You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.
I agree
International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.
International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.
Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.
Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.
Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.
Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.
Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.
International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.
Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.
Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.
Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.
An International Open Access Journal Devoted to General Medicine.
![]() |
![]() |
![]() |
|
Ostrom QT, Price M, Neff C, Cioffi G, Waite KA, Kruchko C and Barnholtz-Sloan JS: CBTRUS statistical report: Primary brain and other central nervous system tumors diagnosed in the united states in 2016-2020. Neuro Oncol. 25:IV1–IV99. 2023.PubMed/NCBI | |
|
Bertolini F, Spallanzani A, Fontana A, Depenni R and Luppi G: Brain metastases: An overview. CNS Oncol. 4:37–46. 2015.PubMed/NCBI | |
|
Englot DJ, Magill ST, Han SJ, Chang EF, Berger MS and McDermott MW: Seizures in supratentorial meningioma: A systematic review and meta-analysis. J Neurosurg. 124:15522015.PubMed/NCBI | |
|
Englot DJ, Chang EF and Vecht CJ: Epilepsy and brain tumors. Handb Clin Neurol. 134:267–285. 2016.PubMed/NCBI | |
|
Easwaran TP, Lancki N, Henriquez M, Vortmeyer AO, Barbaro NM, Scholtens DM, Ahmed AU and Dey M: Molecular classification of gliomas is associated with seizure control: A retrospective analysis. Neuromolecular. 23:315–326. 2021. | |
|
Chen H, Judkins J, Thomas C, Wu M, Khoury L, Benjamin CG, Pacione D, Golfinos JG, Kumthekar P and Ghamsari F: Mutant IDH1 and seizures in patients with glioma. Neurology. 88:1805–1813. 2017.PubMed/NCBI | |
|
Seidel S, Wehner T, Miller D, Wellmer J, Schlegel U and Grönheit W: Brain tumor related epilepsy: Pathophysiological approaches and rational management of antiseizure medication. Neurol Res Pract. 4:452022.PubMed/NCBI | |
|
Soltani Khaboushan A, Yazdanpanah N and Rezaei N: Neuroinflammation and proinflammatory cytokines in epileptogenesis. Mol Neurobiol. 59:1724–1743. 2022.PubMed/NCBI | |
|
Rana A and Musto AE: The role of inflammation in the development of epilepsy. J Neuroinflammation. 15:1442018.PubMed/NCBI | |
|
Zhu X, Dong J, Han B, Huang R, Zhang A, Xia Z, Chang H, Chao J and Yao H: Neuronal nitric oxide synthase contributes to PTZ kindling epilepsy-induced hippocampal endoplasmic reticulum stress and oxidative damage. Front Cell Neurosci. 11:3772017.PubMed/NCBI | |
|
Xiao Z, Peng J, Wu L, Arafat A and Yin F: The effect of IL-1β on synaptophysin expression and electrophysiology of hippocampal neurons through the PI3K/Akt/mTOR signaling pathway in a rat model of mesial temporal lobe epilepsy. Neurol Res. 39:640–648. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Roseti C, van Vliet EA, Cifelli P, Ruffolo G, Baayen JC, Di Castro MA, Bertollini C, Limatola C, Aronica E, Vezzani A and Palma E: GABAA currents are decreased by IL-1β in epileptogenic tissue of patients with temporal lobe epilepsy: Implications for ictogenesis. Neurobiol Dis. 82:311–320. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Stellwagen D and Malenka RC: Synaptic scaling mediated by glial TNF-α. Nature. 440:1054–1059. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Balosso S, Ravizza T, Perego C, Peschon J, Campbell IL, De Simoni MG and Vezzani A: Tumor necrosis factor-α inhibits seizures in mice via p75 receptors. Ann Neurol. 57:804–812. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Galic MA, Riazi K and Pittman QJ: Cytokines and brain excitability. Front Neuroendocrinol. 33:116–125. 2011. View Article : Google Scholar | |
|
Takeuchi H, Jin S, Wang J, Zhang G, Kawanokuchi J, Kuno R, Sonobe Y, Mizuno T and Suzumura A: Tumor necrosis factor-α induces neurotoxicity via glutamate release from hemichannels of activated microglia in an autocrine manner. J Biol Chem. 281:21362–21368. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Yuhas Y, Weizman A and Ashkenazi S: Bidirectional concentration-dependent effects of tumor necrosis factor alpha in Shigella dysenteriae-related seizures. Infect Immun. 71:2288–2291. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Grell M, Wajant H, Zimmermann G and Scheurich P: The type 1 receptor (CD120a) is the high-affinity receptor for soluble tumor necrosis factor. Proc Natl Acad Sci USA. 95:570–575. 1998. View Article : Google Scholar : PubMed/NCBI | |
|
Stellwagen D, Beattie EC, Seo JY and Malenka RC: Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J Neurosci. 25:3219–3228. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Fu CY, He XY, Li XF, Zhang X, Huang ZW, Li J, Chen M and Duan CZ: Nefiracetam attenuates Pro-inflammatory cytokines and GABA transporter in specific brain regions of rats with Post-ischemic seizures. Cell Physiol Biochem. 37:2023–2031. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Su J, Yin J, Qin W, Sha S, Xu J and Jiang C: Role for Pro-inflammatory cytokines in regulating expression of GABA transporter type 1 and 3 in specific brain regions of kainic Acid-induced status epilepticus. Neurochem Res. 40:621–627. 2015.PubMed/NCBI | |
|
Iori V, Maroso M, Rizzi M, Iyer AM, Vertemara R, Carli M, Agresti A, Antonelli A, Bianchi ME, Aronica E, et al: Receptor for advanced glycation endproducts is upregulated in temporal lobe epilepsy and contributes to experimental seizures. Neurobiol Dis. 58:102–114. 2013.PubMed/NCBI | |
|
Xie J, Méndez JD, Méndez-Valenzuela V and Aguilar-Hernández MM: Cellular signalling of the receptor for advanced glycation end products (RAGE). Cell Signal. 25:2185–2197. 2013.PubMed/NCBI | |
|
Chang ZL: Important aspects of Toll-like receptors, ligands and their signaling pathways. Inflamm Res. 59:791–808. 2010.PubMed/NCBI | |
|
Balosso S, Liu J, Bianchi ME and Vezzani A: Disulfide-containing high mobility group Box-1 promotes N-Methyl-d-Aspartate receptor function and excitotoxicity by activating Toll-like receptor 4-Dependent signaling in hippocampal neurons. Antioxid Redox Signal. 21:1726–1740. 2014. | |
|
Festoff BW, Sajja RK, van Dreden P and Cucullo L: HMGB1 and thrombin mediate the blood-brain barrier dysfunction acting as biomarkers of neuroinflammation and progression to neurodegeneration in Alzheimer's disease. J Neuroinflammation. 13:1942016.PubMed/NCBI | |
|
