Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Oncology Letters
      • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Biomedical Reports
      • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • Information for Authors
    • Information for Reviewers
    • Information for Librarians
    • Information for Advertisers
    • Conferences
  • Language Editing
Spandidos Publications Logo
  • About
    • About Spandidos
    • Aims and Scopes
    • Abstracting and Indexing
    • Editorial Policies
    • Reprints and Permissions
    • Job Opportunities
    • Terms and Conditions
    • Contact
  • Journals
    • All Journals
    • Biomedical Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Experimental and Therapeutic Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Epigenetics
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Functional Nutrition
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Molecular Medicine
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • International Journal of Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Medicine International
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular and Clinical Oncology
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Molecular Medicine Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Letters
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • Oncology Reports
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
    • World Academy of Sciences Journal
      • Information for Authors
      • Editorial Policies
      • Editorial Board
      • Aims and Scope
      • Abstracting and Indexing
      • Bibliographic Information
      • Archive
  • Articles
  • Information
    • For Authors
    • For Reviewers
    • For Librarians
    • For Advertisers
    • Conferences
  • Language Editing
Login Register Submit
  • This site uses cookies
  • You can change your cookie settings at any time by following the instructions in our Cookie Policy. To find out more, you may read our Privacy Policy.

    I agree
Search articles by DOI, keyword, author or affiliation
Search
Advanced Search
presentation
International Journal of Molecular Medicine
Join Editorial Board Propose a Special Issue
Print ISSN: 1107-3756 Online ISSN: 1791-244X
Journal Cover
June-2025 Volume 55 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

Journals

International Journal of Molecular Medicine

International Journal of Molecular Medicine

International Journal of Molecular Medicine is an international journal devoted to molecular mechanisms of human disease.

International Journal of Oncology

International Journal of Oncology

International Journal of Oncology is an international journal devoted to oncology research and cancer treatment.

Molecular Medicine Reports

Molecular Medicine Reports

Covers molecular medicine topics such as pharmacology, pathology, genetics, neuroscience, infectious diseases, molecular cardiology, and molecular surgery.

Oncology Reports

Oncology Reports

Oncology Reports is an international journal devoted to fundamental and applied research in Oncology.

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine

Experimental and Therapeutic Medicine is an international journal devoted to laboratory and clinical medicine.

Oncology Letters

Oncology Letters

Oncology Letters is an international journal devoted to Experimental and Clinical Oncology.

Biomedical Reports

Biomedical Reports

Explores a wide range of biological and medical fields, including pharmacology, genetics, microbiology, neuroscience, and molecular cardiology.

Molecular and Clinical Oncology

Molecular and Clinical Oncology

International journal addressing all aspects of oncology research, from tumorigenesis and oncogenes to chemotherapy and metastasis.

World Academy of Sciences Journal

World Academy of Sciences Journal

Multidisciplinary open-access journal spanning biochemistry, genetics, neuroscience, environmental health, and synthetic biology.

International Journal of Functional Nutrition

International Journal of Functional Nutrition

Open-access journal combining biochemistry, pharmacology, immunology, and genetics to advance health through functional nutrition.

International Journal of Epigenetics

International Journal of Epigenetics

Publishes open-access research on using epigenetics to advance understanding and treatment of human disease.

Medicine International

Medicine International

An International Open Access Journal Devoted to General Medicine.

Journal Cover
June-2025 Volume 55 Issue 6

Full Size Image

Sign up for eToc alerts
Recommend to Library

  • Article
  • Citations
    • Cite This Article
    • Download Citation
    • Create Citation Alert
    • Remove Citation Alert
    • Cited By
  • Similar Articles
    • Related Articles (in Spandidos Publications)
    • Similar Articles (Google Scholar)
    • Similar Articles (PubMed)
  • Download PDF
  • Download XML
  • View XML
Review Open Access

Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review)

  • Authors:
    • Chuqiao Shen
    • Qiang Zuo
    • Zhengbin Shao
    • Yixuan Lin
    • Shuo Chen
  • View Affiliations / Copyright

    Affiliations: Department of Pharmacy, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China, Department of Cardiology, First Affiliated Hospital, Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China, Department of Endocrinology, The First Affiliated Hospital of Anhui University of Chinese Medicine, Hefei, Anhui 230031, P.R. China, Key Laboratory of Xin'an Medicine, Ministry of Education, Anhui Province Key Laboratory of R&D of Traditional Chinese Medicine, Anhui University of Chinese Medicine, Hefei, Anhui 230038, P.R. China
    Copyright: © Shen et al. This is an open access article distributed under the terms of Creative Commons Attribution License.
  • Article Number: 86
    |
    Published online on: April 4, 2025
       https://doi.org/10.3892/ijmm.2025.5527
  • Expand metrics +
Metrics: Total Views: 0 (Spandidos Publications: | PMC Statistics: )
Metrics: Total PDF Downloads: 0 (Spandidos Publications: | PMC Statistics: )
Cited By (CrossRef): 0 citations Loading Articles...

This article is mentioned in:



Abstract

Muscarinic acetylcholine (ACh) receptors (also known as M receptors) are widely distributed in all organs and tissues of the body, mainly playing a role in cholinergic nerve conduction. There are five known subtypes of muscarinic ACh receptors, but their pharmacological mechanisms of action on myocardial function have remained to be clearly defined. Functional myocardial diseases and myocardial injuries, such as arrhythmia, myocardial ischemia, myocarditis and myocardial fibrosis, may be affected by muscarinic ACh receptors. This article reviews the research progress of the regulation of myocardial function by muscarinic ACh receptors and related diseases, with the aim of developing better strategies and providing references for further revealing and clarifying the signal transduction and mechanisms of muscarinic ACh receptors in cardiomyocytes, and finding potential myocardial protective drugs that act on muscarinic ACh receptors.
View Figures

Figure 1

Figure 2

Figure 3

Figure 4

Figure 5

Figure 6

Figure 7

Figure 8

Figure 9

View References

1 

Lymperopoulos A, Cora N, Maning J, Brill AR and Sizova A: Signaling and function of cardiac autonomic nervous system receptors: Insights from the GPCR signalling universe. FEBS J. 288:2645–2659. 2021. View Article : Google Scholar : PubMed/NCBI

2 

Santos R, Ursu O, Gaulton A, Bento AP, Donadi RS, Bologa CG, Karlsson A, Al-Lazikani B, Hersey A, Oprea TI and Overington JP: A comprehensive map of molecular drug targets. Nat Rev Drug Discov. 16:19–34. 2017. View Article : Google Scholar

