Article : Google Scholar : PubMed/NCBI | |
Savaskan NE, Fan Z, Broggini T, Buchfelder M and Eyüpoglu IY: Neurodegeneration in the brain tumor microenvironment: Glutamate in the limelight. Curr Neuropharmacol. 13:258–265. 2015. View Article : Google Scholar : | |
Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami A, Ni L, et al: Electrical and synaptic integration of glioma into neural circuits. Nature. 573:539–545. 2019. View Article : Google Scholar : PubMed/NCBI | |
De Groot M, Reijneveld JC, Aronica E and Heimans JJ: Epilepsy in patients with a brain tumour: Focal epilepsy requires focused treatment. Brain. 135:1002–1016. 2012. View Article : Google Scholar | |
Kim JW and Dang CV: Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 66:8927–8930. 2006. View Article : Google Scholar : PubMed/NCBI | |
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 462:739–744. 2009. View Article : Google Scholar : PubMed/NCBI | |
Mortazavi A, Fayed I, Bachani M, Dowdy T, Jahanipour J, Khan A, Owotade J, Walbridge S, Inati SK, Steiner J, et al: IDH-mutated gliomas promote epileptogenesis through d-2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro Oncol. 24:1423–1435. 2022. View Article : Google Scholar : PubMed/NCBI | |
Szopa W, Burley TA, Kramer-Marek G and Kaspera W: Diagnostic and therapeutic biomarkers in glioblastoma: Current status and future perspectives. Biomed Res Int. 2017:80135752017. View Article : Google Scholar : PubMed/NCBI | |
Zhang Y, Dube C, Gibert M Jr, Cruickshanks N, Wang B, Coughlan M, Yang Y, Setiady I, Deveau C, Saoud K, et al: The p53 pathway in glioblastoma. Cancers (Basel). 10:2972018. View Article : Google Scholar : PubMed/NCBI | |
Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N, O'Fallon JR, Schaefer PL, Scheithauer BW, James CD, et al: PTEN mutation, EGFR Amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst. 93:1246–1256. 2001. View Article : Google Scholar : PubMed/NCBI | |
Hu S, Kao HY, Yang T and Wang Y: Early and Bi-hemispheric seizure onset in a rat glioblastoma Multiforme model. Neurosci Lett. 766:1363512022. View Article : Google Scholar | |
Venkatesan S, Lamfers MLM, Dirven CMF and Leenstra S: Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncol. 5:77–790. 2016. View Article : Google Scholar : PubMed/NCBI | |
Williams MR, De-Spenza T, Li M, Gulledge AT and Luikart BW: Hyperactivity of newborn pten Knock-out neurons results from increased excitatory synaptic drive. J Neurosci. 35:943–953. 2015. View Article : Google Scholar : PubMed/NCBI | |
Yonan JM, Chen KD, Baram TZ and Steward O: PTEN deletion in the adult dentate gyrus induces epilepsy. Neurobiol Dis. 203:1067362024. View Article : Google Scholar : PubMed/NCBI | |
Hills KE, Kostarelos K and Wykes RC: Converging mechanisms of epileptogenesis and their insight in glioblastoma. Front Mol Neurosci. 15:9031152022. View Article : Google Scholar : PubMed/NCBI | |
Sabetghadam A, Wu C, Liu J, Zhang L and Reid AY: Increased epileptogenicity in a mouse model of neurofibromatosis type 1. Exp Neurol. 331:1133732020. View Article : Google Scholar : PubMed/NCBI | |
Engel T, Murphy BM, Schindler CK and Henshall DC: Elevated p53 and lower MDM2 expression in hippocampus from patients with intractable temporal lobe epilepsy. Epilepsy Res. 77:151–156. 2007. View Article : Google Scholar : PubMed/NCBI | |
Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA and Schwartzkroin PA: Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci. 16:1337–1345. 1996. View Article : Google Scholar : PubMed/NCBI | |
Engel T, Murphy BM, Hatazaki S, Jimenez-Mateos EM, Concannon CG, Woods I, Prehn JH and Henshall DC: Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma. FASEB J. 24:853–861. 2010. View Article : Google Scholar | |
Burla R, La Torre M, Zanetti G, Bastianelli A, Merigliano C, Del Giudice S, Vercelli A, Di Cunto F, Boido M, Vernì F and Saggio I: P53-sensitive epileptic behavior and inflammation in Ft1 hypomorphic mice. Front Genet. 9:5812018. View Article : Google Scholar : PubMed/NCBI | |
Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH and Mattson MP: A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid β-peptide. J Neurochem. 77:220–228. 2001.PubMed/NCBI | |
Djebali M, Lerner-Natoli M, Pascale M, Baille V, Bockaert J and Rondouin G: Molecular events involved in neuronal death induced in the mouse hippocampus by in-vivo injection of kainic acid. Brain Res Mol Brain Res. 93:190–198. 2001. View Article : Google Scholar | |
Butt AM and Kalsi A: Inwardly rectifying potassium channels (Kir) in central nervous system glia: A special role for Kir4.1 in glial functions. J Cell Mol Med. 10:33–44. 2007. View Article : Google Scholar | |
Nadella RK, Chellappa A, Subramaniam AG, More RP, Shetty S, Prakash S, Ratna N, Vandana VP, Purushottam M, Saini J, et al: Identification and functional characterization of two novel mutations in KCNJ10 and PI4KB in SeSAME syndrome without electrolyte imbalance. Hum Genomics. 13:532019. View Article : Google Scholar : PubMed/NCBI | |
Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K, Bandulik S, Sterner C, Tegtmeier I, Penton D, Baukrowitz T, et al: KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci USA. 107:14490–14495. 2010. View Article : Google Scholar : PubMed/NCBI | |