Maroso M, Balosso S, Ravizza T, Liu J, Aronica E, Iyer AM, Rossetti C, Molteni M, Casalgrandi M, Manfredi AA, et al: Toll-like receptor 4 and high-mobility group box-1 are involved in ictogenesis and can be targeted to reduce seizures. Nat Med. 16:413–419. 2010.PubMed/NCBI | |
|
Ulusoy C, Vanlı-Yavuz EN, Şanlı E, Timirci-Kahraman Ö, Yılmaz V, Bebek N, Küçükali Cİ, Baykan B and Tüzün E: Peripheral blood expression levels of inflammasome complex components in two different focal epilepsy syndromes. J Neuroimmunol. 347:5773432020.PubMed/NCBI | |
|
Vezzani A, Balosso S and Ravizza T: Neuroinflammatory pathways as treatment targets and biomarkers in epilepsy. Nat Rev Neurol. 15:459–472. 2019.PubMed/NCBI | |
|
Kigerl KA, de Rivero Vaccari JP, Dietrich WD, Popovich PG and Keane RW: Pattern recognition receptors and central nervous system repair. Exp Neurol. 258:5–16. 2014.PubMed/NCBI | |
|
Vezzani A and Baram TZ: New Roles for interleukin-1 beta in the mechanisms of epilepsy. Epilepsy Curr. 7:45–50. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Kim JY, Kanai Y, Chairoungdua A, Cha SH, Matsuo H, Kim DK, Inatomi J, Sawa H, Ida Y and Endou H: Human cystine/glutamate transporter: cDNA cloning and upregulation by oxidative stress in glioma cells. Biochim Biophys Acta. 1512:335–344. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
de Groot J and Sontheimer H: Glutamate and the biology of gliomas. Glia. 59:1181–1189. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Savaskan NE, Fan Z, Broggini T, Buchfelder M and Eyüpoglu IY: Neurodegeneration in the brain tumor microenvironment: Glutamate in the limelight. Curr Neuropharmacol. 13:258–265. 2015. View Article : Google Scholar : | |
|
Venkatesh HS, Morishita W, Geraghty AC, Silverbush D, Gillespie SM, Arzt M, Tam LT, Espenel C, Ponnuswami A, Ni L, et al: Electrical and synaptic integration of glioma into neural circuits. Nature. 573:539–545. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
De Groot M, Reijneveld JC, Aronica E and Heimans JJ: Epilepsy in patients with a brain tumour: Focal epilepsy requires focused treatment. Brain. 135:1002–1016. 2012. View Article : Google Scholar | |
|
Kim JW and Dang CV: Cancer's molecular sweet tooth and the Warburg effect. Cancer Res. 66:8927–8930. 2006. View Article : Google Scholar : PubMed/NCBI | |
|
Dang L, White DW, Gross S, Bennett BD, Bittinger MA, Driggers EM, Fantin VR, Jang HG, Jin S, Keenan MC, et al: Cancer-associated IDH1 mutations produce 2-hydroxyglutarate. Nature. 462:739–744. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Mortazavi A, Fayed I, Bachani M, Dowdy T, Jahanipour J, Khan A, Owotade J, Walbridge S, Inati SK, Steiner J, et al: IDH-mutated gliomas promote epileptogenesis through d-2-hydroxyglutarate-dependent mTOR hyperactivation. Neuro Oncol. 24:1423–1435. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Szopa W, Burley TA, Kramer-Marek G and Kaspera W: Diagnostic and therapeutic biomarkers in glioblastoma: Current status and future perspectives. Biomed Res Int. 2017:80135752017. View Article : Google Scholar : PubMed/NCBI | |
|
Zhang Y, Dube C, Gibert M Jr, Cruickshanks N, Wang B, Coughlan M, Yang Y, Setiady I, Deveau C, Saoud K, et al: The p53 pathway in glioblastoma. Cancers (Basel). 10:2972018. View Article : Google Scholar : PubMed/NCBI | |
|
Smith JS, Tachibana I, Passe SM, Huntley BK, Borell TJ, Iturria N, O'Fallon JR, Schaefer PL, Scheithauer BW, James CD, et al: PTEN mutation, EGFR Amplification, and outcome in patients with anaplastic astrocytoma and glioblastoma multiforme. J Natl Cancer Inst. 93:1246–1256. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Hu S, Kao HY, Yang T and Wang Y: Early and Bi-hemispheric seizure onset in a rat glioblastoma Multiforme model. Neurosci Lett. 766:1363512022. View Article : Google Scholar | |
|
Venkatesan S, Lamfers MLM, Dirven CMF and Leenstra S: Genetic biomarkers of drug response for small-molecule therapeutics targeting the RTK/Ras/PI3K, p53 or Rb pathway in glioblastoma. CNS Oncol. 5:77–790. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Williams MR, De-Spenza T, Li M, Gulledge AT and Luikart BW: Hyperactivity of newborn pten Knock-out neurons results from increased excitatory synaptic drive. J Neurosci. 35:943–953. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Yonan JM, Chen KD, Baram TZ and Steward O: PTEN deletion in the adult dentate gyrus induces epilepsy. Neurobiol Dis. 203:1067362024. View Article : Google Scholar : PubMed/NCBI | |
|
Hills KE, Kostarelos K and Wykes RC: Converging mechanisms of epileptogenesis and their insight in glioblastoma. Front Mol Neurosci. 15:9031152022. View Article : Google Scholar : PubMed/NCBI | |
|
Sabetghadam A, Wu C, Liu J, Zhang L and Reid AY: Increased epileptogenicity in a mouse model of neurofibromatosis type 1. Exp Neurol. 331:1133732020. View Article : Google Scholar : PubMed/NCBI | |
|
Engel T, Murphy BM, Schindler CK and Henshall DC: Elevated p53 and lower MDM2 expression in hippocampus from patients with intractable temporal lobe epilepsy. Epilepsy Res. 77:151–156. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Morrison RS, Wenzel HJ, Kinoshita Y, Robbins CA, Donehower LA and Schwartzkroin PA: Loss of the p53 tumor suppressor gene protects neurons from kainate-induced cell death. J Neurosci. 16:1337–1345. 1996. View Article : Google Scholar : PubMed/NCBI | |
|
Engel T, Murphy BM, Hatazaki S, Jimenez-Mateos EM, Concannon CG, Woods I, Prehn JH and Henshall DC: Reduced hippocampal damage and epileptic seizures after status epilepticus in mice lacking proapoptotic Puma. FASEB J. 24:853–861. 2010. View Article : Google Scholar | |
|
Burla R, La Torre M, Zanetti G, Bastianelli A, Merigliano C, Del Giudice S, Vercelli A, Di Cunto F, Boido M, Vernì F and Saggio I: P53-sensitive epileptic behavior and inflammation in Ft1 hypomorphic mice. Front Genet. 9:5812018. View Article : Google Scholar : PubMed/NCBI | |
|
Culmsee C, Zhu X, Yu QS, Chan SL, Camandola S, Guo Z, Greig NH and Mattson MP: A synthetic inhibitor of p53 protects neurons against death induced by ischemic and excitotoxic insults, and amyloid β-peptide. J Neurochem. 77:220–228. 2001.PubMed/NCBI | |
|
Djebali M, Lerner-Natoli M, Pascale M, Baille V, Bockaert J and Rondouin G: Molecular events involved in neuronal death induced in the mouse hippocampus by in-vivo injection of kainic acid. Brain Res Mol Brain Res. 93:190–198. 2001. View Article : Google Scholar | |
|
Butt AM and Kalsi A: Inwardly rectifying potassium channels (Kir) in central nervous system glia: A special role for Kir4.1 in glial functions. J Cell Mol Med. 10:33–44. 2007. View Article : Google Scholar | |