3 

Maeda S, Qu Q, Robertson MJ, Skiniotis G and Kobilka BK: Structures of the M1 and M2 muscarinic acetylcholine receptor/G-protein complexes. Science. 364:552–557. 2019. View Article : Google Scholar : PubMed/NCBI

4 

Foster DJ: Muscarinic receptors: From clinic to bench to clinic. Trends Pharmacol Sci. 43:461–463. 2022. View Article : Google Scholar : PubMed/NCBI

5 

Saternos HC, Almarghalani DA, Gibson HM, Meqdad MA, Antypas RB, Lingireddy A and AbouAlaiwi WA: Distribution and function of the muscarinic receptor subtypes in the cardiovascular system. Physiol Genomics. 50:1–9. 2018. View Article : Google Scholar

6 

Palma JA: Muscarinic control of cardiovascular function in humans: A review of current clinical evidence. Clin Auton Res. 34:31–44. 2024. View Article : Google Scholar : PubMed/NCBI

7 

Alom F, Miyakawa M, Matsuyama H, Nagano H, Tanahashi Y and Unno T: Possible antagonistic effects of the TRPC4 channel blocker ML204 on M2 and M3 muscarinic receptors in mouse ileal and detrusor smooth muscles and atrial myocardium. J Vet Med Sci. 80:1407–1415. 2018. View Article : Google Scholar : PubMed/NCBI

8 

Schoeller C, Hoffmann S, Adolph S, Regenthal R and Abraham G: Expression of muscarinic acetylcholine receptors in turkey cardiac chambers. Res Vet Sci. 136:602–608. 2021. View Article : Google Scholar : PubMed/NCBI

9 

Pontes CNR, Scalzo S, Jesus ICG, Jesus EF, Nunes ADC, Mendonça MM, Mendes EP, Colugnati DB, Xavier CH, Pedrino GR, et al: Angiotensin-(1-7) attenuates the negative inotropic response to acetylcholine in the heart. Peptides. 158:1708622022. View Article : Google Scholar : PubMed/NCBI

10 

Riefolo F, Matera C, Garrido-Charles A, Gomila AMJ, Sortino R, Agnetta L, Claro E, Masgrau R, Holzgrabe U, Batlle M, et al: Optical control of cardiac function with a photoswitchable muscarinic agonist. J Am Chem Soc. 141:7628–7636. 2019. View Article : Google Scholar : PubMed/NCBI

11 

Woudstra J, Feenstra RGT, Vink CEM, Marques KMJ, Boerhout CKM, de Jong EAM, de Waard GA, van de Hoef TP, Chamuleau SAJ, Eringa EC, et al: Comparison of the diagnostic yield of intracoronary acetylcholine infusion and acetylcholine bolus injection protocols during invasive coronary function testing. Am J Cardiol. 217:49–58. 2024. View Article : Google Scholar : PubMed/NCBI

12 

Ibrahim E, Diakonov I, Arunthavarajah D, Swift T, Goodwin M, McIlvride S, Nikolova V, Williamson C and Gorelik J: Bile acids and their respective conjugates elicit different responses in neonatal cardiomyocytes: Role of Gi protein, muscarinic receptors and TGR5. Sci Rep. 8:71102018. View Article : Google Scholar : PubMed/NCBI

13 

Levay MK, Krobert KA, Vogt A, Ahmad A, Jungmann A, Neuber C, Pasch S, Hansen A, Müller OJ, Lutz S and Wieland T: RGS3L allows for an M2 muscarinic receptor-mediated RhoA-dependent inotropy in cardiomyocytes. Basic Res Cardiol. 117:82022. View Article : Google Scholar

14 

Winger G, Jutkiewicz EM and Woods JH: Comparison of the muscarinic antagonist effects of scopolamine and L-687,306. Behav Pharmacol. 31:359–367. 2020. View Article : Google Scholar : PubMed/NCBI

15 

Butova X, Myachina T, Simonova R, Kochurova A, Bozhko Y, Arkhipov M, Solovyova O, Kopylova G, Shchepkin D and Khokhlova: Peculiarities of the acetylcholine action on the contractile function of cardiomyocytes from the left and right atria in rats. Cells. 11:38092022. View Article : Google Scholar : PubMed/NCBI

16 

Baine S, Thomas J, Bonilla I, Ivanova M, Belevych A, Li J, Veeraraghavan R, Radwanski PB, Carnes C and Gyorke S: Muscarinic-dependent phosphorylation of the cardiac ryanodine receptor by protein kinase G is mediated by PI3K-AKT-nNOS signaling. J Biol Chem. 295:11720–11728. 2020. View Article : Google Scholar : PubMed/NCBI

17 

Ho HT, Belevych AE, Liu B, Bonilla IM, Radwański PB, Kubasov IV, Valdivia HH, Schober K, Carnes CA and Györke S: Muscarinic stimulation facilitates sarcoplasmic reticulum Ca release by modulating ryanodine receptor 2 phosphorylation through protein kinase G and Ca/calmodulin-dependent protein kinase II. Hypertension. 68:1171–1178. 2016. View Article : Google Scholar : PubMed/NCBI

18 

Cassambai S, Mee CJ, Renshaw D and Hussain A: Tiotropium bromide, a long acting muscarinic receptor antagonist triggers intracellular calcium signalling in the heart. Toxicol Appl Pharmacol. 384:1147782019. View Article : Google Scholar : PubMed/NCBI

19 

Dolejší E, Janoušková A and Jakubík J: Muscarinic receptors in cardioprotection and vascular tone regulation. Physiological research. 2024. View Article : Google Scholar

20 

Perera RK, Fischer TH, Wagner M, Dewenter M, Vettel C, Bork NI, Maier LS, Conti M, Wess J, El-Armouche A, et al: Atropine augments cardiac contractility by inhibiting cAMP-specific phosphodiesterase type 4. Sci Rep. 7:152222017. View Article : Google Scholar : PubMed/NCBI

21 

Kim HY, Choi HR, Lee YJ, Cui HZ, Jin SN, Cho KW, Kang DG and Lee HS: Accentuation of ursolic acid on muscarinic receptor-induced ANP secretion in beating rabbit atria. Life Sci. 94:145–150. 2014. View Article : Google Scholar

22 

Kawada T, Sonobe T, Nishikawa T, Hayama Y, Li M, Zheng C, Uemura K, Akiyama T, Pearson JT and Sugimachi M: Contribution of afferent pathway to vagal nerve stimulation-induced myocardial interstitial acetylcholine release in rats. Am J Physiol Regul Integr Comp Physiol. 319:R517–R525. 2020. View Article : Google Scholar : PubMed/NCBI