Curry RN, Aiba I, Meyer J, Lozzi B, Ko Y, McDonald MF, Rosenbaum A, Cervantes A, Huang-Hobbs E, Cocito C, et al: Glioma epileptiform activity and progression are driven by IGSF3-mediated potassium dysregulation. Neuron. 111:682–695.e9. 2023. View Article : Google Scholar : PubMed/NCBI | |
de Curtis M, Uva L, Gnatkovsky V and Librizzi L: Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res. 143:50–59. 2018. View Article : Google Scholar : PubMed/NCBI | |
Audrey C, Lim KS, Ahmad Zaki R, Narayanan V, Fong SL and Tan CT: From location to manifestation: A systematic review and meta-analysis of seizure prevalence in different brain tumor sites. Brain Disord. 14:1001462024. View Article : Google Scholar | |
Lee JW, Wen PY, Hurwitz S, Black P, Kesari S, Drappatz J, Golby AJ, Wells WM III, Warfield SK, Kikinis R and Bromfield EB: Morphological characteristics of brain tumors causing seizures. Arch Neurol. 67:336–342. 2010.PubMed/NCBI | |
Le VT, Nguyen AM, Pham TA and Nguyen PL: Tumor-related epilepsy and post-surgical outcomes: Tertiary hospital experience in Vietnam. Sci Rep. 13:108592023.PubMed/NCBI | |
Elbadry Ahmed R, Tang H, Asemota A, Huang L, Boling W and Bannout F: Meningioma related Epilepsy-Pathophysiology, Pre/postoperative seizures predicators and treatment. Front Oncol. 12:9059762022. | |
Harward SC, Rolston JD and Englot DJ: Seizures in meningioma. Handb Clin Neurol. 170:187–200. 2020.PubMed/NCBI | |
Asano K, Hasegawa S, Matsuzaka M and Ohkuma H: Brain tumor-related epilepsy and risk factors for metastatic brain tumors: Analysis of 601 consecutive cases providing real-world data. J Neurosurg. 136:76–87. 2021.PubMed/NCBI | |
Sankey EW, Tsvankin V, Grabowski MM, Nayar G, Batich KA, Risman A, Champion CD, Salama AKS, Goodwin CR and Fecci PE: Operative and peri-operative considerations in the management of brain metastasis. Cancer Med. 8:6809–6831. 2019.PubMed/NCBI | |
Rudà R, Mo F and Pellerino A: Epilepsy in brain metastasis: An emerging entity. Curr Treat Options Neurol. 22:62020.PubMed/NCBI | |
Garcia JH, Morshed RA, Chung J, Millares Chavez MA, Sudhakar V, Saggi S, Avalos LN, Gallagher A, Young JS, Daras M, et al: Factors associated with preoperative and postoperative seizures in patients undergoing resection of brain metastases. J Neurosurg. 138:19–26. 2023. | |
Wolpert F, Lareida A, Terziev R, Grossenbacher B, Neidert MC, Roth P, Poryazova R, Imbach LL, Le Rhun E, Weller M, et al: Risk factors for the development of epilepsy in patients with brain metastases. Neuro Oncol. 22:718–728. 2020. | |
Urban H, Willems LM, Ronellenfitsch MW, Rosenow F, Steinbach JP and Strzelczyk A: Increased occurrence of status epilepticus in patients with brain metastases and checkpoint inhibition. Oncoimmunology. 9:18515172020.PubMed/NCBI | |
Li L, Li G, Fang S, Zhang K, Huang R, Wang Y, Zhang C, Li Y, Zhang W, Zhang Z, et al: New-Onset postoperative seizures in patients with diffuse gliomas: A risk assessment analysis. Front Neurol. 12:6825352021. View Article : Google Scholar : PubMed/NCBI | |
Mastall M, Wolpert F, Gramatzki D, Imbach L, Becker D, Schmick A, Hertler C, Roth P, Weller M and Wirsching HG: Survival of brain tumour patients with epilepsy. Brain. 144:3322–3327. 2021. View Article : Google Scholar : PubMed/NCBI | |
Ge H, Di G, Yan Z, Liu D, Liu Y, Song K, Yang K, Hu X, Jiang Z, Hu X, et al: Does epilepsy always indicate worse outcomes? A longitudinal follow-up analysis of 485 glioma patients. World J Surg Oncol. 20:2972022. View Article : Google Scholar : PubMed/NCBI | |
Vecht CJ, Kerkhof M and Duran-Pena A: Seizure prognosis in brain tumors: New insights and Evidence-based management. Oncologist. 19:751–759. 2014. View Article : Google Scholar : PubMed/NCBI | |
Giraldi L, Hansen JV, Wohlfahrt J, Fugleholm K, Melbye M and Munch TN: Postoperative de novo epilepsy after craniotomy: A nationwide register-based cohort study. J Neurol Neurosurg Psychiatry. 93:436–444. 2022. View Article : Google Scholar | |
Abzalova DI, Sinkin MV, Yakovlev AA, Prirodov AV and Guekht AB: Risk factors for the development of de novo generalized tonic-clonic epileptic seizures in patients with supratentorial meningiomas after neurosurgical treatment. Neurosci Behav Physiol. 54:404–409. 2024.In Russian. View Article : Google Scholar | |
Englot DJ, Berger MS, Barbaro NM and Chang EF: Predictors of seizure freedom after resection of supratentorial low-grade gliomas: A review. J Neurosurg. 115:240–244. 2011. View Article : Google Scholar : PubMed/NCBI | |
Schneider M, Güresir Á, Borger V, Hamed M, Rácz A, Vatter H, Güresir E and Schuss P: Preoperative tumor-associated epilepsy in patients with supratentorial meningioma: Factors influencing seizure outcome after meningioma surgery. J Neurosurg. 133:1655–1661. 2020. View Article : Google Scholar | |
Jackson C, Choi J, Khalafallah AM, Price C, Bettegowda C, Lim M, Gallia G, Weingart J, Brem H and Mukherjee D: A systematic review and meta-analysis of supratotal versus gross total resection for glioblastoma. J Neurooncol. 148:419–431. 2020. View Article : Google Scholar : PubMed/NCBI | |