|
Nadella RK, Chellappa A, Subramaniam AG, More RP, Shetty S, Prakash S, Ratna N, Vandana VP, Purushottam M, Saini J, et al: Identification and functional characterization of two novel mutations in KCNJ10 and PI4KB in SeSAME syndrome without electrolyte imbalance. Hum Genomics. 13:532019. View Article : Google Scholar : PubMed/NCBI | |
|
Reichold M, Zdebik AA, Lieberer E, Rapedius M, Schmidt K, Bandulik S, Sterner C, Tegtmeier I, Penton D, Baukrowitz T, et al: KCNJ10 gene mutations causing EAST syndrome (epilepsy, ataxia, sensorineural deafness, and tubulopathy) disrupt channel function. Proc Natl Acad Sci USA. 107:14490–14495. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Curry RN, Aiba I, Meyer J, Lozzi B, Ko Y, McDonald MF, Rosenbaum A, Cervantes A, Huang-Hobbs E, Cocito C, et al: Glioma epileptiform activity and progression are driven by IGSF3-mediated potassium dysregulation. Neuron. 111:682–695.e9. 2023. View Article : Google Scholar : PubMed/NCBI | |
|
de Curtis M, Uva L, Gnatkovsky V and Librizzi L: Potassium dynamics and seizures: Why is potassium ictogenic? Epilepsy Res. 143:50–59. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Audrey C, Lim KS, Ahmad Zaki R, Narayanan V, Fong SL and Tan CT: From location to manifestation: A systematic review and meta-analysis of seizure prevalence in different brain tumor sites. Brain Disord. 14:1001462024. View Article : Google Scholar | |
|
Lee JW, Wen PY, Hurwitz S, Black P, Kesari S, Drappatz J, Golby AJ, Wells WM III, Warfield SK, Kikinis R and Bromfield EB: Morphological characteristics of brain tumors causing seizures. Arch Neurol. 67:336–342. 2010.PubMed/NCBI | |
|
Le VT, Nguyen AM, Pham TA and Nguyen PL: Tumor-related epilepsy and post-surgical outcomes: Tertiary hospital experience in Vietnam. Sci Rep. 13:108592023.PubMed/NCBI | |
|
Elbadry Ahmed R, Tang H, Asemota A, Huang L, Boling W and Bannout F: Meningioma related Epilepsy-Pathophysiology, Pre/postoperative seizures predicators and treatment. Front Oncol. 12:9059762022. | |
|
Harward SC, Rolston JD and Englot DJ: Seizures in meningioma. Handb Clin Neurol. 170:187–200. 2020.PubMed/NCBI | |
|
Asano K, Hasegawa S, Matsuzaka M and Ohkuma H: Brain tumor-related epilepsy and risk factors for metastatic brain tumors: Analysis of 601 consecutive cases providing real-world data. J Neurosurg. 136:76–87. 2021.PubMed/NCBI | |
|
Sankey EW, Tsvankin V, Grabowski MM, Nayar G, Batich KA, Risman A, Champion CD, Salama AKS, Goodwin CR and Fecci PE: Operative and peri-operative considerations in the management of brain metastasis. Cancer Med. 8:6809–6831. 2019.PubMed/NCBI | |
|
Rudà R, Mo F and Pellerino A: Epilepsy in brain metastasis: An emerging entity. Curr Treat Options Neurol. 22:62020.PubMed/NCBI | |
|
Garcia JH, Morshed RA, Chung J, Millares Chavez MA, Sudhakar V, Saggi S, Avalos LN, Gallagher A, Young JS, Daras M, et al: Factors associated with preoperative and postoperative seizures in patients undergoing resection of brain metastases. J Neurosurg. 138:19–26. 2023. | |
|
Wolpert F, Lareida A, Terziev R, Grossenbacher B, Neidert MC, Roth P, Poryazova R, Imbach LL, Le Rhun E, Weller M, et al: Risk factors for the development of epilepsy in patients with brain metastases. Neuro Oncol. 22:718–728. 2020. | |
|
Urban H, Willems LM, Ronellenfitsch MW, Rosenow F, Steinbach JP and Strzelczyk A: Increased occurrence of status epilepticus in patients with brain metastases and checkpoint inhibition. Oncoimmunology. 9:18515172020.PubMed/NCBI | |
|
Li L, Li G, Fang S, Zhang K, Huang R, Wang Y, Zhang C, Li Y, Zhang W, Zhang Z, et al: New-Onset postoperative seizures in patients with diffuse gliomas: A risk assessment analysis. Front Neurol. 12:6825352021. View Article : Google Scholar : PubMed/NCBI | |
|
Mastall M, Wolpert F, Gramatzki D, Imbach L, Becker D, Schmick A, Hertler C, Roth P, Weller M and Wirsching HG: Survival of brain tumour patients with epilepsy. Brain. 144:3322–3327. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Ge H, Di G, Yan Z, Liu D, Liu Y, Song K, Yang K, Hu X, Jiang Z, Hu X, et al: Does epilepsy always indicate worse outcomes? A longitudinal follow-up analysis of 485 glioma patients. World J Surg Oncol. 20:2972022. View Article : Google Scholar : PubMed/NCBI | |
|
Vecht CJ, Kerkhof M and Duran-Pena A: Seizure prognosis in brain tumors: New insights and Evidence-based management. Oncologist. 19:751–759. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Giraldi L, Hansen JV, Wohlfahrt J, Fugleholm K, Melbye M and Munch TN: Postoperative de novo epilepsy after craniotomy: A nationwide register-based cohort study. J Neurol Neurosurg Psychiatry. 93:436–444. 2022. View Article : Google Scholar | |
|
Abzalova DI, Sinkin MV, Yakovlev AA, Prirodov AV and Guekht AB: Risk factors for the development of de novo generalized tonic-clonic epileptic seizures in patients with supratentorial meningiomas after neurosurgical treatment. Neurosci Behav Physiol. 54:404–409. 2024.In Russian. View Article : Google Scholar | |
|
Englot DJ, Berger MS, Barbaro NM and Chang EF: Predictors of seizure freedom after resection of supratentorial low-grade gliomas: A review. J Neurosurg. 115:240–244. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Schneider M, Güresir Á, Borger V, Hamed M, Rácz A, Vatter H, Güresir E and Schuss P: Preoperative tumor-associated epilepsy in patients with supratentorial meningioma: Factors influencing seizure outcome after meningioma surgery. J Neurosurg. 133:1655–1661. 2020. View Article : Google Scholar | |
|
Jackson C, Choi J, Khalafallah AM, Price C, Bettegowda C, Lim M, Gallia G, Weingart J, Brem H and Mukherjee D: A systematic review and meta-analysis of supratotal versus gross total resection for glioblastoma. J Neurooncol. 148:419–431. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Englot DJ, Han SJ, Berger MS, Barbaro NM and Chang EF: Extent of surgical resection predicts seizure freedom in low-grade temporal lobe brain tumors. Neurosurgery. 70:921–927. 2012. View Article : Google Scholar | |
|
Koekkoek JAF, Kerkhof M, Dirven L, Heimans JJ, Reijneveld JC and Taphoorn MJB: Seizure outcome after radiotherapy and chemotherapy in low-grade glioma patients: A systematic review. Neuro Oncol. 17:924–934. 2015.PubMed/NCBI | |
|
Rudá R, Magliola U, Bertero L, Trevisan E, Bosa C, Mantovani C, Ricardi U, Castiglione A, Monagheddu C and Soffietti R: Seizure control following radiotherapy in patients with diffuse gliomas: A retrospective study. Neuro Oncol. 15:1739–1749. 2013.PubMed/NCBI | |
|