23 

Bencze M, Boros A, Behuliak M, Vavrinova A, Vaneckova I and Zicha J: Changes in cardiovascular autonomic control induced by chronic inhibition of acetylcholinesterase during pyridostigmine or donepezil treatment of spontaneously hypertensive rats. Eur J Pharmacol. 971:1765262024. View Article : Google Scholar : PubMed/NCBI

24 

Harada N, Ochi K, Yaosaka N, Teraoka H, Hiraga T, Iwanaga T, Unno T, Komori S, Yamada M and Kitazawa T: Immunohistochemical and functional studies for M3 muscarinic receptors and cyclo-oxygenase-2 expressed in the mouse atrium. Auton Autacoid Pharmacol. 32:41–52. 2012. View Article : Google Scholar : PubMed/NCBI

25 

Stavrakis S, Kem DC, Patterson E, Lozano P, Huang S, Szabo B, Cunningham MW, Lazzara R and Yu X: Opposing cardiac effects of autoantibody activation of β-adrenergic and M2 muscarinic receptors in cardiac-related diseases. Int J Cardiol. 148:331–336. 2011. View Article : Google Scholar

26 

Camara H, da Silva Junior ED, Garcia AG, Jurkiewicz A and Rodrigues JQD: Cardiac arrest induced by muscarinic or adenosine receptors agonists is reversed by DPCPX through double mechanism. Eur J Pharmacol. 819:9–15. 2018. View Article : Google Scholar

27 

Sassu E, Tumlinson G, Stefanovska D, Fernández MC, Iaconianni P, Madl J, Brennan TA, Koch M, Cameron BA, Preissl S, et al: Age-related structural and functional changes of the intracardiac nervous system. J Mol Cell Cardiol. 187:1–14. 2024. View Article : Google Scholar

28 

Poller U, Nedelka G, Radke J, Pönicke K and Brodde OE: Age-dependent changes in cardiac muscarinic receptor function in healthy volunteers. J Am Coll Cardiol. 29:187–193. 1997. View Article : Google Scholar : PubMed/NCBI

29 

Wang S, Jiang Y, Chen J, Dai C, Liu D, Pan W, Wang L, Fasae MB, Sun L, Wang L and Liu Y: Activation of M3 muscarinic acetylcholine receptors delayed cardiac aging by inhibiting the caspase-1/IL-1beta signaling pathway. Cell Physiol Biochem. 49:1208–1216. 2018. View Article : Google Scholar

30 

Arnett DK, Blumenthal RS, Albert MA, Buroker AB, Goldberger ZD, Hahn EJ, Himmelfarb CD, Khera A, Lloyd-Jones D, McEvoy JW, et al: 2019 ACC/AHA guideline on the primary prevention of cardiovascular disease: A report of the american college of Cardiology/American heart association task force on clinical practice guidelines. Circulation. 140:e596–e646. 2019.PubMed/NCBI

31 

Tompkins JD, Buckley U, Salavatian S, Shivkumar K and Ardell JL: Vagally-mediated heart block after myocardial infarction associated with plasticity of epicardial neurons controlling the atrioventricular node. Front Synaptic Neurosci. 14:9604582022. View Article : Google Scholar : PubMed/NCBI

32 

Singh S, Loke YK and Furberg CD: Inhaled anticholinergics and risk of major adverse cardiovascular events in patients with chronic obstructive pulmonary disease: A systematic review and meta-analysis. JAMA. 300:1439–1450. 2008. View Article : Google Scholar : PubMed/NCBI

33 

Mazzadi AN, Pineau J, Costes N, Le Bars D, Bonnefoi F, Croisille P, Porcher R and Chevalier P: Muscarinic receptor upregulation in patients with myocardial infarction: A new paradigm. Circ Cardiovasc Imaging. 2:365–372. 2009. View Article : Google Scholar : PubMed/NCBI

34 

Buchholz B, Kelly J, Munoz M, Bernatené EA, Méndez Diodati N, González Maglio DH, Dominici FP and Gelpi RJ: Vagal stimulation mimics preconditioning and postconditioning of ischemic myocardium in mice by activating different protection mechanisms. Am J Physiol Heart Circ Physiol. 314:H1289–H1297. 2018. View Article : Google Scholar : PubMed/NCBI

35 

Zhang T, Zhang Y, Cui M, Jin L, Wang Y, Lv F, Liu Y, Zheng W, Shang H, Zhang J, et al: CaMKII is a RIP3 substrate mediating ischemia- and oxidative stress-induced myocardial necroptosis. Nat Med. 22:175–182. 2016. View Article : Google Scholar : PubMed/NCBI

36 

Lauro FV, Maria LR, Tomas LG, Francisco DC, Rolando GM, Marcela RN, Virginia MA, Alejandra GE and Yazmin OA: Design and synthesis of two new steroid derivatives with biological activity on heart failure via the M2-muscarinic receptor activation. Steroids. 158:1086202020. View Article : Google Scholar

37 

Rinaldi R, Colucci M, Torre I, Ausiello D, Bonanni A, Basile M, Salzillo C, Sanna T, Liuzzo G, Leone AM, et al: Predicting the response to acetylcholine in ischemia or infarction with non-obstructive coronary arteries: The ABCD score. Atherosclerosis. 391:1175032024. View Article : Google Scholar : PubMed/NCBI

38 

Liao F, Zheng Y, Cai J, Fan J, Wang J, Yang J, Cui Q, Xu G, Tang C, Geng B, et al: Catestatin attenuates endoplasmic reticulum induced cell apoptosis by activation type 2 muscarinic acetylcholine receptor in cardiac ischemia/reperfusion. Sci Rep. 5:165902015. View Article : Google Scholar : PubMed/NCBI

39 

Kakinuma Y, Tsuda M, Okazaki K, Akiyama T, Arikawa M, Noguchi T and Sato T: Heart-specific overexpression of choline acetyltransferase gene protects murine heart against ischemia through hypoxia-inducible factor-1α-related defense mechanisms. J Am Heart Assoc. 2:e0048872013. View Article : Google Scholar

40 

Xue RQ, Zhao M, Wu Q, Yang S, Cui YL, Yu XJ, Liu J and Zang WJ: Regulation of mitochondrial cristae remodelling by acetylcholine alleviates palmitate-induced cardiomyocyte hypertrophy. Free Radic Biol Med. 145:103–117. 2019. View Article : Google Scholar : PubMed/NCBI