Englot DJ, Han SJ, Berger MS, Barbaro NM and Chang EF: Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery. 70:921–927. 2012. View Article : Google Scholar | |
Koekkoek JAF, Kerkhof M, Dirven L, Heimans JJ, Reijneveld JC and Taphoorn MJB: Seizure outcome after radiotherapy and chemotherapy in low-grade glioma patients: A systematic review. Neuro Oncol. 17:924–934. 2015.PubMed/NCBI | |
Rudá R, Magliola U, Bertero L, Trevisan E, Bosa C, Mantovani C, Ricardi U, Castiglione A, Monagheddu C and Soffietti R: Seizure control following radiotherapy in patients with diffuse gliomas: A retrospective study. Neuro Oncol. 15:1739–1749. 2013.PubMed/NCBI | |
Van Den Bent MJ, Afra D, De Witte O, Ben Hassel M, Schraub S, Hoang-Xuan K, Malmström PO, Collette L, Piérart M, Mirimanoff R, et al: Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: The EORTC 22845 randomised trial. Lancet. 366:985–990. 2005.PubMed/NCBI | |
Brada M, Viviers L, Abson C, Hines F, Britton J, Ashley S, Sardell S, Traish D, Gonsalves A, Wilkins P and Westbury C: Phase II study of primary temozolomide chemotherapy in patients with WHO grade II gliomas. Ann Oncol. 14:1715–1721. 2003.PubMed/NCBI | |
Sherman JH, Moldovan K, Yeoh HK, Starke RM, Pouratian N, Shaffrey ME and Schiff D: Impact of temozolomide chemotherapy on seizure frequency in patients with low-grade gliomas: Clinical article. J Neurosurg. 114:1617–1621. 2011.PubMed/NCBI | |
Rades D, Witteler J, Trillenberg P, Olbrich D, Schild SE, Tvilsted S and Kjaer TW: Increasing seizure activity during radiation treatment for High-grade Gliomas-final results of a prospective interventional study. In Vivo. 36:2308–2313. 2022.PubMed/NCBI | |
Wu A, Jin MC, Meola A, Wong HN and Chang SD: Efficacy and toxicity of particle radiotherapy in WHO grade II and grade III meningiomas: A systematic review. Neurosurg Focus. 46:E122019.PubMed/NCBI | |
Grewal J, Grewal HK and Forman AD: Seizures and epilepsy in cancer: Etiologies, Evaluation, and Management. Curr Oncol Rep. 10:63–71. 2008.PubMed/NCBI | |
Smart DD: Radiation toxicity in the central nervous system: Mechanisms and strategies for injury reduction. Semin Radiat Oncol. 27:332–339. 2017.PubMed/NCBI | |
Walbert T, Harrison RA, Schiff D, Avila EK, Chen M, Kandula P, Lee JW, Le Rhun E, Stevens GHJ, Vogelbaum MA, et al: SNO and EANO practice guideline update: Anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Neuro Oncol. 23:1835–1844. 2021.PubMed/NCBI | |
Van Der Meer PB, Dirven L, Van Den Bent MJ, Preusser M, Taphoorn MJB, Rudá R and Koekkoek JAF: Prescription preferences of antiepileptic drugs in brain tumor patients: An international survey among EANO members. Neurooncol Pract. 9:105–113. 2022.PubMed/NCBI | |
Dewan MC, Thompson RC, Kalkanis SN, Barker FG and Hadjipanayis CG: Prophylactic antiepileptic drug administration following brain tumor resection: Results of a recent AANS/CNS section on tumors survey. J Neurosurg. 126:1772–1778. 2016. View Article : Google Scholar : PubMed/NCBI | |
Glauser T, Ben-Menachem E, Bourgeois B, Cnaan A, Guerreiro C, Kälviäinen R, Mattson R, French JA, Perucca E and Tomson T; ILAE Subcommission on AED Guidelines: Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia. 54:551–563. 2013. View Article : Google Scholar : PubMed/NCBI | |
Maschio M, Dinapoli L, Sperati F, Pace A, Fabi A, Vidiri A and Muti P: Levetiracetam monotherapy in patients with brain tumor-related epilepsy: Seizure control, safety, and quality of life. J Neurooncol. 104:205–214. 2011. View Article : Google Scholar | |
Bähr O, Hermisson M, Rona S, Rieger J, Nussbaum S, Körtvelyessy P, Franz K, Tatagiba M, Seifert V, Weller M and Steinbach JP: Intravenous and oral levetiracetam in patients with a suspected primary brain tumor and symptomatic seizures undergoing neurosurgery: The HELLO trial. Acta Neurochir (Wien). 154:229–235. 2012. View Article : Google Scholar | |
LaPenna P and Tormoehlen LM: The pharmacology and toxicology of Third-generation anticonvulsant drugs. J Med Toxicol. 13:329–342. 2017. View Article : Google Scholar : PubMed/NCBI | |
Jo J, Nevel K, Sutyla R, Smolkin M, Lopes MB and Schiff D: Predictors of early, recurrent, and intractable seizures in low-grade glioma. Neurooncol Pract. 8:40–47. 2020. | |
Singh SP, Agarwal S and Faulkner M: Refractory status epilepticus. Ann Indian Acad Neurol. 17(Suppl 1): S32–S36. 2014. View Article : Google Scholar : PubMed/NCBI | |
Van Breemen MSM, Rijsman RM, Taphoorn MJB, Walchenbach R, Zwinkels H and Vecht CJ: Efficacy of anti-epileptic drugs in patients with gliomas and seizures. J Neurol. 256:1519–1526. 2009. View Article : Google Scholar : PubMed/NCBI | |
Yadav J, Singh P, Dabla S and Gupta R: Psychiatric comorbidity and quality of life in patients with epilepsy on anti-epileptic monotherapy and polytherapy. Tzu Chi Med J. 34:226–231. 2021. View Article : Google Scholar | |
Khalid B, Waqar Z, Khan S, Ali I, Afzal N, Irfan A, Malik W, Muhammad Adil M, Saddiqa A, Khalil M and Munawar Z: Psychiatric implications of anti-seizure medications in epileptic population. BMC Neurol. 24:1662024. View Article : Google Scholar : PubMed/NCBI | |
Besag FMC, Vasey MJ and Sen A: Current evidence for adjunct pyridoxine (vitamin B6) for the treatment of behavioral adverse effects associated with levetiracetam: A systematic review. Epilepsy Behav. 140:1090652023. View Article : Google Scholar : PubMed/NCBI | |