Van Den Bent MJ, Afra D, De Witte O, Ben Hassel M, Schraub S, Hoang-Xuan K, Malmström PO, Collette L, Piérart M, Mirimanoff R, et al: Long-term efficacy of early versus delayed radiotherapy for low-grade astrocytoma and oligodendroglioma in adults: The EORTC 22845 randomised trial. Lancet. 366:985–990. 2005.PubMed/NCBI | |
|
Brada M, Viviers L, Abson C, Hines F, Britton J, Ashley S, Sardell S, Traish D, Gonsalves A, Wilkins P and Westbury C: Phase II study of primary temozolomide chemotherapy in patients with WHO grade II gliomas. Ann Oncol. 14:1715–1721. 2003.PubMed/NCBI | |
|
Sherman JH, Moldovan K, Yeoh HK, Starke RM, Pouratian N, Shaffrey ME and Schiff D: Impact of temozolomide chemotherapy on seizure frequency in patients with low-grade gliomas: Clinical article. J Neurosurg. 114:1617–1621. 2011.PubMed/NCBI | |
|
Rades D, Witteler J, Trillenberg P, Olbrich D, Schild SE, Tvilsted S and Kjaer TW: Increasing seizure activity during radiation treatment for High-grade Gliomas-final results of a prospective interventional study. In Vivo. 36:2308–2313. 2022.PubMed/NCBI | |
|
Wu A, Jin MC, Meola A, Wong HN and Chang SD: Efficacy and toxicity of particle radiotherapy in WHO grade II and grade III meningiomas: A systematic review. Neurosurg Focus. 46:E122019.PubMed/NCBI | |
|
Grewal J, Grewal HK and Forman AD: Seizures and epilepsy in cancer: Etiologies, Evaluation, and Management. Curr Oncol Rep. 10:63–71. 2008.PubMed/NCBI | |
|
Smart DD: Radiation toxicity in the central nervous system: Mechanisms and strategies for injury reduction. Semin Radiat Oncol. 27:332–339. 2017.PubMed/NCBI | |
|
Walbert T, Harrison RA, Schiff D, Avila EK, Chen M, Kandula P, Lee JW, Le Rhun E, Stevens GHJ, Vogelbaum MA, et al: SNO and EANO practice guideline update: Anticonvulsant prophylaxis in patients with newly diagnosed brain tumors. Neuro Oncol. 23:1835–1844. 2021.PubMed/NCBI | |
|
Van Der Meer PB, Dirven L, Van Den Bent MJ, Preusser M, Taphoorn MJB, Rudá R and Koekkoek JAF: Prescription preferences of antiepileptic drugs in brain tumor patients: An international survey among EANO members. Neurooncol Pract. 9:105–113. 2022.PubMed/NCBI | |
|
Dewan MC, Thompson RC, Kalkanis SN, Barker FG and Hadjipanayis CG: Prophylactic antiepileptic drug administration following brain tumor resection: Results of a recent AANS/CNS section on tumors survey. J Neurosurg. 126:1772–1778. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Glauser T, Ben-Menachem E, Bourgeois B, Cnaan A, Guerreiro C, Kälviäinen R, Mattson R, French JA, Perucca E and Tomson T; ILAE Subcommission on AED Guidelines: Updated ILAE evidence review of antiepileptic drug efficacy and effectiveness as initial monotherapy for epileptic seizures and syndromes. Epilepsia. 54:551–563. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Maschio M, Dinapoli L, Sperati F, Pace A, Fabi A, Vidiri A and Muti P: Levetiracetam monotherapy in patients with brain tumor-related epilepsy: Seizure control, safety, and quality of life. J Neurooncol. 104:205–214. 2011. View Article : Google Scholar | |
|
Bähr O, Hermisson M, Rona S, Rieger J, Nussbaum S, Körtvelyessy P, Franz K, Tatagiba M, Seifert V, Weller M and Steinbach JP: Intravenous and oral levetiracetam in patients with a suspected primary brain tumor and symptomatic seizures undergoing neurosurgery: The HELLO trial. Acta Neurochir (Wien). 154:229–235. 2012. View Article : Google Scholar | |
|
LaPenna P and Tormoehlen LM: The pharmacology and toxicology of Third-generation anticonvulsant drugs. J Med Toxicol. 13:329–342. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Jo J, Nevel K, Sutyla R, Smolkin M, Lopes MB and Schiff D: Predictors of early, recurrent, and intractable seizures in low-grade glioma. Neurooncol Pract. 8:40–47. 2020. | |
|
Singh SP, Agarwal S and Faulkner M: Refractory status epilepticus. Ann Indian Acad Neurol. 17(Suppl 1): S32–S36. 2014. View Article : Google Scholar : PubMed/NCBI | |
|
Van Breemen MSM, Rijsman RM, Taphoorn MJB, Walchenbach R, Zwinkels H and Vecht CJ: Efficacy of anti-epileptic drugs in patients with gliomas and seizures. J Neurol. 256:1519–1526. 2009. View Article : Google Scholar : PubMed/NCBI | |
|
Yadav J, Singh P, Dabla S and Gupta R: Psychiatric comorbidity and quality of life in patients with epilepsy on anti-epileptic monotherapy and polytherapy. Tzu Chi Med J. 34:226–231. 2021. View Article : Google Scholar | |
|
Khalid B, Waqar Z, Khan S, Ali I, Afzal N, Irfan A, Malik W, Muhammad Adil M, Saddiqa A, Khalil M and Munawar Z: Psychiatric implications of anti-seizure medications in epileptic population. BMC Neurol. 24:1662024. View Article : Google Scholar : PubMed/NCBI | |
|
Besag FMC, Vasey MJ and Sen A: Current evidence for adjunct pyridoxine (vitamin B6) for the treatment of behavioral adverse effects associated with levetiracetam: A systematic review. Epilepsy Behav. 140:1090652023. View Article : Google Scholar : PubMed/NCBI | |
|
Bourg V, Lebrun C, Chichmanian RM, Thomas P and Frenay M: Nitroso-urea-cisplatin-based chemotherapy associated with valproate: Increase of haematologic toxicity. Ann Oncol. 12:217–220. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Simó M, Velasco R, Graus F, Verger E, Gil M, Pineda E, Blasco J and Bruna J: Impact of antiepileptic drugs on thrombocytopenia in glioblastoma patients treated with standard chemoradiotherapy. J Neurooncol. 108:451–458. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Kerkhof M, Dielemans JCM, Van Breemen MS, Zwinkels H, Walchenbach R, Taphoorn MJ and Vecht CJ: Effect of valproic acid on seizure control and on survival in patients with glioblastoma multiforme. Neuro Oncol. 15:961–967. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Sánchez-Villalobos JM, Aledo-Serrano Á, Villegas-Martínez I, Shaikh MF and Alcaraz M: Epilepsy treatment in neuro-oncology: A rationale for drug choice in common clinical scenarios. Front Pharmacol. 13:9912442022. View Article : Google Scholar : PubMed/NCBI | |
|
Mo F, Meletti S, Belcastro V, Quadri S, Napolitano M, Bello L, Dainese F, Scarpelli M, Florindo I, Mascia A, et al: Lacosamide in monotherapy in BTRE (brain tumor-related epilepsy): Results from an Italian multicenter retrospective study. J Neurooncol. 157:551–559. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Villanueva V, Saiz-Diaz R, Toledo M, Piera A, Mauri JA, Rodriguez-Uranga JJ, López-González FJ, Gómez-Ibáñez A, Garcés M, González de la Aleja J, et al: NEOPLASM study: Real-life use of lacosamide in patients with brain tumor-related epilepsy. Epilepsy Behav. 65:25–32. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