41 

Palee S, Apaijai N, Shinlapawittayatorn K, Chattipakorn SC and Chattipakorn N: Acetylcholine attenuates hydrogen peroxide-induced intracellular calcium dyshomeostasis through both muscarinic and nicotinic receptors in cardiomyocytes. Cell Physiol Biochem. 39:341–349. 2016. View Article : Google Scholar : PubMed/NCBI

42 

Lv YX, Zhong S, Tang H, Luo B, Chen SJ, Chen L, Zheng F, Zhang L, Wang L, Li XY, et al: VEGF-A and VEGF-B coordinate the arteriogenesis to repair the infarcted heart with vagus nerve stimulation. Cell Physiol Biochem. 48:433–449. 2018. View Article : Google Scholar : PubMed/NCBI

43 

Travieso A, Jeronimo-Baza A, Faria D, Shabbir A, Mejia-Renteria H and Escaned J: Invasive evaluation of coronary microvascular dysfunction. J Nucl Cardiol. 29:2474–2486. 2022. View Article : Google Scholar : PubMed/NCBI

44 

Alves-Lopes R, Neves KB and Touyz RM: Muscarinic receptor type-3 in hypertension and cholinergic-adrenergic crosstalk: Genetic insights and potential for new antihypertensive targets. Can J Cardiol. 35:555–557. 2019. View Article : Google Scholar : PubMed/NCBI

45 

Khuanjing T, Palee S, Chattipakorn SC and Chattipakorn N: The effects of acetylcholinesterase inhibitors on the heart in acute myocardial infarction and heart failure: From cells to patient reports. Acta Physiol (Oxf). 228:e133962020. View Article : Google Scholar

46 

Shahim B, Xu H, Haugaa K, Zetterberg H, Jurga J, Religa D and Eriksdotter M: Cholinesterase inhibitors are associated with reduced mortality in patients with Alzheimer's disease and previous myocardial infarction. Eur Heart J Cardiovasc Pharmacother. 10:128–136. 2024. View Article : Google Scholar : PubMed/NCBI

47 

Pan Z, Guo Y, Qi H, Fan K, Wang S, Zhao H, Fan Y, Xie J, Guo F, Hou Y, et al: M3 subtype of muscarinic acetylcholine receptor promotes cardioprotection via the suppression of miR-376b-5p. PLoS One. 7:e325712012. View Article : Google Scholar : PubMed/NCBI

48 

Zhao J, Su Y, Zhang Y, Pan Z, Yang L, Chen X, Liu Y, Lu Y, Du Z and Yang B: Activation of cardiac muscarinic M3 receptors induces delayed cardioprotection by preserving phosphorylated connexin43 and up-regulating cyclooxygenase-2 expression. Br J Pharmacol. 159:1217–1225. 2010. View Article : Google Scholar : PubMed/NCBI

49 

Zhao L, Chen T, Hang P, Li W, Guo J, Pan Y, Du J, Zheng Y and Du Z: Choline attenuates cardiac fibrosis by inhibiting p38MAPK signaling possibly by acting on M3 muscarinic acetylcholine receptor. Front Pharmacol. 10:13862019. View Article : Google Scholar :

50 

Liu H, Hofmann J, Fish I, Schaake B, Eitel K, Bartuschat A, Kaindl J, Rampp H, Banerjee A, Hübner H, et al: Structure-guided development of selective M3 muscarinic acetylcholine receptor antagonists. Proc Natl Acad Sci USA. 115:12046–12050. 2018. View Article : Google Scholar : PubMed/NCBI

51 

Wang YP, Hang PZ, Sun LH, Zhang Y, Zhao JL, Pan ZW, Ji HR, Wang LA, Bi H and Du ZM: M3 muscarinic acetylcholine receptor is associated with beta-catenin in ventricular myocytes during myocardial infarction in the rat. Clin Exp Pharmacol Physiol. 36:995–1001. 2009. View Article : Google Scholar : PubMed/NCBI

52 

Harvey KL, Hussain A and Maddock HL: Ipratropium bromide-mediated myocardial injury in in vitro models of myocardial Ischaemia/reperfusion. Toxicol Sci. 138:457–467. 2014. View Article : Google Scholar : PubMed/NCBI

53 

Nuntaphum W, Pongkan W, Wongjaikam S, Thummasorn S, Tanajak P, Khamseekaew J, Intachai K, Chattipakorn SC, Chattipakorn N and Shinlapawittayatorn K: Vagus nerve stimulation exerts cardioprotection against myocardial ischemia/reperfusion injury predominantly through its efferent vagal fibers. Basic Res Cardiol. 113:222018. View Article : Google Scholar : PubMed/NCBI

54 

Pickard JMJ, Burke N, Davidson SM and Yellon DM: Intrinsic cardiac ganglia and acetylcholine are important in the mechanism of ischaemic preconditioning. Basic Res Cardiol. 112:112017. View Article : Google Scholar : PubMed/NCBI

55 

Khuanjing T, Palee S, Kerdphoo S, Jaiwongkam T, Anomasiri A, Chattipakorn SC and Chattipakorn N: Donepezil attenuated cardiac ischemia/reperfusion injury through balancing mitochondrial dynamics, mitophagy, and autophagy. Transl Res. 230:82–97. 2021. View Article : Google Scholar

56 

Intachai K, Chattipakorn SC, Chattipakorn N and Shinlapawittayatorn K: Acetylcholine exerts cytoprotection against hypoxia/reoxygenation-induced apoptosis, autophagy and mitochondrial impairment through both muscarinic and nicotinic receptors. Apoptosis. 27:233–245. 2022. View Article : Google Scholar : PubMed/NCBI

57 

Xu M, Bi X, He X, Yu X, Zhao M and Zang W: Inhibition of the mitochondrial unfolded protein response by acetylcholine alleviated hypoxia/reoxygenation-induced apoptosis of endothelial cells. Cell Cycle. 15:1331–1343. 2016. View Article : Google Scholar : PubMed/NCBI

58 

Xue RQ, Sun L, Yu XJ, Li DL and Zang WJ: Vagal nerve stimulation improves mitochondrial dynamics via an M3 receptor/CaMKKbeta/AMPK pathway in isoproterenol-induced myocardial ischaemia. J Cell Mol Med. 21:58–71. 2017. View Article : Google Scholar

59 

Li W, Yu J, Yang Y, Wang J, Liu Y, Wang J, Hu J, Yuan Y and Du Z: M3 subtype of muscarinic acetylcholine receptor inhibits cardiac fibrosis via targeting microRNA-29b/beta-site app cleaving enzyme 1 axis. Cardiovasc Diagn Ther. 14:143–157. 2024. View Article : Google Scholar : PubMed/NCBI

60 

Liu JJ, Huang N, Lu Y, Zhao M, Yu XJ, Yang Y, Yang YH and Zang WJ: Improving vagal activity ameliorates cardiac fibrosis induced by angiotensin II: in vivo and in vitro. Sci Rep. 5:2015.