Bourg V, Lebrun C, Chichmanian RM, Thomas P and Frenay M: Nitroso-urea-cisplatin-based chemotherapy associated with valproate: Increase of haematologic toxicity. Ann Oncol. 12:217–220. 2001. View Article : Google Scholar : PubMed/NCBI | |
Simó M, Velasco R, Graus F, Verger E, Gil M, Pineda E, Blasco J and Bruna J: Impact of antiepileptic drugs on thrombocytopenia in glioblastoma patients treated with standard chemoradiotherapy. J Neurooncol. 108:451–458. 2012. View Article : Google Scholar : PubMed/NCBI | |
Kerkhof M, Dielemans JCM, Van Breemen MS, Zwinkels H, Walchenbach R, Taphoorn MJ and Vecht CJ: Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro Oncol. 15:961–967. 2013. View Article : Google Scholar : PubMed/NCBI | |
Sánchez-Villalobos JM, Aledo-Serrano Á, Villegas-Martínez I, Shaikh MF and Alcaraz M: Epilepsy treatment in neuro-oncology: A rationale for drug choice in common clinical scenarios. Front Pharmacol. 13:9912442022. View Article : Google Scholar : PubMed/NCBI | |
Mo F, Meletti S, Belcastro V, Quadri S, Napolitano M, Bello L, Dainese F, Scarpelli M, Florindo I, Mascia A, et al: Lacosamide in monotherapy in BTRE (brain tumor-related epilepsy): Results from an Italian multicenter retrospective study. J Neurooncol. 157:551–559. 2022. View Article : Google Scholar : PubMed/NCBI | |
Villanueva V, Saiz-Diaz R, Toledo M, Piera A, Mauri JA, Rodriguez-Uranga JJ, López-González FJ, Gómez-Ibáñez A, Garcés M, González de la Aleja J, et al: NEOPLASM study: Real-life use of lacosamide in patients with brain tumor-related epilepsy. Epilepsy Behav. 65:25–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
van Opijnen MP, van der Meer PB, Dirven L, Fiocco M, Kouwenhoven MCM, van den Bent MJ, Taphoorn MJB and Koekkoek JAF: The effectiveness of antiepileptic drug treatment in glioma patients: Lamotrigine versus lacosamide. J Neurooncol. 154:73–81. 2021. View Article : Google Scholar : PubMed/NCBI | |
Wilding J, Van Gaal L, Rissanen A, Vercruysse F and Fitchet M: A randomized double-blind placebo-controlled study of the long-term efficacy and safety of topiramate in the treatment of obese subjects. Int J Obes Relat Metab Disord. 28:1399–1410. 2004.2004. View Article : Google Scholar : PubMed/NCBI | |
Liu YT, Chen GT, Huang YC, Ho JT, Lee CC, Tsai CC and Chang CN: Effectiveness of dose-escalated topiramate monotherapy and add-on therapy in neurosurgery-related epilepsy: A prospective study. Medicine (Baltimore). 99:e237712020.PubMed/NCBI | |
Maschio M, Dinapoli L, Zarabla A, Maialetti A, Giannarelli D, Fabi A, Vidiri A and Cantelmi T: Zonisamide in brain tumor-related epilepsy: An observational pilot study. Clin Neuropharmacol. 40:113–119. 2017.PubMed/NCBI | |
De A, Rajagopalan M, Sarda A, Das S and Biswas P: Drug reaction with eosinophilia and systemic symptoms: An update and review of recent literature. Indian J Dermatol. 63:30–40. 2018.PubMed/NCBI | |
Patocka J, Wu Q, Nepovimova E and Kuca K: Phenytoin-An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology. Food Chem Toxicol. 142:1113932020. | |
Mauro AM, Bomprezzi C, Morresi S, Provinciali L, Formica F, Iacoangeli M and Scerrati M: Prevention of early postoperative seizures in patients with primary brain tumors: Preliminary experience with oxcarbazepine. J Neurooncol. 81:279–285. 2007. | |
Maschio M, Dinapoli L, Sperati F, Fabi A, Pace A, Vidiri A and Muti P: Oxcarbazepine monotherapy in patients with brain tumor-related epilepsy: Open-label pilot study for assessing the efficacy, tolerability and impact on quality of life. J Neurooncol. 106:651–656. 2012. | |
Zoccarato M, Basile AM, Padovan M, Caccese M, Zagonel V and Lombardi G: Eslicarbazepine in patients with brain tumor-related epilepsy: A single-center experience. Int J Neurosci. 131:879–884. 2021. | |
Hino U, Tamura R, Kosugi K, Ezaki T, Karatsu K, Yamamoto K, Tomioka A and Toda M: Optimizing perampanel monotherapy for surgically resected brain tumors. Mol Clin Oncol. 20:422024.PubMed/NCBI | |
Perry JR and Sawka C: Add-on gabapentin for refractory seizures in patients with brain tumours. Can J Neurol Sci. 23:128–131. 1996.PubMed/NCBI | |
Brahmbhatt N, Stupp R, Bushara O, Bachman E, Schuele SU and Templer JW: Efficacy of clobazam as add-on therapy in brain tumor-related epilepsy. J Neurooncol. 151:287–293. 2021.PubMed/NCBI | |
Striano S, Striano P, Boccella P, Nocerino C and Bilo L: Tiagabine in glial tumors. Epilepsy Res. 49:81–85. 2002.PubMed/NCBI | |
Maschio M, Maialetti A, Mocellini C, Domina E, Pauletto G, Costa C, Mascia A, Romoli M and Giannarelli D: Effect of brivaracetam on efficacy and tolerability in patients with brain Tumor-related epilepsy: A retrospective multicenter study. Front Neurol. 11:8132020.PubMed/NCBI | |
Gao L, Lu Q, Wang Z, Yue W, Wang G, Shao X, Guo Y, Yi Y, Hong Z, Jiang Y, et al: Efficacy and safety of perampanel as early add-on therapy in Chinese patients with focal-onset seizures: A multicenter, open-label, single-arm study. Front Neurol. 14:12360462023.PubMed/NCBI | |