van Opijnen MP, van der Meer PB, Dirven L, Fiocco M, Kouwenhoven MCM, van den Bent MJ, Taphoorn MJB and Koekkoek JAF: The effectiveness of antiepileptic drug treatment in glioma patients: Lamotrigine versus lacosamide. J Neurooncol. 154:73–81. 2021. View Article : Google Scholar : PubMed/NCBI | |
|
Wilding J, Van Gaal L, Rissanen A, Vercruysse F and Fitchet M: A randomized double-blind placebo-controlled study of the long-term efficacy and safety of topiramate in the treatment of obese subjects. Int J Obes Relat Metab Disord. 28:1399–1410. 2004.2004. View Article : Google Scholar : PubMed/NCBI | |
|
Liu YT, Chen GT, Huang YC, Ho JT, Lee CC, Tsai CC and Chang CN: Effectiveness of dose-escalated topiramate monotherapy and add-on therapy in neurosurgery-related epilepsy: A prospective study. Medicine (Baltimore). 99:e237712020.PubMed/NCBI | |
|
Maschio M, Dinapoli L, Zarabla A, Maialetti A, Giannarelli D, Fabi A, Vidiri A and Cantelmi T: Zonisamide in brain tumor-related epilepsy: An observational pilot study. Clin Neuropharmacol. 40:113–119. 2017.PubMed/NCBI | |
|
De A, Rajagopalan M, Sarda A, Das S and Biswas P: Drug reaction with eosinophilia and systemic symptoms: An update and review of recent literature. Indian J Dermatol. 63:30–40. 2018.PubMed/NCBI | |
|
Patocka J, Wu Q, Nepovimova E and Kuca K: Phenytoin-An anti-seizure drug: Overview of its chemistry, pharmacology and toxicology. Food Chem Toxicol. 142:1113932020. | |
|
Mauro AM, Bomprezzi C, Morresi S, Provinciali L, Formica F, Iacoangeli M and Scerrati M: Prevention of early postoperative seizures in patients with primary brain tumors: Preliminary experience with oxcarbazepine. J Neurooncol. 81:279–285. 2007. | |
|
Maschio M, Dinapoli L, Sperati F, Fabi A, Pace A, Vidiri A and Muti P: Oxcarbazepine monotherapy in patients with brain tumor-related epilepsy: Open-label pilot study for assessing the efficacy, tolerability and impact on quality of life. J Neurooncol. 106:651–656. 2012. | |
|
Zoccarato M, Basile AM, Padovan M, Caccese M, Zagonel V and Lombardi G: Eslicarbazepine in patients with brain tumor-related epilepsy: A single-center experience. Int J Neurosci. 131:879–884. 2021. | |
|
Hino U, Tamura R, Kosugi K, Ezaki T, Karatsu K, Yamamoto K, Tomioka A and Toda M: Optimizing perampanel monotherapy for surgically resected brain tumors. Mol Clin Oncol. 20:422024.PubMed/NCBI | |
|
Perry JR and Sawka C: Add-on gabapentin for refractory seizures in patients with brain tumours. Can J Neurol Sci. 23:128–131. 1996.PubMed/NCBI | |
|
Brahmbhatt N, Stupp R, Bushara O, Bachman E, Schuele SU and Templer JW: Efficacy of clobazam as add-on therapy in brain tumor-related epilepsy. J Neurooncol. 151:287–293. 2021.PubMed/NCBI | |
|
Striano S, Striano P, Boccella P, Nocerino C and Bilo L: Tiagabine in glial tumors. Epilepsy Res. 49:81–85. 2002.PubMed/NCBI | |
|
Maschio M, Maialetti A, Mocellini C, Domina E, Pauletto G, Costa C, Mascia A, Romoli M and Giannarelli D: Effect of brivaracetam on efficacy and tolerability in patients with brain Tumor-related epilepsy: A retrospective multicenter study. Front Neurol. 11:8132020.PubMed/NCBI | |
|
Gao L, Lu Q, Wang Z, Yue W, Wang G, Shao X, Guo Y, Yi Y, Hong Z, Jiang Y, et al: Efficacy and safety of perampanel as early add-on therapy in Chinese patients with focal-onset seizures: A multicenter, open-label, single-arm study. Front Neurol. 14:12360462023.PubMed/NCBI | |
|
Lavu A, Aboulatta L, Abou-Setta AM, Aloud B, Askin N, Rabbani R, Shouman W, Zarychanski R and Eltonsy S: Efficacy and safety of perampanel in epilepsy: A systematic review and meta-analysis of randomised controlled trials. Seizure. 102:54–60. 2022.PubMed/NCBI | |
|
Bénit CP and Vecht CJ: Seizures and cancer: Drug interactions of anticonvulsants with chemotherapeutic agents, tyrosine kinase inhibitors and glucocorticoids. Neurooncol Pract. 3:245–260. 2016.PubMed/NCBI | |
|
Chalk JB, Ridgeway K, Brophy T, Yelland JDN and Eadie MJ: Phenytoin impairs the bioavailability of dexamethasone in neurological and neurosurgical patients. J Neurol Neurosurg Psychiatry. 47:1087–1090. 1984.PubMed/NCBI | |
|
Ikeda H, Murakami T, Takano M, Usui T and Kihira K: Pharmacokinetic interaction on valproic acid and recurrence of epileptic seizures during chemotherapy in an epileptic patient. Br J Clin Pharmacol. 59:593–597. 2005.PubMed/NCBI | |
|
Bagnato F and Good J: The use of antiepileptics in migraine prophylaxis. Headache. 56:603–615. 2016.PubMed/NCBI | |
|
Linde M, Mulleners WM, Chronicle EP and Mccrory DC: Antiepileptics other than gabapentin, pregabalin, topiramate, and valproate for the prophylaxis of episodic migraine in adults. Cochrane Database Syst Rev. 2013:CD0106082013.PubMed/NCBI | |
|
Ruiz-Giménez J, Sánchez-Álvarez JC, Cañadillas-Hidalgo F and Serrano-Castro PJ: Antiepileptic treatment in patients with epilepsy and other comorbidities. Seizure. 19:375–382. 2010.PubMed/NCBI | |
|
Patsalos PN and Perucca E: Clinically important drug interactions in epilepsy: Interactions between antiepileptic drugs and other drugs. Lancet Neurol. 2:473–481. 2003. View Article : Google Scholar : PubMed/NCBI | |
|
Routy JP, Tremblay CL, Angel JB, Trottier B, Rouleau D, Baril JG, Harris M, Trottier S, Singer J, Chomont N, et al: Valproic acid in association with highly active antiretroviral therapy for reducing systemic HIV-1 reservoirs: Results from a multicentre randomized clinical study. HIV Med. 13:291–296. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Lehrman G, Hogue IB, Palmer S, Jennings C, Spina CA, Wiegand A, Landay AL, Coombs RW, Richman DD, Mellors JW, et al: Depletion of latent HIV-1 infection in vivo: A proof-of-concept study. Lancet. 366:5492005. View Article : Google Scholar : PubMed/NCBI | |
|