61 

Gurses KM, Yalcin MU, Kocyigit D, Kesikli SA, Canpolat U, Yorgun H, Sahiner ML, Kaya EB, Hazirolan T, Ozer N, et al: M2-muscarinic acetylcholine receptor autoantibody levels predict left atrial fibrosis severity in paroxysmal lone atrial fibrillation patients undergoing cryoablation. Europace. 17:239–246. 2014. View Article : Google Scholar : PubMed/NCBI

62 

Ma G, Wu X, Zeng L, Jin J, Liu X, Zhang J and Zhang L: Association of autoantibodies against M2-muscarinic acetylcholine receptor with atrial fibrosis in atrial fibrillation patients. Cardiol Res Pract. 2019:82718712019. View Article : Google Scholar : PubMed/NCBI

63 

Heijman J, Kirchner D, Kunze F, Chrétien EM, Michel-Reher MB, Voigt N, Knaut M, Michel MC, Ravens U and Dobrev D: Muscarinic type-1 receptors contribute to IK,ACh in human atrial cardiomyocytes and are upregulated in patients with chronic atrial fibrillation. Int J Cardiol. 255:61–68. 2018. View Article : Google Scholar : PubMed/NCBI

64 

Garcia-Domingo M, Garcia-Pedraza JA, Fernandez-Gonzalez JF, Lopez C, Martin ML and Moran A: Fluoxetine treatment decreases cardiac vagal input and alters the serotonergic modulation of the parasympathetic outflow in diabetic rats. Int J Mol Sci. 23:57362022. View Article : Google Scholar : PubMed/NCBI

65 

Jungen C, Scherschel K, Eickholt C, Kuklik P, Klatt N, Bork N, Salzbrunn T, Alken F, Angendohr S, Klene C, et al: Disruption of cardiac cholinergic neurons enhances susceptibility to ventricular arrhythmias. Nat Commun. 8:141552017. View Article : Google Scholar : PubMed/NCBI

66 

Gergs U, Wackerhagen S, Fuhrmann T, Schafer I and Neumann J: Further investigations on the influence of protein phosphatases on the signaling of muscarinic receptors in the atria of mouse hearts. Naunyn Schmiedebergs Arch Pharmacol. 39:5731–5743. 2024. View Article : Google Scholar

67 

Magyar T, Árpádffy-Lovas T, Pászti B, Tóth N, Szlovák J, Gazdag P, Kohajda Z, Gyökeres A, Györe B, Gurabi Z, et al: Muscarinic agonists inhibit the ATP-dependent potassium current and suppress the ventricle-Purkinje action potential dispersion. Can J Physiol Pharmacol. 99:247–253. 2021. View Article : Google Scholar

68 

Voigt N, Friedrich A, Bock M, Wettwer E, Christ T, Knaut M, Strasser RH, Ravens U and Dobrev D: Differential phosphorylation-dependent regulation of constitutively active and muscarinic receptor-activated IK,ACh channels in patients with chronic atrial fibrillation. Cardiovasc Res. 74:426–437. 2007. View Article : Google Scholar : PubMed/NCBI

69 

Petersen J, Castro L, Bengaard AKP, Pecha S, Ismaili D, Schulz C, Sahni J, Steenpass A, Meier C, Reichenspurner H, et al: Muscarinic receptor activation reduces force and arrhythmias in human atria independent of IK,ACh. J Cardiovasc Pharmacol. 79:678–686. 2022. View Article : Google Scholar : PubMed/NCBI

70 

Couselo-Seijas M, Lopez-Canoa JN, Agra-Bermejo RM, Díaz-Rodriguez E, Fernandez AL, Martinez-Cereijo JM, Durán-Muñoz D, Bravo SB, Velo A, González-Melchor L, et al: Cholinergic activity regulates the secretome of epicardial adipose tissue: Association with atrial fibrillation. J Cell Physiol. 234:10512–10522. 2019. View Article : Google Scholar

71 

Deng J, Guo Y, Zhang G, Zhang L, Kem D, Yu X, Jiang H and Li H: M2 muscarinic autoantibodies and thyroid hormone promote susceptibility to atrial fibrillation and sinus tachycardia in an autoimmune rabbit model. Exp Physiol. 106:882–890. 2021. View Article : Google Scholar : PubMed/NCBI

72 

Moss R, Sachse FB, Moreno-Galindo EG, Navarro-Polanco RA, Tristani-Firouzi M and Seemann G: Modeling effects of voltage dependent properties of the cardiac muscarinic receptor on human sinus node function. PLoS Comput Biol. 14:e10064382018. View Article : Google Scholar : PubMed/NCBI

73 

Liu Y, Sun L, Pan Z, Bai Y, Wang N, Zhao J, Xu C, Li Z, Li B, Du Z, et al: Overexpression of M3 muscarinic receptor is a novel strategy for preventing sudden cardiac death in transgenic mice. Mol Med. 17:1179–1187. 2011. View Article : Google Scholar

74 

Olivas A, Gardner RT, Wang L, Ripplinger CM, Woodward WR and Habecker BA: Myocardial infarction causes transient cholinergic transdifferentiation of cardiac sympathetic nerves via gp130. J Neurosci. 36:479–488. 2016. View Article : Google Scholar : PubMed/NCBI

75 

Prado MB Jr and Adiao KJ: Acetylcholinesterase inhibitors in myasthenic crisis: A systematic review of observational studies. Neurocrit Care. 35:528–544. 2021. View Article : Google Scholar : PubMed/NCBI

76 

Bober SL, Ciriello J and Jones DL: Atrial arrhythmias and autonomic dysfunction in rats exposed to chronic intermittent hypoxia. Am J Physiol Heart Circ Physiol. 314:H1160–H1168. 2018. View Article : Google Scholar : PubMed/NCBI