Lavu A, Aboulatta L, Abou-Setta AM, Aloud B, Askin N, Rabbani R, Shouman W, Zarychanski R and Eltonsy S: Efficacy and safety of perampanel in epilepsy: A systematic review and meta-analysis of randomised controlled trials. Seizure. 102:54–60. 2022.PubMed/NCBI | |
Bénit CP and Vecht CJ: Seizures and cancer: Drug interactions of anticonvulsants with chemotherapeutic agents, tyrosine kinase inhibitors and glucocorticoids. Neurooncol Pract. 3:245–260. 2016.PubMed/NCBI | |
Chalk JB, Ridgeway K, Brophy T, Yelland JDN and Eadie MJ: Phenytoin impairs the bioavailability of dexamethasone in neurological and neurosurgical patients. J Neurol Neurosurg Psychiatry. 47:1087–1090. 1984.PubMed/NCBI | |
Ikeda H, Murakami T, Takano M, Usui T and Kihira K: Pharmacokinetic interaction on valproic acid and recurrence of epileptic seizures during chemotherapy in an epileptic patient. Br J Clin Pharmacol. 59:593–597. 2005.PubMed/NCBI | |
Bagnato F and Good J: The use of antiepileptics in migraine prophylaxis. Headache. 56:603–615. 2016.PubMed/NCBI | |
Linde M, Mulleners WM, Chronicle EP and Mccrory DC: Antiepileptics other than gabapentin, pregabalin, topiramate, and valproate for the prophylaxis of episodic migraine in adults. Cochrane Database Syst Rev. 2013:CD0106082013.PubMed/NCBI | |
Ruiz-Giménez J, Sánchez-Álvarez JC, Cañadillas-Hidalgo F and Serrano-Castro PJ: Antiepileptic treatment in patients with epilepsy and other comorbidities. Seizure. 19:375–382. 2010.PubMed/NCBI | |
Patsalos PN and Perucca E: Clinically important drug interactions in epilepsy: Interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2:473–481. 2003. View Article : Google Scholar : PubMed/NCBI | |
Routy JP, Tremblay CL, Angel JB, Trottier B, Rouleau D, Baril JG, Harris M, Trottier S, Singer J, Chomont N, et al: Valproic acid in association with highly active antiretroviral therapy for reducing systemic HIV-1 reservoirs: Results from a multicentre randomized clinical study. HIV Med. 13:291–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, Landay AL, Coombs RW, Richman DD, Mellors JW, et al: Depletion of latent HIV-1 infection in vivo: A proof-of-concept study. Lancet. 366:5492005. View Article : Google Scholar : PubMed/NCBI | |
Sagot-Lerolle N, Lamine A, Chaix ML, Boufassa F, Aboulker JP, Costagliola D, Goujard C, Pallier C, Delfraissy JF and Lambotte O; ANRS EP39 study: Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS. 22:1125–1129. 2008. View Article : Google Scholar : PubMed/NCBI | |
Blotière PO, Raguideau F, Weill A, Elefant E, Perthus I, Goulet V, Rouget F, Zureik M, Coste J and Dray-Spira R: Risks of 23 specific malformations associated with prenatal exposure to 10 antiepileptic drugs. Neurology. 93:e167–e180. 2019. View Article : Google Scholar : PubMed/NCBI | |
Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK and de Jong-van den Berg LT; EUROCAT Antiepileptic Study Working Group: Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med. 362:2185–2193. 2010. View Article : Google Scholar : PubMed/NCBI | |
Meador KJ, Baker GA, Browning N, Cohen MJ, Bromley RL, Clayton-Smith J, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, et al: Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): A prospective observational study. Lancet Neurol. 12:244–252. 2013. View Article : Google Scholar : PubMed/NCBI | |
Christensen J, Grnøborg TK, Srøensen MJ, Schendel D, Parner ET, Pedersen LH and Vestergaard M: Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 309:1696–1703. 2013. View Article : Google Scholar : PubMed/NCBI | |
Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, et al: Neuronal activity promotes glioma growth through Neuroligin-3 secretion. Cell. 161:803–816. 2015. View Article : Google Scholar : PubMed/NCBI | |
Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, Körber C, Kardorff M, Ratliff M, Xie R, et al: Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 573:532–538. 2019. View Article : Google Scholar : PubMed/NCBI | |
Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Bührer C, et al: NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA. 102:15605–15610. 2005. View Article : Google Scholar : PubMed/NCBI | |
Bobustuc GC, Baker CH, Limaye A, Jenkins WD, Pearl G, Avgeropoulos NG and Konduri SD: Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide. Neuro Oncol. 12:917–927. 2010. View Article : Google Scholar : PubMed/NCBI | |
Roh TH, Moon JH, Park HH, Kim EH, Hong CK, Kim SH, Kang SG and Chang JH: Association between survival and levetiracetam use in glioblastoma patients treated with temozolomide chemoradiotherapy. Sci Rep. 10:107832020. View Article : Google Scholar : PubMed/NCBI | |
Ryu JY, Min KL and Chang MJ: Effect of anti-epileptic drugs on the survival of patients with glioblastoma multiforme: A retrospective, single-center study. PLoS One. 14:e02255992019. View Article : Google Scholar : PubMed/NCBI | |
Chen JS, Clarke R, Haddad AF, Wang EJ, Lacroix M, Sarkar IN, Zand R, Chen ES and Toms SA: The effect of levetiracetam treatment on survival in patients with glioblastoma: A systematic review and meta-analysis. J Neurooncol. 156:257–267. 2022. View Article : Google Scholar : PubMed/NCBI | |