Sagot-Lerolle N, Lamine A, Chaix ML, Boufassa F, Aboulker JP, Costagliola D, Goujard C, Pallier C, Delfraissy JF and Lambotte O; ANRS EP39 study: Prolonged valproic acid treatment does not reduce the size of latent HIV reservoir. AIDS. 22:1125–1129. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Blotière PO, Raguideau F, Weill A, Elefant E, Perthus I, Goulet V, Rouget F, Zureik M, Coste J and Dray-Spira R: Risks of 23 specific malformations associated with prenatal exposure to 10 antiepileptic drugs. Neurology. 93:e167–e180. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Jentink J, Loane MA, Dolk H, Barisic I, Garne E, Morris JK and de Jong-van den Berg LT; EUROCAT Antiepileptic Study Working Group: Valproic acid monotherapy in pregnancy and major congenital malformations. N Engl J Med. 362:2185–2193. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Meador KJ, Baker GA, Browning N, Cohen MJ, Bromley RL, Clayton-Smith J, Kalayjian LA, Kanner A, Liporace JD, Pennell PB, et al: Fetal antiepileptic drug exposure and cognitive outcomes at age 6 years (NEAD study): A prospective observational study. Lancet Neurol. 12:244–252. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Christensen J, Grnøborg TK, Srøensen MJ, Schendel D, Parner ET, Pedersen LH and Vestergaard M: Prenatal valproate exposure and risk of autism spectrum disorders and childhood autism. JAMA. 309:1696–1703. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Venkatesh HS, Johung TB, Caretti V, Noll A, Tang Y, Nagaraja S, Gibson EM, Mount CW, Polepalli J, Mitra SS, et al: Neuronal activity promotes glioma growth through Neuroligin-3 secretion. Cell. 161:803–816. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Venkataramani V, Tanev DI, Strahle C, Studier-Fischer A, Fankhauser L, Kessler T, Körber C, Kardorff M, Ratliff M, Xie R, et al: Glutamatergic synaptic input to glioma cells drives brain tumour progression. Nature. 573:532–538. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Stepulak A, Sifringer M, Rzeski W, Endesfelder S, Gratopp A, Pohl EE, Bittigau P, Felderhoff-Mueser U, Kaindl AM, Bührer C, et al: NMDA antagonist inhibits the extracellular signal-regulated kinase pathway and suppresses cancer growth. Proc Natl Acad Sci USA. 102:15605–15610. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Bobustuc GC, Baker CH, Limaye A, Jenkins WD, Pearl G, Avgeropoulos NG and Konduri SD: Levetiracetam enhances p53-mediated MGMT inhibition and sensitizes glioblastoma cells to temozolomide. Neuro Oncol. 12:917–927. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Roh TH, Moon JH, Park HH, Kim EH, Hong CK, Kim SH, Kang SG and Chang JH: Association between survival and levetiracetam use in glioblastoma patients treated with temozolomide chemoradiotherapy. Sci Rep. 10:107832020. View Article : Google Scholar : PubMed/NCBI | |
|
Ryu JY, Min KL and Chang MJ: Effect of anti-epileptic drugs on the survival of patients with glioblastoma multiforme: A retrospective, single-center study. PLoS One. 14:e02255992019. View Article : Google Scholar : PubMed/NCBI | |
|
Chen JS, Clarke R, Haddad AF, Wang EJ, Lacroix M, Sarkar IN, Zand R, Chen ES and Toms SA: The effect of levetiracetam treatment on survival in patients with glioblastoma: A systematic review and meta-analysis. J Neurooncol. 156:257–267. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Happold C, Gorlia T, Chinot O, Gilbert MR, Nabors LB, Wick W, Pugh SL, Hegi M, Cloughesy T, Roth P, et al: Does valproic acid or levetiracetam improve survival in glioblastoma? A pooled analysis of prospective clinical trials in newly diagnosed glioblastoma. J Clin Oncol. 34:731–739. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Oberndorfer S, Piribauer M, Marosi C, Lahrmann H, Hitzenberger P and Grisold W: P450 enzyme inducing and non-enzyme inducing antiepileptics in glioblastoma patients treated with standard chemotherapy. J Neurooncol. 72:255–260. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Krauze A, Megan M, Theresa CZ, Peter M, Shih JH, Tofilon PJ, Rowe L, Gilbert M and Camphausen K: The addition of Valproic acid to concurrent radiation therapy and temozolomide improves patient outcome: A Correlative analysis of RTOG 0525, SEER and a Phase II NCI trial. Cancer Stud Ther. 5:310382020. | |
|
Weller M, Gorlia T, Cairncross JG, van den Bent MJ, Mason W, Belanger K, Brandes AA, Bogdahn U, Macdonald DR, Forsyth P, et al: Prolonged survival with valproic acid use in the EORTC/NCIC temozolomide trial for glioblastoma. Neurology. 77:1156–1164. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Michaelis M, Doerr HW and Jr JC: Valproic acid as Anti-cancer drug. Curr Pharm Des. 13:3378–3393. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Göttlicher M, Minucci S, Zhu P, Krämer OH, Schimpf A, Giavara S, Sleeman JP, Lo Coco F, Nervi C, Pelicci PG and Heinzel T: Valproic acid defines a novel class of HDAC inhibitors inducing differentiation of transformed cells. EMBO J. 20:6969–6978. 2001. View Article : Google Scholar : PubMed/NCBI | |
|
Salmaggi A, Corno C, Maschio M, Donzelli S, D'urso A, Perego P and Ciusani E: Synergistic effect of perampanel and temozolomide in human glioma cell lines. J Pers Med. 11:3902021. View Article : Google Scholar : PubMed/NCBI | |
|
Lange F, Weßlau K, Porath K, Hörnschemeyer MF, Bergner C, Krause BJ, Mullins CS, Linnebacher M, Köhling R and Kirschstein T: AMPA receptor antagonist perampanel affects glioblastoma cell growth and glutamate release in vitro. PLoS One. 14:e02116442019. View Article : Google Scholar : PubMed/NCBI | |
|
Lange F, Hartung J, Liebelt C, Boisserée J, Resch T, Porath K, Hörnschemeyer MF, Reichart G, Sellmann T, Neubert V, et al: Perampanel Add-on to standard radiochemotherapy in vivo promotes neuroprotection in a rodent F98 glioma Model. Front Neurosci. 14:5982662020. View Article : Google Scholar : PubMed/NCBI | |
|
Rizzo A, Donzelli S, Girgenti V, Sacconi A, Vasco C, Salmaggi A, Blandino G, Maschio M and Ciusani E: In vitro antineoplastic effects of brivaracetam and lacosamide on human glioma cells. J Exp Clin Cancer Res. 36:762017. View Article : Google Scholar : PubMed/NCBI | |
|
Bang SR, Ambavade SD, Jagdale PG, Adkar PP, Waghmare AB and Ambavade PD: Lacosamide reduces HDAC levels in the brain and improves memory: Potential for treatment of Alzheimer's disease. Pharmacol Biochem Behav. 134:65–69. 2015. View Article : Google Scholar : PubMed/NCBI | |
|
Beutler AS, Li S, Nicol R and Walsh MJ: Carbamazepine is an inhibitor of histone deacetylases. Life Sci. 76:3107–3115. 2005. View Article : Google Scholar : PubMed/NCBI | |
|
Nelson M, Yang M, Dowle AA, Thomas JR and Brackenbury WJ: The sodium channel-blocking antiepileptic drug phenytoin inhibits breast tumour growth and metastasis. Mol Cancer. 14:132015. View Article : Google Scholar : PubMed/NCBI | |
|
Pellegrino M, Rizza P, Nigro A, Ceraldi R, Ricci E, Perrotta I, Aquila S, Lanzino M, Andò S, Morelli C and Sisci D: FoxO3a mediates the inhibitory effects of the antiepileptic drug lamotrigine on breast cancer growth. Mol Cancer Res. 16:923–934. 2018. View Article : Google Scholar : PubMed/NCBI | |
|
Koekkoek JAF, Kerkhof M, Dirven L, Heimans JJ, Postma TJ, Vos MJ, Bromberg JE, van den Bent MJ, Reijneveld JC and Taphoorn MJ: Withdrawal of antiepileptic drugs in glioma patients after long-term seizure freedom: Design of a prospective observational study. BMC Neurol. 14:1572014. View Article : Google Scholar : PubMed/NCBI | |