77 

Cavalcante GL, Brognara F, Oliveira LVC, Lataro RM, Durand MT, de Oliveira AP, da Nóbrega ACL, Salgado HC and Sabino JPJ: Benefits of pharmacological and electrical cholinergic stimulation in hypertension and heart failure. Acta Physiol (Oxf). 232:e136632021. View Article : Google Scholar : PubMed/NCBI

78 

Baine S, Bonilla I, Belevych A, Stepanov A, Dorn LE, Terentyeva R, Terentyev D, Accornero F, Carnes CA and Gyorke S: Pyridostigmine improves cardiac function and rhythmicity through RyR2 stabilization and inhibition of STIM1-mediated calcium entry in heart failure. J Cell Mol Med. 25:4637–4648. 2021. View Article : Google Scholar : PubMed/NCBI

79 

Fernandez SF and Canty JM Jr: Adrenergic and cholinergic plasticity in heart failure. Circ Res. 116:1639–1642. 2015. View Article : Google Scholar : PubMed/NCBI

80 

Teixeira VP, Miranda K, Scalzo S, Rocha-Resende C, Silva MM, Tezini GCSV, Melo MB, Souza-Neto FP, Silva KSC, Jesus ICG, et al: Increased cholinergic activity under conditions of low estrogen leads to adverse cardiac remodeling. Am J Physiol Cell Physiol. 320:C602–C612. 2021. View Article : Google Scholar

81 

Ma G, Chen L, Yue Y, Liu X, Wang Y, Shi C, Song F, Shi W, Lo Y and Zhang L: Impact of autoantibodies against the M2-muscarinic acetylcholine receptor on clinical outcomes in peripartum cardiomyopathy patients with standard treatment. BMC Cardiovasc Disord. 21:6192021. View Article : Google Scholar : PubMed/NCBI

82 

Li M, Zheng C, Kawada T, Inagaki M, Uemura K and Sugimachi M: Intracerebroventricular infusion of donepezil prevents cardiac remodeling and improves the prognosis of chronic heart failure rats. J Physiol Sci. 70:112020. View Article : Google Scholar : PubMed/NCBI

83 

Williams AM, Shave RE, Coulson JM, White H, Rosser-Stanford B and Eves ND: Influence of vagal control on sex-related differences in left ventricular mechanics and hemodynamics. Am J Physiol Heart Circ Physiol. 315:H687–H698. 2018. View Article : Google Scholar : PubMed/NCBI

84 

Schultheiss HP, Fairweather D, Caforio ALP, Escher F, Hershberger RE, Lipshultz SE, Liu PP, Matsumori A, Mazzanti A, McMurray J and Priori SG: Dilated cardiomyopathy. Nat Rev Dis Primers. 5:322019. View Article : Google Scholar : PubMed/NCBI

85 

Chen X, Bai Y, Sun H, Su Z, Guo J, Sun C and Du Z: Overexpression of m3 muscarinic receptor suppressed adverse electrical remodeling in hypertrophic myocardium via increasing repolarizing K+ currents. Cell Physiol Biochem. 43:915–925. 2017. View Article : Google Scholar : PubMed/NCBI

86 

Wang S, Han HM, Pan ZW, Hang PZ, Sun LH, Jiang YN, Song HX, Du ZM and Liu Y: Choline inhibits angiotensin II-induced cardiac hypertrophy by intracellular calcium signal and p38 MAPK pathway. Naunyn Schmiedebergs Arch Pharmacol. 385:823–831. 2012. View Article : Google Scholar : PubMed/NCBI

87 

Ma M, Chen W, Hua Y, Jia H, Song Y and Wang Y: Aerobic exercise ameliorates cardiac hypertrophy by regulating mitochondrial quality control and endoplasmic reticulum stress through M2 AChR. J Cell Physiol. 236:6581–6596. 2021. View Article : Google Scholar : PubMed/NCBI

88 

Matsui S, Fu ML, Hayase M, Katsuda S, Yamaguchi N, Teraoka K, Kurihara T and Takekoshi N: Active immunization of combined beta1-adrenoceptor and M2-muscarinic receptor peptides induces cardiac hypertrophy in rabbits. J Card Fail. 5:246–254. 1999. View Article : Google Scholar : PubMed/NCBI

89 

da Silva Gonçalves Bós D, Van Der Bruggen CEE, Kurakula K, Sun XQ, Casali KR, Casali AG, Rol N, Szulcek R, Dos Remedios C, Guignabert C, et al: Contribution of impaired parasympathetic activity to right ventricular dysfunction and pulmonary vascular remodeling in pulmonary arterial hypertension. Circulation. 137:910–924. 2018. View Article : Google Scholar

90 

Minassa VS, Aitken AV, Hott SC, de Sousa GJ, Batista TJ, Gonçalves RCR, Coitinho JB, Paton JFR, Beijamini V, Bissoli NS and Sampaio KN: Intermittent exposure to chlorpyrifos results in cardiac hypertrophy and oxidative stress in rats. Toxicology. 482:1533572022. View Article : Google Scholar : PubMed/NCBI

91 

Duan X, Liu R, Luo XL, Gao XJ, Hu FH, Guo C, Wang J, Hu XY, Chun YS, Yuan JS, et al: The relationship between β1-adrenergic and M2-muscarinic receptor autoantibodies and hypertrophic cardiomyopathy. Exp Physiol. 105:522–530. 2020. View Article : Google Scholar

92 

Ribeiro KC, Campelo RP, Rodrigues DDRF, Mattos EC, Brandão IT, da Silva CL, Bouskela E, Martinez CG and Kurtenbach E: Immunization with plasmids encoding M2 acetylcholine muscarinic receptor epitopes impairs cardiac function in mice and induces autophagy in the myocardium. Autoimmunity. 51:245–257. 2018. View Article : Google Scholar : PubMed/NCBI

93 

Bezerra OC, Franca CM, Rocha JA, Neves GA, Souza PRM, Teixeira Gomes M, Malfitano C, Loleiro TCA, Dourado PM, Llesuy S, et al: Cholinergic stimulation improves oxidative stress and inflammation in experimental myocardial infarction. Sci Rep. 7:136872017. View Article : Google Scholar : PubMed/NCBI

94 

Barboza CA, Fukushima AR, Carrozzi N, Machi JF, Dourado PMM, Mostarda CT, Irigoyen MC, Nathanson L, Morris M, Caperuto EC and Rodrigues B: Cholinergic stimulation by pyridostigmine bromide before myocardial infarction prevent cardiac and autonomic dysfunction. Sci Rep. 9:24812019. View Article : Google Scholar : PubMed/NCBI