Happold C, Gorlia T, Chinot O, Gilbert MR, Nabors LB, Wick W, Pugh SL, Hegi M, Cloughesy T, Roth P, et al: Does valproic acid or levetiracetam improve survival in glioblastoma? A pooled analysis of prospective clinical trials in newly diagnosed glioblastoma. J Clin Oncol. 34:731–739. 2016. View Article : Google Scholar : PubMed/NCBI | |
Oberndorfer S, Piribauer M, Marosi C, Lahrmann H, Hitzenberger P and Grisold W: P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J Neurooncol. 72:255–260. 2005. View Article : Google Scholar : PubMed/NCBI | |
Krauze A, Megan M, Theresa CZ, Peter M, Shih JH, Tofilon PJ, Rowe L, Gilbert M and Camphausen K: The addition of Valproic acid to concurrent radiation therapy and temozolomide improves patient outcome: A Correlative analysis of RTOG 0525, SEER and a Phase II NCI trial. Cancer Stud Ther. 5:310382020. | |
Weller M, Gorlia T, Cairncross JG, van den Bent MJ, Mason W, Belanger K, Brandes AA, Bogdahn U, Macdonald DR, Forsyth P, et al: Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology. 77:1156–1164. 2011. View Article : Google Scholar : PubMed/NCBI | |
Michaelis M, Doerr HW and Jr JC: Valproic acid as Anti-cancer drug. Curr Pharm Des. 13:3378–3393. 2007. View Article : Google Scholar : PubMed/NCBI | |
Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG and Heinzel T: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20:6969–6978. 2001. View Article : Google Scholar : PubMed/NCBI | |
Salmaggi A, Corno C, Maschio M, Donzelli S, D'urso A, Perego P and Ciusani E: Synergistic effect of perampanel and temozolomide in human glioma cell lines. J Pers Med. 11:3902021. View Article : Google Scholar : PubMed/NCBI | |
Lange F, Weßlau K, Porath K, Hörnschemeyer MF, Bergner C, Krause BJ, Mullins CS, Linnebacher M, Köhling R and Kirschstein T: AMPA receptor antagonist perampanel affects glioblastoma cell growth and glutamate release in vitro. PLoS One. 14:e02116442019. View Article : Google Scholar : PubMed/NCBI | |
Lange F, Hartung J, Liebelt C, Boisserée J, Resch T, Porath K, Hörnschemeyer MF, Reichart G, Sellmann T, Neubert V, et al: Perampanel Add-on to standard radiochemotherapy in vivo promotes neuroprotection in a rodent F98 glioma Model. Front Neurosci. 14:5982662020. View Article : Google Scholar : PubMed/NCBI | |
Rizzo A, Donzelli S, Girgenti V, Sacconi A, Vasco C, Salmaggi A, Blandino G, Maschio M and Ciusani E: In vitro antineoplastic effects of brivaracetam and lacosamide on human glioma cells. J Exp Clin Cancer Res. 36:762017. View Article : Google Scholar : PubMed/NCBI | |
Bang SR, Ambavade SD, Jagdale PG, Adkar PP, Waghmare AB and Ambavade PD: Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease. Pharmacol Biochem Behav. 134:65–69. 2015. View Article : Google Scholar : PubMed/NCBI | |
Beutler AS, Li S, Nicol R and Walsh MJ: Carbamazepine is an inhibitor of histone deacetylases. Life Sci. 76:3107–3115. 2005. View Article : Google Scholar : PubMed/NCBI | |
Nelson M, Yang M, Dowle AA, Thomas JR and Brackenbury WJ: The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer. 14:132015. View Article : Google Scholar : PubMed/NCBI | |
Pellegrino M, Rizza P, Nigro A, Ceraldi R, Ricci E, Perrotta I, Aquila S, Lanzino M, Andò S, Morelli C and Sisci D: FoxO3a mediates the inhibitory effects of the antiepileptic drug lamotrigine on breast cancer growth. Mol Cancer Res. 16:923–934. 2018. View Article : Google Scholar : PubMed/NCBI | |
Koekkoek JAF, Kerkhof M, Dirven L, Heimans JJ, Postma TJ, Vos MJ, Bromberg JE, van den Bent MJ, Reijneveld JC and Taphoorn MJ: Withdrawal of antiepileptic drugs in glioma patients after long-term seizure freedom: Design of a prospective observational study. BMC Neurol. 14:1572014. View Article : Google Scholar : PubMed/NCBI | |
Das RR, Artsy E, Hurwitz S, Wen PY, Black P, Golby A, Dworetzky B and Lee JW: Outcomes after discontinuation of antiepileptic drugs after surgery in patients with low grade brain tumors and meningiomas. J Neurooncol. 107:565–570. 2012. View Article : Google Scholar : PubMed/NCBI | |
Tellez-Zenteno JF, Hernandez-Ronquillo L and Moien-Afshari F: Discontinuation of antiepileptic drugs after successful surgery: Who and when? Epileptic Disord. 14:363–370. 2012. View Article : Google Scholar : PubMed/NCBI | |
Berg AT, Langfitt JT, Spencer SS and Vickrey BG: Stopping antiepileptic drugs after epilepsy surgery: A survey of U.S. epilepsy center neurologists. Epilepsy Behav. 10:219–222. 2007. View Article : Google Scholar : PubMed/NCBI | |
Jiang H, Deng G, Liu B, Cheng J, Li Y, Tan Y, Wang J and Chen Q: Analysis of the short-term outcomes and risk factors of seizure relapse in patients with gliomas after antiepileptic drugs withdrawal. J Clin Neurosci. 82:20–25. 2020. View Article : Google Scholar : PubMed/NCBI | |
Han W, Shi J, Cao J, Dong B and Guan W: Emerging roles and therapeutic interventions of aerobic glycolysis in glioma. Onco Targets Ther. 13:6937–6955. 2020. View Article : Google Scholar : PubMed/NCBI | |
Singh R, Gupta V, Kumar A and Singh K: 2-Deoxy-D-Glucose: A novel pharmacological agent for killing hypoxic tumor cells, oxygen dependence-lowering in covid-19, and other pharmacological activities. Adv Pharmacol Pharm Sci. 2023:99933862023.PubMed/NCBI | |