|
Das RR, Artsy E, Hurwitz S, Wen PY, Black P, Golby A, Dworetzky B and Lee JW: Outcomes after discontinuation of antiepileptic drugs after surgery in patients with low grade brain tumors and meningiomas. J Neurooncol. 107:565–570. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Tellez-Zenteno JF, Hernandez-Ronquillo L and Moien-Afshari F: Discontinuation of antiepileptic drugs after successful surgery: Who and when? Epileptic Disord. 14:363–370. 2012. View Article : Google Scholar : PubMed/NCBI | |
|
Berg AT, Langfitt JT, Spencer SS and Vickrey BG: Stopping antiepileptic drugs after epilepsy surgery: A survey of U.S. epilepsy center neurologists. Epilepsy Behav. 10:219–222. 2007. View Article : Google Scholar : PubMed/NCBI | |
|
Jiang H, Deng G, Liu B, Cheng J, Li Y, Tan Y, Wang J and Chen Q: Analysis of the short-term outcomes and risk factors of seizure relapse in patients with gliomas after antiepileptic drugs withdrawal. J Clin Neurosci. 82:20–25. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Han W, Shi J, Cao J, Dong B and Guan W: Emerging roles and therapeutic interventions of aerobic glycolysis in glioma. Onco Targets Ther. 13:6937–6955. 2020. View Article : Google Scholar : PubMed/NCBI | |
|
Singh R, Gupta V, Kumar A and Singh K: 2-Deoxy-D-Glucose: A novel pharmacological agent for killing hypoxic tumor cells, oxygen dependence-lowering in covid-19, and other pharmacological activities. Adv Pharmacol Pharm Sci. 2023:99933862023.PubMed/NCBI | |
|
Siclari F, Prior JO and Rossetti AO: Ictal cerebral positron emission tomography (PET) in focal status epilepticus. Epilepsy Res. 105:356–361. 2013. View Article : Google Scholar : PubMed/NCBI | |
|
Stafstrom CE, Roopra A and Sutula TP: Seizure suppression via glycolysis inhibition with 2-deoxy-D-glucose (2DG). Epilepsia. 49:97–100. 2008. View Article : Google Scholar : PubMed/NCBI | |
|
Gasior M, Yankura J, Hartman AL, French A and Rogawski MA: Anticonvulsant and proconvulsant actions of 2-deoxy-d-glucose. Epilepsia. 51:1385–1394. 2010. View Article : Google Scholar : PubMed/NCBI | |
|
Minor RK, Smith DL Jr, Sossong AM, Kaushik S, Poosala S, Spangler EL, Roth GS, Lane M, Allison DB, de Cabo R, et al: Chronic ingestion of 2-deoxy-D-glucose induces cardiac vacuolization and increases mortality in rats. Toxicol Appl Pharmacol. 243:332–339. 2010. View Article : Google Scholar : | |
|
Tejera D, Kushnirsky M, Gultekin SH, Lu M, Steelman L and De La Fuente MI: Ivosidenib, an IDH1 inhibitor, in a patient with recurrent, IDH1-mutant glioblastoma: A case report from a Phase I study. CNS Oncol. 9:CNS622020. View Article : Google Scholar : PubMed/NCBI | |
|
Vo AH, Ambady P and Spencer D: The IDH1 inhibitor ivosidenib improved seizures in a patient with drug-resistant epilepsy from IDH1 mutant oligodendroglioma. Epilepsy Behav Rep. 18:1005262022. View Article : Google Scholar : PubMed/NCBI | |
|
Xie Y, Yu N, Chen Y, Zhang K, Ma HY and Di Q: HMGB1 regulates P-glycoprotein expression in status epilepticus rat brains via the RAGE/NF-κB signaling pathway. Mol Med Rep. 16:1691–1700. 2017. View Article : Google Scholar : PubMed/NCBI | |
|
Chen Y, Huang XJ, Yu N, Xie Y, Zhang K, Wen F, Liu H and Di Q: HMGB1 Contributes to the Expression of P-Glycoprotein in mouse epileptic brain through Toll-like receptor 4 and receptor for advanced glycation end products. PLoS One. 10:e01409182015. View Article : Google Scholar : PubMed/NCBI | |
|
Fu L, Liu K, Wake H, Teshigawara K, Yoshino T, Takahashi H, Mori S and Nishibori M: Therapeutic effects of anti-HMGB1 monoclonal antibody on pilocarpine-induced status epilepticus in mice. Sci Rep. 7:11792017. View Article : Google Scholar : PubMed/NCBI | |
|
Ravizza T, Terrone G, Salamone A, Frigerio F, Balosso S, Antoine DJ and Vezzani A: High Mobility Group Box 1 is a novel pathogenic factor and a mechanistic biomarker for epilepsy. Brain Behav Immun. 72:14–21. 2018. View Article : Google Scholar | |
|
Paudel YN, Othman I and Shaikh MF: Anti-high mobility group Box-1 monoclonal antibody attenuates Seizure-induced cognitive decline by suppressing neuroinflammation in an adult zebrafish model. Front Pharmacol. 11:6130092021. View Article : Google Scholar : PubMed/NCBI | |
|
Nishibori M, Mori S and Takahashi HK: Anti-HMGB1 monoclonal antibody therapy for a wide range of CNS and PNS diseases. J Pharmacol Sci. 140:94–101. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Maroso M, Balosso S, Ravizza T, Iori V, Wright CI, French J and Vezzani A: Interleukin-1β biosynthesis inhibition reduces acute seizures and drug resistant chronic epileptic activity in mice. Neurotherapeutics. 8:304–315. 2011. View Article : Google Scholar : PubMed/NCBI | |
|
Kaur H, Kumar B and Medhi B: Antiepileptic drugs in development pipeline: A recent update. eNeurologicalSci. 4:42–51. 2016. View Article : Google Scholar : PubMed/NCBI | |
|
Bertani I, Iori V, Trusel M, Maroso M, Foray C, Mantovani S, Tonini R, Vezzani A and Chiesa R: Inhibition of IL-1β signaling normalizes NMDA-Dependent neurotransmission and reduces seizure susceptibility in a mouse model of Creutzfeldt-Jakob disease. J Neurosci. 37:10278–10289. 2017.PubMed/NCBI | |
|
Semple BD, O'Brien TJ, Gimlin K, Wright DK, Kim SE, Casillas-Espinosa PM, Webster KM, Petrou S and Noble-Haeusslein LJ: Interleukin-1 receptor in seizure susceptibility after traumatic injury to the pediatric brain. J Neurosci. 37:7864–7877. 2017.PubMed/NCBI | |
|
Dilena R, Mauri E, Aronica E, Bernasconi P, Bana C, Cappelletti C, Carrabba G, Ferrero S, Giorda R, Guez S, et al: Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection-related epilepsy syndrome. Epilepsia Open. 4:344–350. 2019.PubMed/NCBI | |
|
Kenney-Jung DL, Vezzani A, Kahoud RJ, LaFrance-Corey RG, Ho ML, Muskardin TW, Wirrell EC, Howe CL and Payne ET: Febrile infection-related epilepsy syndrome treated with anakinra. Ann Neurol. 80:939–945. 2016.PubMed/NCBI | |
|
Dilena R, Mauri E, Aronica E, Bernasconi P, Bana C, Cappelletti C, Carrabba G, Ferrero S, Giorda R, Guez S, et al: Therapeutic effect of Anakinra in the relapsing chronic phase of febrile infection-related epilepsy syndrome. Epilepsia Open. 4:344–350. 2019.PubMed/NCBI | |
|
Weissberg I, Wood L, Kamintsky L, Vazquez O, Milikovsky DZ, Alexander A, Oppenheim H, Ardizzone C, Becker A, Frigerio F, et al: Albumin induces excitatory synaptogenesis through astrocytic TGF-β/ALK5 signaling in a model of acquired epilepsy following blood-brain barrier dysfunction. Neurobiol Dis. 78:115–125. 2015.PubMed/NCBI | |
|