95 

Halder N and Lal G: Cholinergic system and its therapeutic importance in inflammation and autoimmunity. Front Immunol. 12:6603422021. View Article : Google Scholar : PubMed/NCBI

96 

Cox MA, Duncan GS, Lin GHY, Steinberg BE, Yu LX, Brenner D, Buckler LN, Elia AJ, Wakeham AC, Nieman B, et al: Choline acetyltransferase-expressing T cells are required to control chronic viral infection. Science. 363:639–644. 2019. View Article : Google Scholar : PubMed/NCBI

97 

Reardon C, Duncan GS, Brüstle A, Brenner D, Tusche MW, Olofsson PS, Rosas-Ballina M, Tracey KJ and Mak TW: Lymphocyte-derived ACh regulates local innate but not adaptive immunity. Proc Natl Acad Sci USA. 110:1410–1415. 2013. View Article : Google Scholar : PubMed/NCBI

98 

De-Pu Z, Li-Sha G, Guang-Yi C, Xiaohong G, Chao X, Cheng Z, Wen-Wu Z, Jia L, Jia-Feng L, Maoping C and Yue-Chun L: The cholinergic anti-inflammatory pathway ameliorates acute viral myocarditis in mice by regulating CD4+ T cell differentiation. Virulence. 9:1364–1376. 2018. View Article : Google Scholar :

99 

Wang Y, Liu Y, Li XY, Yao LY, Mbadhi M, Chen SJ, Lv YX, Bao X, Chen L, Chen SY, et al: Vagus nerve stimulation-induced stromal cell-derived factor-l alpha participates in angiogenesis and repair of infarcted hearts. ESC Heart Fail. 10:3311–3329. 2023. View Article : Google Scholar : PubMed/NCBI

100 

Albano GD, Bonanno A, Moscato M, Anzalone G, Di Sano C, Riccobono L, Wenzel SE and Profita M: Crosstalk between mAChRM3 and beta2AR, via acetylcholine PI3/PKC/PBEP1/Raf-1 MEK1/2/ERK1/2 pathway activation, in human bronchial epithelial cells after Long-term cigarette smoke exposure. Life Sci. 192:99–109. 2018. View Article : Google Scholar

101 

Wu Q, Zhao M, Li D, He X and Zang W: Cholinergic drugs reduce metabolic inflammation and diabetic myocardial injury by regulating the gut bacterial component lipopolysaccharide-induced ERK/Egr-1 pathway. FASEB J. 37:e229172023. View Article : Google Scholar : PubMed/NCBI

102 

Jiang W, Li D, Han R, Zhang C, Jin WN, Wood K, Liu Q, Shi FD and Hao J: Acetylcholine-producing NK cells attenuate CNS inflammation via modulation of infiltrating monocytes/macrophages. Proc Natl Acad Sci USA. 114:E6202–E6211. 2017. View Article : Google Scholar : PubMed/NCBI

103 

Rocha-Resende C, da Silva AM, Prado MAM and Guatimosim S: Protective and anti-inflammatory effects of acetylcholine in the heart. Am J Physiol Cell Physiol. 320:C155–C161. 2021. View Article : Google Scholar

104 

Plaschke K, Do TQM, Uhle F, Brenner T, Weigand MA and Kopitz J: Ablation of the right cardiac vagus nerve reduces acetylcholine content without changing the inflammatory response during endotoxemia. Int J Mol Sci. 19:4422018. View Article : Google Scholar : PubMed/NCBI

105 

Tarnawski L, Shavva VS, Kort EJ, Zhuge Z, Nilsson I, Gallina AL, Martínez-Enguita D, Heller Sahlgren B, Weiland M, Caravaca AS, et al: Cholinergic regulation of vascular endothelial function by human ChAT+ T cells. Proc Natl Acad Sci USA. 120:e22124761202023. View Article : Google Scholar

106 

Suissa S, Dell'Aniello S and Ernst P: Long-acting bronchodilator initiation in COPD and the risk of adverse cardiopulmonary events: A population-based comparative safety study. Chest. 151:60–67. 2017. View Article : Google Scholar

107 

Rogliani P, Calzetta L, Matera MG, di Daniele N, Girolami A, Cazzola M and Ora J: Inhaled therapies and cardiovascular risk in patients with chronic obstructive pulmonary disease. Expert Opin Pharmacother. 20:737–750. 2019. View Article : Google Scholar : PubMed/NCBI

108 

Shin J and Lee JH: Effects of tiotropium on the risk of coronary heart disease in patients with COPD: A nationwide cohort study. Sci Rep. 12:166742022. View Article : Google Scholar : PubMed/NCBI

109 

Parkin L, Williams S, Sharples K, Barson D, Horsburgh S, Jackson R, Wu B and Dummer J: Dual versus single long-acting bronchodilator use could raise acute coronary syndrome risk by over 50%: A Population-based nested Case-control study. J Intern Med. 290:1028–1038. 2021. View Article : Google Scholar : PubMed/NCBI

110 

Arana A, Margulis AV, McQuay LJ, Ziemiecki R, Bartsch JL, Rothman KJ, Franks B, D'Silva M, Appenteng K, Varas-Lorenzo C and Perez-Gutthann S: Variation in cardiovascular risk related to individual antimuscarinic drugs used to treat overactive bladder: A UK cohort study. Pharmacotherapy. 38:628–637. 2018. View Article : Google Scholar : PubMed/NCBI

111 

Guo F, Wang Y, Wang J, Liu Z, Lai Y, Zhou Z, Liu Z, Zhou Y, Xu X, Li Z, et al: Choline potects the heart from doxorubicin-induced cardiotoxicity through vagal activation and Nrf2/HO-1 pathway. Oxid Med Cell Longev. 2022:47409312022. View Article : Google Scholar

112 

Khuanjing T, Ongnok B, Maneechote C, Siri-Angkul N, Prathumsap N, Arinno A, Chunchai T, Arunsak B, Chattipakorn SC and Chattipakorn N: Acetylcholinesterase inhibitor ameliorates doxorubicin-induced cardiotoxicity through reducing RIP1-mediated necroptosis. Pharmacol Res. 173:1058822021. View Article : Google Scholar : PubMed/NCBI

113 

Khalaf HA and El-Mansy AAE: The possible alleviating effect of saffron on chlorpyrifos experimentally induced cardiotoxicity: Histological, immunohistochemical and biochemical study. Acta Histochem. 121:472–483. 2019. View Article : Google Scholar : PubMed/NCBI