Siclari F, Prior JO and Rossetti AO: Ictal cerebral positron emission tomography (PET) in focal status epilepticus. Epilepsy Res. 105:356–361. 2013. View Article : Google Scholar : PubMed/NCBI | |
Stafstrom CE, Roopra A and Sutula TP: Seizure suppression via glycolysis inhibition with 2-deoxy-D-glucose (2DG). Epilepsia. 49:97–100. 2008. View Article : Google Scholar : PubMed/NCBI | |
Gasior M, Yankura J, Hartman AL, French A and Rogawski MA: Anticonvulsant and proconvulsant actions of 2-deoxy-d-glucose. Epilepsia. 51:1385–1394. 2010. View Article : Google Scholar : PubMed/NCBI | |
Minor RK, Smith DL Jr, Sossong AM, Kaushik S, Poosala S, Spangler EL, Roth GS, Lane M, Allison DB, de Cabo R, et al: Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol Appl Pharmacol. 243:332–339. 2010. View Article : Google Scholar : | |
Tejera D, Kushnirsky M, Gultekin SH, Lu M, Steelman L and De La Fuente MI: Ivosidenib, an IDH1 inhibitor, in a patient with recurrent, IDH1-mutant glioblastoma: A case report from a Phase I study. CNS Oncol. 9:CNS622020. View Article : Google Scholar : PubMed/NCBI | |
Vo AH, Ambady P and Spencer D: The IDH1 inhibitor ivosidenib improved seizures in a patient with drug-resistant epilepsy from IDH1 mutant oligodendroglioma. Epilepsy Behav Rep. 18:1005262022. View Article : Google Scholar : PubMed/NCBI | |
Xie Y, Yu N, Chen Y, Zhang K, Ma HY and Di Q: HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway. Mol Med Rep. 16:1691–1700. 2017. View Article : Google Scholar : PubMed/NCBI | |
Chen Y, Huang XJ, Yu N, Xie Y, Zhang K, Wen F, Liu H and Di Q: HMGB1 Contributes to the Expression of P-Glycoprotein in mouse epileptic brain through Toll-like receptor 4 and receptor for advanced glycation end products. PLoS One. 10:e01409182015. View Article : Google Scholar : PubMed/NCBI | |
Fu L, Liu K, Wake H, Teshigawara K, Yoshino T, Takahashi H, Mori S and Nishibori M: Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci Rep. 7:11792017. View Article : Google Scholar : PubMed/NCBI | |
Ravizza T, Terrone G, Salamone A, Frigerio F, Balosso S, Antoine DJ and Vezzani A: High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun. 72:14–21. 2018. View Article : Google Scholar | |
Paudel YN, Othman I and Shaikh MF: Anti-high mobility group Box-1 monoclonal antibody attenuates Seizure-induced cognitive decline by suppressing neuroinflammation in an adult zebrafish model. Front Pharmacol. 11:6130092021. View Article : Google Scholar : PubMed/NCBI | |
Nishibori M, Mori S and Takahashi HK: Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J Pharmacol Sci. 140:94–101. 2019. View Article : Google Scholar : PubMed/NCBI | |
Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J and Vezzani A: Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics. 8:304–315. 2011. View Article : Google Scholar : PubMed/NCBI | |
Kaur H, Kumar B and Medhi B: Antiepileptic drugs in development pipeline: A recent update. eNeurologicalSci. 4:42–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
Bertani I, Iori V, Trusel M, Maroso M, Foray C, Mantovani S, Tonini R, Vezzani A and Chiesa R: Inhibition of IL-1β signaling normalizes NMDA-Dependent neurotransmission and reduces seizure susceptibility in a mouse model of Creutzfeldt-Jakob disease. J Neurosci. 37:10278–10289. 2017.PubMed/NCBI | |
Semple BD, O'Brien TJ, Gimlin K, Wright DK, Kim SE, Casillas-Espinosa PM, Webster KM, Petrou S and Noble-Haeusslein LJ: Interleukin-1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. J Neurosci. 37:7864–7877. 2017.PubMed/NCBI | |
Dilena R, Mauri E, Aronica E, Bernasconi P, Bana C, Cappelletti C, Carrabba G, Ferrero S, Giorda R, Guez S, et al: Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection-related epilepsy syndrome. Epilepsia Open. 4:344–350. 2019.PubMed/NCBI | |
Kenney-Jung DL, Vezzani A, Kahoud RJ, LaFrance-Corey RG, Ho ML, Muskardin TW, Wirrell EC, Howe CL and Payne ET: Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol. 80:939–945. 2016.PubMed/NCBI | |
Dilena R, Mauri E, Aronica E, Bernasconi P, Bana C, Cappelletti C, Carrabba G, Ferrero S, Giorda R, Guez S, et al: Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection-related epilepsy syndrome. Epilepsia Open. 4:344–350. 2019.PubMed/NCBI | |
Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C, Becker A, Frigerio F, et al: Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 78:115–125. 2015.PubMed/NCBI | |
Sanz P and Garcia-Gimeno MA: Reactive glia inflammatory signaling pathways and epilepsy. Int J Mol Sci. 21:40962020.PubMed/NCBI | |
Benson MJ, Thomas NK, Talwar S, Hodson MP, Lynch JW, Woodruff TM and Borges K: A novel anticonvulsant mechanism via inhibition of complement receptor C5ar1 in murine epilepsy models. Neurobiol Dis. 76:87–97. 2015.PubMed/NCBI | |
Ryther RCC and Wong M: Mammalian target of rapamycin (mTOR) inhibition: Potential for antiseizure, antiepileptogenic, and epileptostatic therapy. Curr Neurol Neurosci Rep. 12:410–418. 2012.PubMed/NCBI | |
Zeng LH, Xu L, Gutmann DH and Wong M: Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol. 63:444–453. 2008.PubMed/NCBI | |
Sunnen CN, Brewster AL, Lugo JN, Vanegas F, Turcios E, Mukhi S, Parghi D, D'Arcangelo G and Anderson AE: Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia. 52:2065–2075. 2011.PubMed/NCBI | |