Sanz P and Garcia-Gimeno MA: Reactive glia inflammatory signaling pathways and epilepsy. Int J Mol Sci. 21:40962020.PubMed/NCBI | |
|
Benson MJ, Thomas NK, Talwar S, Hodson MP, Lynch JW, Woodruff TM and Borges K: A novel anticonvulsant mechanism via inhibition of complement receptor C5ar1 in murine epilepsy models. Neurobiol Dis. 76:87–97. 2015.PubMed/NCBI | |
|
Ryther RCC and Wong M: Mammalian target of rapamycin (mTOR) inhibition: Potential for antiseizure, antiepileptogenic, and epileptostatic therapy. Curr Neurol Neurosci Rep. 12:410–418. 2012.PubMed/NCBI | |
|
Zeng LH, Xu L, Gutmann DH and Wong M: Rapamycin prevents epilepsy in a mouse model of tuberous sclerosis complex. Ann Neurol. 63:444–453. 2008.PubMed/NCBI | |
|
Sunnen CN, Brewster AL, Lugo JN, Vanegas F, Turcios E, Mukhi S, Parghi D, D'Arcangelo G and Anderson AE: Inhibition of the mammalian target of rapamycin blocks epilepsy progression in NS-Pten conditional knockout mice. Epilepsia. 52:2065–2075. 2011.PubMed/NCBI | |
|
Gericke B, Brandt C, Theilmann W, Welzel L, Schidlitzki A, Twele F, Kaczmarek E, Anjum M, Hillmann P and Löscher W: Selective inhibition of mTORC1/2 or PI3K/mTORC1/2 signaling does not prevent or modify epilepsy in the intrahippocampal kainate mouse model. Neuropharmacology. 162:1078172020. | |
|
Buckmaster PS and Lew FH: Rapamycin suppresses mossy fiber sprouting but not seizure frequency in a mouse model of temporal lobe epilepsy. J Neurosci. 31:2337–2347. 2011.PubMed/NCBI | |
|
Overwater IE, Rietman AB, van Eeghen AM and de Wit MCY: Everolimus for the treatment of refractory seizures associated with tuberous sclerosis complex (TSC): Current perspectives. Ther Clin Risk Manag. 15:951–955. 2019.PubMed/NCBI | |
|
Franz DN, Lawson JA, Yapici Z, Ikeda H, Polster T, Nabbout R, Curatolo P, de Vries PJ, Dlugos DJ, Voi M, et al: Everolimus for treatment-refractory seizures in TSC: Extension of a randomized controlled trial. Neurol Clin Pract. 8:412–420. 2018.PubMed/NCBI | |
|
Ravizza T, Scheper M, Di Sapia R, Gorter J, Aronica E and Vezzani A: mTOR and neuroinflammation in epilepsy: Implications for disease progression and treatment. Nat Rev Neurosci. 25:334–350. 2024.PubMed/NCBI | |
|
Mazumder AG, Patial V and Singh D: Mycophenolate mofetil contributes to downregulation of the hippocampal interleukin type 2 and 1β mediated PI3K/AKT/mTOR pathway hyperactivation and attenuates neurobehavioral comorbidities in a rat model of temporal lobe epilepsy. Brain Behav Immun. 75:84–93. 2019. | |
|
Drion CM, Borm LE, Kooijman L, Aronica E, Wadman WJ, Hartog AF, van Vliet EA and Gorter JA: Effects of rapamycin and curcumin treatment on the development of epilepsy after electrically induced status epilepticus in rats. Epilepsia. 57:688–697. 2016.PubMed/NCBI | |
|
Brandt C, Hillmann P, Noack A, Römermann K, Öhler LA, Rageot D, Beaufils F, Melone A, Sele AM, Wymann MP, et al: The novel, catalytic mTORC1/2 inhibitor PQR620 and the PI3K/mTORC1/2 inhibitor PQR530 effectively cross the blood-brain barrier and increase seizure threshold in a mouse model of chronic epilepsy. Neuropharmacology. 140:107–120. 2018.PubMed/NCBI | |
|
Castro OW, Upadhya D, Kodali M and Shetty AK: Resveratrol for easing status epilepticus induced brain injury, inflammation, epileptogenesis, and cognitive and memory Dysfunction-Are We There Yet? Front Neurol. 8:6032017.PubMed/NCBI | |
|
Theilmann W, Gericke B, Schidlitzki A, Muneeb Anjum SM, Borsdorf S, Harries T, Roberds SL, Aguiar DJ, Brunner D, Leiser SC, et al: Novel brain permeant mTORC1/2 inhibitors are as efficacious as rapamycin or everolimus in mouse models of acquired partial epilepsy and tuberous sclerosis complex. Neuropharmacology. 180:1082972020. View Article : Google Scholar : PubMed/NCBI | |
|
Wang Y and Chen Z: An update for epilepsy research and antiepileptic drug development: Toward precise circuit therapy. Pharmacol Ther. 201:77–93. 2019. View Article : Google Scholar : PubMed/NCBI | |
|
Davis KL, Candrilli SD and Edin HM: Prevalence and cost of nonadherence with antiepileptic drugs in an adult managed care population. Epilepsia. 49:446–454. 2008. View Article : Google Scholar | |
|
Klein P, Kaminski RM, Koepp M and Löscher W: New epilepsy therapies in development. Nat Rev Drug Discov. 23:682–708. 2024. View Article : Google Scholar : PubMed/NCBI | |
|
Forcelli PA: Seizing control of neuronal activity: Chemogenetic applications in epilepsy. Epilepsy Curr. 22:303–308. 2022. View Article : Google Scholar : PubMed/NCBI | |
|
Hadjiabadi D, Lovett-Barron M, Raikov IG, Sparks FT, Liao Z, Baraban SC, Leskovec J, Losonczy A, Deisseroth K and Soltesz I: Maximally selective single cell target for circuit control in epilepsy models. Neuron. 109:2556–2572.e6. 2021. View Article : Google Scholar : | |
|
Löscher W: Drug Combinations for Antiepileptogenesis. Jasper's Basic Mechanisms Epilepsies. 1402–1418. 2024. | |
|
Szklarczyk D, Santos A, Von Mering C, Jensen LJ, Bork P and Kuhn M: STITCH 5: Augmenting Protein-chemical interaction networks with tissue and affinity data. Nucleic Acids Res. 44:D380–D384. 2016. View Article : Google Scholar | |
|
Welzel L, Bergin DH, Schidlitzki A, Twele F, Johne M, Klein P and Löscher W: Systematic evaluation of rationally chosen multitargeted drug combinations: A combination of low doses of levetiracetam, atorvastatin and ceftriaxone exerts antiepileptogenic effects in a mouse model of acquired epilepsy. Neurobiol Dis. 149:1052272021. View Article : Google Scholar | |
|
Schidlitzki A, Bascuñana P, Srivastava PK, Welzel L, Twele F, Töllner K, Käufer C, Gericke B, Feleke R, Meier M, et al: Proof-of-concept that network pharmacology is effective to modify development of acquired temporal lobe epilepsy. Neurobiol Dis. 134:1046642020. View Article : Google Scholar | |
|
Galanopoulou AS, Löscher W, Lubbers L, O'Brien TJ, Staley K, Vezzani A, D'Ambrosio R, White HS, Sontheimer H, Wolf JA, et al: Antiepileptogenesis and disease modification: Progress, challenges, and the path forward-Report of the Preclinical Working Group of the 2018 NINDS-sponsored antiepileptogenesis and disease modification workshop. Epilepsia Open. 6:276–296. 2021.PubMed/NCBI | |
|
Porter RJ and Kupferberg HJ: The anticonvulsant screening program of the National institute of neurological disorders and stroke, NIH: History and contributions to clinical care in the twentieth century and beyond. Neurochem Res. 42:1889–1893. 2017.PubMed/NCBI | |
|
Kehne JH, Klein BD, Raeissi S and Sharma S: The national institute of neurological disorders and stroke (NINDS) epilepsy therapy screening program (ETSP). Neurochem Res. 42:1894–1903. 2017.PubMed/NCBI |