114 

Prathumsap N, Ongnok B, Khuanjing T, Arinno A, Maneechote C, Apaijai N, Chunchai T, Arunsak B, Kerdphoo S, Janjek S, et al: Vagus nerve stimulation exerts cardioprotection against doxorubicin-induced cardiotoxicity through inhibition of programmed cell death pathways. Cell Mol Life Sci. 80:212022. View Article : Google Scholar : PubMed/NCBI

115 

Wu Q, Zhao M, He X, Xue R, Li D, Yu X, Wang S and Zang W: Acetylcholine reduces palmitate-induced cardiomyocyte apoptosis by promoting lipid droplet lipolysis and perilipin 5-mediated lipid droplet-mitochondria interaction. Cell Cycle. 20:1890–1906. 2021. View Article : Google Scholar : PubMed/NCBI

116 

Pedzinska-Betiuk A, Weresa J, Schlicker E, Harasim-Symbor E, Toczek M, Kasacka I, Gajo B and Malinowska B: Chronic cannabidiol treatment reduces the carbachol-induced coronary constriction and left ventricular cardiomyocyte width of the isolated hypertensive rat heart. Toxicol Appl Pharmacol. 411:1153682021. View Article : Google Scholar

117 

Pickett MA, Dush MK and Nascone-Yoder NM: Acetylcholinesterase plays a non-neuronal, non-esterase role in organogenesis. Development. 144:2764–2770. 2017. View Article : Google Scholar : PubMed/NCBI

118 

Wessler I and Kirkpatrick CJ: Acetylcholine beyond neurons: The non-neuronal cholinergic system in humans. Br J Pharmacol. 154:1558–1571. 2008. View Article : Google Scholar : PubMed/NCBI

119 

Huang D, Zhang L, Liu Y, Wang J, Zhang J, Baines KJ, Liu G, Hsu AC, Wang F, Chen Z, et al: Activated non-neuronal cholinergic system correlates with non-type 2 inflammation and exacerbations in severe asthma. Ann Allergy Asthma Immunol. 133:e64–e72.e4. 2024. View Article : Google Scholar

120 

Braczko F, Fischl SR, Reinders J, Lieder HR and Kleinbongard P: Activation of the nonneuronal cholinergic cardiac system by hypoxic preconditioning protects isolated adult cardiomyocytes from hypoxia/reoxygenation injury. Am J Physiol HeartCirc Physiol. 327:H70–H79. 2024. View Article : Google Scholar

121 

Chotirat S, Suriyo T, Hokland M, Hokland P, Satayavivad J and Auewarakul CU: Cholinergic activation enhances retinoic acid-induced differentiation in the human NB-4 acute promyelocytic leukemia cell line. Blood Cells Mol Dis. 59:77–84. 2016. View Article : Google Scholar : PubMed/NCBI

122 

Oikawa S, Kai Y, Mano A, Sugama S, Mizoguchi N, Tsuda M, Muramoto K and Kakinuma Y: Potentiating a non-neuronal cardiac cholinergic system reinforces the functional integrity of the blood brain barrier associated with systemic anti-inflammatory responses. Brain Behav Immun. 81:122–137. 2019. View Article : Google Scholar : PubMed/NCBI

123 

Rocha-Resende C, Weinheimer C, Bajpai G, Adamo L, Matkovich SJ, Schilling J, Barger PM, Lavine KJ and Mann DL: Immunomodulatory role of non-neuronal cholinergic signaling in myocardial injury. JCI Insight. 5:e1289612019. View Article : Google Scholar : PubMed/NCBI

124 

Kakinuma Y, Akiyama T and Sato T: Cholinoceptive and cholinergic properties of cardiomyocytes involving an amplification mechanism for vagal efferent effects in sparsely innervated ventricular myocardium. FEBS J. 276:5111–5125. 2009. View Article : Google Scholar : PubMed/NCBI

125 

Oikawa S, Kai Y, Mano A, Ohata H, Nemoto T and Kakinuma Y: Various regulatory modes for circadian rhythmicity and sexual dimorphism in the non-neuronal cardiac cholinergic system. J Cardiovasc Transl Res. 10:411–422. 2017. View Article : Google Scholar : PubMed/NCBI

126 

Oikawa S, Kai Y, Mano A, Nakamura S and Kakinuma Y: A novel nitric oxide donor, S-Nitroso-NPivaloyl-D-Penicillamine, activates a non-neuronal cardiac cholinergic system to synthesize acetylcholine and augments cardiac function. Cell Physiol Biochem. 52:922–934. 2019. View Article : Google Scholar : PubMed/NCBI

Related Articles

  • Abstract
  • View
  • Download
  • Twitter
Copy and paste a formatted citation
Spandidos Publications style
Shen C, Zuo Q, Shao Z, Lin Y and Chen S: Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review). Int J Mol Med 55: 86, 2025.
APA
Shen, C., Zuo, Q., Shao, Z., Lin, Y., & Chen, S. (2025). Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review). International Journal of Molecular Medicine, 55, 86. https://doi.org/10.3892/ijmm.2025.5527
MLA
Shen, C., Zuo, Q., Shao, Z., Lin, Y., Chen, S."Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review)". International Journal of Molecular Medicine 55.6 (2025): 86.
Chicago
Shen, C., Zuo, Q., Shao, Z., Lin, Y., Chen, S."Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review)". International Journal of Molecular Medicine 55, no. 6 (2025): 86. https://doi.org/10.3892/ijmm.2025.5527
Copy and paste a formatted citation
x
Spandidos Publications style
Shen C, Zuo Q, Shao Z, Lin Y and Chen S: Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review). Int J Mol Med 55: 86, 2025.
APA
Shen, C., Zuo, Q., Shao, Z., Lin, Y., & Chen, S. (2025). Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review). International Journal of Molecular Medicine, 55, 86. https://doi.org/10.3892/ijmm.2025.5527
MLA
Shen, C., Zuo, Q., Shao, Z., Lin, Y., Chen, S."Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review)". International Journal of Molecular Medicine 55.6 (2025): 86.
Chicago
Shen, C., Zuo, Q., Shao, Z., Lin, Y., Chen, S."Research progress in myocardial function and diseases related to muscarinic acetylcholine receptor (Review)". International Journal of Molecular Medicine 55, no. 6 (2025): 86. https://doi.org/10.3892/ijmm.2025.5527
Follow us
  • Twitter
  • LinkedIn
  • Facebook
About
  • Spandidos Publications
  • Careers
  • Cookie Policy
  • Privacy Policy
How can we help?
  • Help
  • Live Chat
  • Contact
  • Email to our Support Team