Gericke B, Brandt C, Theilmann W, Welzel L, Schidlitzki A, Twele F, Kaczmarek E, Anjum M, Hillmann P and Löscher W: Selective inhibition of mTORC1/2 or PI3K/mTORC1/2 signaling does not prevent or modify epilepsy in the intrahippocampal kainate mouse model. Neuropharmacology. 162:1078172020. | |
Buckmaster PS and Lew FH: Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci. 31:2337–2347. 2011.PubMed/NCBI | |
Overwater IE, Rietman AB, van Eeghen AM and de Wit MCY: Everolimus for the treatment of refractory seizures associated with tuberous sclerosis complex (TSC): Current perspectives. Ther Clin Risk Manag. 15:951–955. 2019.PubMed/NCBI | |
Franz DN, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, Curatolo P, de Vries PJ, Dlugos DJ, Voi M, et al: Everolimus for treatment-refractory seizures in TSC: Extension of a randomized controlled trial. Neurol Clin Pract. 8:412–420. 2018.PubMed/NCBI | |
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E and Vezzani A: mTOR and neuroinflammation in epilepsy: Implications for disease progression and treatment. Nat Rev Neurosci. 25:334–350. 2024.PubMed/NCBI | |
Mazumder AG, Patial V and Singh D: Mycophenolate mofetil contributes to downregulation of the hippocampal interleukin type 2 and 1β mediated PI3K/AKT/mTOR pathway hyperactivation and attenuates neurobehavioral comorbidities in a rat model of temporal lobe epilepsy. Brain Behav Immun. 75:84–93. 2019. | |
Drion CM, Borm LE, Kooijman L, Aronica E, Wadman WJ, Hartog AF, van Vliet EA and Gorter JA: Effects of rapamycin and curcumin treatment on the development of epilepsy after electrically induced status epilepticus in rats. Epilepsia. 57:688–697. 2016.PubMed/NCBI | |
Brandt C, Hillmann P, Noack A, Römermann K, Öhler LA, Rageot D, Beaufils F, Melone A, Sele AM, Wymann MP, et al: The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology. 140:107–120. 2018.PubMed/NCBI | |
Castro OW, Upadhya D, Kodali M and Shetty AK: Resveratrol for easing status epilepticus induced brain injury, inflammation, epileptogenesis, and cognitive and memory Dysfunction-Are We There Yet? Front Neurol. 8:6032017.PubMed/NCBI | |
Theilmann W, Gericke B, Schidlitzki A, Muneeb Anjum SM, Borsdorf S, Harries T, Roberds SL, Aguiar DJ, Brunner D, Leiser SC, et al: Novel brain permeant mTORC1/2 inhibitors are as efficacious as rapamycin or everolimus in mouse models of acquired partial epilepsy and tuberous sclerosis complex. Neuropharmacology. 180:1082972020. View Article : Google Scholar : PubMed/NCBI | |
Wang Y and Chen Z: An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol Ther. 201:77–93. 2019. View Article : Google Scholar : PubMed/NCBI | |
Davis KL, Candrilli SD and Edin HM: Prevalence and cost of nonadherence with antiepileptic drugs in an adult managed care population. Epilepsia. 49:446–454. 2008. View Article : Google Scholar | |
Klein P, Kaminski RM, Koepp M and Löscher W: New epilepsy therapies in development. Nat Rev Drug Discov. 23:682–708. 2024. View Article : Google Scholar : PubMed/NCBI | |
Forcelli PA: Seizing control of neuronal activity: Chemogenetic applications in epilepsy. Epilepsy Curr. 22:303–308. 2022. View Article : Google Scholar : PubMed/NCBI | |
Hadjiabadi D, Lovett-Barron M, Raikov IG, Sparks FT, Liao Z, Baraban SC, Leskovec J, Losonczy A, Deisseroth K and Soltesz I: Maximally selective single cell target for circuit control in epilepsy models. Neuron. 109:2556–2572.e6. 2021. View Article : Google Scholar : | |
Löscher W: Drug Combinations for Antiepileptogenesis. Jasper's Basic Mechanisms Epilepsies. 1402–1418. 2024. | |
Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P and Kuhn M: STITCH 5: Augmenting Protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44:D380–D384. 2016. View Article : Google Scholar | |
Welzel L, Bergin DH, Schidlitzki A, Twele F, Johne M, Klein P and Löscher W: Systematic evaluation of rationally chosen multitargeted drug combinations: A combination of low doses of levetiracetam, atorvastatin and ceftriaxone exerts antiepileptogenic effects in a mouse model of acquired epilepsy. Neurobiol Dis. 149:1052272021. View Article : Google Scholar | |
Schidlitzki A, Bascuñana P, Srivastava PK, Welzel L, Twele F, Töllner K, Käufer C, Gericke B, Feleke R, Meier M, et al: Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiol Dis. 134:1046642020. View Article : Google Scholar | |
Galanopoulou AS, Löscher W, Lubbers L, O'Brien TJ, Staley K, Vezzani A, D'Ambrosio R, White HS, Sontheimer H, Wolf JA, et al: Antiepileptogenesis and disease modification: Progress, challenges, and the path forward-Report of the Preclinical Working Group of the 2018 NINDS-sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open. 6:276–296. 2021.PubMed/NCBI | |
Porter RJ and Kupferberg HJ: The anticonvulsant screening program of the National institute of neurological disorders and stroke, NIH: History and contributions to clinical care in the twentieth century and beyond. Neurochem Res. 42:1889–1893. 2017.PubMed/NCBI | |
Kehne JH, Klein BD, Raeissi S and Sharma S: The national institute of neurological disorders and stroke (NINDS) epilepsy therapy screening program (ETSP). Neurochem Res. 42:1894–1903. 2017.PubMed/NCBI |